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ABSTRACT Characterizing the microbiome of spacecraft assembly cleanrooms is im-
portant for planetary protection. We report two bacterial metagenome-assembled
genomes (MAGs) reconstructed from metagenomes produced from cleanroom sam-
ples from the Kennedy Space Center’s Payload Hazardous Servicing Facility (KSC-
PHSF) during the handling of the Phoenix spacecraft. Characterization of these MAGs
will enable identification of the strategies underpinning their survival.

To avoid microbial contamination during planetary missions, there are standards for
spacecraft bioburden that are maintained by the Committee on Space Research

(COSPAR) Planetary Protection Panel (https://cosparhq.cnes.fr/scientific-structure/panels/
panel-on-planetary-protection-ppp/). Regulations require that spacecraft be assembled in
cleanrooms with defined sterilization protocols (1). Studies characterizing these environ-
ments have identified a persistent microbiome (1–5). One such study characterized the
microbiome of the Kennedy Space Center’s Payload Hazardous Servicing Facility (KSC-
PHSF) during the assembly of the Phoenix spacecraft (1).

In that study by Bashir et al. (1), DNA samples were collected with a biological sam-
pling kit (BiSKits, QuickSilver Analytics) from 1m2 of the floor of the KSC-PHSF during
(8 samples) and after (10 samples) the spacecraft assembly (1). DNA extraction was per-
formed using bead beating and an automated DNA extraction instrument (Autolyser
A-2 DNA automated platform, Axcyte Genomics). Samples from each sampling period
were pooled following extraction. Each sample was amplified using multiple displace-
ment amplification with a REPLI-g single-cell whole-genome amplification kit (Qiagen).
DNA was sheared using an E210 instrument (Covaris, Woburn, MA) and then end
repaired, A tailed, and ligated to Illumina adaptors according to standard Illumina (San
Diego, CA) paired-end (PE) protocols. Metagenomic sequencing of the materials was
performed on a HiSeq 2500 sequencing instrument (Illumina) with paired-end 2 -
� 250-bp read lengths (1). This produced 4,654,014 and 22,355,430 raw reads for
the metagenomes collected during spacecraft assembly and after spacecraft assem-
bly, respectively. In this study, default parameters were used for all software. The
raw reads were downloaded from NCBI GenBank, and the short and poor-quality
sequences were excluded using Trimmomatic v0.39 (6). The reads were assembled
into contigs using MEGAHIT v1.1.3 (7) (after spacecraft assembly: 114,901 contigs;
N50, 401 bp; during spacecraft assembly: 12,199 contigs; N50, 1,130 bp). Contigs
were binned into metagenome-assembled genomes (MAGs) using MaxBin v2.2.7
(8). The taxonomic classification, completeness, and contamination of these MAGs
were assessed using CheckM v1.1.2 (9). A medium-quality MAG was produced from
the metagenome collected during spacecraft assembly (MAG-P1) and a high-quality
MAG (MAG-P2) from the metagenome collected after spacecraft assembly (10). The
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contamination scores for MAG-P1 were improved using VizBin v1.0.0 (11). tRNAs
and rRNA genes were identified using Aragorn v1.2.38 (12) and RNAmmer v1.2 (13).

The high-quality MAG was classified as Rhizobium (MAG-P2), with completeness
and contamination scores of 96.33% and 4.69%, respectively, and 438-fold coverage.
MAG-P2 is composed of 468 contigs and contains 1 16S rRNA gene copy, 64 tRNAs,
and 7,771 coding sequences (CDSs). The genome size is 8.36Mb, with 63.1% GC con-
tent. CheckM classified MAG-P1 in the genus Acinetobacter, with completeness and
contamination scores of 52.90% and 8.62%, respectively, and 863-fold coverage. MAG-
P1 is 4.34Mb, with 39.8% GC content, 1,793 contigs, and 4,253 CDSs.

Members of Rhizobiaceae and Acinetobacter were previously detected in the KSC-
PHSF, as well as other cleanroom environments (1, 5, 14–20). Further analysis of these
MAGs will provide insight into the strategies underpinning survival in cleanroom envi-
ronments and inform future sterilization strategies.

Data availability. The sequences analyzed in this study are available from the NCBI
Sequence Read Archive under accession numbers SRX1896153 and SRX1896154. The
whole-genome shotgun projects were deposited at DDBJ/ENA/GenBank under accession
numbers JAEPRK000000000 (Acinetobacter sp. strain MAG-P1) and JAEPRL000000000
(Rhizobium sp. strain MAG-P2). The versions described in this paper are the first versions.
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