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In this article we construct uncountably many new homoge-
neous locally finite Steiner triple systems of countably infinite 
order as Fraïssé limits of classes of finite Steiner triple sys-
tems avoiding certain subsystems. The construction relies on 
a new embedding result: any finite partial Steiner triple sys-
tem has an embedding into a finite Steiner triple system that 
contains no nontrivial proper subsystems that are not sub-
systems of the original partial system. Fraïssé’s construction 
and its variants are rich sources of examples that are central 
to model-theoretic classification theory, and recently infinite 
Steiner systems obtained via Fraïssé-type constructions have 
received attention from the model theory community.

© 2021 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A Steiner triple system is a pair (V, B) where V is a set of points and B is a collection of 
3-element subsets of V (blocks) such that every pair of points occurs together in exactly 
one block. The order of (V, B) is |V |. In this paper we will be concerned with systems 
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with finite or countably infinite order and will refer to them as finite or countably infinite
accordingly. It is well known that a Steiner triple system of finite order v exists if and 
only if v ≡ 1 or 3 (mod 6); such values of v are called admissible. An isomorphism from 
a Steiner triple system (V1, B1) to another (V2, B2) is a bijection f : V1 → V2 such that 
{x, y, z} ∈ B1 if and only if {f(x), f(y), f(z)} ∈ B2.

If (V ′, B′) and (V, B) are Steiner triple systems such that V ′ ⊆ V and B′ ⊆ B, then we 
say that (V ′, B′) is a subsystem of (V, B). The subsystem (V ′, B′) is proper if V ′ �= V . We 
say a system or subsystem is nontrivial if it has order strictly greater than 3. Doyen [13]
proved that there is a Steiner triple system of each admissible order that has no nontrivial 
proper subsystems. We call such systems subsystem-free (while remembering that every 
Steiner triple system has trivial subsystems and is a subsystem of itself).

The major motivation for this paper comes from Fraïssé’s theorem [17], an important 
result in model theory. We direct readers to [21] for a formal statement. Here, we instead 
content ourselves with a brief simplified overview. Suppose we represent mathematical 
structures of a certain type (for example, groups, graphs or Steiner triple systems) in 
a consistent way so that each consists of a domain of elements, some of them perhaps 
distinguished as special constants, together with some functions and/or relations on that 
domain. This representation gives rise to a definition of isomorphism for our structures 
and, importantly, a definition of a substructure in one of our structures. A substructure 
A of a structure B is said to be finitely generated if there is some finite subset X of the 
domain of B such that A is the minimal (with respect to subset inclusion on domains) 
substructure of B whose domain contains A. A countable structure is homogeneous if 
every isomorphism between two of its finitely generated substructures can be extended to 
an automorphism of the entire structure. We say a structure A has age J if the structures 
in J are, up to isomorphism, exactly the finitely generated substructures of A. Fraïssé’s 
theorem states that, for a nonempty class K of finitely generated structures, there is a 
unique (up to isomorphism) countable homogeneous structure Flim(K) that has age K, 
provided that K obeys the following four properties.

Essential countability. Up to isomorphism, K contains countably many structures.
Hereditary property. If B ∈ K and A is a finitely generated substructure of B, then A

is isomorphic to some structure in K.
Joint embedding property. If B, C ∈ K, then there is a D ∈ K that contains a sub-

structure isomorphic to B and a substructure isomorphic to C.
Amalgamation property. If A, B, C ∈ K, and there are isomorphisms f and g from A

to substructures of B and C respectively, then there is a D ∈ K and isomorphisms 
f ′ and g′ from B and C respectively to substructures of D such that f ′ ◦ f = g′ ◦ g.

The class K is called an amalgamation class and Flim(K) is called the Fraïssé limit 
of K. Furthermore, if all of the structures in K are finite then Flim(K) will be locally 
finite: every finite subset of its domain will be contained in the domain of one of its finite 
substructures.
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There are several reasonable ways to represent Steiner triple systems. In this paper 
we will view them as functional structures. We discuss the details of this representation, 
along with alternatives to it and prior work that has concerned them in Section 2. For 
now, however, the important upshot of this functional representation is that it implies 
that the relevant substructures of Steiner triple systems for use in Fraïssé’s theorem will 
be subsystems as defined above (and also that isomorphisms of Steiner triple systems will 
be as defined above). Knowing that ‘substructure’ should be interpreted as ‘subsystem’ 
gives us definitions of homogeneous and locally finite Steiner triple systems and of finitely 
generated subsystems.

In this article we construct new countably infinite homogeneous Steiner triple systems 
as the Fraïssé limit of classes of finite Steiner triple systems avoiding certain subsystems. 
For a class F of finite nontrivial Steiner triple systems, we say that a Steiner triple 
system (V, B) is F-free if no subsystem of (V, B) is isomorphic to a system in F. We call 
F good if there exists a finite F-free Steiner triple system that is not isomorphic to any 
subsystem of a system in F. In particular, if there is a subsystem-free nontrivial Steiner 
triple system which is not isomorphic to any subsystem of a system in F, then F can 
be seen to be good by considering that system. This implies that any finite F is good 
because there exists a subsystem-free Steiner triple system whose order is greater than 
that of any system in F.

Theorem 1. For any good class F of finite nontrivial Steiner triple systems, the class K
of all finite F-free Steiner triple systems forms an amalgamation class with countably 
infinitely many nonisomorphic elements. Hence the Fraïssé limit of K is a homogeneous 
locally finite Steiner triple system of countably infinite order.

We show in Section 3 that, by taking F in the above theorem to be various subclasses 
of the class of all subsystem-free Steiner triple systems, we can obtain uncountably many 
nonisomorphic countable homogeneous locally finite Steiner triple systems.

Corollary 2. There are exactly 2ℵ0 non-isomorphic homogeneous locally finite Steiner 
triple systems of countably infinite order.

Most of the work in proving Theorem 1 is in establishing that the classes satisfy the 
joint embedding and amalgamation properties. We do this using Theorem 3, a new result 
concerning embeddings of partial Steiner triple systems. A partial Steiner triple system
is a pair (U, A) where U is a set of points and A is a collection of 3-element subsets 
of U (blocks) such that every pair of points occurs together in at most one block. The 
order of (U, A) is |U |. The leave of (U, A) is the graph L with vertex set U and edge 
set given by {x, y} ∈ E(L) if and only if x and y occur together in no block in A. Let 
(U ′, A′) and (U, A) be partial Steiner triple systems such that U ′ ⊆ U and A′ ⊆ A. 
We say that (U ′, A′) is embedded in (U, A). Furthermore, if (U ′, A′) is a (complete) 
Steiner triple system, then we say that (U ′, A′) is a subsystem of (U, A). This extends 
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our earlier usage by allowing partial Steiner triple systems to have subsystems. Note 
that throughout this paper we use the term embedding in the design-theoretic sense just 
defined rather than in its model-theoretic sense. Our embedding result shows we can 
embed a finite partial Steiner triple system in a finite complete Steiner triple system 
without creating any new subsystems.

Theorem 3. Any finite partial Steiner triple system (U, A) has an embedding in a finite 
(complete) Steiner triple system (V, B) that contains no nontrivial proper subsystems that 
are not subsystems of (U, A).

In the next section we give the necessary background and definitions on homogeneous 
Steiner triple systems. In Section 3 we show that Theorems 1 and 3 follow quite easily 
from a key lemma, Lemma 4. Then, after some preliminaries in Section 4, we will finally 
prove Lemma 4 in Section 5.

2. Homogeneity and Steiner triple systems

As discussed briefly in the introduction, there are multiple ways to represent Steiner 
triple systems from a model-theoretic perspective. These different representations give 
rise to different notions of a substructure and hence different classifications of which 
Steiner triple systems are homogeneous. For more on the model theory of Steiner triple 
systems see [3,5].

In this paper we are viewing Steiner triple systems as functional structures. More 
specifically we view a Steiner triple system (V, B) as a structure on domain V with a 
single binary function ◦ defined by x ◦ x = x for all x ∈ V and x ◦ y = z, where z is 
the unique element of V such that {x, y, z} ∈ B, for all distinct x, y ∈ V . The resulting 
pair (V, ◦) is a special kind of quasigroup, sometimes called a Steiner quasigroup. As 
mentioned in the introduction, an important consequence of representing Steiner triple 
systems in this way is that the resulting notion of a substructure is exactly our notion 
of a subsystem.

When viewed from our functional perspective, the finite homogeneous Steiner triple 
systems can be completely classified. A finite Steiner triple system is homogeneous if and 
only if it is isomorphic to one of the finite projective or affine triple systems: the sys-
tems comprising the points and lines of PG(n, 2) and AG(n, 3), respectively, for positive 
integers n. That the finite projective and affine triple systems are homogeneous follows 
from Witt’s Lemma (see [2, p. 81] for example). Furthermore, any homogeneous Steiner 
triple system must obviously be 2-point transitive and hence isomorphic to a projective 
or affine triple system by the main result of [23].

The countably infinite homogeneous Steiner triple systems have not been classified, 
however. Up to isomorphism the only ones that have appeared in the literature to date 
are the countably infinite projective and affine triple systems and the countable universal 
homogeneous locally finite Steiner triple system. These can be formed as the Fraïssé limits 
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of the classes of finite projective systems, finite affine systems, and all finite systems, 
respectively. The existence of the countable universal homogeneous system was first 
noted in [30]. Theorem 1 provides uncountably many new examples of homogeneous 
locally finite Steiner triple systems of countably infinite order as the Fraïssé limits of 
classes of finite Steiner triple systems avoiding certain subsystems.

The alternative to representing Steiner triple systems functionally, as we do in this 
paper, is to represent them relationally without using functions. Most simply, one can 
view a Steiner triple system (V, B) as a structure on domain V with a single ternary 
relation that relates three points if and only if they form a block in B. Under this 
representation a substructure of a Steiner triple system is an “induced” partial Steiner 
triple system obtained by choosing some subset of V and deleting the points not in this 
subset and the blocks that include any of the deleted points. This is obviously a much 
wider notion of substructure than that given by our definition of subsystem. This wide 
notion of substructure leads to a very restricted family of homogeneous structures: a 
nontrivial Steiner triple system is relationally homogeneous if and only if it has order 7 
and hence is isomorphic to the projective triple system comprising the points and lines 
of PG(2, 2).

We now briefly discuss work that has been done concerning these relational repre-
sentations. One way of viewing a relationally represented Steiner triple system is as a 
special kind of 3-uniform hypergraph in which every pair of vertices is contained in ex-
actly one hyperedge. Homogeneous 3-uniform hypergraphs are studied in [1,25]. One can 
also view a relationally represented Steiner triple system as a special case of a Steiner 
system represented as a domain of points equipped with a k-ary relation such that ev-
ery t-set of vertices is contained in exactly one k-set of points defined by the relation. 
Homogeneous Steiner systems, viewed in this way, are classified in [11]. Finally one can 
also view a relationally represented Steiner triple system as a special case of a linear 
space represented as a domain of points equipped with a ternary collinearity relation. 
Homogeneous linear spaces are classified in [12]. (Note that when viewing Steiner triple 
systems as linear spaces, substructures would be viewed as complete linear subspaces 
where any two points that do not appear together in a collinear triple are assumed to be 
in a line of length 2. Of course, this does not change the classification of homogeneity.)

It should be noted that the term ultrahomogeneity is sometimes used in the literature 
to describe our property homogeneity, for example in [11,12]. In this case, the term ho-
mogeneous is sometimes used to describe a weaker, but similar, property: a structure is 
set-homogeneous if whenever two finitely generated substructures are isomorphic there is 
some automorphism of the whole structure mapping one to the other. For finite graphs 
these two properties are equivalent [16,29], but this is not the case in general. For ex-
ample, the equivalence does not hold for countably infinite graphs [15]. It also does not 
hold for Steiner triple systems considered either as relational or functional structures. 
The only finite relationally set-homogeneous, but not homogeneous, Steiner triple system 
has order 9 and hence is isomorphic to the affine triple systems comprising the points 
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and lines of AG(2, 3) [11,12]. Finite functionally set-homogeneous Steiner triple systems 
are considered in [6].

In addition, the term homogeneous is sometimes used with completely different 
meanings when discussing similar structures, for example, quasigroups [27] and Latin 
squares [22].

3. Proofs of main results from Lemma 4

The following lemma is crucial to our argument.

Lemma 4. Let (U, A) be a finite partial Steiner triple system of odd order u � 11 whose 
leave contains a 6-cycle H. There exists a partial Steiner triple system (V, A ∪ B) of 
order 2u + 1 such that (V, A ∪ B) contains no nontrivial proper subsystems that are not 
subsystems of (U, A) and the edge set of the leave of (V, A ∪B) is obtained from the edge 
set of the leave of (U, A) by deleting the edges of the cycle H.

In this section we show that Lemma 4 implies Theorem 3, which in turn implies 
Theorem 1, which itself finally implies Corollary 2. Given these implications, it will then 
only remain to prove Lemma 4, and we will do this over the next two sections.

Proof of Theorem 3 from Lemma 4. Let U ′ be a superset of U such that |U ′| is large 
compared to |U |, |U ′| ≡ 1, 9 (mod 12) if |A| is even and |U ′| ≡ 3, 7 (mod 12) if |A| is 
odd. Let L′ be the leave of the partial Steiner triple system (U ′, A). It is routine to 
check that |E(L′)| ≡ 0 (mod 6) and that each vertex of L′ has even degree close to 
|U ′|. Thus, by the main result of [4], there is a decomposition {H1, . . . , Ht} of L′ into 
6-cycles. Let (U0, A0) = (U ′, A). Define a sequence of partial Steiner triple systems 
(U0, A0), . . . , (Ut, At) such that, for i ∈ {1, 2, . . . , t}, (Ui, Ai) is the partial Steiner triple 
system obtained from (Ui−1, Ai−1) via Lemma 4 with H chosen to be Hi. Then, for each 
i ∈ {0, . . . , t}, (Ui, Ai) contains no nontrivial proper subsystems that are not subsystems 
of (U, A) and the edge set of the leave of (Ui, Ai) is 

⋃t
j=i+1 E(Hj). In particular, (Ut, At)

is a (complete) Steiner triple system that contains no nontrivial proper subsystems that 
are not subsystems of (U, A). �
Proof of Theorem 1 from Theorem 3. Fix a good set F of finite Steiner triple systems 
and let K be the set of all finite F-free Steiner triple systems. Because every system in 
K is finite, K contains countably many structures. Also, K has the hereditary property 
because if (V, B) is an F-free Steiner triple system and (V ′, B′) is a subsystem of (V, B), 
then (V ′, B′) is also F-free.

To establish the joint embedding and amalgamation properties we proceed as follows. 
For the joint embedding property, given two systems in K, we take (V1, B1) and (V2, B2)
to be isomorphic copies of these systems such that V1 ∩ V2 = ∅. For the amalgamation 
property, given two systems in K each with a specified subsystem isomorphic to a third 
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system in K, we take (V1, B1) and (V2, B2) to be isomorphic copies of the two systems 
such that (V1 ∩ V2, B1 ∩ B2) is the specified subsystem in each. In either case it can be 
seen that it suffices to embed (V1 ∪ V2, B1 ∪ B2) in a finite F-free Steiner triple system.

Because F is good, there is a finite F-free Steiner triple system (V ∗, B∗) such that 
(V ∗, B∗) is not isomorphic to any subsystem of a system in F and V ∗ is disjoint from 
V1 ∪ V2. Let (U, A) be the partial Steiner triple system (V1 ∪ V2 ∪ V ∗, B1 ∪ B2 ∪ B∗). 
By Theorem 3, (U, A) has an embedding in a (complete) Steiner triple system (V, B)
that contains no nontrivial proper subsystems that are not subsystems of (U, A). Thus, 
because (V1, B1), (V2, B2) and (V ∗, B∗) are F-free, no proper subsystem of (V, B) is in F. 
Furthermore (V, B) itself is not in F because it has (V ∗, B∗) as a subsystem. Thus (V, B)
is F-free, and we have that K obeys the joint embedding and amalgamation properties. 
Furthermore, because |V | > max(|V1|, |V2|), K contains systems of infinitely many or-
ders. Thus K is an amalgamation class with countably infinitely many nonisomorphic 
elements. The remainder of the theorem follows from Fraïssé’s theorem [17,21]. �
Proof of Corollary 2 from Theorem 1. Consider the set of all isomorphism classes of 
nontrivial finite subsystem-free Steiner triple systems. Let S∗ be a set containing ex-
actly one representative of each isomorphism class in this set. Now |S∗| = ℵ0 because, 
by the result of Doyen [13] mentioned in the introduction, it contains at least one system 
of each admissible order greater than 3. Let F be one of the 2ℵ0 proper subsets of S∗. 
Because F is a proper subset of S∗, it follows that F is good. Hence by Theorem 1, the 
class K of all finite F-free Steiner triple systems is an amalgamation class and its Fraïssé 
limit Flim(K) is a homogeneous locally finite Steiner triple system of countably infinite 
order. So it suffices to show that any two of the 2ℵ0 possible choices for F lead to two 
nonisomorphic Fraïssé limits.

Let F1 and F2 be two distinct proper subsets of S∗ and suppose without loss of 
generality that F1 \F2 is nonempty. Let K1 and K2 be the amalgamation classes of all 
F1-free and all F2-free Steiner triple systems, respectively. Then Flim(K1) and Flim(K2)
are not isomorphic because any system in F1 \F2 is F2-free and hence is isomorphic to 
a subsystem of Flim(K2) but not to a subsystem of Flim(K1). �
4. Preliminaries for the proof of Lemma 4

In this section we give some definitions and preliminary results that will aid us in our 
proof of Lemma 4.

For an integer n � 2 we let Zn denote the additive group of integers modulo n. For 
an element x of Zn, we abbreviate x + x to 2x and so on. A 1-factor of a graph G is a 
set F of edges of G such that each vertex of G is incident with exactly one edge in F . A 
1-factorisation of a graph G is a nonempty set of 1-factors of G which partition its edge 
set. Here we will only be interested in 1-factorisations of complete graphs and will refer 
to a 1-factorisation of the complete graph on vertex set V as simply a 1-factorisation on 
V . Of course, |V | must be even for a 1-factorisation on V to exist. If F is a 1-factorisation 
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on V and S is a nonempty subset of V , then we say that S induces a sub-1-factorisation 
of F if there is a 1-factorisation F ′ on S such that each 1-factor in F ′ is a subset of 
a 1-factor in F . For odd n � 3, the standard 1-factorisation on Zn ∪ {∞} is given by 
{F0, . . . , Fn−1} where, for i ∈ {0, . . . , n − 1},

Fi = {{x, y} : x, y ∈ Zn, x + y = 2i} ∪ {{∞, i}}.

We first show that sometimes the closure of a subset of Zn under addition of distinct 
elements is sufficient to ensure that it forms a subgroup.

Lemma 5. Let n be an odd positive integer and let S be a subset of Zn such that |S| � 3, 
0 ∈ S, and a + b ∈ S for any distinct elements a and b of S. Then S forms a subgroup 
of Zn.

Proof. First we make the following observation. For any x ∈ S, if 2x ∈ S then, by 
repeatedly adding x to 2x, we have that kx ∈ S for each integer k and hence that 
−x ∈ S. In particular, to prove the lemma it suffices to show that 2x ∈ S for each x ∈ S.

Let a and b be distinct nonzero elements of S. Then we can deduce that each of a + b, 
(a + b) + a = 2a + b, (a + b) + b = a + 2b and (2a + b) + b = 2(a + b) is in S, noting that 
2a + b �= b because 2a �= 0 since n is odd. Because 2(a + b) ∈ S, we have −(a + b) ∈ S

by our observation above. Now −(a + b) cannot be equal to both a and b, and so we 
may assume that −(a + b) �= a without loss of generality. Then a − (a + b) = −b ∈ S

and hence (2a + b) − b = 2a ∈ S, noting that 2a + b �= −b because 2(a + b) �= 0 since n
is odd. Then −a ∈ S by our observation and hence (a + 2b) − a = 2b ∈ S, noting that 
a + 2b �= −a because 2(a + b) �= 0. So we have seen that 2a and 2b are in S and, since 
a and b were arbitrary distinct nonzero elements of Zn, we have shown that 2x ∈ S for 
each x ∈ S as required. �

We are now in a position to characterise the subsets of Zn ∪ {∞} that induce a 
sub-1-factorisation of the standard 1-factorisation.

Lemma 6. Let n be an odd integer and let {F0, . . . , Fn−1} be the standard 1-factorisation 
on Zn ∪ {∞}. Suppose that S is a subset of Zn ∪ {∞} with |S| > 2 that induces a 
sub-1-factorisation F ′ of {F0, . . . , Fn−1}. Then S is the union of {∞} and a coset C of 
a subgroup of Zn and F ′ = {F ′

i : i ∈ C} where F ′
i = {{x, y} ∈ Fi : x, y ∈ S} for each 

i ∈ Zn.

Proof. We know that |S| is even because it induces a sub-1-factorisation and hence we 
have that |S| � 4. By the 1-rotational symmetry of the standard 1-factorisation it suffices 
to show that if 0 ∈ S, then S is the union of {∞} and a subgroup of Zn. Let x and y
be distinct elements of S ∩ Zn. Then {x, y} ∈ F ′

z where z is the unique element of Zn

such that 2z = x + y. Thus each edge of Fz incident to a vertex in S is in F ′
z and so, 

because {0, x + y} ∈ Fz and 0 ∈ S, we must have x + y ∈ S. Thus S ∩ Zn is closed 
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under addition of distinct elements and so it forms a subgroup of Zn by Lemma 5. In 
particular, |S ∩ Zn| is odd because n is odd. However, |S| is even and hence it must be 
that ∞ ∈ S. The result now follows. �

The following easy observation will be useful. Roughly speaking it says that r points 
of a partial Steiner triple system are sufficient to uniquely determine a subsystem of 
order at most 2r.

Lemma 7. Let (U, A) be a partial Steiner triple system. For any subset R of U , there is 
at most one subsystem of (U, A) whose point set contains R and whose order is at most 
2|R|.

Proof. Suppose otherwise that (S1, T1) and (S2, T2) are two distinct subsystems of (U, A)
such that, for i ∈ {1, 2}, we have R ⊆ Si and |Si| � 2|R|. Then (S′, T ′) where S′ = S1∩S2
and T ′ = T1∩T2 is a subsystem of both (S1, T1) and (S2, T2). Note that |R| � |S′| because 
R ⊆ Si for i ∈ {1, 2}. Since (S1, T1) and (S2, T2) are distinct, we can assume without loss 
of generality that (S′, T ′) is a proper subsystem of (S1, T1). But then |S1| � 2|R| � 2|S′|
and hence (S1, T1) has a subsystem of order at least 1

2 |S1|, which contradicts the Doyen-
Wilson theorem [14]. �

Finally, we will also use the following bound on the sum of a finite subsequence of a 
generalised harmonic sequence.

Lemma 8. Let d′ and d′′ be odd integers such that 3 � d′ � d′′. Then

1
d′

+ 1
d′ + 2 + 1

d′ + 4 + · · · + 1
d′′

� 1
2 ln

(
d′′ + 1
d′ − 1

)
.

Proof. Let f : [d′ − 1, d′′ + 1] → R be defined by f(x) = 1
z where z = x + 1 if x is an 

even integer and z is the odd integer closest to x otherwise. Then

1
d′

+ 1
d′ + 2 + 1

d′ + 4 + · · · + 1
d′′

= 1
2

d′′+1∫

d′−1

f(x) dx � 1
2

d′′+1∫

d′−1

1
x
dx = 1

2 ln
(
d′′ + 1
d′ − 1

)
,

where the first equality follows by considering the region bounded by the graph of f
between d′−1 and d′′+1, and the inequality follows because 

∫ d

d−1
1
x−

1
d dx �

∫ d+1
d

1
d−

1
x dx

for each d ∈ {d′, d′ + 2, d′ + 4, . . . , d′′} (note that 1
x is a continuous convex function on 

the interval [d′ − 1, d′′ + 1]). �
5. Proof of Lemma 4

Before we can prove Lemma 4, we require a result that allows us to extend a partial 
mapping from Zu to the point set of a Steiner triple system of order u to a bijection 
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that does not map cosets of subgroups of Zu to subsystems of the system. Note that, 
while we have defined a nontrivial Steiner triple system or subsystem to be one of order 
greater than 3, we use the conventional definition that a nontrivial subgroup is one of 
order strictly greater than 1.

Lemma 9. Let (U, A) be a partial Steiner triple system of odd order u � 11. Then any 
injection ϕ′ : {0, . . . , u+1

2 } → U can be extended to a bijection ϕ : Zu → U such that, for 
any coset C of a nontrivial proper subgroup of Zu, ϕ(C) is not the point set of a (trivial 
or nontrivial) subsystem of (U, A).

Proof. For a positive divisor d of u, let 〈d〉 denote the subgroup of Zu generated by d. 
Let C be the set of all cosets of nontrivial proper subgroups of Zu of order congruent to 
1 or 3 modulo 6. For each s ∈ {3, . . . , u}, let Ss be the set of all subsets S of U such that 
|S| = s and S is the point set of a subsystem of (U, A). It will be important throughout 
the proof that for any s ∈ {3, . . . , u} and any ( s+1

2 )-subset S′ of U , there is at most one 
superset of S′ in Ss by Lemma 7.

Let ϕ′ : {0, . . . , u+1
2 } → U be an injection. We wish to construct a bijective extension 

ϕ : Zu → U of ϕ′ such that ϕ(C) /∈ S|C| for all C ∈ C. For an injection ψ : X → U , 
where X is a subset of Zu, we say that a coset C ∈ C is safe under ψ if ψ(C ∩X) � S

for all S ∈ S|C|. For each i ∈ {u+1
2 , . . . , u − 3} we will construct a function ϕi such that

(a) ϕi : {0, . . . , i} → U is an injective extension of ϕ′;
(b) for each C ∈ C such that |C ∩ {0, . . . , i}| � 1

2 (|C| + 3), C is safe under ϕi; and
(c) if u ≡ 3 (mod 6) and i � 2u

3 − 1, then there is no z ∈ U such that

{
{ϕi(u3 − 2), ϕi(2u

3 − 2), z}, {ϕi(u3 − 1), ϕi(2u
3 − 1), z}

}
⊆ A.

We first show that, if we can construct a ϕu−3 : {0, . . . , u − 3} → U that obeys (a), 
(b) and (c), then at least one of the two bijections ϕ : Zu → U that are extensions of 
ϕu−3 will have the properties required by the lemma. Note that any coset of a proper 
subgroup of Zu contains at most one of u − 2 and u − 1. If u �≡ 3 (mod 6) then each 
C ∈ C has size at least 5 and so satisfies |C ∩ {0, . . . , u − 3}| � 1

2(|C| + 3) and is safe 
under ϕu−3 by (b). Thus both the bijections ϕ : Zu → U that are extensions of ϕu−3 will 
have the properties required by the lemma. If u ≡ 3 (mod 6), then the only cosets C ∈ C
that do not satisfy |C ∩ {0, . . . , u − 3}| � 1

2 (|C| + 3) are {u
3 − 2, 2u3 − 2, u − 2} and {u

3 −
1, 2u3 −1, u −1}. Then, using (c) and the fact that the pairs {ϕu−3(u3 −2), ϕu−3(2u

3 −2)}
and {ϕu−3(u3 − 1), ϕu−3(2u

3 − 1)} each occur in at most one triple in A, it is not difficult 
to confirm that one of the two bijections ϕ : Zu → U that are extensions of ϕu−3 will 
satisfy {ϕ(u3 − j), ϕ(2u

3 − j), ϕ(u − j)} /∈ A for j ∈ {1, 2}. This bijection will have the 
properties required by the lemma.

So it only remains to show that, for each i ∈ {u+1
2 , . . . , u − 3}, there is a function ϕi

satisfying (a), (b) and (c). Take ϕ(u+1)/2 = ϕ′. Obviously ϕ(u+1)/2 satisfies (a), and it 



D. Horsley, B.S. Webb / Journal of Combinatorial Theory, Series A 180 (2021) 105434 11

also satisfies (c) because 2u
3 −1 > u+1

2 for u � 11. Further ϕ(u+1)/2 satisfies (b) because, 
if C is a coset of the subgroup 〈d〉 for some divisor d of u, then |C ∩{0, . . . , u+1

2 }| � u+d
2d

and 1
2 (|C| + 3) = u

2d + 3
2 . Let i be a fixed element of {u+3

2 , . . . , u − 3} and suppose 
inductively that there is a function ϕi−1 satisfying (a), (b) and (c). To complete the 
proof it suffices to show there is a function ϕi satisfying (a), (b) and (c). Let W be the 
set of all points in U that are not in the image of ϕi−1 and note that |W | = u − i. We 
will define ϕi as an extension of ϕi−1, so specifying ϕi(i) will determine it. We only need 
show that there is at least one choice for ϕi(i) in W that makes ϕi satisfy (b) and (c).

Because ϕi−1 satisfies (b), to ensure that ϕi satisfies (b) it is enough to ensure that 
each coset C ∈ Ci is safe under ϕi, where Ci is the set of all cosets C ∈ C such that i ∈ C

and |C ∩ {0, . . . , i}| = 1
2 (|C| + 3). If d is a proper divisor of u, then the unique coset C

of 〈d〉 containing i intersects {0, . . . , i} in exactly 1
2 (|C| + 3) = 1

2 (ud + 3) elements if and 
only if i = d

2 (ud + 1) + j for some j ∈ {0, . . . , d − 1} which in turn occurs if and only if 
2i−u+2

3 � d � 2i − u. Let

Di = {d ∈ Z : 1 < d < u, d|u, u
d ≡ 1, 3 (mod 6), 2i−u+2

3 � d � 2i− u}.

Note that |Di| = |Ci| and that, for each d ∈ Di, there is exactly one coset C of 〈d〉 in Ci. 
Also, for each C ∈ Ci, there is at most one S ∈ S|C| such that ϕi−1(C∩{0, . . . , i −1}) ⊆ S

by Lemma 7 because |C| � 2|C ∩ {0, . . . , i − 1}| = |C| + 1. Further, if such an S ∈ S|C|
exists, then |S ∩W | � |C| − 1

2(|C| + 1) = 1
2(ud − 1). It follows that our requirement that 

each coset C ∈ Ci be safe under ϕi forbids at most ri choices of ϕi(i) in W where

ri = 1
2

∑
d∈Di

(u
d
− 1).

Because ϕi−1 satisfies (c), ϕi will automatically satisfy (c) unless it is the case that 
u ≡ 3 (mod 6), i = 2u

3 − 1 and {ϕi−1(u3 − 2), ϕi−1(2u
3 − 2), z} ∈ A for some z ∈ W . 

In this remaining case, ϕi will satisfy (c) provided that we do not choose ϕi(i) so that 
{ϕi−1(u3 − 1), ϕi(i), z} ∈ A. This forbids at most one choice of ϕi(i) in W .

Thus, because |W | = u − i, it suffices to show ri < u − i − 1 to establish that at least 
one choice for ϕi(i) in W makes ϕi satisfy (b) and (c), and hence to complete the proof. 
First suppose that u � 19. If u �= 15, then Di = ∅ and ri = 0. If u = 15, then Di ⊆ {5}
and ri � 1. So in each case we obviously have ri < u − i − 1. Thus we may assume that 
u � 21.

The following table details values of i for which we can easily establish that ri <

u − i − 1. The first column gives a range of values for i. In the second column the upper 
bound for i is used to give a lower bound on u − i − 1. In the third column the bounds 
for i and the definition of Di are used to establish a superset of Di (in the first two rows, 
note that u

5 /∈ Di because u
d ≡ 1, 3 (mod 6) for each d ∈ Di). In the final column the 

superset of Di is used to find an upper bound on ri. In each case it is then routine to 
check that ri < u − i − 1 given that u � 21.
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5u
7 − 1 < i � u− 3 u− i− 1 � 2 Di ⊆ {u

3 } ri � 1
2u
3 − 1 < i � 5u

7 − 1 u− i− 1 � 2u
7 Di ⊆ {u

7 ,
u
3 } ri � 4

u+3
2 � i � u+7

2 u− i− 1 � u−9
2 Di ⊆ {3, 5, 7} ri � 71u

210 − 3
2

So we can assume that u+9
2 � i � 2u

3 −1 and hence that u � 33. Because i � 2u
3 −1, it 

suffices to show that ri < u
3 . If Di = ∅, then ri = 0 and we obviously have ri < u − i − 1, 

so we can assume that Di is nonempty. Let d′ and d′′ be the smallest and largest elements 
of Di respectively. Since every element of Di is odd, it can be seen that

ri � u

2

( 1
d′

+ 1
d′ + 2 + 1

d′ + 4 + · · · + 1
d′′

)
− |Di|

2 <
u

4 ln
(
d′′ + 1
d′ − 1

)
(1)

where the last inequality follows by Lemma 8. We have that d′ � 2i−u+2
3 and d′′ � 2i −u

from the definition of Di and thus that d
′′+1
d′−1 � 3(2i−u+1)

2i−u−1 . Thus, since u+9
2 � i, we have 

that 2i −u � 9 and hence that d
′′+1
d′−1 � 15

4 (note that 3(x+1)
x−1 is a monotonically decreasing 

function of x for x � 9). So it follows from (1) that ri < u
4 ln(15

4 ) < u
3 as required. �

We are now in a position to prove Lemma 4.

Proof of Lemma 4. Suppose without loss of generality that (Zu ∪ {∞}) ∩ U = ∅. 
Let V (H) = {x1, . . . , x6} such that E(H) = {x1x2, x2x3, . . . , x5x6, x6x1}, and let 
ϕ′ : {0, . . . , u+1

2 } → U be any injection such that

ϕ′(1) = x1 ϕ′(0) = x2 ϕ′(2) = x3 ϕ′(4) = x4 ϕ′(6) = x5 ϕ′(5) = x6.

By Lemma 9, there is a bijective extension ϕ : Zu → U of ϕ′ such that for any coset 
C of a nontrivial proper subgroup of Zu, ϕ(C) is not the point set of a subsystem of 
(U, A). Let V = U ∪ Zu ∪ {∞} and let {F0, . . . , Fu−1} be the standard 1-factorisation 
on Zu ∪ {∞}. Let

B† =
⋃

i∈Zu

{
{x, y, ϕ(i)} : {x, y} ∈ Fi

}
.

Then (V, A ∪B†) is a partial Steiner triple system. Note that the leave of (V, A ∪B†) has 
the same edge set as the leave of (U, A).

Now let

B‡ =
{
{3, u− 1, x1}, {u− 1, 1, x2}, {1, 3, x3}, {3, 5, x4}, {5, 7, x5}, {7, 3, x6}

}
B0 =

{
{u− 1, 1, 3}, {3, 5, 7}

}
B2 =

{
{x1, x2, u− 1}, {x2, x3, 1}, {x3, x4, 3}, {x4, x5, 5}, {x5, x6, 7}, {x1, x6, 3}

}

and let B1 = B† \ B‡ and B = B0 ∪ B1 ∪ B2. It is routine to check that B‡ ⊆ B† using 
the definitions of B†, {F0, . . . , Fn−1}, and ϕ. Then (V, A ∪ B) is a partial Steiner triple 
system (see Fig. 1). Note that the edge set of the leave of (V, A ∪ B) is obtained from 
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Fig. 1. Graphs whose edges correspond to the pairs occurring in the triples in B‡ (left) and B0 ∪B2 (right). 
In the right hand graph, edges in triples in B0 are shown in grey.

the edge set of the leave of (U, A) by deleting the edges of the cycle H. We will complete 
the proof by showing that (V, A ∪ B) contains no nontrivial proper subsystems that are 
not subsystems of (U, A).

Suppose for a contradiction that there is a nontrivial proper subsystem (S, T ) of 
(V, A ∪ B) that is not a subsystem of (U, A). Let S′ = S ∩ U , S′′ = S \ U , s = |S|, 
s′ = |S′| and s′′ = |S′′|. We say a pair or triple of elements of V is type i if it contains 
exactly i elements of U . Note that each triple in A is type 3 and, for i ∈ {0, 1, 2}, each 
triple in Bi is type i. Observe that s′′ > 0, because (S, T ) is not a subsystem of (U, A)
and hence T must contain a triple not in A.

We will make use of the following observation. For any point x ∈ S′, each triple in 
T \ B2 incident with x contains zero or two pairs in {{x, y} : y ∈ S′ \ {x}} and each 
triple in T ∩ B2 incident with x contains one of the pairs in {{x, y} : y ∈ S′ \ {x}}. It 
follows that each point in S′ is in an odd number of triples in T ∩ B2 if s′ is even and 
each point in S′ is in an even number of triples in T ∩ B2 if s′ is odd.
Case 1. Suppose that B0 ⊆ T . Then {u − 1, 1, 3, 5, 7} ⊆ S′′. Hence {1, 5, ϕ(3)}, {5, u −
1, ϕ(2)} ∈ T by the definitions of B, B† and {F0, . . . , Fu−1}. So ϕ(2), ϕ(3) ∈ S. Note 
ϕ(2) = x3, ϕ(3) ∈ U \ {x1, . . . , x6} and {x3, 1, 3} is the only triple of B† containing x3
that is not in B. Thus, for each x ∈ {7, 9, . . . , u}, we have that if x ∈ S′′, then

{x, u− x + 4, ϕ(2)} ∈ T and so u− x + 4 ∈ S′′ and

{u− x + 4, x + 2, ϕ(3)} ∈ T and so x + 2 ∈ S′′

where all operations take place in Zu. We know that 7 ∈ S′′, and so can apply this fact 
inductively to conclude that {7, 9, . . . , u} ∪ {2} and {u − 3, u − 5, . . . , 4} are subsets of 
S′′. Thus, since {u − 1, 1, 3, 5, 7} ⊆ S′′, we have Zu ⊆ S′′ and it is easy to conclude from 
this that S = V . This contradicts our assumption that (S, T ) is a proper subsystem of 
(V, A ∪ B).
Case 2. Suppose that |T ∩ B0| ∈ {0, 1}.
Case 2a. Suppose that s′ is even. Clearly S′ �= ∅ as otherwise T ⊆ B0 and (S, T ) cannot 
be a nontrivial subsystem. So each point in S′ is in an odd number of triples in T ∩ B2
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by our observation. It follows that S′ ⊆ {x1, . . . , x6} and the subgraph of H induced 
by S′ is a 1-factor. Thus s′ ∈ {2, 4}. But s′ �= 4, for otherwise, counting the type 2 
pairs used in triples in T , we would have that |T ∩ A| = 1

3(6 − 2), contradicting the 
fact |T ∩ A| is an integer. Thus s′ = 2 and T contains exactly one triple in B2, say 
{xi, xj , k} where i, j ∈ {1, . . . , 6} and k ∈ {u − 1, 1, 3, 5, 7}. Since s � 7, we have s′′ � 5. 
But then, counting type 0 pairs involving k used in triples of T , we have that k must be 
in 1

2 (s′′ − 1) � 2 type 0 triples in T . This contradicts the assumption of this case that 
T ∩ B0 ∈ {0, 1}.
Case 2b. Suppose that s′ is odd and T ∩B2 �= ∅. Then each point in S′ is in an even number 
of triples in T ∩ B2 by our observation. This means that the subgraph H ′ of H induced 
by S′ ∩ {x1, . . . , x6} contains at least one edge and has no vertices of degree 1. Thus it 
must be that H ′ = H, {x1, . . . , x6} ⊆ S′ and B2 ⊆ T . But then {u − 1, 1, 3, 5, 7} ⊆ S′′

and hence B0 ⊆ T , contradicting the assumption of this case that T ∩ B0 ∈ {0, 1}.
Case 2c. Suppose that s′ is odd and T ∩ B2 = ∅. Then (S′, T ∩ A) is a subsystem of 
both (S, T ) and (U, A) and hence s′ ≡ 1, 3 (mod 6) and s′′ is even. Similar pair counting 
to that used above shows that each x ∈ S′′ is in s′ type 1 triples in T and hence in 
1
2 (s′′ − s′ − 1) type 0 triples in T . Because s′′ is even, there is no choice for S′′ such 
that each x ∈ S′′ is in more than one triple in B0, and hence it must be the case that 
s′′ = s′ +1 and T ∩B0 = ∅. So s′ � 3 and s′′ � 4 because s � 7. Then, by the definitions 
of B and B†, S′′ must induce a sub-1-factorisation of the standard 1-factorisation on 
Zu ∪{∞}. So, by Lemma 6, S′′ = C ∪{∞}, where C is a coset of a subgroup of Zu, and 
S′ = ϕ(C). This contradicts the properties of ϕ because ϕ(C) = S′ and S′ is the point 
set of a proper subsystem of (U, A). �
6. Concluding remarks

Homogeneous structures are a main theme in both model theory and infinite permuta-
tion group theory. Fraïssé’s construction and its variants are rich sources of examples that 
are central to model-theoretic classification theory. In particular, homogeneous structures 
omitting certain finite configurations, for instance Kn-free graphs [19], their counterparts 
in higher arities and Henson digraphs [20], are prominent examples of a range of different 
model theoretic behaviours. Another recent example of the model theoretic relevance of 
structures of this kind is [10], which concerns infinite incidence structures omitting the 
complete incidence structure Km,n.

Infinite Steiner systems obtained via Fraïssé-type constructions have recently received 
attention from the model theory community: Barbina and Casanovas [5] give a full 
model theoretic description of the Fraïssé limit of the class of finite Steiner triple sys-
tems, whereas Baldwin and Paolini [3] use Hrushovski’s amalgamations – a variant of 
Fraïssé’s construction – to build uncountably many non-isomorphic Steiner systems that 
are strongly minimal, that is, they are structures whose definable sets are well behaved.

In view of the above, our using Fraïssé’s construction to produce homogeneous Steiner 
triple systems that omit certain subsystems seems timely and natural. The systems we 
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construct in this article can be viewed as analogues of Kn-free graphs. The Henson 
graphs Hn for n � 3, that contain all Kn-free graphs as subgraphs [19], are one countably 
infinite family of homogeneous graphs in Lachlan and Woodrow’s classification [26] of 
all countably infinite homogeneous graphs. A countably infinite graph is homogeneous if 
and only if it is isomorphic to one of the following or its complement:

• a disjoint union of complete graphs Kn (of the same order);
• the Rado graph;
• a Henson graph Hn (for some n � 3).

This leads to the following question.

Question 10. Is it possible to classify all countably infinite homogeneous locally finite 
Steiner triple systems?

The fact that there are uncountably many countable homogeneous Steiner triple sys-
tems by Corollary 2 adds to the complexity of such a classification in comparison with 
countable homogeneous graphs. Cameron [7] noted that this situation brought to his 
mind Cherlin’s classification [9] of the uncountably many homogeneous directed graphs, 
but thought that obtaining a complete solution to Question 10 would be extremely dif-
ficult. Indeed, we believe there are many other homogeneous Steiner triple systems of 
countably infinite order beyond those given by Theorem 1 as we discuss below.

Let F be a class of finite partial Steiner triple systems. We say a partial Steiner triple 
system is F-free if no isomorphic copy of a partial system in F is embedded in it. This 
extends our earlier definition of F-free. In this situation, elements of F are often referred 
to as configurations. For some classes F of configurations (that are not complete systems), 
the class of all finite F-free Steiner triple systems is an amalgamation class: the classes of 
finite projective and affine Steiner triple systems can be characterised as those avoiding 
certain configurations [24]. It seems likely that this is also true for many other classes 
F of configurations. For instance, finite Hall triple systems can also be characterised by 
the configurations they avoid [24,28] and may form an amalgamation class. As a much 
less structured example, finite anti-Pasch triple systems (see [18], for example) may also 
form an amalgamation class. Proving results along these lines, however, would require 
an analogue of Theorem 3 that guarantees that no new configurations of certain types 
are created in the embedding process. Steiner triple systems of countably infinite order 
that contain no “dense” configurations are constructed in [8].
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