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Abstract. Deep learning increasingly receives attention due to its ability to effi-
ciently solve various complex prediction tasks in organizations. It is therefore not 
surprising that more and more business processes are supported by deep learning. 
With the proliferation of edge intelligence, this trend will continue and, in paral-
lel, new forms of internal and external cooperation are provided through feder-
ated learning. Hence, companies must deal with the potentials and pitfalls of these 
technologies and decide whether to deploy them or not and how. However, there 
currently is no domain-spanning decision framework to guide the efficient adop-
tion of these technologies. To this end, the present paper sheds light on this re-
search gap and proposes a research agenda to foster the potentials of value co-
creation within federated AI ecosystems. 
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1 Introduction 

The umbrella term “deep learning” (DL) denotes algorithms from the broader field of 
artificial intelligence (AI) that seek to train complex artificial neural networks, which 
typically consist of numerous layers between the model input and output [1, 2]. Such 
deep neural networks (DNN) are particularly suited to process vast amounts of data 
effectively to solve prediction tasks [3]. Thus, DL holds the potential to drive a wide 
range of processes in important corporate areas, such as fraud detection, decision sup-
port, automation, and more [2, 4, 5]. However, the application of DL is also accompa-
nied by challenges like learning from sparse data, model bias, poor model performance, 
or maintaining data privacy [6–8].  

In light of the advances in cloud-based systems, DL components are increasingly 
used for business tasks as mentioned before [9, 10]. Moreover, a study by Deloitte from 
2019 indicates that Internet of Things (IoT) projects using AI technologies will increase 
by 70 percent until 2022 [11]. With the proliferation of edge intelligence (EI) technol-
ogies, which push DL towards the edge of the network (e.g., IoT-devices, and edge 
servers), this distribution trend of DNN is continued [12]. Additionally, EI enables new 
collaboration potentials at various organizational stages by utilizing federated learning 
(FL) [13]. The objective of FL is to train a shared global DNN with the insights gained 
from decentral DNNs instantiated by locally dispersed clients [14, 15].  

For example, by deploying EI, an electronic article surveillance (EAS) system in 
retail (e.g., as proposed by Hauser et al. [16]), could be extended to facilitate DNNs on 



local EI devices such as, for example, RFID gates in stores. If FL is applied addition-
ally, the local DNN could be trained collaboratively with insights gathered from other 
RFID gates located in the same store, with those from EAS systems in a larger retail 
store network, or even jointly with company-external sources.  

Drawing on recent literature on ecosystems further substantiates the idea of such an 
interwoven application of EI and FL to build more sophisticated DL models. The term 
ecosystem originates from biology and is generally referred to as the fusion of multiple 
units that interact with each other and the environment [17, 18]. As far as data ecosys-
tems are concerned, the ecosystem units share data either intra- or inter-organizational 
[19]. With regard to a federated AI ecosystem, shared insights from the EI instances 
(i.e., the entities of the ecosystem) can be either related to a specific task or even to 
integrated processes. The more entities involved in such a federated AI ecosystem, the 
greater the chance and possible magnitude of benefit for each of them [20, 21]. Thus, 
we leverage these possible effects by taking the ecosystem perspective [22] and loosely 
following the service-dominant (SD) logic put forward by Vargo and Lusch [23, 24], 
which emphasizes services (i.e., intangibles) rather than goods (i.e., tangibles) as the 
resources of exchange to co-create value [23, 25–27]. 

Combining EI and FL holds the potential to enhance the system’s performance, gen-
eralizability and robustness, and thus assist to overcome current challenges associated 
with AI in practice (i.e., model bias, sparse data, data privacy, poor model performance) 
[28–32]. However, while current research endeavors are already directed towards the 
development of specific systems deploying FL [33, 34]—to the best of our 
knowledge—there is no guidance on how to identify and enhance suitable processes to 
leverage the potentials of EI and FL for value co-creation in ecosystems. To this end, 
we propose our research question as follows: How can FL be used to empower AI eco-
systems for value co-creation? 

In the following sections, we first elaborate on the technological background of EI 
and FL. We then present a corresponding research agenda to serve as a blueprint to 
assist and motivate researchers as well as practitioners to engage with this promising 
topic. Subsequently, we conclude the present paper by applying the design-oriented 
research methodology (DSRM) as proposed by Peffers et al. [35] to the research agenda 
and briefly outline the expected contributions.  

2 Theoretical Background 

2.1 Edge Intelligence 

EI follows the edge computing (EC) paradigm [12]. EC can be described as a distrib-
uted and decentralized computing concept [36] which enables data processing to hap-
pen directly or in proximity to the data source [37]. More specifically, EC includes all 
nodes along the path from the end devices (e.g., sensors), over edge servers (e.g., micro-
data centers) to the cloud data center [37]. For the sake of simplicity, we generally refer 
to these points as “edge nodes” (EN). Now, EI (cf. Figure 1) can be regarded as the 
migration of traditionally cloud-based DNN to these ENs [34, 38]. Therefore, EI can 



overcome the specific issues associated with cloud computing (e.g., latency, data pri-
vacy, or communication inefficiency) [12, 37, 39–41]. Furthermore, shifting data pro-
cessing to the edge of the network makes transferring all raw data to a central cloud 
unit obsolete [42]. Instead, data processing can take place in closer proximity to its 
origin, and thus preprocessed data are transferred [12, 42]. Each EN in this EI hierarchy 
is capable of consuming and producing data (e.g., by inferencing) [12]. Following the 
definitions of Zhou et al. and Xu et al., we refer to EI as the usage of AI algorithms 
locally on any of the ENs to enhance model training and inferencing, while simultane-
ously protecting the privacy and security of data [12, 42]. According to the idea of EC, 
each EN in this hierarchy is capable of collaborating with other nodes vertically or 
horizontally [12].  

 
Figure 1. Comparison of traditional cloud intelligence and edge intelligence [12, 42]  

2.2 Federated Learning 

In order to facilitate vertical or horizontal collaborative training of distributed DNNs, 
FL poses a promising solution [12]. The objective of FL is to train a shared global DL 
model provided by a high-level instance (model owner) by successively feeding in-
sights gained from decentral DNNs which are instantiated by locally dispersed clients 
(data owners) [12–14, 34]. Therefore, the local DNN iteratively updates the global 
model [14]. Here it should be emphasized that private data are treated confidentially in 
the sense that they are not forwarded but rather remain with the data owner [12, 14]. 
Instead, only the parameter values of the local DNNs are used to update the global 
DNN, ideally making plausible data protection concerns obsolete [12, 34]. The training 
procedure of FL (cf. Table 1) can be divided into three steps: (1) task initialization, (2) 
local model training and updating, (3) global model aggregation and updating [34].  

Although this decentralized learning approach is rich in potential (i.e., privacy pro-
tection, reduction of model bias), FL may also come along with downsides—namely 
algorithmic or practical challenges [28]. While the former may emerge by the difficulty 
to design an appropriate model averaging policy that is fast and robust despite limited 
availability of model updates or malicious contributors, the latter results from practical 
issues such as the restorability of private data by another client [28, 33, 43]. 

C
lo

ud

Data 
Processing

Data 
Processing

Ed
ge

Data
Transfer

Data 
Processing

En
d

Data 
Transfer

Data 
Processing 

D
at

a

Traditional Cloud Intelligence Edge Intelligence



Table 1. Steps of federated learning [34] 

Step Description 
 

(1) 
The model owner decides upon the training task and necessary data, initializes model hy-
perparameters, and shares the initialized model (Gi) with the data owners. 

Re
pe

at
 (2) 

Each data owner applies Gi (or Gi+j respectively) as a local model and optimizes this model 
with private data. Finally, the data owner sends the updated local model parameters back to 
the model owner. 

(3) 
The model owner receives the updated parameters from the data owners and aggregates these 
updates effectively to a new global model (Gi+j). Gi+j is then sent back to the data owners.  

3 Research Agenda  

As illustrated in section two, EI can lead to a reduction in latency, improves communi-
cation efficiency, and increases data security [12, 37, 39–41]. Additionally, FL may 
potentially help to overcome some of the hurdles in the context of AI deployment (i.e., 
model bias, sparse data, model performance) [28–32]. By combining both technologies 
we merge advantages and opt for a system which delivers a secure and efficient com-
munication of the necessary information to build more sophisticated DL models in 
terms of performance, generalizability, and robustness. Now, by taking the SD logic 
perspective, we argue that building service ecosystems, which incorporate these tech-
nologies and additionally connect multiple entities, resembles a promising research 
field to be investigated further. Therefore, we encourage researchers and practitioners 
to engage with federated AI ecosystems by working on the following questions:  

• Which processes can be enhanced by EI technologies and provide the potential for 
value co-creation based on FL through the exchange of insights? 

• How to design and operate an effective SD platform with a reasonable modular FL 
architecture at company level? 

• How to configure, monitor, and manage a federated AI ecosystem at an inter-com-
pany level to leverage the full potentials of value co-creation? 

• How to maintain data security and prevent the recovery of original data in federated 
AI ecosystems? 

4 Future Work and Expected Contribution 

In the light of the identified research gap and our proposed agenda, we encourage re-
searchers and practitioners to engage with this topic. Against this backdrop, we propose 
three possible follow-up studies that are directly associated with the aforementioned 
research agenda. Here, we especially focus on the first study and outline its backbone 
in depth (cf. Table 2). To this end, we follow the DSRM approach put forward by 
Peffers et al. [35]. Briefly summarized, design science research—besides behavioral 
research—as one of the two pillars of IS research offers a methodological toolset to 
create useful artifacts which are often directed towards business contexts [44–47].  



Table 2. Overview on study 1, in line with the DSRM [35] 

Identify problem 
and motivate 

Configuring FL models to facilitate value co-creation in business networks and 
therefore outperform local instantiations due to generalizability and robustness re-
mains an unexplored potential for a wide range of business applications. These cir-
cumstances determine the entry point of this first study. 

Define objectives 
and solution 

We attribute this lack of practical value co-creation solutions to the absence of a 
corresponding decision framework that determines a suitable configuration of EI 
and FL for the specific task under consideration.  

Design and devel-
opment 

Hence, an artifact is designed to (i) identify processes to be enhanced with EI and 
FL, and (ii) to guide the effective implementation of such technologies to leverage 
the potentials of value co-creation. The decision framework is therefore not re-
stricted to specific application domains, edge devices nor DNN configurations.  

Demonstration Given a real-world application scenario with its corresponding environment of 
stakeholders, we aim for a first demonstration of the novel artifacts’ utility.  

Evaluation The evaluation is carried out in a formative and naturalistic manner [48]. More pre-
cisely, we aim for a stepwise assessment of the artifact’s effectiveness in a real-
world application scenario.  

Communication The core of this first study is the development of a decision framework for the iden-
tification and enhancement of processes with EI and FL. The research findings are 
communicated via journals and conference proceedings.  

 
Drawing on the results of the first study (i.e., the decision framework), a consecutive 

study aims to assist companies with regard to the adoption of suitable FL models. To 
this end, we develop a service platform with the capability to accumulate insights from 
locally dispersed entities in a FL model to empower multiple corporate-specific pro-
cesses with DL. Again, we plan to opt for a design-oriented research approach to de-
velop the platform solution while considering its stakeholder's requirements. 

A third and last proposed study extends the idea of a service platform by taking the 
inter-company perspective. Thus, the participating clients form a service ecosystem to 
share and therefore improve the robustness and generalizability of the FL model across 
multiple companies. Additionally, new ecosystem attendees benefit from the guided 
adoption of sophisticated DL models. For the purpose of control and enhancement, 
suitable metrics and components to real-time monitor and benchmark such a service 
ecosystem (e.g., in terms of latency or performance) are incorporated.  

This article set out to propose the idea of federated AI ecosystems by merging both 
technologies EI and FL and by taking the ecosystems perspective. Furthermore, we 
elaborated a research agenda to boost the discussion in the IS community. Ultimately, 
we sketched out three possible follow-up studies at the nexus between EI, FL, and the 
SD logic perspective by applying the DSRM. However, as the research agenda shows, 
more research is yet to be conducted in this area.   
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