
                          

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Liu, Y

Title:
Identification of modal parameters based on moving force excitation

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License.   A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode  This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•	Your contact details
•	Bibliographic details for the item, including a URL
•	An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.



 

 

Identification of Modal Parameters based on 

Moving Force Excitation 

 

Yi Liu 

A dissertation submitted to the University of Bristol in accordance  

with the requirement for award of the degree of Doctor of Philosophy 

 in the Faculty of Engineering 

 

School of Civil, Aerospace and Mechanical Engineering 

 

October 2020 

 

 

 

  





 

i 

Abstract 

This thesis proposed a two-stage input-output system identification methodology to investigate the 

possibility of estimating the bridge modal parameters, i.e., natural frequencies, damping ratios, and 

modal masses, under excitation of a moving vehicle with the simultaneous use of the moving input 

acceleration signal and the measured bridge acceleration responses. In the first stage, which is an output-

only identification problem, the bridge mode shapes are estimated from the measured bridge forced and 

free vibration acceleration responses only. The obtained estimated bridge mode shapes are then served 

as a modal basis to re-express the coupled bridge and vehicle geometric coordinates as decoupled modal 

coordinates. This procedure then leads us to the second stage identification. With both the input and 

output information for each mode, a series of (Frequency Response Functions) FRFs can be constructed 

by using the Discrete Fourier Transform (DFT) technique, along with the parametric model of the 

Accelerance for a linear system, an optimization procedure is performed to extract the natural 

frequencies, damping ratios, as well as the modal masses simultaneously.  

In order to verify the proposed method, a simply supported Euler-Bernoulli beam of known parameters 

is used as an example. Its responses to a moving load and a quarter car with the influence of the road 

roughness are calculated numerically, yielding simulated measured accelerations at a series of fixed 

locations on the structure. With these numerically generated data, the feasibility and efficacy of the 

proposed two-stage strategy are validated. A comparison work to examine the estimation accuracy and 

efficiency is conducted by using the free decay response of the bridge.  

To make the proposed method more general, both models, i.e., moving load and quarter car traversing 

the bridge, are nondimensionalised, and they are simulated with and without noise. Upon verifying the 

proposed method, we discussed the impact factors, which can influence the estimation results. We 

discovered that the nondimensionalised spatial frequency is the most important one, which, if known 

beforehand, can give guidance to the identification results.  

Apart from the nondimensionalised spatial frequency, we recognised that the mode shapes estimated 

from the first stage are also an important factor that can influence the identification accuracy. Therefore, 

we proposed a new concept real-valued one-sided spectral density matrix, which not only gives the 

same level of accuracy for the estimated natural frequencies and the damping ratios but also generates 

better mode shape estimation compared to the classical complex-valued two-sided spectral density 

matrix. This new approach is used throughout this study to give a better estimation of the mode shapes.  



 

 

Notwithstanding that the proposed two-stage method is the main topic of this study, our research is far 

beyond the Vehicle-Bridge Interaction (VBI) analysis. One of the major contributions is made to the 

Frequency Domain Decomposition (FDD) technique, which serves as the output-only technique for the 

mode shape estimation in the first stage identification of the proposed method. We reinterpreted the 

FDD using the Principal Component Analysis (PCA) with a Periodogram defined Power Spectral 

Density (PSD) estimator. With our new theory, the role of the singular values and singular vectors are 

better defined. And we conclude that the FDD is a good technique to be used to detect the presence of 

close modes. In order to apply the FDD to extract the bridge mode shapes from the vehicle-induced 

bridge vibration responses (i.e., nonstationary process) only, a simple case study is designed to assess 

its ability to deal with a similar kind of nonstationary random process.  

While analysing a PSD estimator, which is a positive semidefinite self-adjoint compact operator on a 

Hilbert space, we introduced the concepts of pure state and mixed states from the quantum mechanics 

and defined a density operator based on a PSD estimator. With a density operator, we can calculate the 

corresponding Von Neumann entropy or the purity condition. By plotting the entropy or purity of a 

density operator against the frequency line, we can obtain a different picture of the behaviour of a 

system that the FDD fails to provide when two modes are very closely spaced. Particularly, we found 

that this new picture is mainly affected by three influence factors, i.e., correlation relation between the 

mode shapes of the two modes, damping ratios of the system, and the measurement noise level, which 

in turn can affect our mode shape estimation results.
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1 

 

1 Introduction 

With the goal of assessing the health condition, i.e., automatically identify structural damage, of the 

structure in real time, Structural Health Monitoring (SHM) has been a hot topic for the last two decades. 

Thanks to the development of sensing technology and the related signal analysis and interpretation 

algorithms, SHM has become an important and fast-growing research discipline in many areas, such as 

civil, mechanical, and aerospace engineering. However, due to the difficulties and uncertainties 

increased in the presence of large civil structures, the pace of the SHM development on civil structures 

is relatively slower when compared to the mechanical or aerospace structures [1]. Nevertheless, various 

different methods and algorithms for estimating damages in civil structures have been proposed, and 

the majority of them are dynamic-based techniques [1], [2]. It is reckoned that structure properties, such 

as stiffness, are usually modified by the damage, which is manifested in the measured vibration response 

of the structure [3]. Thus, damages, either they are invisible or hidden, can be detected through 

analysing the vibration measurements.  

Among all the civil infrastructures, bridges, as a vital link in the transportation system, have 

undoubtedly received special attention [4], [5]. As a subset of the bridge health monitoring research, 

the vehicle-induced bridge vibration analysis has been a very popular topic in the past two decades. It 

is not just an economical alternative to the forced vibration test [6], but also a finer version of the 

ambient vibration test [6], as the input response is no longer treated as white noise. Depending on the 

purpose and the proposed procedure, the input force can be reconstructed [7].  

1.1 Background  

The research upon the Vehicle-Bridge Interaction (VBI) comprises of many aspects, such as force 

identification or reconstruction [7], [8], [9], [10], [11], [12], identification of the bridge properties [13], 

[14], [15], or damage detection of the bridge from passing test vehicle [16], [17]. Although each 

research has a different focus, they all share the same goal that to better design and maintain the bridge 

structure. This is important because dynamic loads on bridges are ever-increasing, and with the 

application of new materials and improved designs, modern bridges tend to be lighter and more flexible. 

As a result, highway bridges are increasingly susceptible to vibration [18].  

Particularly, when a vehicle is moving across a bridge, the dynamic loads of which will cause the bridge 

to vibrate. The service life of the bridge will be reduced by the repeated application of such dynamic 
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loads, as they contribute to fatigue, surface wear, and cracked concrete, which leads to corrosion 

problems [18]. As a result, frequent maintenance of the bridge is required because of the deterioration 

of the bridge condition, which will incur enormous maintenance fees. Thus, in order to build vibration 

resistant bridges, it is rather important to understand the dynamics of the VBI system [18]. 

As the name goes, namely, Vehicle-Bridge Interaction system, which implies two subsystems, i.e., the 

vehicle and the bridge, are coupled with each other due to forces at the contact points. Hence, the 

performance of one is affected by the performance of the other and vice versa [11]. Between the vehicle 

wheels and the bridge structure, there is road roughness, and the vehicle is excited by road roughness 

as well as the dynamic deflection of the bridge [18]. As a result, dynamic wheel loads generated by the 

vehicle, which in turn excite the bridge causing larger dynamic displacements, and such dynamic 

displacement will be fed back into the vehicle [18]. This feedback mechanism of interaction forces is 

the one that couples the dynamic response of the bridge to that of the vehicle [18]. Note that such 

coupling phenomenon happens, and it is significant, mainly due to the frequency range of vehicle 

dynamic wheel load (1.5 to 4.5 Hz) overlaps the bridge resonance frequency range (usually below 10 

Hz and often as low as 2 to 3 Hz) [18]. Apart from this, the low bridge damping (approximately 2% of 

critical in the first bending mode) complicate matters further,  as it does not significantly reduce the 

vibration caused by the VBI [18]. 

The above analysis about the VBI system suggests three research aspects, bridge response only based 

analysis, vehicle response only based analysis, and vehicle-bridge information-based analysis. In the 

process of all three analysis aspects, the identification of the vehicle or bridge parameters is the main 

task, but with the bridge parameters being more important. We may easily measure the vehicle 

parameters with instruments readily available, but it has always been a challenge for the bridge 

parameter measurements due to its massive size and special requirements for the measuring procedure 

and equipment. For instance, we may need to shut down a bridge in operator to do an on-site experiment 

or use a special instrument to excite a bridge to get a particular mode. Besides, depending on the 

formulated procedure, the road profile [19], [20], [21] can also be identified. 

For the bridge response only based analysis, it is known as the direct methods, which requires a large 

number of sensors to be installed at different positions on the bridge to monitor the dynamic properties 

[22]. Under the VBI context, such a direct method can generate an inverse problem, which is normally 

ill-conditioned when we use the bridge responses to identify the moving loads, for the responses are 

continuous functions of time defined only at a few spatial coordinates [23]. One of the remedies is to 

use a regularization method to tackle this ill-conditioning problem, such as the Tikhonov’s 

regularisation method [7]. Apart from the moving loads identification research, the vehicle-induced 

bridge responses are also used to conduct a damage detection procedure [24], [25], [26], [27], as it is 

believed that local damages in structure would be more sensitive to excitations nearby, and the use of 
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moving vehicle as an exciter along a bridge deck can provide equal opportunities for identifying local 

damages at different locations of the structure [28].  

On the other hand, in some cases, for instance, some short or medium span bridges, which form the 

greatest proportion of bridges in service, such sensor system is not readily accessible, then an indirect 

approach [19], [21], [32], [33], [34] is favoured. This is indirect approach is the aforementioned second 

type of VBI analysis, which utilises the dynamic response of a passing vehicle to estimate the dynamic 

properties of the bridge. 

Compared to the direct method, the indirect approach, which aims at reducing the need for any direct 

installation of equipment on the bridge itself, is less expensive [35], as it only involves a vehicle 

instrumented with sensors. The dynamic properties of the bridge, such as natural frequencies [36], [37], 

[38], damping ratios [13], and mode shapes [39], [40] are extracted from the vehicle response only. 

Because of many advantages of the indirect method possesses, namely, simplicity, economy, efficiency, 

and mobility, such method has received a lot of attention ever since it was proposed by Yang et al. [41]. 

Similar to the direct method, many researchers have been investigating the use of the vehicle response 

to detect bridge damages [16], [42], [43]. Although the indirect approach is promising, and it is now 

well established with theoretical and experimental investigations. Challenges, such as the influence of 

the road profile on the vehicle response and the variation of the bridge frequencies under a moving 

vehicle excitation, need to be overcome before the approach becomes an effective and reliable system 

[35]. It is because, in an interaction system, the influence of the road profile on the vehicle response 

can,  in turn, reduce the visibility of the bridge frequency peaks. While in bridge damage detection, the 

variation of the bridge frequencies may mask any frequency changes caused by damage [35]. 

As for the third approach, which utilises both the vehicle and the bridge information, was developed 

alongside the development of the modern sensor technology with the purpose of combating the high 

uncertainty loading problem associated with the system identification and damage detection by using 

output-only datasets [44]. It is believed that if the vehicle loading was precisely known, then the 

accuracy of current damage detection methods would be improved. Currently, three sensor systems are 

adopted to monitor traffic on highways, namely, Weigh-in-Motion Systems (WIMS) [45], [46], video-

based sensing system [44], [47], and wireless sensor networks [44], [48]. 

The most widely used one is the WIMS, which has been used to identify the weight of vehicles crossing 

a bridge at a specific position. Regardless of its popularity, such systems only measure vehicle loading 

at a static location on the bridge, which made it inadequate for direct observation of the VBI. This is 

the same problem shared by the video assisted approach for SHM of highway bridges [49], [14], [15], 

[50]. In order to capture the dynamic coupling that exists during VBI, the bridge and the vehicle must 

both be instrumented. Ideally, they need to be monitored within a single monitoring system architecture, 

which can be achieved by using the wireless sensor networks [44], [51]. Rather, the two subsystems 
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can be independently monitored, the vehicle and bridge response datasets would need to be combined 

with accurate time synchronisation [44].  

Based on the assumption that the responses of two subsystems can be successfully monitored and 

synchronised, we proposed a two-stage input-output system identification procedure for the bridge 

modal parameters estimation. Unlike the two-stage system identification methodology proposed by Kim 

et al. [51], who used the free decays of the bridge to identify the dynamic characteristics of the bridge 

in the first stage, then use the vehicle-bridge response data to estimate the moving load in the second 

stage, the proposed method in this study only focuses on the bridge modal parameters identification. 

The concerned modal parameters include the natural frequencies, damping ratios, modal masses, and 

mode shapes. Especially for the modal masses, which cannot be directly estimated with unknown 

loading, but with the proposed method, it can be estimated. 

Note that the mode shapes are identified in the first stage by applying an output-only system 

identification technique to the bridge output-only responses. The technique we used in this study is the 

Frequency Domain Decomposition (FDD). With the mode shapes estimated from the FDD, we can then 

use them to decouple the bridge responses and the vehicle response into modal coordinates. By 

combining the measured moving force vibrational information and the bridge acceleration response, a 

series of Frequency Response Functions (FRFs) can be constructed. Then the modal parameters of the 

bridge can then be estimated through an optimisation procedure with the objective function formed in 

terms of the theoretical FRF expression, and this procedure forms the second stage identification. 

Besides, it is worth mentioning that the full-length record of the bridge is used in both stages in this 

work, which is also different from the work given by Kim et al. [51].  

A breakdown of this thesis content is presented in the next section, and the proposed two-stage system 

identification methodology forms the framework of this study.  

1.2 Thesis structure 

We have essentially three main objectives in this thesis. The first two objectives, namely the real-valued 

spectral density matrix and the new theory for the FDD and the close mode analysis via a density 

operator, are presented in chapter 3 and chapter 4, respectively. While the third objective, which is about 

the proposed two-stage input-output system identification methodology and its verification, is mainly 

discussed in chapter 5 and chapter 6. 

Since the essence of this thesis is about modal analysis, more precisely, system identification, our 

discussion starts with the general concept of system identification, and some of the traditional 

identification techniques for the linear systems with constant coefficients are overviewed in chapter 2. 

Special attention is given to the Polyreference method and the Data-Driven Stochastic Subspace 
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Identification (SSI-DATA) method. Some new ideas and new proofs regarding these two methods are 

given. 

In chapter 3, we proposed a new concept, namely, the real-valued one-sided spectral density matrix, 

which is verified by applying the Polyreference method to a dynamic vibrating system with two modes 

fixed and another one moving between the two fixed modes. This real-valued one-side spectral density 

matrix idea is further adopted in one of our case studies in chapter 4, and it is applied in the first stage 

of the proposed two-stage method to all the simulations in chapter 6. 

As for chapter 4, it presents one of the most important work in this thesis, which not only gives a new 

theoretical background for the FDD technique but also put forwards some new measures in terms of a 

density operator to estimate the mode shapes of two modes when they are extremely close to each other. 

As a nonparametric system identification technique, the FDD has received popularity in the past two 

decades. However, the poor theoretical background given by Brincker et al. [52], [53] has largely 

restricted its application. Therefore, in this chapter, we aim to redefine this method and give it a new 

theoretical background in terms of a power spectral density (PSD) estimator obtained from the 

Periodogram. Because of this new definition, we can treat a PSD estimator as a covariance matrix in 

the frequency domain and use the Principal Component Analysis (PCA) to explain it. While by 

analysing the properties of this PSD estimator on a finite-dimensional Hilbert space, we can extend our 

discussion to quantum mechanics, from which we introduce a density operator and the corresponding 

purity and Von Neumann entropy as new measures to estimate the close modes mode shapes.  

Two case studies are presented in this chapter. The first one aims to evaluate the capability of the FDD 

to be used to deal with a certain kind of nonstationary random process. This case study seems irrelevant, 

but it is an important part which links the whole thesis. Given the contribution of the kinetic energy as 

the vehicle moves cross the bridge, when we look at a bridge subject to this moving force from rest 

(before the vehicle enters the bridge) to rest (after the vehicle enters the bridge), the overall time history 

of the bridge response is nonstationary with finite energy. Therefore, before we use the FDD to estimate 

the bridge mode shape from the output-only responses of the bridge, we need to show that the FDD can 

be used to deal with a certain kind of nonstationary process. Besides, it is worth mentioning that the 

mode shapes estimated from the FDD is not mass normalised, but they are the orthonormal basis vectors 

of the modal space. 

As for the other case study, it focuses on the close mode analysis. We included a comparison study of 

the proposed method based on a density operator with two time domain methods, namely, the 

Polyreference method and the SSI-DATA method. In this case study, we mainly work on the frequency 

region where the FDD fails. However, by analysing a density operator alone, we are unable to estimate 

the natural frequencies and damping ratios for the close modes. Therefore, we introduce a new 

procedure, which combines our new measures and the Polyreference, i.e., estimate the mode shapes 
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first based on a density operator, then use our estimates to decompose the measurements into a series 

of modal coordinates; after this, we apply the Polyreference to estimates the natural frequencies and 

damping ratios. In our analysis, we consider 8 different cases, which are the different combinations of 

three influence factors, i.e., correlation relation of the mode shapes of the two close modes, damping 

ratio, and noise level. For some combinations, our proposed method can provide us some visual 

information to make inferences about the system's modal parameters. 

While in chapter 5, the theoretical background for the proposed two-stage method is presented with a 

discussion of the mode shape and its properties. The discussion of the mode shape is important, as we 

need to decide whether we should use the estimated complex mode shapes (in most cases) or the real 

part of the estimation to decouple the system. If the complex-valued mode shapes are used directly to 

decouple the system, while the system has real or close to real mode shape, an extra error will be carried 

to the second stage identification. 

In general, the proposed two-stage method has the following merits. It can be used to identify the modal 

masses of the system, which can be used to scale the mode shapes for forced response analysis. Due to 

the inherent problem, none of the current Operational Modal Analysis (OMA) techniques is able to 

estimate it. Besides, theoretically speaking, it can produce a better natural frequency identification 

compared to the ones we obtained from the ambient vibration test, as the influence of the input can be 

separated from the bridge system according to the FRF expression. Also, the experiment set up is 

simpler and cheaper than the traditional forced vibration test, which is extremely helpful when one 

needs to conduct dynamic experiments on some structures such as a long-span bridge. Furthermore, 

because of the moving nature of the force, the excitation of the higher modes of the system can be easily 

achieved, which makes it comparable to an OMA method. One of the benefits of using OMA is that all 

DOFs can be excited by assuming white noise input along the structure. Now, with the advantages 

mentioned above, the OMA methods will be dwarfed by the proposed two-stage method devised for 

the moving load case. Apart from this, due to the simplicity of the measurement procedure, we can run 

the vehicle on the bridge multiple times, which allows a statistical analysis of the results. 

Finally, in order to validate the proposed method, two vehicle systems, i.e., point moving load and a 

quarter car traversing a simply supported bridge, are considered in chapter 6. For the quarter car system, 

the road roughness effect is considered. Both models are nondimensionalised, and they are simulated 

with and without noise. With the nondimensionalised VBI models, we discovered a dominant impact 

factor which, if known beforehand, can give guidance to the estimation results. As for chapter 7, it 

summarises the results of this study and makes recommendations for further research. 
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1.3 Credit authorship contribution statement  

Note that the idea of the real-valued spectral density matrix presented in chapter 3 comes from Prof 

Rune Brincker, so is the idea of the case study. However, the theoretical explanation was exclusively 

proposed by myself. 

While for the content in chapter 4, except for some overview comments on the original FDD method in 

the introduction section and the numerical model used in the close mode analysis (which is the same as 

I used in chapter 3) were suggested by Prof. Brincker. The rest, from sensing the abnormality of the 

FDD, to establishing my theories, i.e., from modal analysis to quantum mechanics and from the FDD 

to a density operator; to designing the comparison work; to proposing a new procedure to estimate the 

modal parameters for the close mode analysis, and to the final figure analysis, are all done by myself 

independently without anyone’s help, so is the nonstationary data analysis. Therefore, I take full 

responsibility for my work in chapter 4. It must be pointed out that all of his contributions were made 

on the other work I was working with him regarding the FDD and the real-valued density matrix two 

years ago. He is not involved in any of the work I presented in chapter 4. Since I used some of his ideas 

from our previous work, I must pay tribute to his contribution as well. Although I have done almost all 

the work by myself in chapter 4, Prof. Macdonald gave me some suggestions on figure presenting. 

As for my work in chapter 5 and chapter 6, my supervisor Prof. John Macdonald helped me to establish 

the identification procedure. All the numerical analysis was done under his supervision based on his 

suggestions.  
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2 Review and new proofs for Operational 

Modal Analysis (OMA) methods 

2.1 Introduction 

System identification plays a significant role in modern science. It deals with the problem of building 

mathematical models of dynamical systems based on observed data from the systems, which is part of 

basic scientific methodology [54]. The notation of a system is a broad concept. Generally speaking, a 

system is an object in which variables of different kinds interact with each other and yield observable 

signals. Thus, to identify a system, an inevitable procedure is signal processing. However, even if signal 

processing is vital to system identification, one cannot identify the system without a mathematical 

model/structure to describe the system. Such a mathematical model may or may not possess physical 

meaning. This implies the essence of system identification, which is about determining the best 

mathematical description of the system. Usually, the best representation captures the eigenstate of the 

system, which reveals the innate properties of the system.  

For most cases in Civil, Aerospace, and Mechanical Engineering, the system of interest may be 

modelled with a clear mathematical structure. For instance, the Linear Time-Invariant (LTI) system, 

described by linear constant-coefficient differential or difference equations, are often adopted to 

represent the system. 

To find the best model to describe a system, one needs to develop a procedure to realise the model 

selection process. This procedure is the so-called identification algorithms, which is one of the most 

challenging parts of system identification. With the careful design and the aid of the computer, the 

realisation of this process can be achieved automatically and efficiently. In the past few decades, this 

automated process has gradually become what we have now known as Machine Learning (ML) [55], 

[56]. Therefore, the core of system identification is to work on some accessible data related to a system, 

then make inferences about the system based on some descriptive parameters.  

Over the past century, different kinds of identification techniques have been proposed in different fields 

with different names, and the number of the techniques is ever increasing. Clearly, it is impossible to 

give a comprehensive overview of all the system identification methods, and it is also not our purpose 

in this chapter. However, lots of techniques are just variations of some more fundamental methods, and 

this is quite phenomenal in modal analysis. It is worth mentioning that in Civil, Aerospace, and 

Mechanical Engineering, system identification is usually referred to as modal analysis. Thus, in this 
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chapter, we will first identify some fundamental ideas used in modal analysis. Then introduce some of 

the time domain Operational Modal Analysis (OMA) techniques which will be used in chapter 3 (i.e., 

Polyreference method [57]) and chapter 4 (i.e., the Data-Driven Stochastic Subspace Identification 

(SSI-DATA) method [58]) for the comparison study. 

To be more specific, in order to explain some of the fundamental ideas used in modal analysis, an 

overview of the system identification and modal parameters identification is first presented in the next 

two subsections. Then we will talk about the identification problem start with a linear differential 

equation with constant coefficients (section 2.2), followed by the discussion of a linear difference 

equation and its variations (section 2.3). Having done this, we will present some possible approaches to 

estimate the system coefficients (section 2.4), and from which we can obtain the modal parameters. 

Upon discussing those possible ways, we will present some new proofs for the OMA we just mentioned 

above, especially for the Polyreference method (section 2.4.1.2) and the SSI-DATA method (section 

2.4.3.2). Note that those new proofs do not fundamentally change the method but can offer some new 

insight to OMA. 

2.1.1 System identification overview  

System identification is a broad term used to describe the process of experimental modelling, which has 

been developed for many years during which different scholars have a different definition of 

identification. However, the essence of system identification is the same that it is a method of using 

input and output data of the system to build a mathematical model of the system [59].  

In general, the identification process consists of five important elements or steps, i.e., design an 

appropriate input signal, use experimental input and output data, select a class of models, construct an 

error criterion function, and determine a model that fits the data best by optimisation methods [60].  

Normally, the quality of system identification depends on the quality of the inputs, which are under the 

control of the engineer. The input of the system belongs to the system’s external stimuli, and it can or 

cannot be manipulated by the observer. Excitations, such as a continuous sinusoidal input or a transient 

pulse or chirp signal, are usually controllable in an experiment [61]. For a known system with known 

input, then the output of the system can be calculated exactly. However, in most cases, this is unrealistic. 

The system output is constantly subject to disturbances, which may or may not be directly measured by 

the observer [62]. Usually, both measurement noise and uncontrollable inputs are disturbances. For 

those unmeasurable disturbances, we can only observe their influence on the output. For instance, the 

actual loading of wind on a real structure is unmeasurable, so do the temperature loading and different 

ground conditions [63]. Here, the output of the system is the observable signals of interest.  
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This classification of the inputs and the disturbances implies another branch in system identification, 

i.e., OMA, which uses only the output data to estimate the system properties. In terms of the definition 

of system identification, it generally utilises both input and output data of the system. It is true that an 

input-output technique would be more accurate, but the input data is not always available. For instance, 

when the system is excited by the unmeasurable disturbances, the system information can only be 

projected by using the output data. This is quite common for large infrastructures in Civil Engineering, 

where the identification of the modal parameters based on Experimental Modal Analysis (EMA) [64] 

techniques becomes more challenging in the presence of large-scale structures with low frequency 

ranges.  

In both practice and the literature, there is no doubt that LTI systems form the most important class of 

dynamical systems, as they represent the idealisations of processes encountered in real life. Most 

importantly, such approximation is often justified, and design considerations based on linear theory lead 

to good results in many cases [62]. Particularly, for an LTI causal infinite-duration impulse response 

(IIR) system [65], it can be described by its Impulse Response (or weighting) Function (IRF) ( )h   as 

follows, 

 ( ) ( ) ( )
0

dy t h u t


  


=
= −  (2.1) 

where ( )u s , s t  is the input, and ( )y s , s t  is the corresponding output of the system. Knowing 

( )h   and ( )u s , we can compute ( )y s . Thus, the IRF is a complete characterisation of the system. 

The discrete version of Eq. (2.1) is given by 

 ( ) ( ) ( )
0k

y n h k u n k


=

= − , 0,1,2,n =   (2.2) 

For this reason, identifying the impulse response of the system or its corresponding Fourier transform 

(i.e., Frequency Response Function (FRF)) is the target of the system identification. To determine the 

IRF or FRF, one needs to estimate the eigenstate of the system or find the roots of the characteristic 

polynomial of the system. To simplify the problem, the linear constant-coefficient differential or 

difference equations are widely used to describe the system. Models, such as state-space models and 

Autoregressive-moving-average (ARMA) models, are commonly seen in the literature. However, 

determining the best model from the model sets based on these model structures is not an easy task and 

this where optimisation comes into play. In effect, the optimisation procedure [66] is a key factor in 

many system identification techniques. System identification is essentially an optimisation problem. 

Among all the optimisation problems, the least-square problems are widely seen in many identification 

techniques.  
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When a set of candidate models has been selected, and it is parametrised as a model structure using a 

parameter vector, the best model is then founded by determining that parameter vector. Note that, quite 

often, a model set of interest is noncountable. This leads to the essential step in system identification, 

namely parameters estimation. For different model structures and identification purposes, the set of 

parameters that need to be identified will be different, and for different identification methods, they 

may have different names as well. For instance, when dealing with an engineering problem, the most 

widely used LTI dynamic system is given by the 2nd order differential equation of motion based on 

Newton’s second law, i.e., 

 ( ) ( ) ( ) ( )t t t t+ + =Mq Cq Kq f  (2.3) 

where M  is the mass matrix, while C  and K  denote the damping and stiffness matrices, respectively. 

They are all symmetric matrices. ( )tq  is the output state vector. ( )tf  is the force vector that 

corresponds to each state. In most cases, it is very expensive to identify the mass, damping and stiffness 

matrices from Eq. (2.3) directly. Instead, we use the modal properties of the system to simplify the 

identification process by transforming the system matrices into diagonal matrices, then the model 

parameters to be identified become modal parameters of the system.  

Traditional system identification methods, including the least square method, gradient correction 

method, and maximum likelihood method, and so on, have been developed comparatively perfect [62] . 

The identification of the model parameters based on these methods are determined by minimising the 

error criterion function. However, this is not the only way to identify the model parameters. For instance, 

transient response analysis, correlation analysis, frequency response analysis, etc. [62], are direct 

techniques that do not require one to select a confined set of possible models in the first place. Such 

methods are often also called nonparametric since they do not (explicitly) employ a finite-dimensional 

parameter vector in the search for the best description [54]. The Frequency Domain Decomposition 

(FDD) technique, which will be discussed in chapter 4, is one such nonparametric system identification 

technique.  

The advantages and disadvantages of traditional system identification methods have been extensively 

discussed in the literature, e.g., [67] [68]. For example, the least square method has a very simple 

principle easy to understand and implement, and it converges very fast. However, it is not consistent, 

there is a deviation, and in order to use it, the input signal must be known. Apart from this, the input 

signal needs to change relatively and richly, and such a condition can be satisfied in many of the closed-

loop control systems. But in some dynamic prediction systems and process control systems, the input 

signal cannot be obtained or changed [68]. For linear systems, the traditional methods normally generate 

a satisfactory result. However, it is not the case for nonlinear systems. Therefore, modern methods, such 

as Artificial Neural Networks (ANN) [56], Genetic Algorithm (GA) [69], [70], Fuzzy Logic (FL) [71], 
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just to name a few, have been proposed in recent years to deal with problems that conventional methods 

cannot handle.  

2.1.2 Modal parameter identification  

The system identification problem in machinery and structures is normally referred to as modal analysis. 

Normally, the resonant vibration of a structure is characterised by a series of normal modes, while a 

mode of vibration is usually defined by natural frequency, damping ratio, and mode shape. A set of 

these parameters is called a modal model for the structure. With these modal parameters, the dynamic 

properties of a structure can be completely characterised. This is because the poles of the transfer 

function or the roots of the characteristic polynomial of the system are made up of the combination of 

the natural frequencies and the damping ratios, while the mode shapes are the modal parameter for a 

system with multiple degrees of freedom. Typically, the system identification of the structures which 

satisfy Newton’s second law of motion is the process of determining these parameters from 

experimental data, and this process is the so-called modal parameters estimation.  

Estimating these modal parameters is of practical importance. For example, in flutter analysis [72], the 

lower the natural frequency, the more susceptible the structure is to flutter. What is worse, for the 

classical flutter, wind can couple the first vertical mode and the first torsional mode together. The closer 

in frequency those two modes are, the stronger the coupling is, then the stronger the flutter.  

As an energy dissipation indicator, damping plays a crucial role in structural dynamics as well. However, 

it cannot be identified theoretically. When a structure subject to positive damping, it helps to reduce the 

amplitude of the vibration. But if the structure has negative damping, the system will absorb energy 

from the external source, which is fatal for a vibrating structure, as it can lead to the collapse of the 

system. The flutter is actually defined to be the dynamical instability due to negative damping from the 

wind. Therefore, it is vital to know the fundamental frequency of a vibrating structure, the frequencies 

for the first vertical mode and the first torsional mode, and their corresponding damping ratios. These 

parameters do not live independently, and they are interacting with each other all the time, including 

the modal mass. For a vibrating system, the larger the modal mass, the more difficult for us to excite 

that mode. Therefore, it is important for us to measure those modal parameters as accurately as we can. 

2.1.2.1 Experimental Modal Analysis (EMA) 

Typically, as the direct derivative of the concept of system identification, the modal parameters are 

estimated via modal testing, which is also referred to as EMA [64][73][74], and both the input signal 

and the output response of the system are measurable. The essence of obtaining the modal parameters 

in EMA is about curve-fitting the FRF plots in the vicinity of resonance in the frequency domain or 

evaluating the IRFs in the time domain. Compared to the time domain IRFs, by inspection of FRFs in 
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the frequency domain to interpret the structure responses is more convenient. As a result, a greater 

emphasis and utilisation has been made to the frequency domain methods [73].  

Depending on how the data are collected or measured, the FRF data sets can be divided into three types 

[73], namely, Single-input, Single-output (SISO), Single-input Multi-output (SIMO), Multi-input 

Multi-output (MIMO) [73]. According to this classification of the FRFs, we will have two types of 

modal analysis methods based on the FRFs, i.e., single-FRF methods, which process one single FRF 

curve at a time, and multi-FRF methods, which analyse several curves simultaneously. Conventionally, 

it is time-consuming for the analyst if the simpler method is applied to large datasets. Whereas the more 

powerful methods (e.g., Polyreference [64][73], a multi-IRF method deal with MIMO data) can be 

intolerant of the small consistencies in data massed by repeated application of the SISO method [73]. 

The second stage of our proposed method in this thesis is a single-FRF method, but the FRF is evaluated 

by using the generalised coordinates.  

It should be pointed out that, depending on whether a single mode is to be extracted at a time, both the 

frequency domain methods and the time domain methods can be further divided into two categories 

[73], i.e., single degree of freedom (SDOF) methods and multi-degree of freedom (MDOF) methods. 

Thus, based on these classifications, the second stage of the proposed method in this study should be a 

single-FRF SDOF method. 

Even if frequency domain methods based on the FRFs of the system are predominant in EMA, in the 

cases of structures with very low natural frequencies and the required time to obtain enough cycles is a 

problem, the time domain method is superior [73]. The basic tenet of these time domain methods is that, 

for any IRF or free vibration response function, it can be expressed by a series of complex exponential 

components [73], that is, 

 ( ) ( ) is t

i i

i i

h t h t Ae= =   (2.4) 

where iA  is called the modal constant, which is also the amplitude of the IRF, is is the i th pole of the 

system. The properties of each of ( )ih t contains the eigenvalue and eigenvector properties of one mode. 

Methods derived based on Eq. (2.4) is forms a category of the so-called “complex exponential” methods. 

In this category, the most widely known methods are the Complex Exponential (CE) method based on 

Prony’s trick [75], the Least-Square Complex Exponential method (LSCE) [64], The Polyreference 

Complex Exponential method (PRCE) [64], [76], the Ibrahim Time Domain (ITD) method [77]. 

2.1.2.2 Operational Modal Analysis (OMA) 

Having discussed the EMA, in this subsection, we shall look at the OMA. The general assumption of 

OMA testing technique is that the structure to be tested is being excited by some type of excitation that 
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has approximately white noise characteristics [63]. Hence, it has energy distributed over a wide 

frequency range that covers the frequency range of the modal characteristics of the structure.  

In general, OMA is deemed as an economical alternative to EMA to estimate the modal parameters of 

the system. The EMA uses controlled or at least measurable input forces, while the OMA uses the 

operational forces or ambient excitations. Even if the level of excitation and vibration can be carefully 

controlled in the forced vibration test, the forced vibration methods can be more complex and expensive 

than in-operation vibration tests. Besides, for large structures in Civil Engineering, such as long-span 

bridges and high-rise buildings, such controllable input and output test is difficult to achieve a 

satisfactory level. Especially for large-scale structures with low frequency ranges, the identification of 

the modal parameters by EMA techniques becomes more difficult. Also, installing a controlled and 

measurable exciter on large structures is a complex and sometimes unfeasible task. Quite often, it causes 

interruptions to the normal operations of structure, as the facility needs to be shut down to conduct the 

test. To compensate and rectify the shortcomings in EMA, OMA was developed.  

The ideas behind OMA techniques seem different from the theories for the forced vibration test. Also, 

it is claimed that OMA only unitises the output response of the system, which to some extent, violates 

the definition of system identification that it needs both input and output responses to estimate the 

system parameters. However, it is not true. 

In OMA, most of the traditional time domain techniques are an extension of the EMA time domain 

techniques, especially the MIMO methods. The measurable forced inputs are merged into the 

disturbances, and then the unmeasurable disturbances are treated as ambient excitations, which are 

normally assumed to be uncorrelated Gaussian white noise. This assumption about the inputs is 

characterised by the Natural Excitation Technique (NExT) [78]. In general, NExT is a method of modal 

testing that allows the structure to be tested in their ambient environments. Since the ambient excitations 

cannot be measured, the conventional modal analysis, utilising the FRF or IRF of the system, are not 

directly applicable. Thus, we utilise the statistical properties of the ambient excitations.  

Due to the statistical nature of the input assumed in OMA, the identification problem is a statistical data 

analysis problem. When we apply the related statistical theorem to the system equation, the presence of 

the natural excitation can be removed from the right hand side of Eq. (2.3). In the end, what is left 

behind is the homogenous expression for the system, which has the same poles and zeros as the original 

system. In practice, this can be easily achieved by calculating the auto- and cross-correlation function 

between the output responses. By doing so, the influence of the Gaussian white noise input can be 

removed, as it is an independent identically distributed (i.i.d) process with zero mean and constant 

covariance, and it is normally assumed to be uncorrelated to the output responses.  

Since the correlation function of a stationary process for a system governed by a linear constant-

coefficient differential or difference equation can be expressed as summations of decaying sinusoids 
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provided that all the roots of the characteristic equation of the associated homogenous equation have 

negative real parts, as a result, we can extract the natural frequencies and the corresponding damping 

ratios those decaying sinusoids [78], [79]. To some extent, one can say that conventional OMA is about 

the correlation function analysis.  

In the time domain, methods such as the Eigensystem Realisation Algorithm (ERA) [80] has been 

modified to accommodate the stochastic properties of ambient excitation input. Used in conjunction 

with NExT, this version of ERA is normally referred to NExT-ERA [79][81][82]. Similar to NExT-

ERA, the Covariance-Driven Stochastic Realisation (SSI-COV) method [83] [84] is also widely used 

in OMA. These two methods are derived based on a state-space model, and the modal parameters are 

calculated by evaluating the block Hankel matrix formed by the auto- and cross-correlation function of 

the output responses of the system.  

While the SSI-DATA method [85] may have a state-space model base, but the essence of which is 

different from the NExT-ERA and the SSI-COV method. Such difference will be covered in section 

2.4.3. As for the Polyreference method [86], because of the property of the correlation function for a 

stationary random process, this method is also widely used in OMA, so is the ITD method [64] [87] 

[88], which works on the free decay responses.  

In EMA, to perform the identification, we can either deal with the impulse response of the system in 

the time domain or the FRF in the frequency domain. The IRF and FRF are Fourier transform pairs. 

Similarly, in OMA, we can estimate the modal parameters through the correlation function analysis of 

the output responses of the system in the time domain, or in the frequency domain, we can analyse the 

Fourier transform of the correlation functions. For stationary random processes, the Fourier transform 

of the correlation function is normally referred to as the Power Spectral Density (PSD) of the random 

process.  

In the frequency domain, the FDD method, which was originally proposed to deal with the stationary 

process, is the most popular OMA technique due to its user-friendliness and effectiveness. Over the 

past 20 years, several versions of it have been developed, such as Enhanced FDD [89] [90], and 

Frequency-Spatial Domain Decomposition (FSDD) [91]. However, none of these versions of the FDD 

has exploited its true value. In chapter 4, we will present a new theory to further investigate this method 

in dealing with nonstationary processes and close modes analysis. Besides, it is worth mentioning that, 

as an opposite method to the FDD, the Time Domain Decomposition (TDD) method [92], [93] received 

some attention. However, compared to the FDD, the TDD method is not straightforward and user 

friendly, as it needs to use a digital band-filter to isolate each target mode in the first place.  

Note that this subsection only gives a very brief introduction to OMA, there are many overview papers 

and books regarding this topic published in the past two decades, for more information, interested reader 

can refer to references [63], [83], [86], [94]–[97]. 
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2.2 Linear differential equation with constant coefficients 

In the last section, we provided a brief overview of system identification and modal analysis. In this 

section, we want to present some mathematical models which are widely used in modal analysis. 

Different mathematical models give different representations of a system, which in turn invoke different 

identification procedures. And those different identification procedures carry some fundamental ideas 

used in modal analysis.  

In the introduction section, we have mentioned that the system of interest in Civil, Aerospace, and 

Mechanical Engineering is usually modelled by a linear constant-coefficient differential or difference 

equation, as such approximation is often justified, and design considerations based on linear theory lead 

to good results in many cases [62]. Therefore, we will restrict our discussion to a linear system with 

constant coefficients only. We will first introduce the continuous representation of a system, then 

discuss the discrete expressions in the next section. 

2.2.1 Ordinary Differential Equation (ODE) and its solutions 

The mathematical expression for a n th order linear differential equation with constant coefficients is 

often given by  

 
( ) ( ) ( )1

1

n n

nx a x a x u t
−

+ + + =  (2.5) 

where ia  are the constant coefficient of the above ODE. ( )x t  gives the system state variable, while 

( )u t  denotes the external stimuli. If ( ) 0u t  , the equation is inhomogeneous. Then the associated 

homogeneous equation is given by 

 
( ) ( )1

1 0
n n

nx a x a x
−

+ + + =  (2.6) 

It is well known that the general solution of Eq. (2.5) can be expressed as  

 c px x x= +  (2.7) 

where px  is a particular solution to Eq. (2.5), and cx  is complementary solution to the homogeneous 

equation given by Eq. (2.6).  

To find the expression for y  given Eq. (2.5), we can utilised the differentiation operator D  and write 

Eq. (2.5) in the form 

 
( ) ( )( ) ( )1

1

n n

nD a D a x u t
−

+ + + =  (2.8) 
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Define ( ) ( ) ( )1

1

n n

np D D a D a
−

= + + + , then ( )p D  is the polynomial operator which allows us to 

use polynomial algebra to find the solutions of the original ODE given by Eq.(2.5). 

Now, given ( )p D , its characteristic equation is given by 

 ( ) 1

1 0n n

np s s a s a−= + + + =  (2.9) 

If there are n  distinct roots to ( ) 0p s = , then we can obtain n  linearly independent solutions 

expressed in the exponential form is t
e  to Eq. (2.6).  

Since any linear combination of the n  linearly independent solutions is a solution to Eq. (2.6), then the 

general form of the complementary solution can be expressed as 

 1

1
ns ts t

c ny c e c e= + +  (2.10) 

where ic  are constants determined by the initial conditions, and is  is a root of ( ) 0p s = , which can 

be complex-valued.  

If not all is  are distinct to each other, for instance, 1s  is a k  fold root to ( ) 0p s = , then 

 ( ) 11

1 2
ns ts tk

c k nx c c t c t e c e−= + + + +  (2.11) 

As for the particular solution px , it should have the form of ( )u t  which in general bears no information 

of the system structure. Since px  varies with ( )u t , it is unnecessary for us to derive a particular 

expression for it in here.  

In general, the goal of system identification is to determine the order of system and those constant 

coefficients ia  provided that the system behaviour can be approximated by Eq. (2.5). When we assume 

the system is of order 2, then the only task of system identification is to identify the coefficients 1a  and 

2a . For a vibration system with multi degrees of freedom, we can decouple the higher order system into 

a series of the 2nd order systems by using a different set of coordinates. Therefore, if a system has N  

degrees of freedom, then its corresponding characteristic equation for the whole system is of order 

2n N= , as for each degree of freedom we need a 2nd ODE to characterise its vibration properties.  

However, obtaining those constant coefficients ia  is not our ultimate goal. In modal analysis, we are 

concerned of the natural frequencies and damping ratios, which are, as we mentioned before, embedded 

in the roots of the characteristic equation. Unfortunately, in many cases solving a n the order polynomial 

like Eq. (2.9) directly is challenging in practice. Thus, in the next section, we introduce the companion 

matrix, which provides us an effective way to find all the roots of the system.  
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2.2.2 The companion matrix  

In order to find all the roots of the polynomial  

 ( ) 1

1

n n

np s s a s a−= + + +  (2.12) 

when ( ) 0p s = , we can first define a companion matrix which contains all the coefficients of ( )p s , 

 

1 1

0 1 0

0 0

1
C

n na a a−

 
 
 =
 
 
− − − 

A  (2.13) 

in which the first super-diagonal consists entirely of ones and all other elements above the last rows are 

zeros.  

There is a nice property of this companion matrix that, the characteristic polynomial ( )det C −A I  of 

matrix CA  is the polynomial ( ) ( )1
n

p s−  [98], where   is the eigenvalue of the companion matrix. 

Since s  is a dummy variable, we can replace it with  , then we have 

 ( ) ( ) ( )1 det
n

Cp  − = −A I  (2.14) 

Therefore, instead of solving ( ) 0p s = , we can solve ( )det 0C − =A I . The eigenvalues of the 

companion matrix are the zeros of the original polynomial, which are also the homogenous solutions of 

a linear constant-coefficient difference equation.  

Furthermore, according to the fundamental theorem of algebra [99], for a univariate polynomial of 

degree n  with real coefficients, it will have n  number of roots complex or real. If it has m  complex 

roots, then those complex-valued roots occur as complex conjugate pairs, in this case, m   is a multiple 

of 2. Thus, when n  is odd, then n m , which means the polynomial definitely has at least one real 

root. Whereas n  is even, then n m , which means all the roots could be complex conjugates.  

2.2.3 Continuous time state-space model 

The introduction of the companion matrix in the last section not just provided an alternative way to find 

the roots of the characteristic equation, it also implies that we can rewrite the n th order differential 

equation into a first order equation by using the companion, that is 
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( )

( ) ( ) ( )

3

1
1 1

00 1 0

00 0

1
nn

n n

x x

xx

u ta a a xx
−

−

      
      
      = +
      
      

− − −        

 (2.15) 

In short, 

 ( ) ( ) ( )Ct t t= +x A x u  (2.16) 

This equation not only has the same form of the state equation in the state-space model, the same as the 

state matrix, the companion matrix also contains all the information about the system. To see this, we 

first introduce the general form the state-space model, then use the 2nd order system given by Eq. (2.3) 

as an example. 

The most general state-space representation of a linear system is given by 

  
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

t t t t t

t t t t t

= +


= +

x A x B u

y C x D u
 (2.17) 

where ( ) nt x is the state vector, ( ) pt u  is the input or control vector, and ( ) qt y  is the 

output vector. Here, n , p , q  denotes the number of states, inputs, and outputs, respectively. While 

( )tA  is the n n  state or system matrix, ( )tB  is the n p  input matrix, ( )tC  is the q n  output 

or observation matrix, and ( )tD  is the q p  feedthrough or feedforward matrix.  

The first order differential equation given by the first equation in Eq. (2.17) is called the state equation, 

which tells us how the input affects the internal qualities of a system. Note that the number of states  

(in a minimal realisation) is the order of the system. While the second equation is called the output 

equation. It quantifies how the states affect measurements ( )ty , thus ( )tC  could be thought of a 

calibration matrix. While ( )tD  which is known as the feedthrough term quantifies the direct effect of 

the input. The present of the direct feedthrough term means that there is a component of the output that 

changes instantaneously when the input changes. For a strictly causal system, ( ) 0t =D . In the general 

formulation of the state-space model, all the matrices from ( )tA  to ( )tD  are allowed to be time-

variant, while for a LTI system, all those matrices are time invariant.  

Now consider the LTI dynamic system given by Eq. (2.3),  

   (2.18) 

n

( ) ( ) ( ) ( )t t t t+ + =Mq Cq Kq f
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where the mass matrix M , damping matrix C  and the stiffness matrices K  are all n n  symmetric 

matrices.  

If we define a state vector of dimension 2 1n , that is  

   (2.19) 

Its time derivative is given by 

   (2.20) 

If we pre-multiply 
1−

M  to Eq. (2.18), then rearrange the equation into 

   (2.21) 

or more simply 

   (2.22) 

where  

   (2.23) 

is the system matrix.  is the  input vector at  locations, it is associated with the  input 

vector , namely 

   (2.24) 

Here,  is the  input coefficient matrix. Thus, the  input matrix B  is given by 

   (2.25) 

In the meantime, the measured responses ( )ty  at q  physical coordinates are related to the state vector 

( )tx  through an 2q n  observation matrix C ,  

 ( ) ( )t t=y Cx   (2.26) 

Together with Eq. (2.22), we have the state-space model for the 2nd order dynamic system, i.e., 

( )
( )

( )

t
t

t

 
=  
 

q
x

q

( )
( )

( )

t
t

t

 
=  
 

q
x

q

( )

( )

( )

( ) ( )11 1

00t t

tt t
−− −

      
= +      

− −      

q qI

M fq qM K M C

( ) ( ) ( )t t t= +x Ax Bu

1 1

0
− −

 
=  

− − 

I
A

M K M C

( )tu 1p p 1n

( )tf

( ) ( )t t=f Fu

F n p n p

1

0
−

 
=  
 

B
M F
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( ) ( ) ( )

( ) ( )

t t t

t t

= +


=

x Ax Bu

y Cx
  (2.27) 

The continuous form of the state-space model is of no practical use in modal analysis, as well usually 

deal with discrete time signals. Therefore, in section 2.3., we will introduce one of the discrete form of 

Eq. (2.27), namely linear Gauss- Markov model along with the famous Kalman Filter. 

2.2.4 Transfer function and the Frequency Response Function (FRF) of the 

system 

The discussion of the characteristic polynomial of the system establishes the foundation for many time 

domain methods based on the state-space model and the ARMA models, as those methods all end up 

with computing the companion matrix to find the poles of the system. However, this is not the only way 

to estimate the poles.  

In order to gain some ideas about the system while we have almost no information about the 

mathematical structure of the system, we can use some transformation techniques to transfer the input-

output or output only responses of the system to another domain, where we can gain some insight about 

the behaviour of system poles nonparametrically.  

One of the well-known transformations is the Laplace transform [64], which works for continuous 

signals, whereas the so-called z -transform is the discrete counterpart of it [100]. As for the famous 

Fourier transform, it is just a special case of the Laplace transform evaluated on the imaginary axis. 

However, due to some nice properties of the Fourier transform and the computation advantage of the 

Fast Fourier Transform (FFT), the Fourier transform is more widely used in data analysis than the 

Laplace transform and the z -transform. Nevertheless, we will start our discussion with the Laplace 

transform, as it is more general than the Fourier transform in solving linear differential equations.  

Given a function ( )h t  of a real variable t , the Laplace transform of ( )h t  is given by [101] 

 ( ) ( )
0

dstH s h t e t


−

−
=   (2.28) 

where ( ) ( ) H s h t=  is a function of s . Here, s  is known as the complex frequency, which is in 

general complex, i.e., is  =  .  

Note that in the vibration analysis, when a system subjects to damping, we rewrite   as d . And if 

we denote   and   as the natural frequency and the corresponding the damping ratio respectively, we 

can express s  as  
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2i 1s   = −  −  (2.29) 

where 21d  = −  is the so-called damped frequency.  

Now if we apply the Laplace transform to Eq. (2.5) on both side of the equation, using the time-

derivative rule [101], and assume the system is at rest initial, in other words, 
( ) ( )  ( )n nh t s H s= , 

we will obtain 

 ( ) ( ) ( )1

1

n n

ns a s a X s U s−+ + + =  (2.30) 

or more simply 

 ( ) ( ) ( )p s X s U s=  (2.31) 

With this expression in the system equation in the Laplace domain, we can define the transfer function 

of the system ( )H s  to be  

 ( )
( )

( ) ( )

1X s
H s

U s p s
= =  (2.32) 

where ( )X s  and ( )U s  represents the Laplace transform of the output and input, respectively.  

Now if we apply the Heaviside cover-up method [100] to ( )H s , we can decompose it into partial 

factions. Suppose the all the poles are distinct, we can obtain the following form for the transfer function, 

 ( ) 1

1

n

n

AA
H s

s s s s
= + +

− −
 (2.33) 

where is  are the system poles, they are also the roots of the characteristic equation. iA  are the 

coefficients which can be determined by the cover-up method. Note that if and only all the is  have 

negative real part, i.e., 0i  , 1, ,i n = , the system is stable.  

Moreover, the transfer function ( )H s  and the impulse response function ( )h t  of the system are 

Laplace transform pairs. Thus, if we apply the inverse Laplace transform to ( )H s , we will end up with 

Eq. (2.4). 

Particularly, if we set is = , then ( ) ( )iH s H =  we obtain the complex gain of the system. For the 

2nd order system follows the Newton’s the law, the equation of motion is given by 

 ( )mx cx kx u t+ + =  (2.34) 
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where m , c , and k  represent the mass, damping, and stiffness coefficient, respectively. And these 

three coefficients are interrelated by 2c m=  and 
2k m= . Thus, for this system, the complex gain 

is simply given by 

 ( ) ( ) 2i

1
i

is
H H s

k m c


 =
= =

− +
 (2.35) 

which is known as the system’s Frequency Response Function (FRF). If the system is excited by some 

sinusoidal input, then the FRF is simply the ratio between the amplitude of the output response and the 

input response.  

Accordingly, we can obtain the amplitude response of the system, which is the absolute value of the 

FRF, that is 

 ( )
( )

2
2 2 2

1
iH

k m c



 

=

− +

 (2.36) 

and the phase lag 

 ( ) 1

2
tan

c

k m


 



−  
= −  

− 
 (2.37) 

In practice, when doing system identification, all we have some information about ( )X s  and ( )U s . 

We can calculate the FRF, but the actual structure is unknown. However, if the system can be 

approximated by Eq. (2.34), then we can make inference about the modal parameters of the system 

according to Eq. (2.35) through evaluating the ratio between ( )X s  and ( )U s .  

2.3 Linear difference equation with constant coefficients 

As the discrete counterpart of the linear differential equation, the linear difference equation is widely 

used in Digital Signal Processing (DSP) [100] and Time Series Analysis (TSA) [102]. The basic 

formulation of the n th order linear difference equation with constant coefficients has the following 

form 

 1 1t t n t n tx a x a x u− −= + + +  (2.38) 

where ia  are the constant coefficients. When the extra term 0tu = , the equation is homogeneous, 

otherwise it’s nonhomogeneous.  
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Typically, there are many variations of Eq.(2.38) depending on the order of the equation and the 

conditions of tu . For instance, when tu  is the uncorrelated white noise with only one term, then Eq. 

(2.38) denotes a autoregression (AR) model; when tu  is the combination of the current and past error 

terms, in the meantime, we assume 1n = , 0 1x = , then Eq. becomes a moving average (MA). Apart 

from this, we can also rewrite Eq. (2.38) into the first order form with a companion matrix.  

It is obvious that we are unbale to discuss all the variations of the linear difference equation in this 

thesis. Therefore, in the next subsection, we will consider the case when tu  is controllable and 

nonstatistical and give the convolution formula for the input and IRF of a system. Then, we will formally 

introduce some of the autoregressive-moving-average (ARMA) related models with the conventional 

notation. After that, we will shift our focus on to the discrete time state-space model. Having done this, 

we will briefly discuss the state-space model for a stochastic system.  

2.3.1 Deterministic input and z-transform  

In system identification, with the controllable deterministic input, we can easily establish the relation 

between the input and the output via the convolution formula of the input and the impulse response 

function.  

As a result, it is common to work with a linear constant-coefficient difference equation of this kind, 

 
1 0

N M

t i t i j t j

i j

x a x b u− −

= =

= − +    (2.39) 

Or equivalently, 

 
0 0

N M

i t i j t j

i j

a x b u− −

= =

=  ,   0 1a   (2.40) 

where tx  is the output, while tu  denotes the input. ia  and 
jb .are the constant coefficients for the 

output and input, respectively. N  is the order of the system, while M  is the order of the input. 

In section , we have briefly mentioned a multiplicative relation between the Laplace transform of the 

input and the transfer function of the system to generate the output response in the Laplace domain, i.e., 

( ) ( ) ( )X s H s U s= . Whereas in the time domain, such a simple relation becomes a convolution, 

which has the form of Eq. (2.1) continuous. For a system characterised by a linear difference equation 

with an underlying discrete assumption, it also has a transfer function. However, to derive it, we need 

to use the z -transform, which is defined as follows  
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 ( ) ( ) k

k

H z h k z


−

=−

=   (2.41) 

This equation says that if ( )h n  is the discrete time impulse response function given by the same form 

of Eq. (2.2), then ( )H z  gives the corresponding transfer function in the z  domain.  

If we consider the discrete time formula of Eq. (2.40), i.e.,  

 ( ) ( )
0 0

N M

i j

i j

a x n i b u n j
= =

− = −  ,   0 1a   (2.42) 

and apply the z -transform on both sides of the equation, in the meantime, we assume the system is at 

rest initially, then we can obtain the expression for ( )H z , namely 

 ( )
( )

( )
0

0

1

M
j

j

j

N
i

i

i

b z
X z

H z
U z

a z

−

=

−

=

= =

+




 (2.43) 

Note that the same as s , z  is also complex-valued. As for the convergence discussion of the ( )H z , 

readers can refer to reference [100]. 

2.3.2 Autoregressive-moving-average (ARMA) models 

In time series analysis, a (weakly) stationary stochastic process is usually expressed by ARMA ( ) 

models in terms of two polynomials, i.e., autoregression (AR) and the second for the moving average 

(MA), where  and  represent is the order of the AR part and the MA part, respectively. These 

models, which set up a foundation for system identification with random inputs which are unobservable, 

play a significant role in system identification.  

Given a time series  tX , the ARMA ( ) model, is usually used for understanding or predicting 

future values in  tX . When 0q = , we obtain the AR( ) model, which regresses the variables on its 

own past values; whereas when 0p = , we get MA( ) model, which models the error term as a linear 

combination of the past error terms. Note that for the MA model, one should not be confused with 

smooth technique moving average.  

The study of the ARMA models and their extensions are important subjects in the time series analysis. 

Especially for the AR model, which is written in the form of a stochastic difference equation, is a direct 

application of the linear difference equations. Particularly, many OMA time domain techniques are 

,p q

p q

,p q

p

q
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derived in terms of these models. Thus, it is important for us to understand them before we introduce 

those techniques.  

2.3.2.1 Basic models 

For the AR( ) model with order , it can be given by  

   (2.44) 

where  are parameters,  is a constant, while  denotes white noise. Note that the terms  are 

generally assumed to be i.i.d sampled from a normal distribution with zero mean, i.e., ( )2~ 0,t   , 

where 2

  is the variance. 

For the MA  model with order q ,  

   (2.45) 

where  are the parameters of the model associated with the white noise error terms.  is the expected 

value of  tX , quite often, we assume 0 = .  

For the ARMA  model with  AR terms and  MA term, the model is expressed as  

   (2.46) 

which is simply the merger of AR  and MA  models. Since the constant  absorbs the means, 

and adding means and other deterministic trends is easy, so in the following analysis we will be working 

with the mean zero versions. In other words, we will assume 0c = . 

2.3.2.2 Stationarity of the random process 

The invertibility of the ARMA models is very important. For example, to study an IRF, MA 

representations may be convenient, whereas to estimate an ARMA model, AR representations will be 

more convenient, as usually  tX  is observable while i  is not. This corresponds to two types of study 

in system analysis. One works on the causality, using the IRF to describe the evolution of a model’s 

variables in reaction to a shock in one or more variables, in which case, we wish to convert our process 

into an MA model-based process (  can be an exogenous shock). The other one works on prediction, 

p p
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and the autoregressions simplify the task. In other words, we use the most recent p  cases to predict the 

future response. In this case, an AR-based model is of great interest.  

In the next section, we consider the conditions for a random process expressed by the ARMA models 

to be stationary, which is associated with the invertibility of the characteristic polynomials of the 

ARMA models.  

2.3.2.3 Invertibility and stationarity of the ARMA processes 

To facilitate our investigation of the invertibility and stationarity of the ARMA processes, first, we want 

to derive the characteristic polynomial for the ARMA models.  

The same as the differentiation operator, we introduce the backshift operators, which enable us to 

present ARMA models in a more concise way. The backshift operator moves the index back one time 

unit, that is 

  (2.47) 

and applying it  times, we move the index back  units 

   (2.48) 

Using the backshift operator, we can write the ARMA models as 

 AR :  or  (2.49) 

 MA : ( )2

1 21 q

t q tX L L L   = + + + +  or  (2.50) 

 ARMA :  (2.51) 

where the characteristic polynomials are  

  (2.52) 

and 

 ( ) 2

1 21 q

qz z z z   = + + + +  (2.53) 

Note that here we assume the constants  and  are equal to zero.  

The invertibility property of the ARMA models encompass an important topic in time series analysis, 

i.e., stationarity. In the ARMA models, the stationarity is characterised by the roots and coefficients of 

the characteristic polynomials  and . For instance, when an AR process can be inverted to 

1t tLX X −=

i i

2

2 , , i

t t t t iL X X L X X− −= =

( )p ( )2

1 21 p

p t tL L L X   − − − − = ( ) t tL X =

( )q ( )t tX L =

( ),p q ( ) ( )t tL X L  =

( ) 2

1 21 p

pz z z z   = − − − −

c 

( )z ( )z
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an MA process, then the process is stationary. This is possible if and only if ( ) 0z   for all z  in a 

unit circle. It can be seen clearly by evaluating Eq. (2.49). Hence, if all  in 

  (2.54) 

have less than one absolute value, then the AR( ) process can be inverted to an MA process, which is 

given by Eq. (2.50) . This means that with ,  ( ) is absolutely summable, where 

 are the coefficients of , and ( ) ( )1L L −= for the AR-based model. Here, one can see that 

for the AR(1) process, to ensure the process is invertible and stationary, the condition  must be 

satisfied.  

One the other hand, we can express Eq. (2.54) as  

  (2.55) 

that all roots in Eq. (2.55) lie outside of the unit circle, i.e.,  for all , is equivalent to the 

requirement that . Therefore, one can say that if and only if all roots of the characteristic 

polynomial  lie outside the unit circle. 

For the MA process with finite number of MA coefficients, it is always stationary. When , in 

order to guarantee finite mean, we require .  is the space of absolutely summable sequence, 

 means . While in order for  tX  to have second moments, then , where 

 is the space of all square summable sequences, those for which . Similarly to the AR 

process, if  exists, an MA( ) process is invertible if all roots of  lie outside of the unit 

circle. This is implies that for an MA(1) process to be invertible if and only if .  

As for an ARMA process, its stationarity is completely depended on its AR part. It is because a finite 

MA process is always stationary. So, if we can convert an ARMA process to an MA process, then its 

stationarity is secured. To satisfy this condition, its autoregressive lag polynomial must be invertible 

and the polynomials  and  have no common zeros. Thus, given an invertible ARMA( ) 

process, its MA form is given by 

  (2.56) 

where  give the moving average polynomial for the ARMA( ) process.  
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2.3.2.4 AR covariance function and Yule-Walker equations 

In this section, we introduce the Yule-Walker equation equations, which are used to compute the AR 

coefficients. In section 2.4.1.2 , we will refer to these equations to explain the Polyreference method 

used in OMA. 

According to our discussion in the last section, for a stationary AR process given by Eq. (2.49), it has a 

moving average representation of the process, that is 

  (2.57) 

This implies that  is uncorrelated with prior observations , .  

Since  is assumed to be white noise, ( )2~ 0,t   , then the first moment of tX  equals 0, namely 

  0tX = . Hence, for lags  

 ( )   2

1 1t k t t p t p t k t kX X X X X    − − − −
 − − = =
 

 (2.58) 

where  for . 

For a stationary process, the autocovariance is only the function of the time difference. Thus, if we 

define ( ) tt k
k X X

+
 =
 

, then the above equation can be simplified as follows  

 ( ) ( )2

1

p

k j

j

k k j  
=

= − −  (2.59) 

which is the Yule-walker equations. Particularly, when , 

 ( ) ( ) ( )2

10 1 p p  = − −  (2.60) 

When  

 ( ) ( ) ( ) ( )1 20 1 0 1 1p p  = − − − − −  (2.61) 

From  to , we can write p  equations that give the coefficients as follows 
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which is the Yule-Walker equations.  

Define the vectors ( ) ( )( )1 , , p =γ  and ( )1, , p  
= , and the matrix 

( )
, 1, ,p j k p

j k
=

= −  Γ . The matrix form of Eq. (2.62) is given by 

  (2.63) 

where  is a Toeplitz matrix.  

Now let us consider a special case AR(1). When , from Eq. (2.59), we have 

 ( ) ( )1 1k k= −  (2.64) 

which gives a recursive form of the autocovariance of AR(1) process.  

Further, we can obtain 

 ( ) ( )1 0kk =  (2.65) 

Thus, the autocorrelation function for the AR(1) process is given by 

 ( ) 1

kk =  (2.66) 

This equation implies that for the AR(1) process, the parameter, , can be discerned from the 

autocorrelation plot. For stationary process, the absolute value of  is required to be less than one. 

Particularly, when , we will have an exponentially decay plot of ( )k  . Whereas, , since 

( )k  has an extra  factor, it will cause the ( )k  to oscillate while decaying.  

On the other hand, if we invert the AR(1) to an MA process, using Eq. (2.49), we have  

  (2.67) 

According to the Binomial theorem, we obtain 

  (2.68) 

where  

  (2.69) 
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is the IRF of the AR(1) process, which has the same format as the autocorrelation function given by Eq. 

(2.66). 

2.3.3 Discrete time state-space model and the Markov parameters 

Since the discrete-time state-space model is of practical importance, in this section, we will present the 

discrete version Eq. (2.27) (the vector form) first, then derive the expression of the corresponding 

Markov parameters, which is essentially the impulse response function of the system.  

To obtain the discrete version of Eq. (2.27), we can either use the Euler’s method [64]. The details will 

be omitted here, instead, we give the result directly  

 
( ) ( ) ( )

( ) ( )

1k k k

k k

+ = +


=

x Ax Bu

y Cx
 (2.70) 

Then with the given initial state ( )0x  and the input ( )ku , and from which we can derive the Markov 

parameters [103].  

Consider the vector form of Eq.(2.2) of a causal IIR system,  

   (2.71) 

with the zero-initial condition. Our goal is to derive an explicit expression of ( )kh  in term of Eq. (2.70)

is the Markov parameters of the system. 

Now, if we solve for the observable output  in terms of the previous inputs in the following 

fashion in terms of Eq. (2.70) 
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  (2.72) 

it yields 
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Suppose the initial conditions is zero, namely, ( )0 =x 0 , we have 

 

( ) ( ) ( ) ( )

( ) ( )

0

1

1

1
k

k i
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=
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
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
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



x Ax Bu A Bu

y CA Bu

  (2.74) 

where for 0k  , ( ) 0k =u . 

Now if we compare the observation equation in Eq. (2.73) to Eq. (2.71), then the Markov parameters in 

Eq. (2.71) is given by  

 ( ) 1kk −=h CA B   (2.75) 

where the integer k  shall start from 1, and ( )kh  is a q p  matrix.  

From Eq. (2.75), we can see that the Markov parameter sequence is simply the impulse response of the 

system. Therefore, they should be unique for a given system [103]. However, since the state vector is 

coordinate dependent, the state-space matrices are not unique, which will result in a non-unique Markov 

parameter sequence [103]. This is undesirable. Nevertheless, this does not mean the system’s innate 

property will be different. For instance, the modal parameters of the system should remain the same 

regardless of the format of the impulse response sequence. 

Apart from this, it shall be pointed out that the essential step in Eigensystem Realisation Algorithm 

(ERA) [80] method is about decomposing the block Hankel matrix formed by the Markov parameters 

given by Eq. (2.75), which will be explained in section 2.3. One should be aware that Eq. (2.75) gives 

the Markov parameters for a deterministic system, and its counterpart for the stochastic system has the 

same format, which is used the NExT-ERA method and the SSI-COV method. Since these two methods 

are fundamentally similar, we will only discuss the SSI-COV method. As an important extension, in 

the next subsection, we shall introduce a widely used state-space model for a stochastic system. 

2.3.4 Linear Gauss-Markov model and state estimation 

In OMA, the basic assumption for modal analysis is that the structures are constantly subjected to some 

unmeasurable ambient excitations. The same as the introduction of the ARMA models we discussed 

before in terms of a n th order difference equation, we need to modify the discrete time state-space 

model to accommodate the statistical properties of the input and the output responses of a system.  
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In last section, we discussed the discrete version of a state-space model for a deterministic system. In 

this section, we assume the system is excited by some Gaussian white noise. Typically, the state-space 

model of such a system is often referred to as a linear Gauss-Markov model, which can be given by 

 
( ) ( ) ( )

( ) ( ) ( )

1k k k

k k k

+ = +


= +

x Ax w

y Cx v
 (2.76) 

where,  is a n p  process noise to state matrix, while  is a q p  measurement noise to output 

matrix. Here, we suppose both ( )kw  and ( )kv  are of size 1p . 

Here, ( )1k +x  is a  vector, which only depends on the previous state at time , is an the -

dimensional hidden state process, and it is corrupted by a (correlated or uncorrelated, here we consider 

the latter case) state noise process ( )kw  [104]. While for the q -dimensional measurement ( )ky , 

which is further corrupted by a measurement noise process , is subject to a linear transformation 

of the hidden state ( )kx  [104]. Note that the state equation in Eq. (2.76) implies ( )1k +x  follows a 

first-order Markovian dynamics, which describes the state-space evolution of a stochastic dynamical 

system [104].  

When ( )kw  and ( )kv  are assumed to be uncorrelated Gaussian process with zero mean, then ( )ky  

is a Gaussian process as well. To be more specific, for a multivariate linear Gaussian system, we would 

expect 

 ( ) 0k =  w  and ( ) 0k =  v  (2.77) 

with the autocovariance matrices given by 

 ( ) ( )
0

i j

i j
k k

i j

=
  =   

T
Q

w w  and ( ) ( )
0

i j

i j
k k

i j

=
  =   

T
R

v v  (2.78) 

and the cross-covariance matrix given by 

 ( ) ( )k k  = 
T

w v S  (2.79) 

where    gives the notation for expectation.  

In the meantime, we usually assume that noise processes are uncorrelated with the state process and the 

system output, thus,  

1n k n

( )kv
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T

T T

0 0

0 0

k k k k

k k k k

   = =   

   = =   

w x v x

w y v y
 (2.80) 

The linear Gauss-Markov model has very wide application. The widely used OMA methods, such as 

NexT-ERA method, the SSI-COV method and the SSI-DATA method, are all derived based on Eq. 

(2.76). In system control, the estimation of state-space models is normally realised by ways of the 

Kalman Filter (KF) [105], which is a recursive set of equations to update the estimated parameters. And 

the idea of updating in the KF is related to the Bayesian approach [106]. Indeed, the theory behind the 

Kalam Filter is Bayesian. Particularly, the SSI-DATA method is formulated based on the state estimate 

equation in the KF process. Now consider the following Lemma [105]. 

Lemma 1. Suppose X and Y are jointly Gaussian random variables, with Z=[XT YT]T, then Z is gaussian 

with mean n

z   and covariance matrix n

zz ++   (i.e., the space of symmetric positive definite 

n n  matrices) 

 
x

z

y






 
=  
 

   and   
xx xy

zz

yx yy

  
 =  

  
 (2.81) 

Then the conditional probability distribution of X given Y, i.e., ( )x y
p x y  follows a Gaussian 

distribution with mean and covariance 

 ( )1

x xy yy yx y y −  = +  −     and   
1

xx xy yy yx

− −    (2.82) 

Note that the conditional expectation of X  given Y y=  in Eq. (2.82) is the prime equation of the 

linear Kalman filter, which is used to estimate the state variable based on the past measurements up to 

the time instant k . In other words, if ( )ky  denotes the measurement process, we can estimate the 

system state ( )kx  in terms of the past observations ( ) ( ) ( )0 , 1 , , ky y y  via the conditional 

expectation formula, i.e., ( ) ( ) ( ) ( ) 0 , 1 , ,k kx y y y  for 0,1,2,k = . For simplicity, we can 

use ( ) ( ) ( ) 0 , 1 , ,k k= y y y  to denote the set of the measured quantities. Then the estimate of the 

system state at time k  based on the past observations up till time k  is given by ( ) ( )ˆ
kk k k=   x x .  

For the SSI-DATA method used in OMA, the whole method is realised by computing the conditional 

expectation of the state variable based on the measurements. In other words, the realisation of the SSI-

DATA method is not a Kalman filtering problem, but a state estimation problem. A detailed discussion 

is presented in section 2.4.3.2. 
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2.4 Identification of the constant coefficients 

There are essentially three important matrices in system identification, i.e., the (block) Hankel matrix, 

(block) Toeplitz matrix and the (block) companion matrix. To estimate the system parameters from the 

MDOF system by using traditional time domain SIMO or MIMO methods, these three matrices are 

almost unavoidable.  

We have already met the companion matrix in section 2.2.2, which is used to compute the system poles 

provided that the system coefficients are known. While for the (block) Hankel matrix and (block) 

Toeplitz matrix, they are essentially used to compute the system coefficients. Therefore, the main task 

in this section if to form the (block) Hankel matrix or (block) Toeplitz matrix with the available 

information.  

To be more specific, the (block) Hankel matrix is introduced by using a simple AR model first, based 

on which we provide a full description of the Polyreference method. Then we formulate the (block) 

Hankel matrix for linear deterministic system. After that, we show its formulation for the linear 

stochastic system, important examples, such as the SSI-COV method and SSI-DATA method are 

investigated in this section.  

As for the (block) Toeplitz matrix, which is closely related to the (block) Hankel matrix, is not discussed 

separately on this occasion. However, it will be mentioned as appropriate. For instance, the Toeplitz 

matrix associated with the Yule-Walker equations, see Eq. (2.62). 

2.4.1 AR coefficients estimation 

Essentially, the Polyreference method is an AR-based method, which is initially developed by Vold et 

al. [107] to solve the MIMO problem. Later on, it was modified by Lingmi Zhang et al [57] to deal with 

the modal parameters estimation problems based on output-only responses. In reference [86], Zhang 

updated the theoretical background of the Polyreference method and coined it with the name NExT-

PRCE method. The Polyreference method we will be discussing in this thesis in one used in OMA. 

Instead of the using presenting the existing theoretical background for Polyreference, we provide a more 

rigorous and easier explanation for it in this section. Before doing that, we need to know how to obtain 

those AR coefficients first.  

2.4.1.1 Homogenous equation of an AR process 

For the AR model-based identification approaches, normally the first step is to find the AR coefficients, 

and this procedure is associated with forming a (block) Hankel matrix. First, let us consider a simple 

case by looking at the homogenous part of a vector AR model, that is [63] 
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 ( ) ( ) ( ) ( )1 21 2 nan n n n na= − + − + + −y A y A y A y  (2.83) 

Where na  is the number of AR coefficient matrices, which also implies the order of the system. When 

we have nc  number of channels for ( )ny , i.e., ( )ny  is a 1nc  vector. Note that the discrete and 

matrix form of the AR model we used here is normally referred to as VAR model, where V stands for 

the vector. Accordingly, we have VARMA models as well. However, in the rest of the context in this 

thesis, we will not particularly address the “vector” for the ARMA models.  

In order to find out the na  coefficient matrix, we need to solve at least na  linear equations like 

Eq.(2.83). For instance, given ( )ny , 1, 2,...,n na na np= + +  with np na−  number of samples, 

where np na , we have  

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2

1 2

1 2

1 1 1

2 1 2

1

na

na

na

na na na

na na na

np np na np na np na

+ = + − + +


+ = + + + +


 = − + − + + + −

y A y A y A y

y A y A y A y

y A y A y A y

  (2.84) 

Note that to avoid negative time lapses and secure the causal nature of the system we concern, the 

starting time n  should at least start from na . Here we set n  from 1na +  is because we wish to derive 

a comparable block Hankel matrix with our discussion in the next subsection. 

These linear equations can be rewritten into many different matrix forms. To our particular interest, we 

would like to use the following format 

 

( ) ( ) ( )

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1

1 2

1 2

2 3 1

1 1

na na

na na np

np na

np na

na na np

−

+ +  

− 
 

− + =
 
 

+ −  

y y y

y y y

y y y
A A A

y y y

 (2.85) 

where the (block) Hankel matrix is given by 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2

2 3 1

1 1

na

np na

n na

na na np

− 
 

− + =
 
 

+ −  

y y y

y y y
H

y y y

  (2.86) 

where naH  is a ( ) ( )*na nc np na −  matrix.  
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Define matrix ( ) ( )1na na np= +  Y y y , and  ar 1 1na na−=A A A A . Then we can 

write Eq. (2.85) into a simpler form 

 arna na=Y A H  (2.87) 

This equation is called the least square equation for estimation of the matrix polynomial [63]. Note that 

the subscription represents autoregression.  

Suppose the estimate of matrix arA  is denoted as arÂ , then by solving Eq. (2.87) we have 

 ( )
T

T T T T† T †

ar ar
ˆ

na na na na na na=  = =Y H A A H Y Y H  (2.88) 

where †

naH represents the pseudo inverse of naH . Note that this procedure will only work satisfactory 

if the problem is well overdetermined, thus we must require that [63] 

 np na na nc−   (2.89) 

It should be pointed out that the solution given by Eq. (2.88) for the homogenous problem imposes no 

restriction on the roots of the linear difference equation represented by Eq. (2.83), which means Eq. 

(2.83) can be applied to the nonstationary process.  

2.4.1.2 Polyreference method 

Now that we know how to use the (block) Hankel matrix to estimate the AR coefficients of a 

homogeneous equation. In this section, we can use the same technique to find the AR coefficients of a 

inhomogeneous equation, which is a valid mathematical description of the system in OMA. And this 

mathematical model forms the basis of the Polyreference method. Therefore, to estimate the AR 

coefficients of an inhomogeneous equation, we must assume the random input is at least uncorrelated 

with the output responses.  

Consider the following representative equation  

 ( ) ( ) ( ) ( ) ( )1 21 2 nan n n n na n= − + − + + − +y A y A y A y w   (2.90) 

where ( )nw  is the white noise process uncorrelated with ( )ny .  

To obtain the AR coefficient matrices for a stationary process, one way is to use the Yule-Walker’s 

equations we mentioned in section 2.3.2.. However, direct application of Eq. (2.62) is not recommended 

here, as it will generate a non-causal process. This happens due to the symmetry of the covariances. For 

a causal system, namely, the current value of the process only depends on the past not the future, the 

system could be unidentifiable by directly using Eq. (2.62). To avoid this, we can reformulate Eq. (2.90) 

as follows, 
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 ( ) ( ) ( ) ( )1 1 nan na k n na k n k n na k+ + = + + − + + + + + +y A y A y w  (2.91) 

given ( )ny , 1,2,...,n np= with np  number of samples, the time differences 1,2,...,k =  

1np na− + . 

Now the same as we derive the Yule-Walker equations, we first consider the covariance between 

( )n na k+ +y  and ( )ny , where ( )ny  is a stationary process with zero mean. 

 
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

T

T T T

1 1 na

n na k n

n na k n n k n n na k n

 + + 

     = + + − + + + + + +     

y y

A y y A y y w y

 (2.92) 

Since ( ) ( )T 0n na k n + + = w y , Eq. (2.92) can be simplified as  

 ( ) ( ) ( ) ( )1 11 2 nana k na k na k k+ = + − + + − + +A A A  (2.93) 

where ( ) ( ) ( )Tna k n na k n + = + + y y  is the covariance between the two processes. Note that 

a similar equation was presented by Lingmi Zhang in reference [86], but the formula was transformed 

from an state-space model.  

For 1,2,..., 1k np na= − + , we can write 1np na− +  equations, Eq. (2.93) will give the coefficients 

through the following equation, 

  

( ) ( ) ( )

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1

1 2

1 2

2 3 1

1 1

na na

na na np

np na

np na

na na np

−

+ +  

− 
 

− + =
 
 

+ −  

A A A
 (2.94) 

Define matrices ( ) ( ) ( )1 2na na np= + +  γ ,  ar 1 1na na−=A A A A , and  

  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2

2 3 1

1 1

na

np na

np na

na na np

− 
 

− + =
 
 

+ −  

H  (2.95) 
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where naH  is the block Hankel matrix with na block rows. When we have nc  number of channels, 

then ( )k  will be a nc nc  square matrix. In this case, naH  becomes a ( ) ( )na nc np na nc  −   

matrix.  

Let us write Eq. (2.94) into a simpler form, i.e,, 

 arna na=γ A H  (2.96) 

This equation has the same format of Eq. (2.87). Hence, we shall apply the same computing procedure 

to it as well. In the meantime, the similar requirement is applied to the this formula too, see Eq. (2.89). 

With Eq. (2.83) and Eq. (2.93), it is worth mentioning that, although the Polyreference method 

developed in OMA is different from the PRCE method developed by Vold et al. [107] at first glance, 

their core is the same. The PRCE method is implemented to deal with the exponential combinations of 

the impulse responses, which are the homogeneous solutions of the system, whereas the Polyreference 

method is working on the correlation function. However, we know that the solution of a homogeneous 

equation is fully determined by the mathematical structure of the system and the corresponding 

coefficients. Therefore, even if Eq. (2.83) looks different from Eq. (2.93), they have the same pole 

locations, and the correlation function of the output responses of a system behaves in the same way as 

the impulse response function of that system. In other words, PRCE method is not fundamentally 

different from the Polyreference developed in OMA. Based on this inference, we can write its discrete 

time correlation function into the following format  

 ( ) n t n tn e e  = =b Cφ   (2.97) 

where b  is the mode shape vector, φ  is the state-space mode shape. While C  is the observation matrix, 

which can help us to pick the mode shape b  from the state-space mode shape φ  as =b Cφ . The pole 

the system is given by  . n t  gives the discrete time.  

Suppose the AR coefficient matrix  ar 1 1na na−=A A A A  is available, we can rewrite Eq. 

(2.93) into a state-space equation, namely 

 

( )

( )

( )

( )

( )

( )

( )

( )1 2 1

2 0 0 0 0 1

3 0 0 0 0 2

4 0 3

0 0 0

1 na na na

k k

k k

k k

na k na k− −

+ +    
    

+ +    
    + = +
    
    
    + + +    

I

I

I

A A A A

 (2.98) 

Define vector ( ) ( ) ( )
T

1 , ,k k na k= + +  x , Eq. (2.98) can be expressed compactly as 
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 ( ) ( )1 Ck k+ =x A x  (2.99) 

Note that  

 ( )

( )

( )

( ) ( )

( ) ( )1 1

1

1

2
t

k t k t

na t

k

ek
k e e

na k e



 





+  + 

− 

 + 
  

+   = = =
  
  

+      

Cφ

Cφ
x

Cφ

  (2.100) 

where   is the discrete eigenvector. If we substitute this expression  into Eq. (2.100) we get 

 
t

C e=A    (2.101) 

To find the all the poles of the system, we shall apply the EVD to the companion matrix, then,  

    
1

i t

C i ie
 − =  A    (2.102) 

with which we can identify the mode shape ib  from the first past of the eigenvectors, and the 

corresponding modal parameters can be easily obtained by evaluating i t
e
 

, namely 

 ( )ln i t

i e t
 

=   (2.103) 

while i  are normally complex values and its complex conjugates are given by 

  (2.104) 

where i  and i  are the i th natural frequency and damping ratio, respectively. And they can be easily 

obtained from the following two equations, namely 

    and    (2.105) 

Note that when dealing with a system governed by the 2nd order differential equation, na  is normally 

set at 2. Up to now, we have completed our discussion of the Polyreference method used in OMA.  

2.4.2 Estimation of the state matrix for a deterministic system 

Based on our discussion of the system equations in section 2.2 and 2.3, we know that all the system 

coefficients can be grouped into a companion matrix. In the state-space model, this companion matrix 

is given by the state matrix, which implies that finding the system coefficients is equivalent to find the 

state matrix. Thus, to achieve our goal, we will again try to form a (block) Hankel matrix but based on 

the Markov parameters.  

* 2, i 1i i i i i i    = −  −

*

i i i  =

*

2

i i
i

i

 




+
= −
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From Eq. (2.73), we know the solution of ( )ky  can be given by the summation of the input multiply 

the corresponding Markov parameter, i.e., 

  ( ) ( ) ( ) ( )1

1 1

k k
i

i i

k k i i k i−

= =

= − = − y CA Bu h u  (2.106) 

This equation can also be expressed as 

 ( ) ( ) ( ) ( )
1 1

1

0 0

k k
k j

j j

k k j j j
− −

− −

= =

= − = y h u CA Bu   (2.107) 

where j k i= − . After l  time steps 

 ( ) ( ) ( )
1

0

k l

j

k l k l j j
+ −

=

+ = + −y h u   (2.108) 

In general, the output responses at future times 0,1,2,l = , due to the sequence of M  past impulses 

can be computed as follows 

 ( ) ( ) ( )
( )1

0

M

j

k l k l j j
− −

=

+ = + −y h u   (2.109) 

Note that here we just changed the upper limit of Eq. (2.108) to control the effect of the length of the 

inputs at each time step of the output. 

 

( )

( )

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

( )

( )

1 1 0

1 1 2 1

1 1 2 1

k k k k M

k k k k M

k l k l k l k l M M

+ + −     
     

+ + + + −     =
     
     

+ − + − + + + − −          

y h h h u

y h h h u

y h h h u

  (2.110) 

In short, the above equation is given by 

 ( ) ( )l lM Mk k=y H u   (2.111) 

where the block-symmetric matrix ( )lM kH  is given by 

 ( )

1 2

1 1

2 1 3

k k k M

k k k M

lM

k l k l k l M

k

− + −

+ + −

+ − + − + + −

 
 
 =
 
 
 

CA B CA B CA B

CA B CA B CA B
H

CA B CA B CA B

  (2.112) 

which is our (block) Hankel matrix of Markov parameters. It is a matrix representation of the input-

output relationship for the system in the discrete time domain.  



2 Review and new proofs for Operational Modal Analysis (OMA) methods 

42 

 

Note that ( )lM kH  can be further written as three matrices multiplication, which is 

 ( ) 1 1

1

k M

lM

l

k − −

−

 
 
   =   
 
 

C

CA
H A B AB A B

CA

  (2.113) 

For a sufficiently large l , we define 

 

1

l

l−

 
 
 =
 
 
 

C

CA

CA

  (2.114) 

which is a lq n  observability matrix, and 

 
1M

M

− =  B AB A B   (2.115) 

which a n Mp  controllability matrix.  

In short, ( )lM kH  is given by 

 ( ) 1k

lM l Mk −=H A  (2.116) 

which is a lq Mp  matrix. 

When 1k = , we have 

 ( )1lM l M=H  (2.117) 

While 2k = , we get 

 ( )2lM l M=H A  (2.118) 

Generally, the system realisation in terms of the state-space models begins by forming the generalised 

Hankel matrix. Because if we can find both ( )1lMH  and ( )2lMH , we can always find the state matrix 

A  which contains the system information.  

For instance, if we use the Singular Value Decomposition (SVD) to decompose ( )1lMH  we get 

 ( )  
T

1T 1

1 2 T
2 2

0
1

0
lM l M

  
= = =  

   

Σ V
H UΣV U U

Σ V
  (2.119) 
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where 
1

lq nU , 
1

Mp nV , and 
1

n nΣ  are the nonzero singular vector matrices and singular 

value matrix, respectively. The number of nonzero singular values indicates the rank of ( )1lMH  which 

is the order of the system n . Note that n  might have different meaning throughout the text, but it will 

be pointed out appropriately. However, due to the computational and measurement noise, 2Σ  is usually 

not identical to zero. Hence, 1Σ  is computed by setting a threshold to distinguish and discard the 

insignificant singular values.  

So from Eq. (2.119), according to the non-zero singular values, we have 

 ( )( )
1 1

2 2T T

1 1 1 1 1 1 1l M = =U Σ V U Σ Σ V   (2.120) 

If there exist a non-singular matrix 
n nT  corresponds to a state-space change which can always be 

set equal to the identity matrix, then  

 
1

2

1 1l =T U Σ   and  
1

21 T

1 1M

− =T Σ V   (2.121) 

When =T I , the state matrix A  can be determined from  

 ( ) ( )
1 1

2 21 1 1 -T

1 1 1 12 2l lM M lM

− −− − −= =A H Σ U H V Σ   (2.122) 

By applying the eigenvalue decomposition to the state matrix, we can obtain the model parameters of 

the system, that is 

 
1−=A ΨΛΨ  (2.123) 

where ( )diag n n

i
= Λ , 1, ,i n= , is a diagonal matrix containing the complex eigenvalues, 

while 
n nΨ  contains the eigenvectors as columns. Here, i  and its complex conjugates are given 

by Eq. (2.104). 
 

As for the observation matrix C  and the input matrix B , they can be easily obtained from (2.121), the 

first block entry in l  is C  and the first block entry of M  is B . 

Note that the state vector does not necessarily have a physical meaning. Thus, the eigenvectors of the 

state matrix Ψ  needs to be transferred to the outside world [85]. The observed parts of the system 

eigenvectors in Ψ  give the mode shapes, which are defined as the columns in 
l nΦ . Therefore, 

we can obtain the Φ  via the output matrix, 

 =Φ CΨ  (2.124) 
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Before we leave this subsection, we want to talk a bit more about the observability and the 

controllability matrix, as both have a meaning in the state-space model, i.e., the observability matrix is 

associated with the system input while the controllability matrix is related to the output.  

Now, let us consider Eq. (2.70) again, and repeat the substitution in the following fashion, 

 

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

1

2 1 1 1

1 1

k k k

k k

k k k k k k

k k k k

+ = +


=

 + = + + + = + + +


+ = + = +

x Ax Bu

y Cx

x Ax Bu A x ABu Bu

y Cx CAx CBu

  (2.125) 

After 0l   steps, we have 

 

( ) ( ) ( )

( ) ( ) ( )

1
1

0

2
1 2

0

1

l
l l j

j

l
l l j

j

k l k k j

k l k k j

−
− −

=

−
− − −

=


+ = + +



 + − = + +






x A x A Bu

y CA x CA Bu

  (2.126) 

Note that this iteration result is different from Eq. (2.73) we presented before.  

Now let us make a step further to rewrite the above equation into the matrix form as follows 

 
( ) ( ) ( )

( ) ( ) ( )

l

l l

l l l l

k l k k

k k k

 + = +


= +

x A x u

y x u
  (2.127) 

where ( )l ku  and ( )l ky  are defined as column vectors of input and output data going l  steps into the 

future starting with ( )ku  and ( )ky , respectively, 

 ( )

( )

( )

( )

1

1

l

k

k
k

k l

 
 

+ =
 
 

+ −  

u

u
u

u

, ( )

( )

( )

( )

1

1

l

k

k
k

k l

 
 

+ =
 
 

+ −  

y

y
y

y

  (2.128) 

Here, l  in Eq. (2.127)  

 
1l

l d d d d d

− =  A B A B B   (2.129) 

is an n lp  controllability matrix, but it is the flipped version of Eq. (2.115). While l  is a lq n  

observability matrix, which is given exactly by Eq. (2.114). If we put them together, we will have 
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1 2

1

1

1 2 1 2 2 1

l l

l l

l

l l l

l l l l

d

− −

−

−

− − − −

  
  
    = = =    
  
    

C CA B CA B CB

CA CA B CA B CAB
T A B AB B

CA CA B CA B CA B

 (2.130) 

which becomes a lq lp  block Toeplitz matrix.  

Similar to the block Hankel matrix, we can have 

 ( ) 1 1

1

k l

l l l

l

k − −

−

 
 
   = =   
 
 

C

CA
T A A B AB B

CA

 (2.131) 

where Eq. (2.130) is ( )1lT . From ( )1lT  and ( )2lT  we can identify the state matrix A . 

As for l , it is also a lq lp  Toeplitz matrix of the system Markov parameters, which is given by 

 

2 3

0 0 0 0

0 0 0

0 0

0

l

l l− −

 
 
 
 =
 
 
  

CB

CAB CB

CA B CA B CB

  (2.132) 

2.4.3 Estimation of the state matrix for a stochastic system 

In this section, we want to derive the (block) Hankel matrix and the (block) Toeplitz matrix in terms of 

a stochastic system which is characterised by the state-space model shown as Eq. (2.76). Since we are 

dealing with a stochastic system, we shall take a statistical approach to deal with the problem. The mean 

and the covariance (variance) of the stochastic process are considered.  

It is worth mentioning that the (block) Hankel matrix plays an important role in the Subspace State-

space System Identification (4SID) methods [108], as the measurements that appear in the algorithms 

are normally organised in the form of (block) Hankel matrices. Unfortunately, as we mentioned earlier, 

we are unable to give an exhaustive review of all methods and their variation. Therefore, in the section, 

we will use the Reference-Base Covariance-Driven Stochastic Realisation (SSI-COV) method and the 

Data-Driven Stochastic Subspace Identification (SSI-DATA) method [58] as examples to demonstrate 

the main ideas of the 4SID methods.  
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Suppose we have a 1r  vector that represents the reference output ( )ref ky  at time instant k , and 

another 1l  vector represents our newly measured outputs ( )ky , and l r . The same as our 

discussion in section 2.4.1, we can always gather the output measurements in a block Hankel matrix. 

Here, we shall do the same. Thus, similar to Eq. (2.86), we can put the reference outputs into the 

following block Hankel matrix,  

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ref ref ref

ref ref ref

ref ref

0| 1

ref ref ref

0 1 1

1 21

1 2

p i

j

j

j

i i i j

−

 −
 
 = =
 
 

− + −  

y y y

y y y
Y Y

y y y

 (2.133) 

where p  denotes “past”, while the subscript of 
ref

0| 1i−Y  represents the first and last element in the first 

column of the block Hankel matrix. It is obvious that 
ref

pY  is a ir j  matrix.  

Similarly we can put the output measurements into 
fY , where f  denotes “future”, 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

|2 1

1 1

1 21

2 1 2 2 2

f i i

i i i j

i i i j

j

i i i j

−

+ + − 
 

+ + + = =
 
 

− + −  

y y y

y y y
Y Y

y y y

  (2.134) 

where fY  is a il j  matrix. 

Note that the matrix is scaled by 1 j , and for either SSI-COV or SSI-DATA method, ideally, the 

number of the columns  should be as large as possible, i.e., 2i j → . This is because when we 

compute the sample auto-covariance of 
ref

pY  or sample cross-covariance matrix between fY  and 
ref

pY , 

to ensure the covariance matrix is positive definite, we need both fY  and 
ref

pY  to be full row rank 

matrices.  

Having defined these the past and future output block Hankel matrices, now we can combine them 

together to form a new output block Hankel matrix, that is 

 
( )

ref ref

0| 1

2

|2 1

" "

" "

p r l i ji

i

f i i

ri past

li future

+ −

−

   
= =      

  

Y Y
H

Y Y
 (2.135) 

j
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2.4.3.1 Covariance-Driven Stochastic Realisation (SSI-COV) method 

Now, let us consider the following statistical properties of the system by using the relations given by 

Eq. (2.77) to Eq. (2.80). Define the state covariance matrix Ω ,  

 ( ) ( ) ( ) ( )T T T1 1 1k k k k + = + + = + Ω x x AΩ A Q   (2.136) 

When ( )kΩ  converges to a steady state value then ( ) ( )1k k+ =Ω Ω  for large k , then we have the 

following equation which are independent of time, i.e., 

 
T T= +Ω AΩA Q  (2.137) 

is the so-called Lyapunov equation.  

When the system is in steady state, we can obtain the corresponding time-independent state-output 

covariance matrix G  as follows 

 ( ) ( )T T T1k k = + = + G x y AΩC S   (2.138) 

also, the output covariance matrices iΛ , 

 ( ) ( ) ( ) ( ) ( ) ( )T T T T

i k i k k i k k i k     = + = + + +     Λ y y A x x C v v   (2.139) 

when 0i = , 

 
T T

0 = +Λ AΩC R   (2.140) 

when 0i  , instead of using result from Eq. (2.139) by solving the following equation 

 ( ) ( )T T

i k i k = + Λ A x x C   (2.141) 

We want to use the result given by Eq. (2.138) to present iΛ .  

Since 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )1 2

1

2 1 1

1 1i i

k k k

k k k

k i k i k i k k k i− −

+ = +

+ = + + +

+ = + + + = + + + + + +

x Ax w

x Ax w

x Ax w A x A w w

  (2.142) 

In the meantime, 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )1 2

1 1 1

1 1i i

k k k

k k k

k i k i k i

k k k i k i− −

= +

+ = + + +

+ = + + +

= + + + + + + + +

y Cx v

y Cx v

y Cx v

CA x CA w C w v

  (2.143) 

We can substitute ( )k i+y  given by the above equation into Eq. (2.139), then we obtain 

 ( ) ( )T 1i

i k i k − = + = Λ y y CA G   (2.144) 

Now we put the previously derived equations together, we have 

 

T T

T T

T T

1

0

0
i i

i

i−

= +

= +

 + =
= 



Ω AΩA Q

G AΩC S

AΩC R
Λ

CA G

  (2.145) 

Among all four equations in Eq. (2.145), the last one is our key function, as it gives the Markov 

parameters for the stochastic system. Since iΛ  is obtained based on the correlation between the outputs 

of the system, which has the same format of the impulse response of the system given by Eq. (2.75), 

this implies that there is a relationship between the correlation function of the system output responses 

and the impulse response of the system.  

Now let us define the covariance matrices between all outputs and the references as follows 

 ( ) ( )( )
T

ref ref

i k i k = +
  

Λ y y  (2.146) 

which is a l r  matrix. 

For the state-reference output covariance matrix ref

iG , 

 ( ) ( )( )
T

ref ref1i s k k = +
  

G x y  (2.147) 

which is a n r  matrix. Further we know that 

 
ref 1 refi

i

−=Λ CA G  (2.148) 

Now if we evaluate the cross-covariance between the past and future observations, we can obtain  

 ( )
T

ref ref

1|i f p
 =
  

T Y Y   (2.149) 
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which is the (block) Toeplitz matrix, and each entry is given by the corresponding 
ref

iΛ .  

If the measurements have zero mean, then 
ref

1|iT  a cross-covariance matrix between the past and future 

measurements. For instance, if we evaluate the first row in fY  and the second row in ( )
T

ref

pY , we have 

( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )
( ) ( ) ( )( )

T
ref

T T T
ref ref ref

ref ref ref ref

1 1 1 1

1, : 2, :

1
1 1 1 2 1 2 1

1
1 2

f p

i i i i

i i j i j
j

j
j

− − − −

 
  

     = + − + + − + + + −
          

= + + + =

Y Y

y y y y y y

Λ Λ Λ Λ

 

 (2.150) 

As a result, 
ref

1|iT  is given by 

 

ref ref ref

1 1

ref ref ref

ref 1 2

1|

ref ref ref

2 1 2 2

i i

i i

i

i i i

−

+

− −

 
 
 =
 
 
  

Λ Λ Λ

Λ Λ Λ
T

Λ Λ Λ

 (2.151) 

which is a il ir matrix. From our analysis, we can see that 1 j  is cancelled out during the averaging 

process. 

In the meantime, we can see that 
ref

1|iT  can be decomposed as  

 
ref 1 ref ref ref ref

1|

1

i

i i i

i

−

−

 
 
   = =  
 
 

C

CA
T A G AG G

CA

 (2.152) 

where ref

i
 is the reference reversed extended stochastic controllability matrix, which has size n ir . 

Also, we can obtain a shifted block Toeplitz matrix  

 
ref ref

2| 1i i i+ =T A  (2.153) 

Together with 
ref

1|iT , we can use the previously mentioned procedure to find the state matrix A , see 

from Eq. (2.119) to Eq. (2.122). 
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2.4.3.2 Data-Driven Stochastic Subspace Identification (SSI-DATA) method 

Unlike the covariance-based method SSI-COV, the SSI-DATA is built upon the state variable 

estimation. In section 2.3.4, we have briefly mentioned the state estimation formula, while in this section, 

we shall see it in action.  

From Eq. (2.143) we observe that 

 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )1

ˆ |

ˆ 1 1 1 | |

ˆ 1 1 1 | |

k

k k

i

k k

k k k

k k k k

k i k i k i k−

=   

+ + = + =      

+ − + − = + − =      

y C x

y C x CA x

y C x CA x

 (2.154) 

where ( ) ( )ˆ | kk k k=   x x  is the estimated state variable estimated from the past observations 

( ) ( ) ( ) 0 , 1 , ,k k= y y y .  

Now, if we arrange Eq. (2.154) into a block Hankel matrix, we will have 

 
( ) ( ) ( )|2 1 1 1

1

| 1 | 1 |

ˆ

i i k k k j

i

i i

k k k j− + + −

−

 
 
    = + + −          
 
 

=

C

CA
x x x

CA

X

 (2.155) 

where  

 ( ) ( ) ( )1 1
ˆ | 1 | 1 |i k k k jk k k j+ + −

  = + + −         
X x x x  (2.156) 

is the so-called Kalman filter state sequence [62] or the system state sequence. |2 1
ˆ il j

i i f



− = Y  is 

the projection matrix, which contains all the estimation of the future observations in terms of the past 

observations.  

As we know that to estimate the system state ( )kx  at time k , we can condition on the past k  

observations, i.e., ( ) ( ) ( )0 , 1 , , ky y y , then calculate the conditional expectation ( ) | kk  x  by 

using the formula given in Eq. (2.82) provided that the measurements are Gaussian. Following this 

inference, we can estimate the state sequence ˆ
iX  via the same formula.  
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Now suppose the measured responses are jointly Gaussian and have been reprocessed to have zero mean. 

Then the sample cross-covariance matrix between the future and past observations and the sample auto-

covariance matrix of the past observations are given by 

 ( )
T

ref

fp f p=Σ Y Y    and   ( )
T

ref ref

pp p p=Σ Y Y  (2.157) 

respectively. With Eq. (2.82), we can easily write out the estimated future observations based on the 

past i  observations, then 

 
1 ref

|2 1
ˆ

i i f fp pp p

−

− = =Y Σ Σ Y  (2.158) 

Since the projection matrix 
|2 1i i−

 is readily available, then apply the SVD to it, that is 

 
T

|2 1 1 1 1i i− =U S V  (2.159) 

Here 
|2 1i i−

 is a rank deficient matrix with rank n , which is determined by the rank of the state matrix 

Α . Thus, theoretically, we have 
1

il nU , 
1

n nS , and 
1

n jV . Combining Eq. (2.155) and 

Eq. (2.159) gives  

 1/2

1 1i = U S  and 
†

|2 1
ˆ

i i i i−=X  (2.160) 

Now, it is worth mentioning that the reason why we want to estimate state sequence ˆ
iX  is because we 

want to use it to estimate the state matrix Α  by using the following relation 

 1
ˆ ˆ

i i+ =X AX  (2.161) 

However, 
1

ˆ
i+X  is still unknown. Fortunately, this can be achieved by analysing the time shifted version 

of Eq. (2.154), namely 

 

( ) ( )

( ) ( )

( ) ( )

1

1

2

1

ˆ 1 1 1 |

ˆ 2 2 1 |

ˆ 1 1 1 |

k

k

i

k

k k k

k k k

k i k i k

+

+

−

+

+ + = +  

+ + = +  

+ − + − = +  

y C x

y CA x

y CA x

 (2.162) 

Similar to Eq. (2.155), we can get the following equation 

 1|2 1 1 1
ˆ

i i i i− − − += X  (2.163) 

To determine 1
ˆ

i+X , we first need to estimate projection matrix 
1|2 1i i− −

 and the observability matrix 

1i− . In this case, 1i−  can be obtained by simply deleting the last l  rows of i . While for 
1|2 1i i− −

, it 
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is related to a different division of the block Hankel matrix (Eq. (2.135)) regarding the past reference 

and future output, namely 

 

( )

( )

ref ref

0|

~ref ~ref

2 | |

1|2 1

1

1

p i

i i i i i

i if

r i

l r

l i

+

−
+ −

    +   
 = = − 
   

−  
  

Y Y

H Y Y

YY

 (2.164) 

In this new division, we separate (-) the first block row of the future outputs |i iY  from fY , then split it 

into two parts, the first r  rows are added (+) to the past references, while the remaining l r−  rows stay 

independently. We can do this is because the references are only a subset of the outputs ( r l ), and it 

is necessary to do this, because in order to estimate 
1|2 1i i− −

, we need to use the past 1i +  observations.  

Now the same as Eq. (2.158), we can get the estimate of ˆ
f

−
Y , which is also our projection matrix 

1|2 1i i− −
.by the following expression 

 
1 ref+

1|2 1
ˆ

i i f pf p p p− + + +

− −

− − = =Y Σ Σ Y  (2.165) 

where  

 ( )
T

ref

f pf p− +

− +=Σ Y Y    and   ( )
T

ref ref

p pp p+ +

+ +=Σ Y Y  (2.166) 

With this the estimated 
1|2 1i i− −

, we can easily obtain 1
ˆ

i+X  by the following equation 

Since 1i−  can be obtained by simply deleting the last l  rows of i , then 

 
†

1 1 1|2 1
ˆ

i i i i+ − − −=X  (2.167) 

Up to now, we have obtained all the information we need to solve Eq. (2.161) and obtain the state matrix 

Α . However, to get the observable mode shapes, we also need to find the output matrix C . From Eq. 

(2.155), we see that the first row of 
|2 1i i−

 contains the output matrix C , namely  

 ˆ
i i=CX  (2.168) 

Since both i  and ˆ
iX  are available at this point, we can easily find the output matrix C .  

Once we obtained the state matrix Α  and the output matric C  via Eq. (2.161) and Eq. (2.168), the 

modal parameters can be estimated from Eq. (2.123) and Eq. (2.124).  
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2.5 Summary 

In this chapter, we reviewed some basic concepts in system identification, particularly in modal analysis. 

We started with the basic mathematical model, i.e., linear differential equation with constant 

coefficients, then followed by the discussion of a linear difference equation with constant coefficients. 

Upon which we reviewed the impulse response function of the system in the time domain and its 

corresponding transfer function in the Laplace domain and z domain. Apart from this, we introduced 

the companion matrix to effectively compute the system poles via the eigenvalue decomposition method. 

And we also use it to convert a n th order linear differential or linear difference equation into a first 

order system while the system poles remain the same. With the companion matrix, the state-space 

expression of a system is introduced naturally. Due to the practical interest, our main discussion was 

focused on a stochastic system with a mathematical model to represent a stationary AR process. This 

model can be directly rewritten in the linear difference equation form or be expressed as a state-space 

model with a state equation and an output equation. When the random input is given by Gaussian white 

noise, this state-space model is often known as the linear Gauss-Markov model. 

With the established mathematical model for the system, we revisited some modal parameters 

identification methods, namely, the Polyreference method and the SSI-COV method, the SSI-DATA 

method, to demonstrate the possible ways to estimate the system coefficients, with which we can easily 

compute the modal parameters we are looking for. Particularly, we provided a clearer and easier 

explanation for the Polyreference method and the SSI-DATA method based on the Yule Walkers 

equations and conditional Gaussian distribution, respectively. Besides, we articulated the role of the 

(block) Hankel matrix and the (block) Toeplitz matrix in obtaining the system coefficients.  

In the next chapter, a new concept, i.e., real-valued and one-sided spectral density matrix, is introduced. 

The Polyreference method we discussed in this chapter is used as the identification technique to extract 

the modal parameters.  
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3. Real-valued and one-sided spectral density 

matrix 

3.1 Introduction 

In OMA, information is normally extracted from the random responses by calculating correlation 

functions and/or spectral density functions. If we consider a certain number of channels (sensors) d , 

then we would arrange the correlation functions in the correlation function (CF) matrix and the Spectral 

Density (SD) matrix. The CF and SD matrices are then d d  matrices [63] 

It is well-known that the auto SD functions in the SD matrix (the diagonal elements) are real-valued 

functions, whereas the cross SD functions are complex-valued functions. However, even though the 

cross-spectral density functions are in fact complex-valued, the complex parts of these functions are 

normally relatively small compared to the real parts. 

Further, when we sum up the SD functions matrices over the total frequency band to obtain the 

covariance matrix of the initial random responses based on the Parseval’s theorem, this process will 

remove the imaginary parts of the SD matrix. It is because any imaginary part of the SD matrix 

contribution from the positive frequency band will be cancelled out due to the corresponding 

contribution from the negative frequency band. 

As a result, it is natural to investigate a simple hypothesis stating: The imaginary parts of the SD matrix 

do not have any physical importance and thus can be removed. It could be beneficial when the system 

properties are nonchanging over the operation.  

Therefore, in this chapter, we will investigate this hypothesis based on a comparative simulation study. 

Note that the proposed real-valued SD matrix defined in this chapter will be one-sided, i.e., only the 

positive frequency components are kept. However, it is different from the one-sided spectrum generated 

mechanically by multiplying 2 to the original spectrum then discard the negative frequency components, 

as it does not satisfy the Parseval’s theorem. 

Thus, in the first section of this chapter, we will briefly describe the basic idea about the real-valued 

one-sided spectral SD matrix. While in the second section, a digital sinusoidal generator with three 

active modes and two noise modes will be designed to test our idea. The results will be compared to the 

results produced by the classical complex-valued two-sided SD matrix. The Polyreference [63], [109] 

is adopted to estimate the modal parameters from the three types of the SD matrices. Lastly, we will 
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present a simple explanation of using the real-valued SD matrix to estimate the modal parameters based 

on Periodogram.  

3.2 Real-valued and one-sided spectral density matrix 

3.2.1 Parseval’s theorem 

Given a signal ( )x n  with N  sample points, the discrete Fourier transform (DFT) of it is given by  

 ( ) ( )
1

i2

0

k

N
f n

k

n

x f x n e


−
−

=

= ,   0,1, , 1k N= −  (3.1) 

where the frequency kf k T=  are the Fourier frequencies, T N t=   is recording length, t  is the 

sampling interval in the time domain. For the inverse DFT (iDFT) we have 

 ( ) ( )
1

i2

0

1
k

N
f n

k

k

x n x f e
N


−

=

=   (3.2) 

where 1 N  is the sampling rate. 

Now consider a new signal ( )z n  which is the combination of the two signals, i.e., ( ) ( ) ( )z n x n y n= , 

we can obtain the DFT of this signal by substituting it into Eq. (3.1), from which we obtain  

 ( ) ( ) ( )
1

i2

0

j

N
f n

j

n

z f x n y n e


−
−

=

= ,   0,1, , 1j N= −  (3.3) 

Now if we substitute the iDFT of ( )x n  into the above equation, we shall arrive at the following 

expression  

 ( ) ( ) ( ) ( ) ( ) ( )
1 1 1

i2

0 0 0

1 1j k

N N N
f f n

j k k j k

k n k

z f x f y n e x f y f f
N N


− − −

− −

= = =

= = −    (3.4) 

when 0j = , 0jf = , from Eq. (3.3) 

 ( ) ( ) ( ) ( )
1 1

0 0

1N N

k k

n k

x n y n x f y f
N

− −

= =

= −   (3.5) 

where ( )y f  represents the Fourier transform of ( )y n . For real signals, we have ( ) ( )*y f y f− = . 

For a special case, when ( ) ( )x n y n= , Eq. (3.5) becomes  
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 ( ) ( ) ( ) ( )
1 1

*

0 0

1N N

k k

n k

x n x n x f x f
N

− −

= =

=    (3.6) 

which is the Parseval’s theorem for signal ( )x n  given in the DFT form. Thus, given by Eq. (3.6), the 

Parseval’s theorem says that the sum of the square of a function is equal to the sum of the square of its 

transform.  

Note that the energy signals, which usually have finite length, ( ) ( ) ( )
2 *

k k kx f x f x f= , is known as 

the Energy Spectral Density (ESD); while for the stationary random processes, which usually have 

infinite energy but finite power, ( )
2

kx f  is called the Power Spectral Density (PSD). 

Practically, we normally deal with random measurements, so it is worth mentioning the Parseval’s 

theorem for the random data.  

For random measurements, we must consider the ensemble average of the measurements. Given Eq. 

(3.6), we can take expectation of both sides of the equation, that is 

 ( ) ( ) ( ) ( )
1 1

*

0 0

1N N

k k

n k

x n x n x f x f
N

− −

= =

 =        (3.7) 

3.2.2 Covariance matrix and spectral density matrix 

Suppose we have a set of stationary random processes ( ) X n  collected from d  locations (i.e., d  

measured degrees of freedom (DOF’s)), each of which has N  sample points. For convenience, we can 

group them into a data matrix ( ) ( ) ( )0 2 1N= −  X x x x , where 0,1, , 1n N= − , ( )nx  

is a 1d   vector, and X  is a d N  matrix. Then the classical correlation function is given by  

 ( ) ( ) ( )Tm n n m = − R x x ,   0, 1,m=   (3.8) 

where m  denotes the time lag. When 0m = ,  

 ( ) ( ) ( )T0 n n =  R x x  (3.9) 

If the Fourier transform of ( )nx  is given by ( )kfx , according to Eq. (3.7), we shall have  

 ( ) ( ) ( ) ( )
1 1

T T

0 0

1
*

N N

k k

n k

n n f f
N

− −

= =

   =    x x x x   (3.10) 

for N  measurement points. 
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Denote ( ) ( ) ( )T*k k kf f f =  G x x , then ( )kfG  gives the PSD matrix, which is a d d  

Hermitian matrix. Eq. (3.10) can be simply expressed as  

 ( ) ( )
1 1

0 0

1
0

N N

k

n k

f
N

− −

= =

= R G  (3.11) 

3.2.3 Define the real-valued and one-sided spectral density matrix 

In order to formulate a meaningful real-valued one-sided SD matrix, the DFT form of the Parseval’s 

theorem as given by Eq. (3.10) will be used as our central equation. 

Since in the DFT case, both the time function and the frequency domain function are periodic, we can 

choose the period as we want on both the time and the frequency axis. For the frequency axis, we will 

choose to follow normal practice having negative and positive frequencies, and where the maximum 

frequency is equal to the Nyquist frequency 1/ (2 )Nyf t=  , where t  is the sampling time step. The 

period of the time function is then T N t=  , and the frequency resolution is 1/f T = . This means 

that we have / 2N  frequency steps from DC (Direct Current) to the Nyquist frequency. Thus we have 

/ 2 1N +  frequency lines from DC to Nyquist, and then / 2 1N +  negative frequency lines, see Figure 

1.(a), in which the classical discrete spectral density with 11 frequency lines from DC to Nyquist, and 

9 negative frequency lines.  

 

  

(a) The classical discrete spectral density (b) The real-valued and one-sided spectral density 

Figure 3.1. Demonstration of the discrete spectral density 

With this choice of frequency axis, the discrete frequencies are given by  

  ; ( / 2 1); / 2kf k f k N N=   − −   (3.12) 

Performing the summation over the so defined frequency lines, the Parseval’s theorem given by Eq. 

(3.10) is now expressed as 
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 ( ) ( )
1 /2

0 ( /2 1)

1
0

N N

k

n k N

f
N

−

= =− −

= R G   (3.13) 

As we know that with real measurements, the DC matrix ( )0fG  and the matrix ( )/2NfG  at Nyquist 

are always real. Note that the remaining matrices are complex, but fulfil 

 ( ) ( )*

k kf f− =G G   (3.14) 

we can now write Eq. (3.13) as a sum over the non-negative frequency lines 

 ( ) ( ) ( ) ( ) ( )
1 /2 1

*

0 /2

0 1

1
0 ( )

N N

k k N

n k

f f f f
N

− −

= =

 
= + + + 

 
 R G G G G   (3.15) 

And we see that all terms are now real-valued. This leads us to define the meaningful real-valued and 

one-sided spectral density  

 ( )

( )

( ) ( )  
( )

0

*

/2

; 0

; 1; / 2 1 ;

; / 2

k k k

N

f k

f f f k N

f k N

=


= +  −
 =

G

S G G

G

  (3.16) 

See Figure 3.1.(b), it shows the real-valued and one-sided spectral density only having 11 non-negative 

frequency lines. The result is that we can express the Parseval theorem summing over the non-negative 

frequency lines 

 ( ) ( )
1 /2

0 0

1
0

N N

k

n k

f
N

−

= =

= R S   (3.17) 

Every SD matrix ( )kfS  can now be considered as the contribution to the covariance matrix from the 

frequency band  2; 2k k kB f f f f= − + .  

The defined real-valued one-sided SD matrix removes all the imaginary parts in the classical SD matrix. 

Intuitively, it may seem that this procedure stripped off some information from the original data. 

However, the Parseval’s theorem tells us that the imaginary parts in the SD matrix do not contribute to 

the overall signal energy. Moreover, Eq. (3.17)  gives the real distribution of the signal energy contained 

in the SD matrices along the frequency line. Apart from this, the imaginary part may contain some 

phase information. But for the mode shape estimation of a structure with non-changeable structural 

conditions and real modes, the imaginary parts of the SD matrix only give us noise. By removing it, we 

shall obtain a better mode shape estimation.  

In order to eradicate our doubts, the subject of the next section will be focusing on verifying this real-

valued SD via the Polyreference method based on a numerical model with different frequency spacing. 
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3.3 Modal parameters identification  

3.3.1 Simulation case 

Ultimately, we want to evaluate the performance between the classical complex SD matrix and real-

valued SD matrix, then to make a conclusion whether it is legitimate to discard the imaginary part of 

the SD matrix in the OMA. The comparison items will be the identified modal parameters, i.e., natural 

frequencies, damping ratios, and mode shapes. The modal parameters are identified using the 

Polyreference technique, which we have clearly demonstrated in chapter 2.  

Therefore, in this section, we consider a numerical model with five DOF’s, where three modes are 

active, while the other two modes are inactive (i.e., by forcing the corresponding mode shapes to be 

zero). For the three active modes, two of them have fixed frequencies, while the other one is moving 

between them from the lower frequency to the higher frequency. In other words, the spacing between 

the two fixed frequencies and the moving frequency will be varied from closely spaced to reasonably 

separated modes.  

Table 3.1 Basic settings for the simulation 

Sample interval 0.323t =  

Data length for FFT Nfft 512=  

Number of segments. 32dn =  

Total data points 512 32N =   

Number of runs 100rN =
 

Nyquist frequency 1/ 2 1.545HzNyf t=  =  

Noise level 1% of the maximum standard deviation of the 5 channels 

Damping ratio 0.01 =  for all five modes 

Modal mass 1M =  ( kg ) 

First resonance frequency 1 0.25 0.386HzNyf f= =
 

Third resonance frequency 3 0.75 1.159HzNyf f= =  

Second frequency  2f [0.404, 1.129] Hz which is ranging from 1f  to 3f . 

Noise modes Randomly generated with frequencies between 10.25 f  and 
Nyf . 

 

To be more specific, suppose the first frequency  and the third frequency  are fixed, while the 

second frequency  will be moving along the frequency line from close to  to . For the two 

1f 3f

2f 1f 3f
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inactive modes, the corresponding frequencies are randomly generated between 10.25 f  and the 

Nyquist frequency Nyf . The number of measurement channels is assumed to be five. Table 3.1 gives 

basic settings for the simulation.  

By using the information given in Table 3.1, we design a simple vibration system, with the i th FRF 

 given by the following function,  

 ( )
( )

( ) ( )2 2

1

i2

i

i

i i i i i

X
H

F M




   
= =

− +
,    1,2, ,5i =   (3.18) 

where ( )iF   is the Fourier transform of the input response, while  is the corresponding Fourier 

transform of the output response. 2i if =  is the i th frequency in radians. ( )iH   is obtained by 

substituting the parameters shown in Table 3.1 into Eq. (3.18). Figure 3.3 shows the FRF amplitude 

plot and the corresponding phase plot of one of the simulations of the system. As we can see from the 

FRF plot, there are exactly five frequency components. 

To simulate the stationary random output response of the system, a stationary random input (see Figure 

3.4) is simulated first, then the randomly generated mode shapes are used to transform the input 

responses into modal forces. Since we have five modes, we can obtain five modal forces.  

Note that the mode shape vectors or actual modes we used to generate the responses are generated in a 

random fashion, and between each vector, a maximum 20% Modal Assurance Criteria (MAC) value 

[110] limit is given. This is needed to secure a low linear correlation between the modes since, 

practically, normal modes should be statistically independent of each other. All the actual mode shape 

vectors are real. Figure 3.2 shows the MAC values of the generated mode shape vectors in one of the 

simulations.  

Having obtained the modal forces, we take the Fourier transform of them, and then we can use the 

relation given by Eq. (3.18) to calculate the Fourier transform of modal coordinates  for each 

mode. Once obtained the ( )iX   for each mode, we can take the inverse Fourier transform of them, 

then simply apply the inverse modal superposition technique [111] to , the output response of 

the system can be obtained.  

It must be pointed out that, in order to reduce the mean bias, for every new position of 2f , the 

simulation will run 100rN =  times. For each run, a new set of mode shape vectors and input and output 

responses will be generated. Besides, we will use the angle between the identified mode shape vector 

and the reference (actual) mode shape vector to assess the accuracy of the estimated mode shapes. Thus, 

( )iH 

( )iX 

( )iX 

( )iX 
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for every new value of , since we have 100 sets of mode shape vectors, we will calculate the relative 

errors for each case. Having done this, we can average the relative errors then plot them against the 

frequency spacing as 2f  moving from 1f  to 3f . Figure 3.4 illustrates a sample input signal, while 

Figure 3.5 depicts a sample output put response from channel 2. 

 

  

Figure 3.2 MAC values of the generated mode shapes 
Figure 3.3 The Frequency Response Function (FRF) 

and the phase information of the system 

  

Figure 3.4 A sample input response Figure 3.5 A sample output response of the system 

from channel 2 

3.3.2 Identification results and discussion 

The SD matrix of the responses is estimated from the simulated responses via Welch’s method by using 

the Hanning window with 50% overlap. From here, the simulation will be split into two routes.  

1. The first one keeps the classical SD matrix then takes them back to the time domain by using 

the inverse Fast Fourier transform (iFFT). What we obtain is the real-valued correlation 

function matrix.  

2. The other one will follow the idea given by Eq. (3.16). Notice that the real-valued SD matrix 

we defined in Eq. (3.16) is one-sided, while the conventional iFFT requires the SD matrix to 

be double-sided. In principle, if we use the traditional method, we need to use the real part of 

the SD matrix for both the positive and negative frequency axis so as to satisfy both 

2f
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requirements from the conventional iFFT and the real-valued SD matrix we defined. The reason 

being that the traditional iFFT in which the negative axis is put equal to the complex conjugate 

values on the positive axis. Just like the one-sided SD according to Eq. (3.16) yields the correct 

correlation matrix, also this iFFT gives the correct correlation matrix. 

Another way is to keep the positive frequency component as it is given by Eq. (3.16), then fill 

up the negative frequency part with zeros. Having done this, we can apply the iFFT to this 

pseudo double-sided SD matrix to obtain the complex-valued matrix in the time domain. This 

procedure is unknown as the Hilbert transform [112]. Note that both approaches will produce 

a complex-valued matrix in the time domain because of the absence of the imaginary part of 

the SD matrix. The correlation matrix we wish to obtain is the real part of it.  

The rest of the procedure is the same for the two cases. We apply the Polyreference method to the 

estimated correlation matrices obtained from the above procedure, but we take the transpose of all 

matrices so that each column represents an unbiased free response as mentioned in Brincker and Ventura 

[63]. 

Figure 3.6 shows the traditional singular value plot from one of the simulations based on the classical 

two-sided SD matrix, which is obtained by using the FDD (Frequency Domain Decomposition) method 

[63]. Particularly in Figure 3.6 (a), we plotted three types of singular values in one figure. The black 

line denotes the singular values obtained from the complex SD matrix, and the red dot line represents 

the singular values calculated from the real part of the SD matrix, while the blue line gives the total 

singular values (i.e., the sum of the singular value calculated at each frequency line) computed from the 

imaginary part of the SD matrix. It is not difficult to see that the red lines are almost identical to the 

black line, and the peaks shown in the blue line share the same frequency locations with the black and 

the red lines. Apart from this, even though the blue line is not as smooth as the black and the red line, 

but the overall trend of it is the power shifted version of the first singular values given by the black or 

the red line. For the case we considered in this study that the system is built upon the real mode shapes 

with low damping, the behaviour of the different singular values in Figure 3.6 (a) partly shows that the 

imaginary part of the SD matrix does not provide extra information to compare to its real counterpart.  

Figure 3.6 (b) shows the recovered correlation response from the 2nd channel. Since the classical SD 

matrix is complex in the frequency domain, it has the real counterparts in the time domain. Therefore, 

we see a straight red line in Figure 3.6 (b). 
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(a) Singular value plot based on classical SD matrix (a) Singular value plot based on the real-valued and 

one-sided SD matrix 

  

(b) Recovered correlation response from channel 2 (b) Recovered correlation response from channel 2 

Figure 3.6 Singular value plot and the Recovered 

correlation response obtained based on the classical 

two-sided SD matrix 

Figure 3.7 Singular value plot and the Recovered 

correlation response obtained based on the real-

valued and one-sided SD matrix 

 

Figure 3.7 on the other hand, shows the singular value plot and the recovered correlation response from 

channel 2 based on the proposed real-valued one-sided SD matrix. Since the real-valued SD matrices 

are all real values in the frequency domain, then its counterparts in the time domain are then complex-

valued. This is why we see an oscillating red line in Figure 3.7 (b), which is the imaginary part of the 

recovered correlation function.  

The relative errors of the estimated frequencies between the reference frequencies for the three active 

modes are shown in Figure 3.8. Note that each point shown as a circle or an asterisk is an average of 

100 runs. The abscissa of all plots shows the relative frequency spacing between 2f  and 1f , which is 

computed through the following fashion  

 2 1

1

f

f f
r

f

−
=   (3.19) 

From Figure 3.8, we see that ( )0,2fr  , which implies that ( )2 1 1,3f f f , and 3 13f f= . 

Since 1f  and 3f  are fixed, there is no apparent trend to tell from Figure 3.8 (a) and (c) for the first and 

the third mode. While for the second mode, the relative errors decrease with the increasing frequency 

spacing. Besides, the overall relative error for the first mode is larger than the third mode. We see such 

a phenomenon is because we assigned the same value to the damping ratio for all modes, within the 
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half power bandwidth, i.e., 2f f = , the higher the mode, the larger the resonance frequency, the 

wider the half-power bandwidth. As a result, within a certain measurement length, the frequency 

resolution is fixed; when the half-power bandwidth is wider, we will have more points fall into that 

bandwidth. Accordingly, in the time domain, there will be more cycles in that measurement length, 

which means more information, and more information means more accurate. This is why we obtain 

lower relative errors for the third mode, and when the second mode is moving toward it, the relative 

error of the second mode is getting smaller.  

 

  

(1) Mode 1 frequency errors (1) Mode 1 damping ratio errors 

  

(2) Mode 2 frequency errors (2) Mode 2 damping ratio errors 

  

(3) Mode 3 frequency errors (3) Mode 3 damping ratio errors 

Figure 3.8 Relative error (%) of the estimated 

frequencies  

Figure 3.9 Relative error (%) of the estimated 

damping ratios  

Furthermore, if we compare the relative errors between the two different procedure for these three 

modes, we cannot really tell the differences between the identified results, for the relative errors we 

obtained based on the classical SD matrix are similar to the relative errors we obtained in terms of the 

real-valued SD matrix. Additionally, the errors for all three modes based on those two different 

procedures are all very low, and they are both less than 0.09%.  
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As for the estimated damping ratios, which are shown in Figure 3.9, we see the same phenomenon as 

given by the estimated frequencies, except that the relative errors are higher than the relative errors we 

obtained from the estimated frequencies.  

 

  

(1) Mode 1 mode shape errors (1) Mode 1 mode shape errors differences 

  

(2) Mode 2 mode shape errors (2) Mode 2 mode shape errors differences 

  

(3) Mode 3 mode shape errors (3) Mode 3 mode shape errors differences 

Figure 3.10 Averaged angles between the identified 

mode shape and the refence mode shape 

Figure 3.11 The differences of averaged angles 

between the identified mode shape and the refence 

mode shape obtained from real-valued SD matrix and 

the classical SD matrix (Note: CSD—classic SD; 

RVSD—real-valued SD) 

Figure 3.10 shows the angles between the identified mode shape and the reference mode shape. The 

angles are obtained from the MAC values. Since the MAC value gives the correlation between the 

normalised two vectors, which is the square of the cosine function of the angle between the two vectors, 

when the two vectors are close in direction (or in the opposite direction), the MAC value will be close 

to 1, accordingly, the angle between the two vectors is close to zero or  . However, since the MAC is 

a square correlation relation between two vectors, the angle we obtained based on the inverse of the 

square root of the MAC value will be between zero and / 2 1.571 = . For the analysis, the larger the 

angle, the poorer the estimate.  



3 Real-valued and one-sided spectral density matrix 

66 

 

From Figure 3.10, we see that the first mode shows a decreasing trend in the angle value, while the third 

mode shows an increasing trend. As for the second mode, when it is moving from the first mode to the 

third mode, the angles first decrease, then increase. This behaviour of the angles shown in Figure 3.10 

is consistent with our understanding of the close modes and the well-separated modes. It is well-known 

that when we get closer to the repeated pole case (when the frequency spacing approaches zero to either 

the first mode or the third mode), then the two closely spaced modes will interact by rotating the two 

mode shapes in their common subspace, see Brincker and Aenlle [113]. As a result, any linear 

combination of the two mode shapes are also the mode shapes for the structure for the case of repeated 

poles. In this case, the large angles, shown in Figure 3.10 when the two modes are close together, do 

not necessarily mean the estimated mode shape is a poor representation of the actual mode shapes. This, 

on the other hand, implies that the MAC is not a good criterion to be used to assess the case of close 

modes.  

Regardless of the close mode problem, the angles obtained based on the real-valued SD matrix are 

smaller than the angles obtained based on the classical complex-values SD matrix. It is not very obvious 

in Figure 3.10. But in Figure 3.11, which gives the differences of averaged angles obtained from the 

real-valued SD matrix and the classical SD matrix, shows that the angles obtained based on the classical 

SD matrix are larger than angles obtained from the real-valued SD matrix, as their differences are all 

above zero. Besides, as we can see that the higher the modes, the larger the differences when the modes 

are well-separated.  

The identification result in terms of the mode shapes shows the advantage of using the proposed real-

valued SD matrix in identifying the mode shapes, while the natural frequencies and the damping ratios 

identification result says that the real-valued SD method is comparable with the classical SD method. 

Overall, it means that the defined real-valued SD matrix is rational, since the results in Figure. 3.8 and 

Figure. 3.9 tell us that the lack of the imaginary information of the SD matrix will not affect the 

identification of the natural frequencies and the damping ratios of the system. 

3.3.3 Theoretical explanation of using the real spectral density matrix for 

identification 

In the previous section, we showed numerically that the imaginary part of the SD matrix does not play 

a role in modal parameters estimation provided that the system has real modes. In this section, we 

provide a simple explanation based on the Periodogram of the vibration response for the legitimacy of 

this procedure.  

The general solution of a second-order ordinary differential equation (ODE) with constant coefficient 

can be given by 
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 ( ) ( ) ( )*, st stx t a x e a x e−= +  (3.20) 

where s  and s−  represents the system poles. ( ) ( ) ( )a x c x x= , the constant coefficient ( )c x  is the 

determined by the initial conditions, while ( )x  represents the eigenfunction of the system. 

Depending on the occurrence of the damping term in the ODE function, ( )x  and s  can be complex-

valued. Thus, more specifically, ( )a x  can be given by a general form of  

 ( ) ( ) ( )( ) ( ) ( )( )i iR Ia x C x D x x x= + +  (3.21) 

where ( ) ( ) ( )ic x C x D x= + , ( ) ( ) ( )iR Ix x x= + . Note that ( )C x , ( )D x , ( )R x  and ( )I x  

are all real. 

If we evaluate it on the imaginary line, i.e., is = , we get. 

 ( ) ( ) ( )i * -i, t tx t a x e a x e = +  (3.22) 

Suppose the vibration behaviour of a continuous system with d  active modes can be characterised by 

a 2nd order ODE, then for each mode its vibration response can be given by Eq. (3.22). Then the overall 

response of the system is the sum of d  equations of Eq. (3.22), that is 

 ( ) ( ) ( )i -i*

1

n n

d
t t

t n n

n

x a x e a x e
 

=

= +  (3.23) 

Note that we used another notation ( )t x  to represent the time discrete form of ( ),x t , where 

1,2,t = . 

On the other hand, the finite Fourier series representation of ( ) t x  is given by  

 ( ) ( ) ( ) ( ) ( )( )
/2

1

cos sin
N

t p p p p

p

x A x t B x t 
=

= +  (3.24) 

for 1, 2, ,t N= , where 2 /p p N = , while ( )pA x  and ( )pB x  are the real-valued Fourier series 

coefficients, which are given by 

 ( ) ( ) ( )
/2

1

2
cos

N

p t p

p

A x x t
N


=

=     and   ( ) ( ) ( )
/2

1

2
sin

N

p t p

p

B x x t
N


=

=   (3.25) 

Note that the mean value of ( )t x  is assumed to be zero.  

Now, rewrite Eq. (3.24) into the exponential form, we obtain 
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2 2

p p

N
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A x B x A x B x
x e e
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=

− 
= + 

 
  (3.26) 

In order to observe the right number of modes by using the Fourier analysis methods, we need to make 

sure / 2N d . When / 2N d , we will have ( )/ 2N d−  redundant modes or spurious modes. And 

if we extend d  to / 2N , we can relate ( )a x  to ( )A x  and ( )B x , namely 

 ( )
( ) ( )i

2

p p

p

A x B x
a x

−
=   and  ( )

( ) ( )*
i

2

p p

p

A x B x
a x

+
=  (3.27) 

The Periodogram of ( )t x  at location x  is given by 

 ( ) ( ) ( )
i -i

1 1

1
p p

N N
t t

p t t

t t

I x x e x e
N

 

 = =

  
=   

  
   (3.28) 

which can be further reduced to a simpler form 

 ( ) ( ) ( )( )2 2

4
p p p

N
I x A x B x


= +  (3.29) 

According to the relation between ( )pa x , and ( )pA x  and ( )pB x , we can write ( )pI x  in terms of 

( )pa x , that is 

 ( ) ( )2

4
p p

N
I x a x


=  (3.30) 

Further we can obtain the cross-Periodogram between two locations 1x  and 2x , namely 

 ( ) ( ) ( )
i -i

1 2 1 2

1 1

1
, p p

N N
t t

p t t

t t

I x x x e x e
N

 

 = =

  
=   

  
   (3.31) 

However, unlike ( )pI x , ( )1 2,pI x x  is complex-valued, and its real and imaginary part is given by  

 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

1 2 1 2 1 2

1 2 1 2 1 2

Re ,
4

Im ,
4

p p p p p

p p p p p

N
I x x A x A x B x B x

N
I x x A x B x A x B x





  = + 

  = − 

 (3.32) 

Note that in the usual SD matrix, the ( )pI x  goes to the diagonal terms, while ( )1 2,pI x x  forms the 

off-diagonal terms. If and only if ( )pa x  is real, ( )1 2Im ,pI x x    can disappear, then the SD matrix 



3 Real-valued and one-sided spectral density matrix 

 

69 

would be real. When the mode shapes are real or close to real, we can discard ( )I x  in ( )x , then 

( )pa x  is left with ( ) ( ) ( )( )iR x C x D x+ . In this case, we have  

 ( ) ( ) ( )2p RA x x C x=   and  ( ) ( ) ( )2p RB x x D x=  (3.33) 

Substitute them into Eq. (3.29) and Eq. (3.32) we obtain  

 

( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )

2 2 2

2

1 2 1 2 1 2

2

1 2 1 2 1 2

2

Re ,

Im ,

p R p p R

p R p p p p

p R p p p p

N
I x x C x D x x D x

N
I x x x C x C x D x D x

N
I x x x C x D x C x D x







= +

  = + 

  = − 

 (3.34) 

From this equation, we notice that the imaginary part of the SD matrix should not be deemed as noises. 

It contains the same mode shape information as the real part but with different power (see Figure 3.6 

(a)), which made it trivial for mode shape estimation provided that the mode shapes are real or close to 

real. As for the natural frequencies and damping ratios, the information is well stored in ( )pc x , where 

( ) ( ) ( )ip p pc x C x D x= + , which is determined by the initial conditions.  

3.4 Conclusion 

In this chapter, a new concept, the real-valued one-sided SD matrix, which fulfils the Parseval’s theorem, 

is verified by conducting a comparative simulation study with the classical complex-valued SD matrix. 

The simulation results clearly show that both approaches give the same level of accuracy for the 

measured frequencies and damping ratios. For the mode shapes, the error measured as the angles 

between the exact and the estimated mode shapes seems to be smaller than when we use the real-valued 

SD matrix. Upon the numerical analysis, we also provided a simple theoretical explanation for this new 

concept based on the Periodogram. Therefore, the results of our analysis support the initial hypothesis 

that we can remove the complex part of the SD matrix without losing quality in the identification process, 

provided that the mode shapes are real or close to real.  

Besides, it is worth mentioning that the idea of the real-valued one-sided SD matrix is applied to most 

of the case studies throughout this thesis. We can do this is because the systems we concerned about 

have no or low damping force, then the mode shapes of such systems are real or close to real.  
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4. On the theory of the Frequency Domain 

Decomposition (FDD) identification technique 

and the close modes estimation via a density 

operator 

4.1 Introduction  

The popularity of operational modal analysis (OMA) has increased significantly over the last 10-20 

years. The reason is that large structures are much easier to identify in this way since ambient excitation 

is used instead of artificial excitation, which is difficult to generate with sufficiently large magnitude at 

the low frequencies of interest. Further, simple and reliable identification techniques have been 

developed. In the last few years, three textbooks have been published in the area: Rainieri and 

Fabbrocino [97], Brincker and Ventura [63], and S. Au [114].  

As one of the most popular identification techniques used in OMA, the Frequency Domain 

Decomposition (FDD) technique was first introduced in its simplest form by Brincker et al. [52], [115], 

and later as the enhanced FDD (EFDD) that also included damping estimation, Brincker et al. [53].  

The technique is mainly popular due to its user-friendliness, where a large number of sensor channels, 

for instance, 10 degrees of freedom (DOF’s) can be considered in one spectral density plot showing the 

singular values of the Power Spectral Density (PSD) matrix. See, for example, Figure 4.1, which shows 

a typical singular value plot of the stationary measurements. By observing the peaks in the first singular 

values, we can see three modes, and two of them are closely spaced in the frequency band from 3.5 Hz 

to 4 Hz. 

It is a great simplification compared to the conventional way of considering individual PSD functions. 

For example, in the case of 10 DOF’s we would have to consider 55 individual PSD functions so as to 

take all information into account. For such a reason, the FDD technique has also become widely used 

due to the user-friendly implementation in commercial software. The technique is protected by patent 

[116].  

The basic routine of the FDD technique is the estimation of the mode shapes from the linear transform 

of the PSD matrix [52], [115]. And this linear transform is obtained by performing the Singular Value 

Decomposition (SVD) to the PSD matrix at each frequency line. Then the first singular vector, which 
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is in the column space of the PSD matrix, is chosen as the estimate of the mode shape at the consider 

peak. However, the two main explanations that exist for this procedure are not very well-founded.  

 

 

Figure 4.1. Singular value plot of the stationary responses gathered from 10 measurement locations 

The original explanation, which is given in Brincker et al. [52], [115], considers the theoretical solution 

for the PSD matrix assuming white noise input. This explanation is based on the formula of the input 

and output PSD relationship, namely, 

 ( ) ( ) H

yy f xx ff f=G H G H  (4.1) 

where ( )xx fG  and ( )yy fG  are the input and output PSD matrices, respectively. While 
fH  denotes 

the Frequency Response Function (FRF) matrix. The superscript 
H  denotes the Hermitian transpose. 

The fact is, the explanation based on Eq. (4.1) is not just convoluted, but also not actually related to the 

real application of the FDD.  

Later a simpler explanation based only on the output PSD matrix was presented in Brincker and Ventura 

[63]. This time the output PSD matrix was obtained in terms of the Fourier transform of the correlation 

function matrix of the measurements. To be more specific, let ( )ty  and ( )tq  denote the output normal 

coordinates (or geometric coordinates) and corresponding modal coordinates (or generalised 

coordinates), respectively. By the mode superposition technique, we have ( ) ( )t t=y Ψq . As a result, 

the correlation function matrix of ( )ty  is given by 

 ( ) ( ) ( ) ( ) ( ) ( )T T T T

yy qqt t t t      = + = + =   R y y Ψ q q Ψ ΨR Ψ  (4.2) 

where Ψ  is the mode shape matrix. If the modal coordinates are assumed to be independent, then the 

PSD matrix of the modal coordinates is diagonal. In this case, when we decompose the PSD matrix 

( )yy fG  as follows by using the normal FDD estimation procedure, i.e., SVD technique  

 ( ) H

yy f f ff =G V Σ V  (4.3) 
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the first singular vectors in 
fV  are deemed as the mode shape estimates, while the diagonal matrix 

fΣ  

is the PSD matrix of the modal coordinates.  

Again, this explanation is not very satisfactory. The reason is that it is not a necessary condition for 

obtaining good mode shape estimates that the modal coordinates are uncorrelated. It is easy to find 

examples where the modal coordinates are significantly correlated, but Eq. (4.3) can still be used to 

obtain good estimates of the involved mode shapes using the information in the column space of 
fV .  

However, when two modes are very closely spaced, the information delivered by the FDD may not be 

accurate or enough for us to determine the modal parameters. For instance, when two modes fall into 

the limit of the spectral resolution, then we are unable to resolve those two modes based on the first 

singular value plot. As a result, we are unable to give a proper natural frequency estimation as well as 

the mode shape estimations for those two close modes. Therefore, in section 4.4 of this chapter, we will 

introduce a density operator (also called a density matrix) [117] instead of the PSD matrix ( )yy fG  to 

identify the mode shapes. Since the density operator is derived based on the PSD matrix ( )yy fG , the 

identification process of using the density operator is similar to the FDD that we still need to find the 

peak frequencies. However, those peak frequencies are different from the ones given by the FDD. We 

will show that the best mode shape estimates do not necessarily occur at the peak frequencies of the 

first singular value plot of the FDD. 

To move from the PSD matrix to the density operator, we need to have a different interpretation of 

( )yy fG  and the FDD, as the two classical explanations for the FDD given by Eq. (4.1) and Eq. (4.3) 

are not good enough to support our new application and derivation, not to mention the rules for how to 

estimate the mode shapes from the column space of 
fV  are never well founded. Therefore, one of the 

aims of this chapter is to reinterpret the FDD technique, and upon which we will propose a new way to 

tackle the close modes modal parameters estimation problem based on the density operator.  

Except for this introduction section, the work in this chapter has three essential sections. In section 4.2, 

we aim to establish our new theory for the FDD and a density operator, and it comprises two parts. In 

the first part, we define a PSD estimator based on the Periodogram; while in the second part, we first 

investigate the property of this PSD estimator and redefine the FDD in terms of the Principal 

Component Analysis (PCA), then introduce a density operator and derive it based on a PSD estimator.  

In section 4.3, we explore the possibility of using the FDD to deal with a certain kind of nonstationary 

processes. Although the FDD is built upon the Fourier transform, it is naturally not suitable for dealing 

with the nonstationary processes in a wide sense, as it is unable to provide any time information of the 

data. However, if only the frequency components are needs, and that frequency is not a function of time, 

then we can use the FDD to identify the modal parameters from such measurements. The work in section 
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4.3 may be incompatible with the main discussion of this chapter. However, the discussion in this 

section can advocate the application of the FDD to the nonstationary response we would obtain from a 

bridge subject to a moving vehicle excitation since the frequency of the bridge does not change with 

time, as only the amplitude of the measurements changes.  

While in section 4.4, the close mode analysis is discussed in depth. The model we used is inherited from 

chapter 3 with only a few changes to the parameters. Since the natural frequencies and damping ratio 

cannot be obtained by analysing a density operator alone, we design a two-stage method, namely, 

Enhanced Polyreference. By using it we can extract all the modal parameters (i.e., natural frequencies, 

damping ratios, and mode shapes) we can get in an OMA analysis. As its name implies, it is a 

combination of the Polyreference method. In the first stage, we analyse a density operator to get the 

mode shape estimation, then use it to decompose the normal coordinates into a set of modal coordinates; 

in the second stage, we apply the Polyreference method to those modal coordinates to extract the natural 

frequencies and damping ratios. In order to evaluate the performance of our proposed method, the same 

data is analysed by the Polyreference method and the data-driven Stochastic Subspace Identification 

(SSI-DATA) method. Details of those two methods are presented in chapter 2 (see section 2.4.1.2 and 

section 2.4.3.2). In our analysis, different cases regarding different MAC values of two close modes, 

damping ratios, and noise levels are investigated to reveal the underlying issues associated with the 

close modes identification problem.  

4.2 Theoretical background 

4.2.1 Part I — Spectral analysis of a random process 

In the first part, our purpose is to define a valid PSD estimator based on the stationary theory of a time 

series. First, we will present the mathematical definition of a stochastic process and its stationarity 

properties in section 4.2.1.1. Then in the next three subsections, we will discuss two common 

approaches, i.e., correlogram and Periodogram, to obtain a PSD function. However, we chose the 

Periodogram approach, and reasons are revealed in section 4.2.2.4 , which in the second part of the 

theoretical background. Based on our preference, in section 4.2.1.5, several smooth methods are 

discussed to control the variance of a PSD function. While in section 4.2.1.6, the matrix notation of a 

PSD estimator is presented, in the meantime, the smoothing process is converted into a matrix form.  
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4.2.1.1 Definition of a stochastic process  

A measurable space is an ordered pair ( ),E , where E  is a set and  is a  -algebra on E , while a 

measure space is an ordered triple ( ), ,E  , where   is a measure on ( ),E  [118]. So, given a 

probability space ( ), ,  and a measurable space ( ),S , where   is a set of outcomes,  is a 

 -algebra of events,  is the probability measure on the sample space ( ), , S  is a metric space 

and  is its corresponding Borel  -algebra, a random variable X  is a mapping from a probability 

space to a metric space. In other words, as a random element of S , X  is defined on its domain   and 

in its range S  [119]. If   denotes a generic outcome or a sample point, then ( )X   measures an 

observable quantity of that outcome [120].  

For a random process, we need to define another measurable space ( ),D  with D  denotes the index 

set and  be its corresponding Borel  -algebra. Hence, a random process is a collection of random 

variables on a probability space ( ), ,  with state-space ( ),S  and index set D , which can be 

written as ( ) :X t t D  such that ( )X t  takes values in S  for each t D . Conventionally, the 

elements t D  has the meaning of time, and D =  for the discrete case, while  )0,D =   for the 

continuous case. Under such interpretation, ( )X t S  is the state of the random process at time t D , 

then ( ),D  is called the time space.  

Apart from ( ) :X t t D , a random process can also be written as ( ) , :X t t D  , where  , 

or ( ) :X t D S→ , where   means taking the Cartesian product of two sets. All three expressions 

for a random process are very useful, and sometimes we will simply use ( ) X t  to denote a random 

process. Especially for the last two, which explicitly reflects that a random process is actually a function 

of two variables. Therefore, we will be using them in the following content interchangeably without 

making further explanation.  

Note that a random variable is written in capital, e.g., ( )X t  or tX , while a particular realisation of the 

ensemble will be denoted by the lowercase, e.g., ( )x t  or tx . For time series, we call the infinite set of 

time series an ensemble, and the observed time series is just one example of the infinite set of time 

series that might have been observed.  

Unlike nonstationary processes describe systems which are evolving with time, stationary processes 

generally arise from stable systems which have attained a steady-state mode of operation. The word 
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“steady-state” means that the system is in a state of statistical equilibrium, which implies that the 

statistical properties of the process do not change over time [121]. If ( ) X t  is such a process such 

that the joint distribution of ( ) ( )1 , kX t X t  is the same as the joint distribution of ( )1 ,X t +

( ), kX t +  for all 1, , ,kt t  , 1,2,k = , where   is the lag, then ( ) X t  is said to be strictly 

stationary [122].  

However, such a definition is too restricted to be applied in practice. Therefore, in most cases, we only 

require a random process to be stationary up to order 2, which means that its mean is a constant 

independent of t  and its autocovariance function depends only on the lag  , i.e.,  

 ( ) XX t =      (4.4) 

and 

 ( ) ( ) ( )( ) ( )( ) ( ) 2cov , X X XX XX t X t X t X t R      + = − + − = −      (4.5) 

where ( )XXR   is known as the autocorrelation function. When 0 = , ( ) ( ) 2cov , XX t X t =     , 

where 2

X  denotes the variance of the random process, such that ( ) X t  is said to be second-order 

stationary or weakly stationary [122].  

Generally, it is not difficult to see that weakly stationary does not imply strictly stationary, except for 

the Gaussian process. It is because, for a Gaussian process, the multivariate distribution is completely 

characterised by its first and second moments. However, strictly stationary does not imply weakly 

stationary as well. A typical example is an independent and identically distributed (i.i.d) Cauchy process. 

This process is certainly strictly stationary, but both its first and second moments do not exist, and no 

joint moments exist up to any order [121]. Note that in this chapter, without particular mentioning, when 

we say stationary, we mean weakly stationary.  

Although processes arise in practice are all real-valued, sometimes it is convenient to define a complex 

variable. Suppose ( ) X t  is a complex-valued process of the form ( ) ( ) ( )iR IX t X t X t= + , where 

( ) RX t  and ( ) IX t  are both real-valued processes. The subscription R  and I  suggests the real 

and imaginary components of a random variable.  

Since the ( )X t  is the combination of the two real random processes, the statistical properties of it are 

determined by the joint probability density function (PDF) of ( )RX t  and ( )IX t . Generally, ( ) X t  
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is said to be strictly stationary if both ( ) RX t  and ( ) IX t  are strictly stationary [121]. Whereas if 

( ) X t  is weakly stationary or stationary up to order 2. Then the mean of ( ) X t , which is given by 

 ( ) ( ) ( )iR I XX t X t X t = + =              (4.6) 

and its autocovariance function  

 ( ) ( ) ( )( ) ( )( ) ( )* * *cov , X X XX X XX t X t X t X t R       + = − + − = −    
 (4.7) 

depends only on the lag  . Where * denotes the complex conjugate.  

4.2.1.2 Power spectral density function of a stationary process 

Now, assume we have a well-behaved deterministic function ( )f t  with finite number of discontinuity 

and bounded variation, a sufficient condition for the existence of Fourier transform (or integral) of 

( )f t  is that it must be absolutely integrable over ( ),−  , i.e., ( ) df t t


−
  . On the other hand, 

consider a single realisation, ( )x t , which is a well-behaved non-periodic function, of a continuous 

parameter stationary process ( ) X t . It is obvious that the very nature of the stationary process has 

prohibited ( )x t  to possess a valid Fourier integral, as the process needs infinite energy to keep 

sustainable over ( ),−  . 

In other words, the process will almost certainly not decay at infinity, and the absolutely integrable 

condition for the existence of the Fourier integral of a reasonably behaved function cannot be satisfied. 

Since ( )x t  is aperiodic, we are unable to write ( )x t  as a Fourier series as well. 

Now it seems that we cannot examine a stationary process in the frequency domain, as we are unable 

to decompose the process on the Fourier basis formed by the sinusoidal functions. However, the 

problem can be nicely resolved by evaluating the power rather than the energy of a stationary random 

process, as it is often the case that the power (i.e., energy per unit time) contributed by the various 

frequency component will be finite [121]. Correspondingly, the power spectral density of a stationary 

random process will converge to a finite limit when t → .  

To be more specific, for a particular realisation of a stationary random process defined over ( ),−  , 

we can define a windowed or truncated process in the interval  ,T T−  but is 0 outside this interval,  
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 ( )
( )  ,

0 otherwise
T

x t t T T
x t

  −
= 


 (4.8) 

Clearly, this truncated process ( )Tx t  is absolutely integrable over ( ),−  , and it has finite energy. 

Thus, we can express it as a Fourier integral. Then we can write out the average power of this truncated 

process over  ,T T−  [123], that is 

 ( ) ( )2 21 1
d d

2 2T

T

x T T
T

P x t t x t t
T T



− −
= =   (4.9) 

where ( )2 d
T

T
T

x t t
−  gives the energy of the process in  ,T T− . 

According to Parseval’s theorem [123], 
TxP  can be expressed by the integration of the energy spectral 

density, namely  

 ( )
21
d

2Tx TP x f f
T



−
=   (4.10) 

where ( )Tx f  denotes the Fourier transform of ( )Tx t . When T → , we obtain that 

 ( ) ( )
21

lim d d
2

x T xx
T

P x f f G f f
T

 

− −→
= =   (4.11) 

where ( ) ( )( )2

lim 2xx T
T

G f x f T
→

=  is known as the power spectral density (PSD) function or simply 

auto-spectrum of ( )x t , and we require it to be finite for all f . 

However, since ( )x t  is a particular realisation of ( ) X t , ( )xxG f  is a random variable, so does xP . 

Thus, we shall take the expectation value of ( )xxG f , which leads us to the finial expression for the 

PSD function for a random process with different realisations, namely [123] 

 ( ) ( ) ( ) ( )
2

*1 1
lim lim

2 2
XX T T T

T T
G f X f X f X f

T T→ →

   = =    
 (4.12) 

where ( )TX f  is the Fourier transform of a generic truncated random process ( )TX t . Note that for a 

single random process, ( )XXG f  is real and nonnegative. It is also an even function if random process 

is real. In other words, when ( )TX t  is real valued, we have ( ) ( )*

T TX f X f− = . 
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4.2.1.3 The Wiener-Khintchine-Einstein theorem 

Now that we have the expression for the PSD function of a random process, but to calculate ( )XXG f  

directly from limitation expression given by Eq. (4.12) is formidable. Nevertheless, the Wiener-

Khintchine-Einstein theorem provides us a solution for this problem.  

Let ( ) X t  be a stationary process with zero mean, followed by our aforementioned discussion, its 

autocorrelation function is given by ( ) ( ) ( )XXR X t X t = +   . The Wiener-Khintchine-Einstein 

theorem [123] says that if ( )XXR   is absolutely integrable, then its possesses a Fourier transform, 

which is the PSD function ( )XXG f  we are looking for. In other words, the autocorrelation function 

and the spectral density are Fourier transforms of each other, namely, 

 ( ) ( ) i2 df

XX XXR G f e f 


−
=     and   ( ) ( ) i2 df

XX XXG f R e   


−

−
=   (4.13) 

or  

 ( ) ( ) i1
d

2
XX XXR G e   





−
=     and   ( ) ( ) i dXX XXG R e   


−

−
=   (4.14) 

where Eq. (4.14) is expressed in terms of the radial frequency variable 2 f = . 

Similarly, we can obtain a Fourier transform pair between the cross-covariance function ( )XYR   and 

the cross spectral density function (or cross-spectrum) ( )XYG f  of two real-valued random process 

( ) X t  and ( ) Y t ,  

 ( ) ( ) i2 df

XY XYR G f e f 


−
=     and   ( ) ( ) i2 df

XY XYG f R e   


−

−
=   (4.15) 

Note that in general ( ) ( )XY YXR R = − . Due to this property of the cross-covariance function, the 

cross-spectral density function is Hermitian symmetric, i.e., ( ) ( ) ( )*

XY YX XYG f G f G f= − = −  [123]. 

4.2.1.4 The time-averaged spectral density function 

From the last subsection, we know that the spectral density function of a stationary random process is 

defined as the limitation of the expected average power. However, the limiting operation T →  can 

never be performed, as the record length T  will always be finite in practice. Apart from this, an infinite 

ensemble is impossible to be obtained for real data. As a result, the expectation operation    will 

always be taken over only a finite number of ensemble elements. For this reason, it is almost impossible 
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to compute the PSD function via Eq. (4.12). Nevertheless, The Wiener-Khintchine-Einstein theorem 

provides us an alternative way to compute the PSD function by taking the Fourier transform of the 

correlation function.  

To use the Wiener-Khintchine-Einstein theorem to obtain the PSD function of a random process, we 

first need to evaluate ( )R  , which is also given by an ensemble average. Unfortunately, we do not 

normally have access to the ensemble in reality. In many cases, there are only one or a few sample 

records of data with limited length are available to us. So again, we are in trouble. However, for a 

stationary random process, it is possible to describe its properties by computing the time averages over 

specific sample functions in the ensemble [124]. In other words, we can invoke the ergodicity property 

of a stationary random process by using the values taken by a typical sample over time to represent the 

values taken across the ensemble [125].  

It seems that the best way to obtain the PSD function for a stationary process is through analysis of the 

correlation function. However, as we mentioned above, in practice, both the ensemble and T →  are 

unattainable, and the measurements are often digitalised. In this case, we will have more options to 

approximate a PSD function either by using a correlation function-based technique (i.e., correlogram, 

based on the Wiener-Khintchine-Einstein theorem) or by using a direct method (i.e., Periodogram, 

based on Eq. (4.12)) [126]. In this work, we will adopt the latter method, as it can help us to define a 

linear operator we need to understand the FDD and the density matrix.  

Now let us assume that ( ) X n  is a real-valued discrete-time random process with N  observations, 

then the limiting operation in Eq. (4.12) can be omitted. Since the random process is discrete, the auto-

spectrum for a finite sequence will be defined only at selected discrete frequencies. Thus, at any such 

frequencies kf , where 0,1, , 1k N= − , the auto-spectrum is given by 

 ( ) ( ) ( )*1
XX k k kG f X f X f

N
 =    (4.16) 

While the cross-spectrum of two finite-length process ( ) X n  and ( ) Y n  with N  sample points, 

we have 

 ( ) ( ) ( )*1
XY k k kG f X f Y f

N
 =    (4.17) 

where ( )XX kG f  is real-valued, whereas ( )XY kG f  Hermitian symmetric. ( )kX f  and ( )kY f  are the 

Discrete Fourier Transform (DFT) of ( )X n  and ( )Y n , respectively, and they are given by 
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 ( ) ( )
1

i2

0

k

N
f n

k

n

X f X n e


−
−

=

=   and  ( ) ( )
1

i2

0

k

N
f n

k

n

Y f Y n e


−
−

=

=  (4.18) 

where the frequency  are the Fourier frequencies. For the inverse DFT we have 

 ( ) ( )
1

i2

0

1
k

N
f n

k

k

X n X f e
N


−

=

=   and ( ) ( )
1

i2

0

1
k

N
f n

k

k

Y n Y f e
N


−

=

=   (4.19) 

With the PSD expression in Eq. (4.16), we can deem it as the time-averaged mean square value of a 

complex-valued random process ( ) kX f . More precisely, ( )XX kG f  gives the time-averaged auto 

spectral density function when the double-frequency auto spectra is evaluate along the f  axis [124]. 

Thus, to distinguish the PSD function for an unbounded random process, we will refer to the name 

“time-averaged” PSD function or spectrum rather than the PSD function and put a bar on top of 

( )XX kG f  to mean the “time-averaged”. Accordingly, Eq. (4.17) gives the time-averaged cross-

spectrum formed by two complex-valued processes ( ) kX f  and ( ) kY f .  

4.2.1.5 Nonparametric PSD estimator  

Since we only have a limited number of records in reality, we must consider how to remove the 

expectation notation in Eq. (4.16) and Eq. (4.17). If we remove the expectation notation in Eq. (4.16) 

directly, then the time-averaged the auto-spectrum ( )XX kG f  gives the Periodogram of the finite-length 

process ( ) X n . Note that discussion in this section will be focusing on the auto-spectrum, for the 

cross-spectrum, but the reasoning applies to the cross-spectrum.  

For one of the realisations of the random process, after removing the expectation notation, we have 

 ( ) ( ) ( )*1ˆ
XX k k kG f x f x f

N
=  (4.20) 

where a hat is put on top of ( )XX kG f  to denote an estimator. Although as a spectral estimator the 

Periodogram is asymptotically unbiased, it is inconsistent with large variance, which made it a very 

poor approximation for the true PSD [126].  

As we know that if the stationary process is Gaussian, then its Fourier transform is Gaussian as well by 

linearity. However, the probability distribution of Periodogram values is far from Gaussian. For a 

Gaussian process, the Periodogram estimates, defined at a set of frequencies, each of them follows a 

chi-squared distribution with two degrees of freedom, i.e., . Its variance does not tend to 0 as the 

data length increases. It is to say that, even if the length of the time series increases, the Periodogram 

kf k N=

2

2
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does not become smoother accordingly. As a result, there will be more pikes packed closer together, 

but the precision of each estimate does not change. This is because the Periodogram is an inconsistent 

spectral estimator that even if the length of the processed sample increases without bound, the 

Periodogram continuous fluctuate around the true PSD with a nonzero variance [126]. This means that 

the Periodogram is a very poor approximation.  

However, the variance problem can be alleviated to some extent by smoothing of some kind but at the 

expense of increasing its bias and, hence, decreasing the average resolution. In order to cure the 

aforementioned difficulties of the basic Periodogram approach, the simplest way to do is to approximate 

the expectation in Eq. (4.16) with an average on finite records.  

Suppose there are dn  different sub-records, each of length M , then a smoothed PSD estimator can be 

given by 

 ( ) ( ) ( )*

1

1ˆ
dn

XX k i k i k

id

G f x f x f
Mn =

=   (4.21) 

In practice, if a measurement record is of length N , we can divide it into dn  segments, each of length 

M , then dn N M= . Hence, if there are dn  subsamples at frequency kf , the resulting estimates will 

be distributed like 
2

2 dn , i.e., 
2  with 2 dn  degrees of freedom. As well as having smaller variance, the 

estimate will approximate a Gaussian distribution due to the fact that, as dn  increases, the 
2

2 dn  

distribution tends to normality. For a reasonable approximation, around 50 such observations are 

required if there is no overlap [127]. It is worth mentioning that Eq. (4.21) is often known Bartlett 

method if a N  points sequence is partitioned into dn  subsamples without overlapping between the 

successive segments. Normally, the Bartlett estimator can reduce the variance of the original 

Periodogram by the factor of dn . 

To further reduce the statistical variability of the estimated spectrum, we can overlap the segments and 

window each segment prior to computing the Periodogram. And this is the basic idea of the Welch 

method [126]. Let ( )ix n  be the i th data segment, 1,i = , dn , then define 

 ( ) ( )( )1ix n x i K n= − + ,   0, , 1n M= −  (4.22) 

where ( )1i K−  is the starting point for the i th sequence of observations. When K M= , we get the 

sample splitting used by the Bartlett method, which means there is no overlap. Typically, 2K M=  

(50% overlap) is recommended by the Welch method.  
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As for the window, it is applied to each segment directly such that the DFT of the windowed sequence 

for each segment is given by 

 ( ) ( ) ( )
1

i2

0

k

M
f n

i k p i

n

x f w n x n e


−
−

=

=  (4.23) 

where ( ) pw n  denote the M  points window sequence, the subscription p  means “Periodogram”. 

For a windowed Periodogram, it is called a temporal window or a taper. Substitute Eq. (4.23) into Eq. 

(4.21) and divided by the power of the temporal window, we obtain the Welch estimate of PSD, i.e., a 

windowed Periodogram. 

 ( ) ( ) ( )*

1

1ˆ
dn

XX k i k i k

id w

G f x f x f
Mn P =

=   (4.24) 

where wP  is the power of the window, and it is given by 

 ( )
1

2

0

1 M

w p

n

P w n
M

−

=

=   (4.25) 

Compared to the Bartlett method, empirical evidence showed that the Welch method could offer lower 

variance, but the difference in the variances corresponding to the two methods is not significant [126]. 

Both the Bartlett method and the Welch method are modified or refined Periodogram-based methods. 

Apart from these two methods, the Daniell method [128], which averages Periodogram values locally 

around the frequency of interest, is also well-known. Although these methods come in different forms, 

they are all variations on the same theme and can all be related to the Blackman-Tukey method [129].  

Unlike the refined Periodogram-based method, the Blackman-Tukey method is implemented by 

applying a lag window to truncate the estimated correlation sequence before taking the Fourier 

transform of it. It was inspired by the intuition that the poor statistical quality of the Periodogram PSD 

estimator was caused by the poor accuracy of the estimated correlation function in the Correlogram for 

extreme lags and the large number of correlation estimation errors that are cumulatively summed up in 

the Correlogram [126]. Let ( ) cw n  denote the lag window sequence, where c  means “Correlogram”, 

then the windowed Periodogram and the windowed Correlogram have the same average behaviour if 

the temporal and lag window are related in the following way 

 ( ) ( ) ( )
1

*

0

1 M

c p p

k

w n w k w k n
M

−

=

= −  (4.26) 

The Fourier transform of ( )cw n  is normally known as the spectral window, which convolutes with the 

Periodogram to give the Blackman-Tukey spectral estimator. Although the Periodogram is nonnegative, 



4 On the theory of the Frequency Domain Decomposition (FDD) identification technique 

 

83 

it should be pointed out that the Blackman-Tukey spectral estimator may take negative values if 

( ) cw n  is a rectangular window [126]. In order to obtain a nonnegative Blackman-Tukey spectral 

estimator, the lag window needs to be positive semidefinite, i.e., and its Fourier transform should be 

nonnegative.  

Typically, the modified Periodogram-based methods reduce the variance of the estimated spectrum at 

the expense of some reduction in average resolution (hence, increasing bias). However, the unmodified 

Periodogram can be a satisfactory estimator for discrete spectra corresponding to sinusoidal signals, 

especially when no two spectral lines in the spectrum are separated by less than 1 N  provided that the 

sequence has N  observation points [126].  

The reason is that the unmodified Periodogram is equivalent to a Blackman-Tukey windowed estimator 

with a rectangular window of maximum length equal to 2 1N + . And of all window functions, the 

rectangular window has the narrowest main lobe, which means that it can afford maximum spectral 

resolution and bring the least smearing. However, because of its large number of nonzero side lobes, it 

will bring the most significant leakage. Theoretically, the Bartlett estimate is similar to the Blackman-

Tukey estimate with a rectangular lag window of length M , which means that compared to other 

modified Periodogram estimates, the Bartlett estimator is expected to have the least smearing but the 

most significant leakage [126]. So, one should note that it is always a good idea to consider spectra with 

different amounts of smoothing when estimating a continuous PSD, but excessive smoothing will blur 

the features we are looking for.  

Although it is an unusual luxury to have many independent observations of the same random process 

in practice, we can have such luxury to generate as many independent observations as we want in a 

simulation. Therefore, in our first case study in section 4.3.2, we will adopt the core idea of the Bartlett 

method to generate a Periodogram estimator for a multivariate process by averaging the power spectrum 

at each frequency line because the components that need to be identified are sinusoids. While in our 

analysis of the close modes in section 4.4.2, the Welch method will be adopted to smooth the PSD from 

a stationary random process.  

4.2.1.6 Matrix notation of the PSD estimator for a multivariate process  

Now suppose we have d  channel measurements of the real and zero-mean stationary random process, 

each of which has N  sample points. If we divide our records into dn  segments, each of length M , 

then apply an appropriate window function and take the Fourier transform of them, we can obtain a 

three dimensional data matrix  with size dd n M  , namely, 

 ( ) ( ) ( )0 1 1Mf f f −
 =  X X X  (4.27) 
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where each of ( )kfX , 0,1, , 1k M= − , is a dd n  complex-valued matrix, and it is given by 

 ( ) ( ) ( )1 dk k n kf f f =  X y y  (4.28) 

where ( )i kfy  are the 1d   vectors. Note that we used y  instead of x  to address the formulation of 

 as a three dimensional matrix.  

According to the PSD estimator given by Eq. (4.24) with dn  subrecords at each frequency line, we can 

obtain the PSD estimator for a multivariate process as follows 

 ( ) ( ) ( ) ( ) ( )* T * T

1

1 1ˆ
dn

k i k i k k k

id d

f f f f f
Mn Mn=

= =G y y X X ,   0,1, , 1k M= −  (4.29) 

where ( )ˆ
kfG  is a d d  complex-valued matrix which incorporates both the auto-spectrum (diagonal, 

real-valued) and the cross-spectrum estimator (off-diagonal, complex-valued). Since the cross-

spectrums are Hermitian symmetric, then ( )ˆ
kfG  is a Hermitian matrix with ( ) ( )* Tˆ ˆ

k kf f=G G  or 

( ) ( )Hˆ ˆ
k kf f=G G , and it is non-negative definite, where the superscription 

H  denotes Hermitian 

conjugate or conjugate transpose, i.e., 
*T . Besides, it is not difficult to see that ( )ˆ

kfG  is a M  scaled 

complex-valued empirical or sample covariance matrix (or autocorrelation matrix when the mean is 

zero).  

In practice, we use Eq. (4.29) to compute ( )ˆ
kfG , but in our theoretical discussion we can also use the 

following more generic expression, namely  

 ( ) ( ) ( )* T1
k k kf f f

M
 =  G X X  (4.30) 

where ( )kfG  is a time-averaged spectrum, and it is also a M  scaled covariance matrix that the M

scaled empirical covariance matrix ( )ˆ
kfG  wants to approximate.  

Particularly, if we consider the real-valued spectral density matrix we introduced in chapter 3, ( )kfX  

for 1, , / 2 1k M= − , can be effectively given by 

 ( ) ( ) ( ) ( ) ( )* *

1 1 d dk k k n k n kf f f f f =  X y y y y  (4.31) 

While the at 0f  and 2Mf , ( )kfX  will still be given by Eq. (4.28). When the above definition of 

( )kfX  is substituted into Eq. (4.29), the PSD estimator ( )ˆ
kfG  becomes a real-valued symmetric 
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matrix. In this case, if the mode shapes of the system are real-valued, by using the real-valued spectral 

density matrix, a set of real-valued mode shapes estimations will be generated from the FDD.  

Note that the rank of ( )ˆ
kfG  depends on the number of sensors d  and the number of subsamples dn . 

If the real-valued spectral density matrix is not considered, the rank of ( )ˆ
kfG  is determined by dn . 

In this case, in order to obtain a full rank of the ( )ˆ
kfG , one should make sure that at least d  numbers 

of averages is being used, i.e. dn d . However, it is just a necessary condition, as we will not be able 

to obtain a full rank of ( )ˆ
kfG  if the actual modes of the system is less than d . In other words, if and 

only if r d , where r  denotes the actual mode the system contains, we can obtain a full rank of 

( )ˆ
kfG  by averaging it for dn d  times at kf . 

4.2.2 Part II — Decomposition of the PSD estimator 

Now that we have obtained the PSD estimator for a multivariate process, our objective in this section 

is to explore possible ways to interpret the information contained in a PSD estimator. Under the 

conventional FDD setting, the Singular Value Decomposition (SVD) technique is used to analyse the 

PSD estimator ( )ˆ
kfG . However, in this chapter, we will drop this idea temporarily and approach it by 

using the Spectral theorem. We can do this is because at each kf , ( )ˆ
kfG  is an M  scaled empirical 

covariance matrix, and it is Hermitian. For such a matrix, it has some special properties, which we will 

explore in this section. Therefore, our first step is to understand the mathematics behind ( )ˆ
kfG , then 

build the connection between ( )ˆ
kfG  and the modal information of the system. Eventually, our 

analysis will lead us to define a density operator for the close modes analysis.  

Our discussion will start with the definition of some linear operators. Then we will explain what a 

Hilbert space is and some of its properties. Upon which, we shall present the mathematical properties 

of a self-adjoint operator in a Hilbert space and introduce the Spectral theorem in the meantime. We 

will then redefine the FDD in terms of the Principal Component Analysis (PCA) in section 4.2.2.4. 

Finally, we will introduce a density operator in section 4.2.2.5 and derive it from a PSD estimator in 

section 4.2.2.5 III. The idea of pure and mixed states is explained in section 4.2.2.5 II. Particularly, the 

reason that we can use the FDD and our proposed method to estimate the mode shapes in terms of a 

PSD estimator is given in section 4.2.2.5 III. 
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4.2.2.1 Linear operators and subspace operation 

Let a field  be either  or . Suppose V  and W  are the vectors spaces over . A linear map from 

V  to W  is a function :T V W→ that (1) (additivity), ,f g V  , ( ) ( ) ( )T f g T f T g+ = + ; (2) 

(homogeneity)   , and f V  , ( ) ( )T f T f = , where   means for all [130]. 

If we define the set of all linear maps from V  to W  is denoted by ( ),V W , and suppose 

( ),T V W , then the adjoint of T  is the function 
† :T W V→  such that 

†, ,Tf g f T g= , 

f V   and g W   [130]. Where ,   gives the inner product, 
†
 denotes the conjugate transpose. 

Now if a function :T V V→ , f V  , then such a linear map is called an operator. Accordingly, the 

set of all operators on V  is denoted as ( )V . Particularly, when the dimensional of V  is finite and 

( )T V , then T  is invertible. 

For an operator ( )T V , if 
†T T= , then it is called self-adjoint. Followed by the definition of an 

adjoint operator, we have , ,Tf g f Tg= , ,f g V  . If , 0Tf f  , f V  , then ( )T V  is 

called a positive semidefinite operator. When an operator commutes with its adjoint on an inner product 

space (introduced in section 4.2.2.2), namely 
† †TT T T= , then it is called normal, and every self-

adjoint operator is normal [130]. Furthermore, if 
† †TT T T I= = , where I  is an identify operator, then 

T  is called unitary or isometry, and it preserved the inner product, i.e., , ,Tf Tg f g= , ,f g V  . 

It is worth mentioning that the Fourier transform is a unitary operator on a square integral Hilbert space, 

with a set of orthonormal sinusoidal functions as its basis. The Parseval’s theorem we mentioned in 

section 2.4.1.2 is derived based on this property. 

Note that a self-adjoint operator is also known a Hermitian operator. The PSD estimator ( )ˆ
kfG  is 

such an operator. Note that a real and symmetric matrix is a special case of a Hermitian matrix. Thus, 

either we use the real-valued PSD estimator, or the complex-valued one, the mathematical theorems we 

presented in this section applies to both.  

Now suppose a vector space V  has a direct sum (denoted by   or + )  decomposition, i.e., 

 1 nV U U=    (4.32) 

where iU  are proper subspaces of V  which satisfy the following three conditions: (1) (additive identity) 

0 U ; (closed under addition) ,f g U    f g U+  ; (3) (closed under scalar multiplication) 

   and f U    f U  . Note that the direct sum gives the smallest subspace of V , which 
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means that for each i if U , the only way to write 10 nf f= + +  is by taking each if  equal to 0. In 

this case, the set of all linear combinations of a list of vectors 1, , nf f  in V  is called the span of 

1, , nf f .Therefore, with the direct sum, to understand the behaviour of T , we only need to understand 

the behaviour of 
iUT , where 

iUT  denotes the restriction of T  to the smaller domain iU . [130].  

Besides, when T  is an operator on U , where U is a subspace of V , and T  maps each U  into itself, 

then a subspace U  of V  is called invariant under T  if if U  implies Tf U  [130]. A good 

example is given by the eigenvalues and the eigenvectors. It says that if U  is invariant under an 

operator ( )T V , then followed by its definition, we have Tf U , and hence there is a scalar 

 , such that Tf f= , where   is called the eigenvalue of T . Conversely, if Tf f=  for some 

 , then the span of f  is a one-dimensional subspace of V  invariant under T  [130].  

4.2.2.2 Hilbert spaces 

A metric or distance is a function which assigns a real number ( ),d f g to every two elements ,f g V . 

While a metric space is an order pair ( ),V d , where V  is a nonempty set and d  is a metric on V , i.e., 

:d V V → , such that the following holds: (1) (non-negativeness) ( ), 0d f g  , ,f g V  ; (2) 

(identification) ,f g V   we have ( ), 0d f g f g=  = ; (3) (symmetry) ,f g V  , 

( ) ( ), ,d f g d g f= ; (4) (triangular inequality) , ,f g h V  , ( ) ( ), ,d f h d f g + ( ),d g h  [131]. 

In general, one could define lots of distances. For instance, given two vectors in ( )
T

1, , nx x x=  and 

( )
T

1, , ny y y=  in 
n

, we can define ( )1 1
,

n

i ii
d x y x y

=
= − , ( ) ( )

2

2 1
,

n

i ii
d x y x y

=
= −  or 

( )
 1, ,

, max i i
i n

d x y x y


= − , where n + , : n nd  → , and ( )2 ,d x y  is well-known as the 

Euclidean distance. Note that the subscriptions were used to distinguish between different metric on a 

given space. Among all the distances, we are particularly interested in a subset of functions called norms.  

A norm is a real-valued function defined on the vector space, a normed vector space or a normed space 

V  on  is a function mapping V  to the non-negative real numbers, namely, :V →  such that 

for f V  has the following properties: (1) (positive definite) 0f  , f V   and 0f =  if and 

only if 0f = ; (2) (homogeneity) f f = , f V   and   , where   denotes the 

absolute value; (3) (triangle inequality) f g f g+  + , ,f g V  .  



4 On the theory of the Frequency Domain Decomposition (FDD) identification technique 

88 

 

We can verify based on the properties of a metric space that a normed vector space is a metric space 

indeed. Thus, we can define :d V V →  by ( ),d f g f g= − , where ( ), 0d f g  . So, 

followed by our previous example, we can denote them as ( )1 1
,d x y x y= − , ( )2 2

,d x y x y= − , 

and ( ),d x y x y 
= − , for any given points in , nx y .  

Now suppose ( ), ,E   is a measure space, given a finite number 1 p   (here we only want to 

consider the finite case, but in general p =  is allowed), the notation ( )pL   is defined to the set of 

-measurable function :f E → , such that the p -norm of f  is denoted by 
p

f =  , where 

p
f  is defined by 

 ( )
1

d
p

p

p
f f =   (4.33) 

When   is a counting measure on 
+
, ( )pL   is often denoted by 

p
, then a sequence of scalars 

( )1 2, ,x x x=  in , Eq. (4.33) becomes 

 

1

1

p

p

ip
i

x x


=

 
=  
 
  (4.34) 

And it is said p -summable if 
p

x   . When 1p =  it is said “absolutely summable”. When 2p = , 

we have a “square summable” sequence.  

Now comes a critical question that if our space is complete or not. And the answer lies in the 

convergence of a Cauchy sequence.  

Let 1 2, ,f f  be a sequence defined on a metric space ( ),V d , it is said to be Cauchy sequence if for 

every 0  , there exists an integer n + , such that ,i j n    ( ),i jd f f  . This definition says 

that the distance between if  and 
jf  decreases to zero as i  and j  increase. Particularly, according to 

the triangular inequality property of a metric space, we can prove that every convergent sequence is a 

Cauchy sequence, and all Cauchy sequency in  converge. However, a Cauchy sequence need not be 

convergent, for instance, if f  is irrational in  [131].  

For a metric space V , if every Cauchy sequency in V  converges to some element of V , then V  is 

called complete, and a complete normed space is called a Banach space in which every Cauchy sequence 

converges. As for the Hilbert space, it is defined to be an inner product space that is a Banach space 

with its norm determined by the inner product [118].  
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For vectors in 
n

 or 
n
, we know how to measure the angle between vectors by computing the dot 

product, while the inner product is a generalisation of the dot product, which can provides us with a 

generalisation of the notion of orthogonality to a much wider range of spaces than just 
n

 or 
n
 [131]. 

By definition, an inner product on a vector space V  is real-valued function ,   on V V  such that 

satisfying the following properties: (1) (non-negativity) , 0f f  , f V  ; (2) (Uniqueness) 

, 0f f =  if and only if 0f = ; (3) (conjugate symmetry) 
*

, ,f g g f= , ,f g V  ; (4) 

(linearity in the first entry) , , ,f g h f h g h+ = + , , ,f g h V  ; (5) (homogeneity in the first 

entry) , ,f g f g = , ,f g V   and   . Note that the linearity and the homogeneity can 

also be defined in the second entry. When , , 0f g g f= = , ,f g V  , then we say f  is 

orthogonal to g . 

By definition, each inner product induces a norm, so every vector space that has an inner product is a 

normed space. So a norm associated with an inner product is denoted by ,f f f= , for f V . 

However, if we compare the definitions of a norm and an inner product, it is not difficult to see that not 

all norms are induced from inner products, for example, out all 
p

 spaces, only 
2
 is a Hilbert space 

[131]. Therefore, a Hilbert space, is a vector space whose norm is induced from an inner product and it 

is complete with respect to this norm, is a special type of Banach space. Particularly, in the finite 

dimensional case, the completeness always holds. 

4.2.2.3 Spectral theorem 

Defined upon the inner product spaces, the Hilbert spaces have some nice properties, for instance, every 

Hilbert space has an orthonormal basis. When associated with a compact and self-adjoint operator, 

important conclusions can be drawn to help us analyse the PSD estimator of our interest. And the 

Spectral theorem which gives us a fundamental decomposition for self-adjoint operators on a Hilbert 

space will be the conclusion we want to achieve in this subsection. 

Every vector space has a basis. Usually the notation { }i ie   is used to express the notion of a basis of 

a vector space V , and we call it a family in V . We can think of it as a function e  from a set   to V , 

with the value of the function e  at i  denoted by ie , where   can be given by  1, ,n  or any 

arbitrary set that might not be a finite set.  

Usually, we want each element in the family { }i ie   to be linearly independent, and it is linearly 

independent if there does not exist a finite nonempty set J  of   and a family { }j ja J  in V  such that 
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0j jj
a e


= J

, where \{0} means the complement of the set {0}. In other words, the only choice 

of { }j ja J  that makes 0j jj
a e


= J

 is that all the elements in { }j ja J  equal zero. And a vector 

space is said to be finite-dimensional if there exists a finite set   and a family { }i ie   in V  such that 

the span of { }i ie  , which denoted as { }i ie  , is equal to V . For a family { }i ie   to be the basis of V , 

it needs to be linearly independent and its span{ }i ie V =  [118]. In this work, we will only consider 

a finite-dimensional space. 

A family { }i ie   is called an orthonormal family if , 1i je e =  only if i j= , otherwise , 0i je e =  

for i j . In a Hilbert space, an orthonormal family { }i ie   is called an orthonormal basis of V  if 

*span{ }i ie V = , and every Hilbert space has an orthonormal basis. A special case is when ie  is an 

element of 
2
, i + , all other components are zero except for the i th component which is 1, i.e., 

( )0, ,0,1,0,ie = , then we call ie  the i th standard basis vector. Accordingly, we call the family 

{ }i i
e +

 the sequence of standard basis vector or standard basis [131]. 

An important topic in operator theory is the spectrum of an operator. Suppose T  is a bounded operator 

on a finite-dimensional Banach space V , if T I−  is not injective (implies not invertible), then   

is called an eigenvalue of T , then the nonzero vector e V  is called an eigenvector of T  

corresponding to an eigenvalue of   if Te e= . Note that a linear operator is called bounded if 

T  , the Banach space of bounded linear operator from V  to V  is denoted as ( )V . Besides, it 

is worth mentioning that when dealing with an finite-dimensional Banach space, the spectrums and 

eigenvalues are equal, but it may not be the case for the infinite-dimensional case [118]. But for this 

study, we will use them interchangeably since we only care about the finite case. 

Now, let V  be a finite-dimensional Hilbert space and ( )T V , then by choosing a basis for V , we 

can identify T  with an n n  matrix. When 
†T T= , then it is self-adjoint, then all eigenvalue of T  are 

real, and eigenvectors of T  corresponding distinct eigenvalues are orthogonal [131]. The nicest 

operator on V  are those for which there is an orthonormal basis of V  consisting of eigenvectors of T  

with respect to which the operator has a diagonal matrix [118]. And such an operator should not only 

be self-adjoint but also be compact. By compact, we mean if for every sequence 1 2, ,f f  in a Hilbert 

space V , the sequence 1 2, ,Tf Tf  has a convergent subsequence, then the operator T  is said to be 

compact, and the collect of compact operators on V  is denoted by ( )V . Every compact operator on 

a Hilbert space is a bounded operator [118].  
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Now we are in place to introduce the Spectral theorem for self-adjoint compact operators. Let T  be a 

self-adjoint compact operator on a Hilbert space V , then there is an orthonormal basis of T  consisting 

of eigenvectors of T , and there is a countable set J , an orthonormal family { }i ie J  in V , and a family 

{ }j j J  in \{0} , for every f V  such that [118] 

 ,j j j

j

Tf f e e


=
J

 (4.35) 

where  

 , j j

j

f f e e


=
J

 (4.36) 

Here, the orthonormal family { }i ie J  corresponds to { }j j J  along with the 0 vector, is often known 

as the eigenspaces of T  and usually denoted by ( ),jE T . Besides, from the Spectral theorem, we 

know that for a self-adjoint compact operator on a nonzero Hilbert space, it has at least one eigenvalue 

[118], and even with repeated eigenvalues, we are assured that we will have a complete set of 

orthonormal eigenvectors to span the space [132]. In other words, the sum of eigenspaces of T  is a 

direct sum, i.e., 

 ( ) ( )1, ,nV E T E T =    (4.37) 

and each ( ),jE T  is a one-dimensional subspace of V . 

Note that when the V  is a complex Hilbert space, and ( )T V , then T  is self-adjoint 

,Tf f  , f V  . Furthermore, on a complex Hilbert space, T  is said to be positive or positive 

semidefinite  , 0Tf f   for every f V , and T  is called positive definite  , 0Tf f   for 

every 0f   [131]. When T  is self-adjoint and positive, T  not only has non-negative eigenvalues, but 

there also exists an operator ( )R V  such that 
*T R R= . 

Besides, before moving to the next subsection, it is worth defining the orthogonal projection. Let U  be 

a closed subspace on a Hilbert space V . Given f V , the unique vector g U  that is closest to f  

is called the orthogonal projection of f  onto U  [131]. Then the orthogonal projection of V  onto U  

is the function :UP V V→  defined by UP f g=  for f V  and g U . Note that for an orthogonal 

projection operator we have 
2

U UP P= , and UP f f=  if and only if f U .  
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If the orthogonal complement of U  is denoted by U⊥ , where U⊥  is a set of all vectors in V  that are 

orthogonal to every vectors in U , i.e.,  : ,U h V g h⊥ =  0, g U=   . Then f g h− =  is the 

orthogonal projection of f  onto U⊥
, and h  is orthogonal to g  for every g U .  

Now suppose { }i ie J  gives a orthonormal basis of U , then for every f V  given by Eq. (4.36), we 

have 

 ,U j j

j

P f f e e


=
J

 (4.38) 

4.2.2.4 Frequency Domain Decomposition (FDD) 

Mathematically speaking, the FDD technique, which is proposed to analyse ( )ˆ
kfG , uses the Singular 

Value Decomposition (SVD) as the decomposition technique instead of the Spectral theorem (also 

known as the Spectral decomposition or Eigenvalue decomposition (EVD)), is actually unnecessary, 

especially for a positive semidefinite Hermitian matrix like ( )ˆ
kfG . Therefore, in this subsection, we 

are going to unravel the reason for this. 

For a Hermitian matrix, like the one we are interested in, we can decompose it into a diagonal matrix 

with the diagonal entries being the eigenvalues of the Hermitian matrix. Namely,  

 ( ) Hˆ
k k k kf =G U Λ U   (4.39) 

where ( )1, ,k k kd=U u u  is an d d  unitary matrix, while  ( )T

1diag , ,k k kd =Λ  is a d d  

diagonal matrix with non-negative real eigenvalues. The columns of kU  form an orthonormal basis of 

the Hilbert space consisting of eigenvectors of ( )ˆ
kfG .  

Note that ( )ˆ
kfG  is a special matrix, it is built in terms of a random process. So, ( )ˆ

kfG  is a random 

matrix. When the original process is an i.i.d. Gaussian process, the Fourier transformed of the data 

matrix ( )kfX  at each frequency line is filled with complex i.i.d. Gaussian entries. In this case, ( )ˆ
kfG  

is known as a Wishart matrix in the Random Matrix Theory (RMT), and Wishart matrices are positive 

semidefinite [133]. From our discussion, we know that, for a positive semidefinite matrix, all the 

eigenvalues must be non-negative [130]. Such a nice property actually applies to all covariance matrices 

[134].  
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Apart from this, the probability of sampling two eigenvalues to be very close to or very far apart from 

each other is very small, in other words, the space between to eigenvalues 0 j is   = −   , where 

i j  [133]. Because of this, we will only consider the case when the eigenvalues are all distinct.  

When dealing with linear map from a vector space V  to a vector space W , i.e., :T V W→ , we can 

consider the matrix of a linear map regarding a basis of V  and a basis of W . Whereas for operators, 

since the mapping is happening in the same space, we almost always use only one basis and make it 

play both roles, which is what the Spectral theorem does. As for the SVD, it allows us to make good 

use of two different bases for the matrix of an operator [130].  

Assume that ( )T V  is an operator on a finite-dimensional Hilbert space V , then there exists a 

countable set J , orthonormal families { }i ie J  and { }i iv J in V , and a family { }j js J  of positive 

numbers, for every f V  such that [118] 

 ,j j j

j

Tf s f e v


=
J

 (4.40) 

is called a SVD of the compact operator of T . And the positive numbers { }j js J  are the so-called 

singular values, which are usually arranged in descending order. While { }i ie J  and { }i iv J  are often 

known as the right singular vectors and left singular vectors, respectively. 

Now if we compose T  with its adjoint, then we obtain the self-adjoint operator 
† :T T V V→ . Note 

that this operator is also compact since the product of a compact operator and a bounded operator is 

also compact [131]. By the Spectral theorem, we have 

 
† ,j j j

j

T Tf f e e


=
J

 (4.41) 

where { }i ie J  and { }j j J  are the eigenvectors and the eigenvalues with respect to 
†T T  in V , 

respectively. From Eq. (4.40), it implies 
j j jTe s v= , and from Eq. (4.41), we know 

†

j j jT Te e= , then 

†

jT Te = 2

j js e . Since 
2

†, , , 0j j j j j j j j je e T Te e Te Te Te = = = =  , it is not difficult to see 

that 
j js = , which mean the Spectral theorem and the SVD is interconnected. Usually, the 

orthonormal bases { }i ie J  and { }i iv J  in SVD are not uniquely determined by T , but the singular 

values are uniquely determined as positive square roots of the positive eigenvalues of 
†T T . 

Although the Spectral theorem is powerful enough to analysis ( )ˆ
kfG , and it is also interconnected to 

the SVD, the SVD does possess some numerical advantages when calculating an ill-conditioned matrix. 
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In this case, the condition number of a matrix is the square of the condition number of the data matrix, 

and the Spectral theorem may be less accurate than SVD. Besides, since the singular values are non-

negative by definition, and they are automatically sorted in a descending order, which makes it more 

convenient to use in practice. Therefore, even if the Spectral theorem is applicable in the FDD, the SVD 

is usually favoured in the application.  

Besides, it is worth pointing out that the reason that we prefer the Periodogram over the Correlogram 

to define a PSD estimator is because by using the Periodogram we can we treat ( )ˆ
kfG  as a covariance 

matrix in the frequency domain. Whereas the Correlogram computed from the Fourier transform of a 

sample correlation function is unable to provide us such an extended understanding of a PSD estimator. 

When it is a covariance matrix, the decomposition of ( )ˆ
kfG  can also be explained by using some 

concepts from statistics, and the net result will be equivalent. For example, one of the most popular 

statistical methods for analysing a multivariate process is the Karhunen–Loève transform [135][136], 

whose discrete version is often known as the Principal Component Analysis (PCA) [137]. In practice, 

the PCA is usually fulfilled by performing the Spectral theorem, SVD, or alternating least squares [138] 

(which is designed to better handle missing values) on a covariance matrix.  

The idea of the PCA is, given an empirical covariance matrix and a normalised random vector on an 

inner product space, we want to maximise the empirical variance of the data points along the direction 

of that random vector. And the direction of an eigenvector, which corresponds to the largest eigenvalue 

of that empirical covariance matrix, happens to carry the most empirical variance. To be more specific, 

suppose we are given ( )ˆ
kfG , a M  scaled d d  empirical covariance matrix, and a 1d   random 

vector v , which is normalised 
H, 1= =v v v v , then when we pre multiply H

v  and post multiply v  

to ( )ˆ
kfG , this actually gives us what the scaled sample variance of the data points ( )i kfy  along the 

direction v  is, i.e.,  

 

( ) ( ) ( )

( )( ) ( )( ) ( )

H H * T

1

* T 2
T T T

1 1

1ˆ

1 1

d

d d

n

k i k i k

id

n n

i k i k i k

i id d

f f f
Mn

f f f
Mn Mn

=

= =

=

= =



 

v G v v y y v

v y v y v y

 (4.42) 

Thus, ( )H ˆ
kfv G v  is the M  scaled empirical variance of ( )T

1 kfv y , …, ( )T

dn kfv y . Here, the inner 

product ( )T

i kfv y  is actually the coordinates of ( )i kfy  when projected on v . So, if ( )H ˆ
kfv G v  is 

large, it means when we look at those data points as projected onto the axis generated by v  will have a 

lot of variances. The larger the variance, the further away they are from each other on average. In 

summary, the idea of PCA is to try to identify those directions along which we have a lot of variances. 
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In other words, we want to maximise the empirical variance ( )H ˆ
kfv G v  of the data points projected 

on to the direction v  when v  is of norm 1, which is actually a non-convex problem [139]. However, 

we can still solve it by turning it into a convex problem and attain the maximum at the boundary. 

Actually, the PCA is one of the fanciest non-convex problems we can solve efficiently by using the 

Spectral theorem or SVD. Therefore, if we rewrite Eq. (4.39) as follows  

 ( ) ( ) ( )H H * T1 1ˆ
k k k k k k k k

d

f f f
M n

 
= = 

 
U G U U X X U Λ  (4.43) 

Then the eigenvalues in kΛ  actually give the M  scaled empirical variance of the data points along the 

eigenvectors. And the sum of the eigenvalues in kΛ  gives the M  scaled total empirical variance of the 

data points at kf , i.e., ( ) 1tr k k kd = + +Λ , where ( )tr kΛ  denotes of the trace of kΛ .  

Note that those eigenvectors or singular vectors which maximise the data variance is often called 

principal components, whereas the eigenvalues and the singular values are known as the latent factors 

or the principal component variance. In the following content, we will use these nomenclatures 

interchangeably without further clarification. However, to be consistent, we will stick to the Spectral 

theorem in theoretical explanation but use the SVD in practice.  

Therefore, statistically speaking, the FDD is the variance-based method. By using the PCA, we can 

measure the spread between the data points, and we want them to be as spread as possible in the direction 

in which we project. The wider the spread, the larger the variance, then the more information we have 

in a direction. Usually, we are interested in two directions that correspond to the first two largest sample 

variances when using the FDD. But in most cases, we plot all the singular values against the frequency 

line in one plot.  

For a random process with multimodal distribution, when all the modes are well-separated, we can 

observe those modes from the first singular value plot without any difficulties. But when two modes 

are very close together that they cannot be separated in frequency less than the frequency resolution 

Nfftsf , where sf  is the sampling frequency and Nfft denotes the number of Fast Fourier Transform 

(FFT) points used in a calculation, in this case, if we only look at the first singular values alone, we will 

not be able to tell if there is a close mode. However, we can detect the presence of the close modes by 

analysing the second singular value plot.  

Generally, when two modes are very close to each other around kf , we usually see that the second 

singular value takes a large proportion in the total variance around kf , and the closer the two modes, 

the larger the second singular value is around kf , vice versa. Thus, by analysing the behaviour of the 

second singular values, we can have an idea about the presence of the close modes, even if the two close 
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modes are inseparable in the first singular value plot. Since the natural frequency is estimated by the 

location of the peaks in the first singular value plot in FDD, then FDD is not a good tool be used to 

identify the closed modes frequencies and the corresponding mode shapes, as the mode shape 

identification depends on the frequency identification. However, it is a good technique to be used to 

detect the close modes by analysing the second singular values.  

Given a covariance matrix, our goal is to measure the spread or variability between the data points. The 

conventional FDD method says that we can use the variance to quantify the statistic dispersion or 

uncertainty. However, according to our discussion that the such a variance-based method is incapable 

of identifying the close modes mode shapes if the frequencies of the close modes are inseparable. Now, 

we want to consider that whether or not we can identify the close modes mode shapes if we use another 

measure to quantify the statistical dispersion instead of the variance. Fortunately, a good candidate is 

the entropy. It makes intuitive sense that when dealing with a random process with unimodal 

distribution, increasing the variance means the increasing of the uncertainty. However, for a random 

process with multimodal distribution, the distribution of possible outcomes spreads around two or more 

peaks. In this case, the variance of the distribution will be too poor to capture the overall spread [140]. 

In other words, the variance is not a good measure of the uncertainty in the case of multimodal 

distribution. Therefore, in the next section, we will introduce a density operator, which will lead us to 

compute the Von Neumann Entropy (VNE) or the purity of a density operator. One will see in section 

4.4.2.3 that our new measure can give contrasting results to the variance when two modes are very close 

to each other that the FDD cannot separate them. 

4.2.2.5 Density operators 

With the understanding of the decomposition of a Hermitian operator on a finite-dimensional Hilbert 

space, now we can talk about the density operator (also known a density matrix) in Quantum Mechanics 

(QM). Our discussion will start with the Schrödinger equation and a stationary state because we want 

to establish a connection between as a stationary random process and the stationary state of a physical 

system. After that, we can define a density operator, which is a more capable description of the states 

of a physical system, as it can encode all the accessible information about the system. Finally, with the 

definition of a density operator, we can talk about how to obtain it via a PSD estimator. And in this final 

subsection, we will also explain why we can use the FDD to estimate the mode shape.  

However, before our discussion, we want to clarify the potential change of the notations. In QM, the 

Dirac notation [117], which is to denote vectors and convectors, is used ubiquitously. Thus, to be 

consistent, we will use Dirac notation when it is appropriate. By definition, vectors are denoted by kets, 

i.e., f  for f V , then for each ket we can associate it to a covector in the dual space called bra, i.e., 

g  for g V  . Here, the dual space of V , denoted by V  , is a vector space of all linear functionals 
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on V , i.e., ( ),V V . When V  has finite dimension, so does V  , and their dimensions are the 

same. With this new notation, the inner product of two objects is denoted as f g , while the outer 

product f g , is denoted by f g . 

I.  Schrödinger equation and a stationary state 

In structural dynamics, the response of a vibrating system ( ),y x t  can be expressed it in terms of some 

modal coordinates [141], i.e., 

 ( ) ( ) ( )
1

, i i

i

y x t q t x


=

=  (4.44) 

where ( )iq t  is the i th modal coordinates, and ( )i x  is the corresponding mode shape. 

In Classical Mechanics (CM), the configuration or a state of a system is specified by a point in the space 

of the coordinates and the momenta in a fully deterministic way. However, governed by the position-

momentum uncertainty principle, it is impossible to know both the position and momentum of a particle, 

such as an electron, at every point along the trajectory. Therefore, we have to choose another variable 

to specify the state of a quantum system. And this variable is the wavefunction denoted as ( )x . When 

we square it, namely ( )
2

x , it gives the probability or probability density that an object in the state 

( )x  to be found at position x .This definition implies that a wavefunction must be normalised to 

satisfy the probability principle that the total probability must be equal to 1, i.e., ( )
2

d 1x x


−
= . 

When a wavefunction is evolving in time, it becomes a function of space x  and time t , i.e., ( ),x t , 

and it is governed by the Schrödinger equation. Note that this notation gives us a scalar wave and 

( ),x t   is complex-valued function. For a quantum object, the configuration or state of it is 

completely specified by a wavefunction.  

For a free particle with wavenumber k  and frequency  , its one-dimensional wavefunction is given 

by ( ) ( )i
,

kx t
x t e

−
= , which is also known a de Broglie wave. The wavenumber k  and the frequency 

  together determine the momentum p  and the energy E  of a particle through the relations p k= , 

E =  and 
2 2E mp= , where m  is the mass of the particle,  is Planck’s reduced constant. Here, 

ikxe  is often known as a plan wave, while i te −  is the global phase factor. For this free particle, the 

Schrödinger equation is given by 
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 ( ) ( )
2 2

2
i , ,

2
x t x t

mt x


= −




 (4.45) 

When a particle moving in some external time-independent potential ( )V x , the Schrödinger equation 

is modified to 

 ( ) ( ) ( )
2

2

2

i , + ,
2

x t V x x t
m xt

 
= − 






 (4.46) 

Although we are not dealing with a quantum system here, what we have at hand is a collection of the 

system responses ( ) ,y x t . The same as the wavefunction ( ),x t , the vibration response of a 

classical system ( ),y x t  is also a function of space and time. This implies that analysis conducted in 

QM regarding the wavefunctions should be applicable in modal analysis. Particularly, the idea of the 

stationarity of a random process is equivalent to the definition of a stationary state of a quantum system, 

as they both have the property of time independence. So, a stationary state in QM really just means the 

probabilities of outcomes of a measurement of any property of the system remains the same regardless 

of when we measure it. Thus, because of the aforementioned reasons, we will discuss a wavefunction 

( ),x t  first before we come back to ( ),y x t . 

A stationary state is related to a Hamiltonian operator Ĥ , which is also known as the energy operator 

Ê , and it is given by the term in the brackets of Eq. (4.46) has the units of energy. When a quantum 

system is in a stationary state, we can write the wavefunction as the product of spatial and temporal 

terms, namely ( ) ( ) ( ),x t q t x= , and called it a full stationary state. Now if we plug this expression 

of a wavefunction into Eq. (4.46) and replace the complicated term in the brackets of Eq. (4.46) with a 

Hamiltonian operator Ĥ , we obtain 

 
( )

( ) ( ) ( )i ˆd

d
x x

q t
q Ht

t
=  (4.47) 

Since the Hamiltonian is independent of t , ( )q t  is moved across Ĥ . If we group the time-independent 

term on one side of the equation and the time-dependent term on the other side of the equation, we get  

 
( )

( )

( )
( )

1
i

d

1 ˆd
H x

t x

q t

q t
=  (4.48) 

Since the equality has to be satisfied for all x  and t  in Eq. (4.48), the only possibility is that this 

equation equals to a constant E  with units of energy. Thus, by equalling both sides of Eq. (4.48), we 
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can obtain a time-dependent solution ( ) iEtq t e−=  from the left hand side, and an eigenvalue equation 

for a Hamiltonian operator from the right hand side, namely 

 ( ) ( )Ĥ x E x=  (4.49) 

where the eigenvalue of Ĥ  is given by E , accordingly, ( )x  denotes an eigenstate of Ĥ , and 

( )
2

d 1x x


−
= . By contrast with Eq. (4.46), Eq. (4.49) is often known as the time-independent 

Schrödinger equation. Since a Hamiltonian is Hermitian and positive, the eigenvalues of it must be real 

and non-negative, i.e., 
*E E= . 

Usually, a Hermitian operator in QM is associated with an observable. The definition of observables is 

related to the measurements of a quantum system. Roughly speaking, any measurable properties of a 

physical system, such as position, momentum, energy, etc., are known as an observable. Particularly in 

QM, as an operator, an observable carries all the values that the corresponding physical quantity could 

have through its eigenvalues. When we conduct a measurement for a particular physical property of a 

quantum system, say energy, the outcome can be any of the possible values of E , where E  comes 

from Eq. (4.49). The procedure of associating a Hermitian operator with the observable properties of a 

quantum system will further discussed in the next subsection. But now, let us finish our discussion of a 

stationary state.  

Since for a stationary state its wavefunction is given by ( ) ( ) ( ),x t q t x= , we can multiply ( )q t  

on both sides of Eq. (4.49), and obtain ( ) ( )ˆ , ,H x t E x t= . It means that the full stationary state is 

also an eigenstate for the Hamiltonian operator Ĥ , and it must satisfy the normalisation condition. In 

other words, the total probability must be conserved, namely 

 ( ) ( ) ( ) ( ) ( )
*i 2* *i, , d d d 1E t Etx t x t x x x xe e x x

  

−

−



−

 − −
= = =    (4.50) 

Based on this normalisation condition and the statistical property of ( )
2

x  (probability density), we 

can obtain an expected value of a Hamiltonian H , which is denoted by H , such that 

 ( ) ( ) ( ) ( )* *ˆ ˆ, , d dH x t H x t x x H x x
 

− −
= =   (4.51) 

The above equation says that although ( ),x t  differs from ( )x  by a global phase factor 
iEte−  of 

constant magnitude, the statistical measurement predicted for these two states are the same. This gives 

the exact reason that the state ( ),x t  given by ( )iEte x−
 is called stationary.  
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Since the statistical properties of a stationary state do not change with time, it means that if a state has 

all the information about the system at some time t , then the state of the system at time dt t+  depends 

only on the state at time t  and on a multiplicative factor ( ), dU t t t+ , namely, [142] 

 ( ) ( ) ( ), d , d ,x t t U t t t x t+ = +  (4.52) 

From Eq. (4.50) we know that ( ),x t  is normalised to unity, when ( ), dx t t+  is also normalised, 

( ), dU t t t+  is given by 
di tEe− , and hence ( )

2

, d 1U t t t+ = , which means ( ), dU t t t+  is unitary, 

and we call it the time evolution operator, and simply denoted it by U .  

Similarly, when we apply the Fourier transform to a full stationary state ( ) ( ) ( ),x t q t x=  with 

respect to t , the operation only acts on ( )q t . Apart from this, since the Fourier transform is unitary, as 

we mentioned in section 4.2.2.1, then the Fourier transform of ( ),x t with respect to t , denoted by 

( ),x f , should preserve all the information of the system in ( ),x t .  

Besides, since the wavefunction ( ),x t  is a solution of the Schrödinger equation, while the 

Schrödinger equation is linear, which means that the Schrödinger equation admits more general 

solutions than a single wavefunction. In other words, any superposition of the wavefunction ( ),x t  

will be a solution to the Schrödinger equation. Thus, given a system in a superposition, its general time-

dependent wavefunction could be given by 

 ( ) ( ), ,i i

i

x t x t=  (4.53) 

where i  are the arbitrary complex coefficients satisfying normalisation condition, i.e., 
2

1i

i

 = . 

While ( ),i x t  give the normal modes of the system. Apply the Fourier transform to Eq. (4.53), we get  

 ( ) ( ), ,i i

i

x f x f=  (4.54) 

where ( ),x f  is the wavefunction we want to work on. Therefore, in the next subsection, we will 

first derive the density operator in a general form, then specify it in our case.  
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II.  Density operators for pure and mixed states 

In this subsection, we are going to wrap all the discussions we mentioned in the previous sections and 

introduce a density operator and the associated purity condition and Von Neumann entropy. Note that 

the Dirac notations will be used instead of the normal representation we used in our previous discussion. 

In the last subsection, we have encountered the concept of observables, and we discussed the energy of 

a physical system in particular. We said that every observable is associated with a Hermitian operator. 

The truth is, it is quite possible for us to construct all manner of Hermitian operators to be associated 

with any given physical system without having a readily identifiable physical feature (such as position, 

momentum, energy, etc.) of the system, as it might be the case that it is not clear how much such 

observables could be measured. In this case, we shall consider a general observable A  for a system 

with a discrete set of values  i i
a +

, and using Â  to represent its associated Hermitian operator. Then 

Â  should have its eigenvalues given by  i i
a +

, and for each ia , the corresponding eigenfunction is 

denoted by 
i

, such that  

 
i i ia=Â  (4.55) 

where i j ij= , if and only if i j= , 1ij = , otherwise 0ij = . Then a set of eigenstates  i i +
 

form a complete, orthonormal set such that any state of the system , it can be expressed as a linear 

combination of the eigenstates 

 
i i i i

i i

c= =   (4.56) 

where ic  is given by i  provided that  is normalised, i.e, 1= , and 
2

i
 gives the 

probability of obtaining the result ia  on measuring Â . Note that the same as the superposition we 

mentioned in the last subsection, for any state vector , Eq. (4.56) also gives a superposition, which 

is the superposition of states 
i

 with amplitude i  for the state 
i

. Usually, 
i

 is called 

the probability amplitude for the eigenstate 
i

, which is the inner product of between the state vectors. 

Besides, the state vector  can be a time-dependent solution of the Schrödinger equation. In this case, 

when the state is stationary, Eq. (4.56) can be expressed as 

 ( ) ( )i i

i

t c t=  (4.57) 
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where ( )ic t  are the time-dependent coefficients. In stochastic process analysis, Eq. (4.57) actually 

gives the Karhunen–Loève (KL) expansion [135][136]. In this case, ( )ic t  are known as the zero mean 

uncorrelated coefficients.  

Associated with any isolated physical system is a complex Hilbert space, which is called a state-space, 

and it is formed by a collection of all the possible state vectors. According to our discussion in section 

4.2.2.2 and 4.2.2.3, we know that for a finite-dimensional Hilbert space, the eigenvectors of a self-

adjoint compact operator forms a complete set of basis states, and the dimension of the state-space is 

given by the number of basis states. It means that any state vectors in the state-space can be expressed 

by a linear combination of the basis vectors. In other words, there is zero probability that for a state 

 of the system for which 0i =  for every state. Therefore, the completeness of a Hilbert space 

is very important, which guarantees the system state is measurable. However, when such a condition is 

violated, for instance, when the space is infinite-dimensional, it is possible for a system to be in a state 

which cannot be represented as a linear combination of the eigenstates. As we mentioned before, we 

will not consider this case in this work. 

Followed by our previous discussion, we can obtain the expectation value for the observable A , which 

is given by the following expression 

 
2

i i i i i i i

i i i

A a a= = = =   Â Â  (4.58) 

where 
2

i
 gives the probability to measure the eigenvalue ia .  

Although the complete information about a system is contained in its wavefunctions or state vectors, 

they can only describe pure states of a system. Such idealised descriptions cannot characterise the 

statistical mixtures of the states. To resolve this problem, John Von Neumann [143] introduced the 

density operator formalism to count both pure and mixed states situations of a physical system. Based 

on Von Neumann’s postulate, we can make use of the projection operators to describe the collapse of a 

wavefunction upon measuring an observable A  for a system in state  to an eigenstate 
i

 with a 

result ia , which gives a basis of the methods of density operators for pure and/or mixed states. Although 

the collapse of a wavefunction only applies to a quantum system, we can still use the idea of density 

matrix to do analysis in Classical Mechanics.  

First, let us consider an observable A  in the pure state , and 1= . The density matrix   for 

this pure state is defined as  

  =  (4.59) 
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which is an outer product of the wavefunction and its conjugate. One can easily validate that   is a 

projection operator, i.e., 
2 = , and it is self-adjoint and positive with its trace equals 1, namely, 

 ( )tr 1
i

i i = =  (4.60) 

where i  is the standard basis vector with 1 in the i th entry zero everywhere. Since 
2 = , then 

( )2tr 1 = . 

Since   is a projection operator, when we apply it to Â , we will project Â  onto to the space spanned 

by , i.e.,  =Â Â .  While by taking the trace of  Â , we can get the expectation value of 

A , that is  

 ( )tr
i i

A A i A i A i i A= = = =   (4.61) 

On the other hand, since  may in a linear superposition of several eigenstates, substitute Eq. (4.56) 

into Eq. (4.59), we can obtain 

 
*

, ,

i j i j ij i j

i j i j

c c = = =   (4.62) 

where 
ij  are the density matrix elements, which can also be given by 

ij i j = .  

When i j= , we can denote 
i i iP = , which gives our usual rank one projection operator we 

discussion in section 4.2.2.3. When acting on any vector , it projects  onto a one-dimensional 

subspace of the state-space spanned by 
i

. Similarly, by applying the projection operator 
i jP P+ , 

where i j , to any vector , it will give us a vector in the subspace spanned by 
i

 and j . And 

if we combine the projection operators of iP , we will obtain a projection operator projects onto the 

state-space itself. Therefore, when i j= , Eq. (4.62) becomes 

 
ii i i

i

 =  (4.63) 

where 0ii   gives the probability of observing the eigenstate 
i

, and 1ii

i

 = . Eq. (4.63) actually 

gives us the decomposition of a density operator based on the eigenstates of the state-space. In this case, 

ii  is the eigenvalue of the  . 
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Statistically, given an ensemble of objects in states  i i +
, if all the objects are in the same state, 

then the ensemble is represented by a pure state, then we can use either a wavefunction or the density 

matrix presented in Eq. (4.59) to describe the system. However, if not all of the objects in the ensemble 

are in the same state, then we can only use the density matrix to encode all the possibilities. Therefore, 

similar to Eq. (4.63), the density matrix for a mixed state is given by the weighted sum of the pure states 

 
mix i i i

i

p =  (4.64) 

where ip  gives the probability the system is in state i , and 1i

i

p = . While 
i i

 gives the 

density matrix for a pure state.  

Given the definition given by Eq. (4.64), we can verify that the trace of 2

mix  will be less than 1 when 

the system is in a mixed state. To show this, we first calculate 
2

mix , i.e., 

 
2 2

mix

,

i j i i j j i i i

i j i

p p p = =   (4.65) 

Particularly when  i i +
 are the eigenstates, then  2

i i
p

+
 gives the eigenvalues of 

2

mix ,  

As we can see that unlike the density matrix of a pure state, 
2

mix mix  , the trace of 
2

mix  which is 

given by 

 

( )2

mix

,

,

2
2

,

tr i j i i j j

n i j

i j i j j i

i j n

i j i j i

i j i

n p p n

p p n n

p p p

 =

=

= =

 

 

 

 (4.66) 

By definition, 1i

i

p = , thus, ( )2 2

mixtr 1i

i

p =  , the equality obtains if and only if the system is 

in pure states, otherwise the ( )2

mixtr   is strictly smaller than 1 for mixed states. Therefore, the trace of 

2

mix  is a good measure for the mixedness or purity condition of a density matrix, and we call ( )2

mixtr   

the purity for short [144]. While for a maximally mixed state, when the system has dimension d , i.e, 

d  possible states, we have ( )2

mixtr 1 0d =   [142], and hence we have the following criteria, 

 ( )2

mix

1
0 tr 1

d
    (4.67) 
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With a density operator, we can use another measure, i.e., Von Neumann entropy [142], to quantify the 

departure of the system from a pure state. The Von Neumann entropy is an extension of Shannon 

entropy [145] to quantum states. Unlike the variance, the entropy is good for a process with a 

multimodal distribution. When a system is in a mixed state, by computing the Von Neumann entropy, 

we will know the degree of mixing of the state describing a given finite system. If we denote the density 

matrix of a system simply by  , the Von Neumann entropy ( )S   is given by, 

 ( ) ( )2tr logS   = −  (4.68) 

To compute ( )S  , sometimes it is convenient to apply the eigenvalue decomposition to   first. 

Hence, if  i i


+
 are the eigenvalues of  , then ( )S   can be re-expressed as  

 ( ) 2logi i

i

S   = −  (4.69) 

Note that if 0i = , then log 0i i   , as an event of probability zero should not be contributed to the 

entropy. When the system is in a pure state, ( )S   is equal to 0. If the system is in a maximally mixed 

state, then ( )S   will reach its maximum too. Therefore, the purity condition given by ( )2

mixtr   is 

equivalent to ( )S  , they deliver the same information about the system. In our analysis, we will use 

( )2

mixtr   to do the identification, but plot ( )S   in the meantime. 

III.  Constructing a density operator from the PSD estimator 

Suppose we have a d    dimensional Hilbert space, which has a complete set of basis vectors to span 

the space. To use the idea of a density matrix, we first need to think of our target mode shapes as the 

state vectors in this state-space, and our conventional modal space, which is spanned by the mode shape 

vectors, is a subspace of this d  dimensional inner product space. The general time-dependent state 

vector of a stationary state living in the modal space, following the usual mode superposition idea in 

structural dynamics, is simply a linear superposition of the mode shape vectors times the corresponding 

time-dependent factor. Therefore, when we take the Fourier transform of the state vector with respect 

to time t , it preserves all the information of a state. Then by using our usual notation, any state vector 

( )kfy  can be written as a linear combination of the mode shape vectors, just like the superposition 

equation given by Eq. (4.54) or the Fourier transform of Eq. (4.44), namely 

 ( ) ( ) ( )
1

r

k j j k k

j

f q f f
=

= =y ψ Ψq  (4.70) 



4 On the theory of the Frequency Domain Decomposition (FDD) identification technique 

106 

 

where r d  is the number of modes, 
jq  denotes the Fourier transform of the j th generalise 

coordinates, ( )kfq  is a 1r  vector. While jψ  denotes the j th mode shape vector with size 1d  , 

and Ψ  is a d r  mode shape matrix.  

On the other hand, according to our discussion of a PSD operator ( )ˆ
kfG , the eigenvectors of ( )ˆ

kfG  

forms a complete set of basis vectors of the measurement state-space. Therefore, any state ( )kfy  in 

the state-space of ( )ˆ
kfG  at each frequency location can be expanded in terms of the eigenvectors kju  

of ( )ˆ
kfG  as  

 ( ) ( ) ( )
1

d

k kj j k k k

j

f z f f
=

= =y u U z  (4.71) 

where jz  is the zero-mean uncorrelated coefficient, and ( )kfz  is a 1d   vector. When normalised, 

( )
2

j kz f  gives the probability of finding ( )kfy  is the eigenstate kju . Note that Eq. (4.71) can also 

be obtained by applying the KL expansion [136] to the random process ( )kfy  in the frequency domain.  

Likewise, we can express our mode shape vector iψ  in terms of the eigenvectors of ( )ˆ
kfG , namely 

 ( ) ( )
1

d

i kj j k k k

j

f f
=

= =ψ u U β  (4.72) 

where 
j  is the constant coefficient, and ( )kfβ  is a 1d   vector. After normalisation, ( )

2

j kf  

gives the probability of finding iψ  in the eigenstate kju .  

The matrix form of Eq. (4.72) is given by 

 k k=Ψ U Z  (4.73) 

When Ψ  is of size d r , then kZ  is d r  matrix, and we can easily obtain kZ  via the following 

equation by using the unitary property of kU , 

 
H

k k=U Ψ Z  (4.74) 

Similarly, we can also inverse the process to show how much of each mode shape vectors contribute to 

the first eigenvector, which would be a useful indicator to be used alongside the FDD, as it uses the first 

singular vector to estimate the mode shape, i.e., 
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 ( ) ( )1

1

r

k i i k k

i

c f f
=

= =u ψ Ψc  (4.75) 

where 1ku  is the first singular vector at frequency kf , when normalised ( )
2

i kc f  are the probability 

contributed by each mode shape vector, and we name it as contribution scores. ( )kfc  is a 1r  

coefficient vector, which is computed as follows, 

 ( ) ( ) ( )
1

H H

1k kf f
−

=c Ψ Ψ Ψ u   (4.76) 

If a mode is dominant, then the corresponding coefficient should be close to 1.  

Therefore, both ( )
2

j kf  and ( )
2

i kc f  are useful indicators of the closeness of the mode shape 

vectors and the eigenvectors, when we plot them against the frequency line. Especially for the 

contribution scores, it will give us a trajectory of how a certain mode develops with the increase of the 

frequency, and it is quite useful when we use the first singular vectors to estimate the mode shapes. 

In particular, the larger the value of ( )
2

1 kf , the closer the eigenvector 1ku  is to the iψ . This explains 

why we can use the first singular vectors to estimate the mode shapes regardless the mode shape vectors 

are orthogonal to each other or not. Similarly, if the i th ( )
2

i kc f  is larger than the others, then 1ku  can 

be explained by i th mode shape vector iψ . 

Besides, according to our discussion of the PCA, we know that the first singular vector represents the 

direction that explains most of the variance or information in the data point. For each matrix, all of the 

singular vectors are orthogonal to each other. Thus, for a random state ( )kfy  and the mode shape iψ , 

if ( )
2

1 kz f  is close to one, in the meantime, ( )
2

1 kf  is close to 1, then ( )kfy  can be explained by 

iψ , as the eigenvector 1ku  can explain both ( )kfy  and iψ . When both ( )
2

1 kz f  and ( )
2

2 kz f  are 

large, then ( )kfy  is explained by two modes, meaning that there is might be close modes in presence. 

In the case when two modes are very close, or even for the case of repeated poles, if ( )
2

1 kf  is close 

to 1, then we can use the first singular vector to explain one mode, while using the second singular 

vector to explain the other mode provided that those two modes are almost orthogonal two each other.  

Besides, by observing the plot of ( )
2

j kf  or ( )
2

i kc f  against frequency, we can also get some 

insight about close modes. However, they are only useful indicators for close modes detection when we 

know the reference mode shapes. To see them both in action, we will use the contribution scores in the 
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first case study, as the modes are not too close such that we still use the first singular vectors to estimate 

the mode shape; while in the second case study, we use the probability indicator ( )
2

j kf  because the 

second singular vectors will play a part in one of the cases.  

With the above discussion of the mode shape vectors and the eigenvector, it will be quite straightforward 

to form a density operator in terms of our PSD estimator ( )ˆ
kfG . The only trick is that at each 

frequency line, we see the system is in a mixed state. The underlying mode shape vectors are the state 

vectors of the system, each of which is a linear superposition of the eigenstates, see Eq. (4.72). Thus, if 

we have r  modes, then at each frequency line, a density operator of a mixed state can be given by a 

linear combination of the pure states formed by the outer product ( ) of each mode shape vector, 

namely, 

 ( ) * T
r r

k ki i i ki i i

i i

p p =  = ψ ψ ψ ψ  (4.77) 

where , 1i i =ψ ψ . Note that by normalisation, the orthogonality property of the mode shape vectors 

remains unchanged. 

Since at different frequency line, the contribution of each mode to a random state ( )kfy  is different, 

then k  will be different at different frequency locations.  

It is clear that we cannot obtain a density matrix via Eq. (4.77) because we do not know about the mode 

shape vectors. The only thing we have is a PSD estimator. Fortunately, we are able to construct a density 

matrix out of our PSD estimator ( )ˆ
kfG . But before we convert ( )ˆ

kfG  into a density operator, we 

shall rewrite Eq. (4.77) into the following format 

 ( ) * T
r

k ki i ki i p p

i

p p =  = ψ ψ Ψ Ψ  (4.78) 

where pΨ  is the probability scaled mode shape matrix.  

Now if we revisit Eq. (4.29), and use Eq. (4.70) to replace ( )kfy , we get  

 ( ) ( ) ( )( ) ( ) ( )( ) * T

1 1

1 1ˆ
d dn n

k k k i k i k q q

i id d

f f f f f
Mn Mn= =

=  =  = G y y q Ψ q Ψ Ψ Ψ  (4.79) 

where qΨ  is the generalised coordinates scaled mode shape matrix.  
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Compare Eq. (4.79) to Eq. (4.78), we see that the PSD estimator ( )ˆ
kfG  differs from the density matrix 

k  only by a scaling factor of constant magnitude. Therefore, if we normalise ( )ˆ
kfG  by its trace, then 

it should lead us to k , namely  

 ( ) ( )( )ˆ ˆtrk k kf f =G G  (4.80) 

It is worth pointing out that by using the FDD, we see ( )ˆ
kfG  as a Hermitian operator associated with 

a general observable without a particular physical meaning apart from the average power or variance, 

which quantifies the vibrational status of a system. While a density matrix measures the mixture of the 

states of a system. When we use them together, we can make the best use of ( )ˆ
kfG . However, in our 

close mode analysis, due to the intrinsic restriction of the FDD, i.e., spectral resolution problem and 

mode shape measuring procedure, we will mainly use the density operator to estimate the mode shapes.  

Besides, since the density matrix k  is a scaled version of the PSD estimator ( )ˆ
kfG , and the mode 

shapes are required to be normalised, then there will be no impact on the estimated mode shapes based 

on the singular vectors, if we use the density matrix k  to estimate the mode shapes. In other words, 

when we apply either the Spectral decomposition or SVD to k , namely 

 ( ) H

k k k kf =U Λ U   (4.81) 

only the eigenvalue matrix ( )kfΛ  is different from the one we obtained in Eq. (4.39), i..e, 

( )k kf Λ Λ . But it is also a d d  diagonal matrix, and ( ) ( )T

1diag , ,k k kdf   =  Λ  with non-

negative real eigenvalues.  

Since ( )( ) ( )ˆtr tr
d

k k ki

i

f = =G Λ , then k  can also be obtained from the Spectral decomposition 

of ( )ˆ
kfG , that is 

 ( )( ) Htrk k k k k =U Λ Λ U  (4.82) 

This equation gives the relation between the FDD and the density operator decomposition. And it is 

obvious that ( )( )tr 1kf =Λ . 
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4.3 Application to the nonstationary random process with a case 

study 

In section 4.2, we elaborated on the theoretical background of the techniques we will be using in this 

chapter. Upon redefining the FDD, we introduced a density operator, which was designated to tackle 

the mode shapes estimation for two close modes. Follow the order of our theoretical discussion of the 

two methods, we will consider the FDD in this section and the close modes analysis by using a density 

operator in section 4.4.  

The application of the FDD to the stationary signals is the main argument for the technique ever since 

it has been proposed. Therefore, in this section, we want to show that the FDD method can be applied 

to a certain category of the nonstationary random process with a simulation case. Note that this does 

not imply that the FDD is a technique designed to be used to deal with the nonstationary random process. 

On the contrary, the use of the Fourier basis has naturally put it in the stationary data analysis technique 

category. The reason it can be used to deal with some nonstationary processes lies in the behaviour of 

the spectrum rather than the explanation we gave to the FDD in section 4.2.2.4. However, it is unlikely 

to explain in-depth the spectral analysis with respect to the nonstationary random process in this chapter, 

which is also not our purpose. Instead, we will demonstrate the properties of the FDD and its capability 

to be used to deal with the nonstationary random process with a designed random sequence. 

4.3.1 Overview of the nonstationary process analysis 

In general, the nonstationary behaviour of a time series is widely seen in nature, e.g., stock market data 

economics or speech signals. When dealing with nonstationary processes, one of the difficulties is how 

to set up an adequate asymptotic theory to solve them [146]. As the basis for a general asymptotic theory, 

the assumption of stationarity guarantees that the increase of the sample size leads to more information 

of the same kind [146]. Clearly, this is not the case for the nonstationary processes. Information on the 

behaviour of the process at the beginning of the time interval cannot be inferred from the future state of 

the process.  

On the other hand, the standard Fourier analysis is crippled by the time-dependent spectrum feature of 

the nonstationary process, as it only preserves the frequency resolution but no time resolution. In order 

to overcome this problem, many solutions have been developed in the past decades which can represent 

a signal in the time and frequency domain simultaneously.  

Among all the possible time-frequency analysis tools, the Short Time Fourier Transform (STFT) 

(spectrogram) is a standard method for the analysis of signals whose spectral content is varying. 

However, the inherent trade-off (also known as the uncertainty principle) between the time and 
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frequency resolution has made the STFT method, which uses the fixed window length, problematic, 

especially when the spectral content is changing so rapidly that finding an appropriate short-time 

window is indefinite since there may not be any time interval for which the signal is more or less 

stationary [147]. 

To counteract the shortcomings of the STFT, many variations of it have been proposed over the decades. 

For instance, since the boundary of the uncertainty principle (best simultaneous resolution of both) is 

reached with a Gaussian window, a Gaussian window function was introduced to the Fourier transform 

of the signal, which is known as the Gabor transform [148]. Later, in order to have a fundamental 

analysis and a clarification of the physical and mathematical idea to understand the time-varying 

spectrum, various time-dependent spectra definitions for nonstationary processes have been proposed, 

such as Page’s instantaneous power spectra [149], the Wigner-Ville distribution [150], evolutionary 

spectral [151] and so on.  

As an alternative development to improve the spectrogram, the wavelet transform or wavelet analysis 

[152], [153], [154] has received much attention in recent years. By using a fully scalable modulated 

window, the signal cutting problem associated with the STFT is resolved. As a result, it can give good 

time resolution for high-frequency events as well as good frequency resolution for low-frequency events.  

Apart from these traditional time-frequency analysis methods, techniques such as the Hilbert-Huang 

transform, which combines the Empirical Mode Decomposition (EMD) and the Hilbert spectral analysis 

is designed specifically for analysing data from nonlinear and nonstationary processes [155], or 

Empirical Orthogonal Function (EOF) expansion (another name of PCA used in meteorology and 

oceanography) [156], [157] are also widely used to deal with the nonstationary processes. Apart from 

the aforementioned examples, some special techniques, such as taking differences or considering the 

data on small time intervals, have been applied to make use of the stationary techniques, and this is 

known as the ARIMA (Autoregressive Integrated Moving Average) modal time series forecasting [102]. 

Other methods, such as the Artificial Neural Network (ANN) [158] or the Bayesian approach [159] are 

also on some occasions.  

In general, a process is only stationary or not, and it can either be globally nonstationary or locally 

nonstationary. A typical example of the global nonstationary random process is a random walk. The 

process and the parameters of such a global nonstationary process are fixed some time ago (usually 

infinity), and then it evolves based on a fixed rule. When the parameters of the ARMA (Autoregressive 

Moving Average) models themselves evolve over time, the random process will show some local 

nonstationary phenomena. For this type of nonstationary process, the estimation of the parameters is 

very difficult, especially when the parameters change in an unstructured way.  

Technically speaking, time series can be nonstationary in many ways. The aforementioned two types 

of nonstationary processes imply two ways to produce them. Both of them will be used to generate the 
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nonstationary process we will be using to test the FDD in the next subsection. Since the FDD is a 

spectral density analysis technique, which is defined for stationary processes, the application of it to the 

nonstationary processes is quite limited. Thus, the type of random process must be carefully selected. 

According to our analysis, it can be used to analyse a certain type of locally stationary processes [160]. 

The simulation in the next section will demonstrate this statement.  

4.3.2 Case study I – nonstationary process analysis 

In this section, we will consider a certain type of nonstationary processes that the FDD can be applied 

to. This type of nonstationary process, if we denote it as ( ) i i
q n

+
, needs to have the following 

property. First, ( ) i i
q n

+
 must possess what we can loosely describe as an “oscillatory form”, and 

we can characterise this property by saying that the Fourier transform of such a function will be 

concentrated around a particular point 1f  (or around 1f  in the real case). Particularly, 1f  should not 

be a function of time. Thus, if we have a non-periodic process ( ) i i
q n

+
, whose Fourier transform 

has an absolute maximum at the point 1f  we may define 1f  as the frequency of this function, the 

argument being that locally ( ) i i
q n

+
 behaves like a sine wave with (conventional) frequency 1f , 

modulated by a “smoothly varying” amplitude. A good example of Eq. (4.83) is the free vibration 

responses of signal mode, which can be interpreted as consisting of just two frequency components 

( 1f ) with time-varying amplitude.  

Now if we translate the aforementioned description of ( ) i i
q n

+
 into equation, we can obtain the 

following expression  

 ( ) ( ) ( )i i iq n a n u n=  (4.83) 

where ( ) i i
u n

+
 is a covariance stationary random process with zero mean and finite variance, which 

consists at least one oscillatory component. Let 1f  being the lowest centre frequency. While ( )ia n  

represents the amplitude modulated signal with frequency 0f , which can be deterministic or random.  

Thus, in order to observe the centre frequencies carried by ( ) i i
q n

+
, the amplitude of the process 

must varies slowly compared to the lowest frequency of ( )iu n . In other words, when the modulating 

frequency 0f  is far smaller than the centre frequency 1f , the two stationary spectral components at 

1 0f f  collapse into a single stationary auto-spectrum [124]. Note that the suffix i  in Eq. (4.83) 
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denotes the number of modes. In this study case, we will only consider three modes, thus, 1,2,3i = . 

As for ( )iq n , it represents the modal coordinates.  

In this case, the stationary autospectrum density ( )uuG f  can be estimated by the time-averaged 

autospectral density ( )qqG f  over the nonstationary record ( )q n . When ( )qqG f  is normalised (i.e., 

( )d 1qqG f f = ) [124], we have ( ) ( )qq uuG f G f , where ( )qqG f  is given by Eq. (4.16). 

Additionally, if the rate of change of ( )ia n  increases with time, the bandwidth of ( )qqG f  will 

increase relative to ( )uuG f . However, as long as the difference between 1f  and 0f  is small and it is 

within the resolution limit, the centre frequency can still be estimated to a reasonable accuracy. 

In this study, if we assume ( )ia n  is a random process generated by an Autoregressive (AR) process 

with a fixed parameter. According to our analysis, ( )ia n  needs to vary very slow compare to the lowest 

frequency of ( )iu n  in order for the FDD to work. A good candidate is the AR(1) process, which is also 

known as the random walk, and it varies very slow globally. Therefore, ( )ia n  is given by 

 ( ) ( ) ( )1i i ia n a n n= − +  (4.84) 

where ( ) i i
n

+
 is a Gaussian white noise process, i.e., ( ) 0i n =   , ( )2 2

i in   =  , 

( ) ( ) 0i in m  =   , n , m n  .  

On the other hand, according to the Wold’s decomposition theorem, any zero-mean covariance 

stationary time series  tX  can be decomposed as [161],  

 t t tX Z= +  (4.85) 

where  t  is the a linearly deterministic process which is perfectly predictable without a time trend, 

such as the linear combination of the sinusoidal with constant coefficients. While  tZ  is a MA( ) 

(Moving average) process with square summable moving average terms, i.e,  

 
0

t j t j

j

Z  


−

=

=  (4.86) 

where 0 1 = , 
2

0 jj




=
  , and  t  is Gaussian white noise. Note that  t  is uncorrelated with 

 t , namely,   0t s  = , ,t s . 
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Therefore, we shall construct a time series ( ) i i
u n

+
 in the following way 

 ( ) ( )( ) ( ) ( )1 0 2sin 2i i i i iu n b f n n b n z n  = − − + +  (4.87) 

where  

 ( )
( )cos 2

0

s

s

f n n n
n

n n




 
= 


 (4.88) 

and f  is assumed to be 20 (Hz). This frequency component only occurs when sn n . Here, we 

assume 1sn =  (s). While 1ib  and 2ib  are constant coefficients, which will be generated randomly 

(follow the normal distribution) for each mode in this study. rf  are the frequencies we wish to identify 

by using the FDD. In this simulation, we assume 1 1f =  (Hz), 2 2f =  (Hz) 3 18f =  (Hz).   

represents the random phase shift. 0n  denotes the random time shift. ( ) iz n  is the Gaussian white 

noise, which is a covariance stationary random process. Note that ( )n  is shared by all three modes, 

and we introduce ( )n  in Eq. (4.87) is because we want to show the behaviour of the second or maybe 

higher singular values in the conventional FDD singular value plot when there is a correlated term 

within some modes,  

It is worth mentioning that another reason we can build ( )iu n  in such a way, i.e., a combination of the 

sine and cosine waves and the white noise, is because sine and cosine waves are themselves “stationary”, 

and it is natural that they should form the basic elements used in building up models of stationary 

processes.  

The sequence is sampled in 2 seconds at interval 0.001, which means the sampling frequency sf  is 

1000 (Hz). As a result, the Nyquist frequency is equal to 500 Hz. While the mode shapes we will be 

using in this section will be generated by the following function  

 ( ) 2sin sin
1 1

i

j ij
j

d d

    
=    

+ +   
,   1, ,j d=  (4.89) 

Note that, here we assume there are 10 measurement locations, i.e., 10d = , with only three active 

modes, and the af  component exist for all three active modes. Now according to the mode 

superposition technique, the j th measurement is given by 

 ( ) ( ) ( )
3

1

j i i

i

y n q n j
=

= ,   1,2, ,j d=  (4.90) 
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Note that all the frequency components concerned in this model do not have any trend against time. In 

other words, although they can occur at different time instants, they remain constant over a period of 

time.  

4.3.3 Simulation and results 

As we mentioned in the previous section, this study will only take the ensemble averaging of the 

Periodogram into consideration. Since we are doing simulation, multiple independent observations can 

be easily achieved. To make such an averaging feasible, the mode shapes and frequencies for each mode 

to be identified should be the same for all numerical experiments. Additionally, the mode shapes we 

calculated based on Eq. (4.89) are all real-valued. Thus, we can use the real-valued spectral density 

matrix approach to compute the spectral density matrix we introduced in chapter 3.  

The simulation will run for rN = 1, 10, 50, 100 times. Figure 4.2 gives the simulated responses for rN

=1, as a demonstration. Figure 4.2 (a) illustrates the random walk response within 2 seconds. Figure 4.2 

(b) presents the stationary process generated according to Eq. (4.87). Figure 2 (c) gives the generalised 

coordinates of the second mode given by Eq. (4.83). Figure 4.2 (d) depicts the measured response from 

channel 5. It is obvious that both the generalised coordinates and the measured responses are 

nonstationary.  

Figure 4.3 illustrates the time-frequency plot of the measurements from channel 5, and it is generated 

by using the shot time Fourier transform (STFT). 256 point of the Kaiser window was used with a shape 

factor of 5, and the Fast Fourier Transform (FFT) length is 512 with 220 points overlapping. It is clearly 

shown from Figure 4.3 (a) that the frequency component af  only occurs within a certain time, i.e, 1n   

(s), and it is observable in Figure 4.3 (a) only when it receives enough energy. While from Figure 4.3 

(b), we can see that the amplitude (power) of the signal is changing all the time. Whereas for stationary 

signals, we shall have a constant power over all time.  

As for the calculation of the spectral density matrix, the FFT is applied to all 10 channels’ full-length 

record (i.e., 2 seconds) with a rectangular window first, and then we can calculate the real-valued 

spectral density matrix as we introduced in chapter 3. Since the duration is only 2 seconds for all the 

records, the frequency components less than 0.5 (Hz) are unresolvable. Note that the signals generated 

from all channels are all normalised before the spectral density matrix is formulated. The total energy 

from each finite observation is used to normalise the multivariate processes. Besides, as we mentioned 

is the earlier section, the different windowing effects will not be considered for the FDD analysis. 
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(a) Random walk from ( )2a n  

 

(b) Stationary process from ( )2u n  

 

(c) Generalised coordinates from ( )2q n  

 

(d) Measurememnts from ( )5y n  

Figure 4.2. Demonstration of the simulated responses  

  

(a) Plan view of the time-frequency plot (b) Front view of the time-frequency plot 

Figure 4.3. STFT of the measurements from ( )5y n  

Figure 4.4 shows conventional singular value plots with different averaging times. From this figure, we 

can observe that as the number of averaging times increases, the singular value plots getting smoother 

and smoother. According to the FDD, to estimate the mode shapes, we first need to identify the location 

of the peak frequencies. In the case of 1rN = , we can see that the singular value plot is quite zigzag, 

and it is difficult to observe all three modes we wish to identify. However, there is no direct 

correspondence between a good frequency estimation and a good mode shape estimation from the FDD. 

From the corresponding contribution score plot given in Figure 4.5 (a) of case 1rN = , we can see that 

mode 1 and mode 2 govern a small range of the frequency band, respectively, as the contribution scores 

for these two modes are close to 1. It means that we can use any of the singular vectors from those 

frequency bands to estimate the mode shape of the two modes. This explains why we can obtain a good 
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estimation of the mode shape for the first mode while getting a poor frequency estimation based on the 

peak frequency of the FDD.  

 

    

(a) 1rN = .  

Estimated frequency 

1 0.5f = , 2 2f = , 

3 18f =  (Hz) 

(b) 10rN = .  

Estimated frequency 

1 1f = , 2 2f = , 

3 18f =  (Hz) 

(c) 50rN = . 

Estimated frequency 

1 1f = , 2 2f = , 

3 18f =  (Hz) 

(d) 100rN = . 

Estimated frequency 

1 1f = , 2 2f = , 

3 18f =  (Hz) 

Figure 4.4. Singular value plot for 4 different number of example runs. ESD represents Energy Spectral Density. 

The estimated frequencies are shown below the figure for each case. 

    

(a) 1rN =  (b) 10rN =  (c) 50rN =  (d) 100rN =  

Figure 4.5. Contribution scores plot for 4 different number of example runs 

    

    

    

(a) 1rN =  (b) 10rN =  (c) 50rN =  (d) 100rN =  

Figure 4.6. Estimated mode shapes for 4 different number of example runs. All the mode shapre are normalised 

with length euqal to 1 

When the averaging times increased to 10, we can see very clearly that there are three peaks in the 

frequency band [0, 19] (Hz), which are corresponding to the three modes we are looking for. In the 
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vicinity of a resonant frequency, a certain mode will be governing, then the contribution score of that 

mode is close to 1. In the meantime, compared to Figure 4.6 (a), we get a better estimation of the mode 

shapes in Figure 4.6 (b). 

As the averaging times keep growing, we see a smoother and smoother singular value plot in Figure 4.4 

(c) and (d). Likewise, the dominant frequency band for each mode is getting wider and wider in the 

contribution score plot in Figure 4.5 (c) and (d). As for the estimated mode shapes, they are getting 

closer and closer to the true values. It is true from our simulation case that the more averages, the better. 

However, we as shall observe from Figure 4.4 (c) and (d), and Figure 4.6 (c) and (d), after a certain 

number of averages, the improvement of the identification accuracy is negligible.  

Apart from the aforementioned phenomenon that we can observe from the plots given by Figure 4.4, 

Figure 4.5, and Figure 4.6, it must be pointed out that we did not deliberately remove the higher order 

singular values in Figure 4.4. It is only because the rest of the singular values are too small to be shown 

in the scale of Figure 4.4. Particularly, in Figure 4.4 (a), since we are using the real-valued spectral 

density matrix approach, this procedure actually gives a one-time average. Thus, we can see two 

prominent singular value plots in Figure 4.4 (a) rather than one. On the other hand, even if we have 10 

channels, and we conducted more than 10 averages, we still obtain 3 prominent singular value plots 

rather than 10 in Figure 4.4 (b), (c) and (d). It is because we only have three modes, and the large 

number of averaging does not guarantee a full-rank spectral density matrix. Therefore, in our study case, 

we shall obtain three prominent singular values when 2rN  . 

Another phenomenon we must address is the frequency component af , which is the correlation term 

among all three modes. In our previous understanding about the second singular values, the behaviour 

of which, we treat it as an indication for the close modes. However, when more than one modal 

coordinate is correlated, then there will be more than one direction in the subspace can explain the data 

at af . As a result, we shall see large higher order singular values at af , which has a similar trend as 

the first one. Apart from this, we can see that even if the third mode 3 18f =  (Hz) is very close to the 

additional frequency component 20af =  (Hz), the peak of the second singular value does not occur at 

the dip point between the two close frequencies. Furthermore, we may conclude that the mode shapes 

only correspond to the uncorrelated modes given by the first term in ( )iu n , and this can be easily 

verified by observing the contribution scores plot in Figure 4.5. Thus, the conventional understanding 

of the behaviour of the second singular values only valid for uncorrelated frequency components. 

Now that we have experimentally shown the possibility of using the FDD to analysis nonstationary data, 

we can safely apply the FDD to a similar scenario in chapter 6 to extract the mode shapes from responses 

of a bridge subject to a moving vehicle excitation under the assumption that the impact of the vehicle 
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is insignificant and the bridge frequencies do not change with time, only the amplitude of the responses 

diminish over time. In the next section, we will move on to the other topic of this chapter, namely close 

modes analysis. Instead of working on nonstationary data, to keep our discussion as simple as possible, 

the stationary data is used. 

4.4 Close modes analysis 

4.4.1 Introduction of the close modes analysis 

Due to structural symmetries or large-scale repetitive structures with little damping, close modes widely 

exist in our engineering structures, such as those large flexible aerospace structures or cables on a cable-

supported bridge. Accurate determination of the modal parameters of such modes is very important in 

response and stability calculations [162]. However, compared to the well-separated modes, close modes 

can bring a lot of uncertainties to our identification results. To understand such uncertainties and to 

produce better identification result, the close modes problem has been approached by researchers from 

different perspectives. Nevertheless, we can classify them into three groups.  

In the first group, researchers like Brincker and Lopez-Anelle [113] and Au et al. [163]–[166] were 

trying to understand the uncertainty problem of the close modes. Brincker et al. [167] showed that in 

the case of a set of two closely spaced eigenvalues, the mode shapes become very sensitive to small 

changes in the system. Then later, Brincker and Lopez-Anelle [113] investigated the intrinsic 

uncertainty of an undamped system with 3 DOFs in terms of the perturbation theory [113]. The system 

they considered is a simple mass sprung system with a set of almost orthogonal mode shapes. They 

pointed out that in the case of repeated eigenvalues, the undefined individual mode shapes are carried 

over to the case of closely spaced eigenvalues as an increased sensitivity of the mode shapes when the 

eigenvalues approach each other. They also showed that the main perturbation of the mode shapes is a 

rotation in the subspace defined by the initial eigenvectors.  

If Brincker and Lopez-Anelle [113] explored the uncertainty problem of close modes via forward 

thinking, then Au et al. [163]–[166] approached it from the identification point of view. Zhu et al. [163] 

studied the identification uncertainty of closely-spaced modes based on a multi-mode model with Fast 

Fourier transform data on the same frequency band. They found that with the increase of the signal-to-

noise ratio, the identification uncertainty under different MAC values converges to the uncertainty law 

of well-separated modes. Later, Au and Brownjohn [164] investigated analytically the identification 

uncertainty of close modes, especially the mode shapes, under asymptotic conditions of long data and 

high signal-to-noise ratio based on a Bayesian approach. By working on the eigenvalue properties of a 

Fisher information matrix, they revealed that the mode shape uncertainty occurs in two characteristic 
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types of mutually uncorrelated principal directions, one perpendicular and one within the mode shape 

subspace spanned by the mode shapes. Whereafter Au et al. [165], [166] developed the ‘uncertainty 

law’ for close modes, which dictates the achievable precision of modal properties regardless of the 

identification algorithm used up to modelling assumptions and the use of probability. In their work, 

they revealed a fundamental definition that quantifies the closeness modes and demystifies the roles of 

various governing factors.  

In the second group, researchers tend to improve the estimation results via different methods. 

Depending on whether or not the measurement is intact, we can further divide those methods into 

invasive and non-invasive methods. In the invasive category, the fictitious modification is often applied 

to the test data, and such method is widely seen in modal testing. Usually, the receptances of a 

symmetric structure are processed using fictitious mass or stiffness modifications. With the modified 

measured receptance data, the two close mods involved will become somehow separated, and hence 

their associated modal parameters can be analysed accurately by using the conventional modal analysis 

techniques. Both Lin and Lim [162] and Mottershead et al. [168] have validated such an approach.  

While in the non-invasive category, researchers choose to search for or develop new techniques to 

extract the modal information of the close modes as accurate as possible. The work from Brincker and 

Lopez-Anelle [113] and Au et al. [163]–[166] gave us significant insight into how the modal parameters 

behave when two modes are getting closer to each other. However, in order to quantify to what extent 

an identification method can accurately identify the close modes modal parameters is a question, as it 

is usually the case that for the case of two modes which are close but not very close, many of the existing 

identification methods can be quite effective.  

Wu et al. [169] used the following mode separation parameter 

 
( )2 j i

j

j i

f f

f f

−

+
 (4.91) 

proposed by Lin and Lim [162] to compare his work with many others’ results, and this parameter is 

also used by Chen [170]. Here, i , j  represent the index of the modes, and we assume 2j = , 1i = .  

However, Eq. (4.91) is too simply to truly reflect the closeness of two modes, as it only takes the 

difference in frequency into account but ignored the effect of system damping and potentially the 

spectral resolution. It is well known that damping is also an important influence factor in identification. 

For modes with the same damping ratio, according to half-power bandwidth, i.e., 2f f = , the 

higher the frequencies, the wider the shape of modes will spread over the frequency band. Therefore, 

in order to take the damping ratio into consideration, Srikantha Phani and Woodhouse [171] defined a 

modal overlap factor, namely  
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( )

j j

j

j i

f

f f



−
 (4.92) 

and this factor is further adopted by Rainieri and Fabbrocino [172] and [173].  

Apart from the aforementioned closeness index, Zhu et al. [163] proposed a proximity index, which is 

essentially Eq. (4.91) divided by the damping ratio of the two modes, where they assumed the two 

modes has the same damping ratio. Later, Au et al. [165] suggested a  new formula to encapsulate 

differences in frequencies and damping ratios in an overall sense, i.e.,  

 
2 2( ) ( )j f j j+  (4.93) 

where 
f
 and 


 are the frequency and damping disparity parameters, respectively, and they have the 

following expressions 

 ( ) 1
j j

f

i i

f
j

f




−    and   ( )

j i

i i

f f
j

f




−
 (4.94) 

Note that the term ‘disparity’ is used here to describe the 
f

 and 


, as they are not simple difference 

of modal properties. And a disparity of 0.5 is considered to be very close, 1 is close, 5 is separated, and 

10 is well-separated [165].  

As for the spectral resolution, it is a data measuring and processing issue not a system problem. It is 

beneficial to know it when comparing two methods in the frequency domain. However, when only the 

time domain methods were used to do the identification, the spectral resolution may not be provided by 

the authors. Therefore, in this work, we adopt Eq. (4.93) as the closeness index to quantify the goodness 

of our proposed method.  

In Table 4.1, we listed some of the methods used by different authors to tackle the close modes 

identification problem, and quantify the closeness of two modes in their experimental model in terms 

of Eq. (4.93). Note that we only selected the data which have a control group in each reference paper. 

In other words, the frequencies and damping ratios in Table 4.1 are the exact or theoretical values for 

their experiments and by using their proposed methods, they claimed that they can successfully identify 

the close modes modal parameters. The reason that we did not use their real measurement results is that 

some of the identification methods may give consistent biased estimates, especially for the damping 

ratios. We will show this phenomenon in our study. Therefore, it is undesirable to do the comparison 

based on their estimated results.  

It is worth mentioning that Table 4.1 only gives an incomplete statistic about the work people are doing 

in the field to tackle the close modes problem, and each method has its advantages and disadvantages. 
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If one wants to know more about each method listed in Table 4.1 and how accurate they are, one should 

refer to each paper. 

Table 4.1 Basic settings for the simulation (variant parameters) 

No. References Identification methods 

Natural frequency 

(Hz) 

Damping ratio 

(%) Eq. 

(4.93) 

1f  2f  1  2  

1 
Yan and 

Miyamoto [174] 
Wavelet-based method 1 1.06 1 1 3.344 

2 Tan et al. [175] 

Continuous wavelet 

transform (CWT) and 

patter search 

1 1.1 3 2 6.000 

3 Bao et al. [176] 
Improved Hilbert–Huang 

transform (HHT) 
1.09 1.15 1 1 5.505 

4 Li et al. [177] 

Improved HHT with the 

application of blind source 

separation (BSS), singular 

spectrum analysis and 

automatic moving-window 

0.3425 0.3713 2 2 4.205 

5 
Kim and Chen 

[178] 

Wavelet packet 

decomposition and 

complex envelope 

displacement analysis  

1.180 1.304 1.11 1.23 9.470 

6 
Wang and Chen 

[179] 

Analytical mode 

decomposition theorem 

and random decrement 

technique 

0.175 0.194 3 3 3.621 

0.511 0.572 3 3 3.981 

7 Wang et al [180] 1.180 1.304 1.11 1.23 9.470 

8 
McNeill and 

Zimmerman [181] 

Blind modal identification 

by adapting blind source 

separation techniques, 

whitening and joint 

approximation 

diagonalisation 

0.342 0.371 2 2 4.241 

9 
Yang and 

Nagarajaiah [182] 

Novel blind source 

separation technique 

learning rule complexity 

pursuit 

0.3425 0.3713 0.2324 0.2143 36.182 

10 
Yang and 

Nagarajaiah [183] 

Novel blind source 

separation technique 

termed spare component 

analysis  

0.3425 0.3713 2 2 4.205 

0.3425 0.3713 3.02 2.79 2.784 

11 
Guo and Kareem 

[184] 

Time-frequency blind 

source separation 
0.2 0.205 1 1.5 2.557 

12 
Brincker et al. 

[52] 

Frequency Domain 

Decomposition (FDD) 
55.055 55.121 0.72 0.72 0.167 

 

From Table 4.1, we can see that methods, such as wavelet transform, HHT, and BSS, which are popular 

ones to be used to identify modal parameters from the nonstationary responses of a system, are also 
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very popular in the community to be used to identify close modes. However, according to the closeness 

index we adopted in this work, we can see that, except for the last one from Table 4.1, all cases should 

not be classified as very close. However, it is still inappropriate to conclude the goodness of the listed 

methods based on a single closeness index without considering the different systems or data each author 

used in their research. To compare the performance of each method in dealing with close modes 

identification, we should apply those methods to the same data set under the same condition.  

Besides, although all methods mentioned in Table 4.1 belong to the class of non-parametric methods, 

FDD is built to deal with stationary data. It is not to say that the other three are more powerful than the 

FDD, as each method has its own value. Actually, it is more important for us to adopt an appropriate 

method to deal with different situations. For example, if we are dealing with stationary measurements, 

we will not get extra benefits from using the wavelet transform. On the contrary, we may over 

complicate the problem by investing lots of energy in finding an appropriate mother wavelet to 

decompose the signal onto different bases, in the meantime, sacrifice some frequency precision to get 

trivial temporal information. Apart from this, when implementing the discrete wavelet transform, one 

has to overcome drawbacks, such as shift sensitivity, poor directionality, and lack of phase information 

problem [185], that come along with this technique.  

In addition to the above discussion, very few references listed in Table 4.1 have any discussion about 

the mode shape identification. Although Wang et al. [180], Yang and Nagarajaiah [183], Guo and 

Kareem [184], and Brincker et al. [52], etc. may present their mode shapes identification results in terms 

of the actual mode shape values or the Modal Assurance Criterion (MAC) values [110], [186], none of 

them have addressed any mode shape estimation problems associated with close modes. Particularly, 

the mode shapes, which are given by Wang et al. [180] and Brincker et al. [52], are almost orthogonal.  

Except for the non-parametric methods listed above, it was reported that parametric methods such as 

the Natural Excitation Technique Eigensystem Realization Algorithm (NExT-ERA) [173], Stochastic 

Subspace Identification (SSI) algorithms [169] could also give satisfactory results. Unlike those non-

parametric methods, all parametric system identification techniques require at least one user-defined 

integer, i.e., the model order, which equals the number of eigenvalues present in the model, and hence 

twice the number of eigenfrequencies in theory [187]. Other methods, such as the one based on the 

Bayesian statistics proposed by Au [188], [189] was also applied to the case of close modes [163], [164]. 

As for the third group, we identify it to be the assessment problem for the estimated mode shapes of the 

close modes. Unlike the natural frequencies and damping ratios, the indefiniteness of the mode shapes 

of two modes when they are extremely close to each other adds an extra level of difficulty for us to 

quantify the accuracy of our estimates. It was argued by D'Ambrogio and Fregolent [190] and Brincker 

and Lopez-Anelle [113] that the classical MAC should not be applied to closely spaced mode cases 

because of the increased sensitivity of the mode shapes, but instead a generalised measure correlating 
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the subspace should be used. However, in this work, the MAC will still be used, as we want to test how 

robust our proposed method can identify the individual mode shape vectors for the close modes case 

compared to other promising methods, such as Polyreference [63] and SSI-DATA [58].  

In the next section, we will first present the basic settings for the numerical model we adopted in this 

work, then give a brief explanation for the identification methods we want to assess in section 4.2.2.2. 

Having done this, we will elaborate on two sample runs so as to explain how to use the proposed method 

to do mode shape identification for two close modes in section 4.4.2.3. After this, we shall show our 

analysis results in terms of 8 difference cases in section 4.4.2.4. Finally, we will give a further discussion 

about the close mode analysis regarding the case of repeated poles.  

4.4.2 Case study II – close modes analysis 

4.4.2.1 Numerical experiment setup 

The numerical model in our close mode analysis is similar to the one we used in chapter 3, where we 

have a dynamic system that generates stationary acceleration responses. However, instead of having 5 

DOF’s, we consider a system with 10 DOF’s, where three modes are active, while the rest of them are 

inactive (i.e., by forcing the corresponding mode shapes to be zero). For the three active modes, two of 

them have fixed frequencies, while the other one is moving between them from the lower frequency to 

the higher frequency.  

To be more specific, suppose 1 2 3, ,f f f  are the frequencies correspond to the three active modes, and 

1 2 3f f f  . We assume the first frequency  and the third frequency  are fixed, while the second 

frequency  moves along the frequency line in the direction from  to . For the 7 inactive modes, 

the corresponding frequencies are randomly generated between 10.25 f  and the Nyquist frequency . 

The number of measurement channels is assumed to be 10.  

  

1f 3f

2f 1f 3f

Nyf
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Table 4.2 Basic settings for the simulation (fixed parameters) 

Sample interval 0.2t =  

Data length for FFT Nfft 1024=  

Number of segments. 32dn =  

Total data points 1024 32N =   

Number of runs 
 

Nyquist frequency 1 2 2.5
yNf t=  =  

Modal mass 1 (kg) 

First resonance frequency 1 0.25 0.625
yNf f= = Hz 

Third resonance frequency 3 0.75 1.875
yNf f= = Hz 

Second frequency 2f  [0.625, 0.6445] Hz which is ranging from  to . 

Noise modes Randomly generated with frequencies between 10.25 f  and . 

 

Table 4.3 Basic settings for the simulation (variant parameters) 

MAC 

MAC_1 MAC_1 ( )1 2, 0.73= , MAC_1 ( )1 3, 0= , MAC_1 ( )2 3, 0=  

MAC_2 MAC_2 ( )1 2, 0= , MAC_2 ( )1 3, 0= , MAC_2 ( )2 3, 0=  

Damping ratio 
Damp_1 0.1% =  for all 10 modes 

Damp_2 1% =  for all 10 modes 

Noise level 
Noise_1 1% of the maximum standard deviation of the 10 channels 

Noise_2 10% of the maximum standard deviation of the 10 channels 

 

Table 4.2 and Table 4.3 give basic settings for the simulation. In terms of the correlation relationship 

between the two close modes, we divide the possible combinations of the variant parameters in Table 

4.3 into two categories, namely, MAC_1 and MAC_2. In each category, we consider 4 cases. All the 

possible combinations are listed in Table 4.4. In the case of MAC_1, the mode shapes of the two close 

modes are highly correlated to each other, but they are orthogonal to the third mode. Whereas in the 

case of MAC_2, the mode shapes of all three modes are orthogonal to each other.  

  

100rN =

1f 3f

Nyf
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Table 4.4 Cases to be considered 

MAC_1 MAC_2 

(a1) (MAC_1, damping_1, noise_1)  (b1) (MAC_2, damping_1, noise_1) 

(a2) (MAC_1, damping_2, noise_1) (b2) (MAC_2, damping_2, noise_1) 

(a3) (MAC_1, damping_1, noise_2) (b3) (MAC_2, damping_1, noise_2) 

(a4) (MAC_1, damping_2, noise_2) (b4) (MAC_2, damping_2, noise_2) 

 

4.4.2.2 Identification methods 

We will consider essentially three methods in our case study, Enhanced Polyreference, Polyreference, 

and SSI-DATA. In section 2.4.1.2 and section 2.4.3.2, we have presented the theoretical background 

for Polyreference and SSI-DATA, respectively.  

As for the Enhanced Polyreference, it is just an easy name we give it to the two-stage identification 

procedure to identify the close modes modal parameters. It is well known that by using FDD alone, we 

are unable to identify the damping ratios. The density operator we proposed in this work also suffers 

from this problem. In other words, we need to take a further step to obtain the damping ratios. Therefore, 

we designed a two-stage method, which we call Enhanced Polyreference, to help us to extract the natural 

frequencies, damping ratios, and mode shapes from our measurements. As its name suggests, the further 

step we choose to identify the damping ratios and natural frequencies is the Polyreference method. Thus, 

the Enhanced Polyreference is a two-stage method. In the first stage, we use the proposed density 

operator to identify the mode shapes, then use the identified mode shape to decouple the system into a 

series of generalised coordinates. In the second stage, the Polyreference is applied to the generalised 

coordinates to extract the natural frequencies and damping ratios. Note that one is free to choose any 

other methods in the second stage to identify the natural frequencies and damping ratios.  

Besides, the word ‘Enhanced’ also implies that this two-stage method is better than the conventional 

Polyreference method. In the conventional Polyreference method, identifying the physical poles from a 

set of eigenvalues has always been a challenge in the absence of reference information. Such a problem 

is quite common in any time domain methods relying on the eigenvalue decomposition of a companion 

matrix of a system. In other words, the SSI-DATA will be suffering from this problem as well. However, 

by using the proposed Enhanced Polyreference, we can effectively avoid such a problem since the 

number of poles can be determined in the first stage in the frequency domain, and in the meantime, we 

can obtain an estimation of the mode shapes of a system.  

Since the singular value plot of a PSD estimator against the frequencies provides us a convenient way 

to detect the presence of the close modes, we could use the FDD as an auxiliary technique to detect the 
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close modes, then use the density operator to estimate the mode shapes. Once we obtained the mode 

shapes for all possible modes, we can use them to decouple the original measurements or geometric 

coordinates into a set of generalised coordinates. Unlike the original geometric coordinates, which are 

the superposition of the generalised coordinates, each generalised coordinate is a vibrating response for 

each mode. Then when we apply the conventional Polyreference method to the generalised coordinates, 

there will be no superfluous eigenvalues left, which largely simplifies the problem. However, it is worth 

pointing out that although it is important to obtain a good mode shape estimation in the first stage, 

unfortunately, it does not guarantee good estimations for the natural frequencies and damping ratios in 

the second stage. Results in section 4.4.2.4 clearly demonstrate this phenomenon.  

As we just mentioned, for the Polyreference and the SSI-DATA, we need to select the physical poles 

from a bunch of eigenvalues that are contaminated by the spurious poles. However, there is no easy 

way to do this. One of the most widely used technique is to use a stabilisation diagram [58], which is a 

model order vs. eigenfrequency diagram. The stabilisation diagram is constructed based on the fact that 

with the increase of the model order, the physical modes of the system appear at nearly the same 

eigenfrequency, whereas the spurious modes do not [191]. Based on this principle, a set of parametric 

models can be identified for a wide range of model orders. Typically, model orders are larger than the 

number of modes in the considered frequency band. When we plot the modes of all these models in a 

stabilisation diagram, the physical modes should then show up as vertical lines in this diagram, while 

the spurious modes tend to show scattering values as frequency or damping values shift all around.  

 

Figure 4.7 Stabilisation diagram 

Figure 4.7 shows a typical stabilisation diagram generated based on SSI-DATA from one of the (a1) 

(MAC_1, damping_1, noise_1) cases. The model order ranges from 3 to 50. Conventionally, we define 

the different poles based on some stability criteria for each of the modal parameters of interest. In this 
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work, the criteria are 1% for frequency stability, 5% for damping ratios, and 2% for eigenvectors (MAC) 

[191]. Based on these criteria, different types of poles are defined as follows: 

• Stable pole (frequency, damping, and vector): poles with frequency, damping, and eigenvector 

deviations within the criteria. 

• Stable frequency and vector: poles with frequency and eigenvector deviations within the criteria. 

• Stable frequency and damping: poles with frequency and damping deviations within the criteria. 

• Stable frequency: poles with only frequency deviations within the criteria. 

From Figure 4.7, it is not difficult to see that the SSI-DATA successfully identified two close modes 

and one well-separated mode.  

Although the stabilisation diagram has become a standard method in modal analysis, the selection of 

physical modes as columns in the diagram is often not straightforward. In other words, the results may 

depend on the judgement of the analyst, and possible additional validation criteria may be needed [192]. 

In order to make the interpretation of the stabilisation diagram more effective, researchers in the past 

two decades have been trying to apply all kinds of clustering methods to the identification process as 

automated as possible. In the work of Reynders et al. [187], the authors gave an overview of many 

clustering methods people used to interpret the stabilisation diagram. In this work, we adopted the one 

proposed by Magalhães et al. [193], which is a simple hierarchical clustering procedure.  

In the first step, the similarity between all the pairs of stable estimated modes is calculated based on the 

following distance measure, 

 ( ) ( ), 1 MAC ,ij i j i jd d f f= + −  (4.95) 

where 

 ( )
( )

,
max ,
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ji

f f
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=    and   ( )

2
* T

22

2 2

MAC ,
i j

i j
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=  (4.96) 

if  and i  represent the eigenfrequencies and eigenvectors, respectively, are the estimates of the natural 

frequencies and mode shapes. If 
ijd  is small, it means the i th and the j th estimates present similar 

natural frequencies and mode shapes. Hence, it is likely that they represent the same physical mode, 

then they should be included in the same cluster.  

In the second step, the single linkage method is used to compute the distance between clusters. With 

this option, the distance between two clusters is defined to be the shortest distance between any point 

in one cluster to any point in the other [193]. In the third step, a limit distance of 0.02 is used to select 

the Hierarchical tree cut level, i.e., define the number of resulting clusters [193]. 
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Although the clustering methods proposed by Magalhães et al. [193] can generate the identified the 

modal parameters automatically, the analysis will not always be successful. It means that there will still 

be spurious modes left in the final results. Besides, it contains parameters that need to be specified or 

tuned by the user, such as the cut off distance. Apart from this, different linkage methods can also give 

different results as well, e.g., when the two modes are close together, some linkage methods may not 

be able to separate the two clusters. Thus, in order to produce a stable result to compare with our 

proposed method, the estimated results were further compared to the exact values to select the most 

closed ones. The criteria for this last stage selection is simply based on the MAC. The estimation results 

obtained via the Polyreference and the SSI-DATA were fed to the same selection program. 

4.4.2.3 Mode shapes selection criteria 

In the section, we introduce the mode shape selection criteria in terms of the correlation relationship 

between two modes according to the purity or the Von Neumann entropy plot. We will separate our 

discussion into two main cases, and one is MAC_1, the other is MAC_2. For these two cases, we will 

use the lower damping damp_1 and lower noise level noise_1 as examples to demonstrate the selection 

criteria. Figure 4.8 compares the conventional singular value plot obtained from FDD (Eq. (4.39)) with 

the entropy plot obtained based on Eq. (4.69) and the purity plot obtained in terms of Eq. (4.66). The 

first column depicts the full view of each plot, while the second column shows a close shot around the 

two close modes.  

  

(a) Full view (b) Close shot 

Figure 4.8 Singular value plot (top), Von Neumann entropy plot (middle) and Purity plot (bottom) of (a1) 

(MAC_1, damping_1, noise_1)  
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The singular values plot produced by the FDD given by the first row of Figure 4.8 clearly shows that 

there are two close modes since the second singular values are very large in the vicinity of the peak 

value of the first singular value plot. However, in the close shot of the singular value plot, we can see 

that there is only one peak in the first singular value plot. Clearly, if we still want to use the FDD to 

estimate the mode shapes for the two close modes, we will be in trouble.  

Figure 4.9 gives the hindsight information of how the first three singular vectors contribute to the three 

mode shape vectors we are concerned of based on Eq. (4.72). Note that the acquisition of Figure 4.9 is 

depended on the prior information of the mode shape vectors, without it, it is unattainable. From Figure 

4.9 we see that when there is a pair of close modes, ( 1 1_ kψ u , 1 2_ kψ u ) and ( 2 1_ kψ u , 2 2_ kψ u ) 

show some reversed pattern, where _i kjψ u  represents the probability to find the i th mode shape in 

the direction of the j th singular vector at frequency kf , which is the same as ( )
2

j kf  in Eq. (4.72). 

We can also see that 1 1_ kψ u  is large, 2 1_ kψ u  is large as well, meaning that 1ku  is almost equally 

important to 1ψ  and 2ψ . Near the peak frequency of the FDD where close modes occur, 1 1_ kψ u  and 

2 1_ kψ u  reach their maximum at different frequency lines, which are marked by the two red dashed 

vertical lines. These two vertical lines are the same as the vertical lines shown in Figure 4.8, and they 

can be easily obtained by observing the Von Neumann entropy plot or the purity plot.  

 

  

(a) Full view (b) Close shot 

Figure 4.9 Probability of the first three singular vectors contributed to mode 1 (top), mode two (middle) and 

mode 3 (bottom) of (a1) (MAC_1, damping_1, noise_1) 
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In the Von Neumann entropy plot, we can see a small peak between the two vertical lines, while in the 

purity plot, we see a dip. As we mentioned in section 4.2.2.5, the purity and the Von Neumann entropy 

behaves in an opposite way. When the system is in a pure state, the entropy will approach zero, while 

the purity approaches 1. In the vicinity of the 3rd mode, there is no other mode close to it. The behaviour 

of the entropy and the purity is clearly depicted. However, such a phenomenon is not prominent around 

the two close modes. On the contrary, in a wide range of frequency band, the entropy line is close to 

zero, while the purity line is close to one. The main reason for this is that the mode shapes of the two 

close modes are highly correlated, and they behave in a way almost like a single mode. Nevertheless, 

we can still see a small change in the entropy and the purity around the peak frequency of the two close 

modes. Note that without specification, we refer the peak frequency to the peak in the first singular 

value plot from the FDD. When we need to define other peak frequencies, we will specify them 

accordingly.  

It seems that with the increase of the frequency, the system gradually approaches a pure state at the left 

vertical line, then somehow, due to the presence of close modes, it left the pure state and arrives at a 

mixed state; after that the system decorrelates again at the second vertical line. While are other 

frequencies, for instance, around 1.5 (Hz), the system has large entropy and small purity, which means 

that system is in a mixed state. Unlike in the frequency band where the two correlated modes are mixed, 

the mixture around 1.5 (Hz) is mainly caused by two orthogonal modes, namely, mode 2 and mode 3. 

One can tell from the middle and the bottom in Figure 4.9 that around 1.5 (Hz), the system is mainly 

governed by mode 2 and mode 3, as 1ku  has a dramatic change from 2ψ  to 3ψ , see the behaviour of 

2 1_ kψ u  is large, 3 1_ kψ u  around 1.5 (Hz).  

Therefore, to estimate the mode shapes for each mode, we should use the singular vectors that 

correspond to the frequency locations of those two vertical lines. Besides, since the entropy plot and 

the purity plot are equivalent, we can use either of them to do the identification. In this work, the purity 

is preferred because it is easier to find peaks than dips. And the location of those two vertical lines for 

the two close modes is identified as the highest purity values occur around the dip.  

As a comparison, Figure 4.10 and Figure 4.11 depict the purity plot for the cases of (a2) (MAC_1, 

damping_2, noise_1) and (a3) (MAC_1, damping_1, noise_2) with the same system parameters as 

Figure 4.8. It is not difficult to see that when we increase the damping ratio, the dip between the two 

vertical lines disappeared, whereas when we increase the noise level, the dip remains. This phenomenon 

shows that the proposed method is noise insensitive. In the meantime, unlike the case of (a1) (MAC_1, 

damping_1, noise_1) and (a2) (MAC_1, damping_2, noise_1), the purity plot of (a3) (MAC_1, 

damping_1, noise_2) has very sharp peaks around the resonance frequencies. It implies that the noise 

level has an impact on the purity of a system along the frequency lines. And in the presence of a high 

noise level, the pure state of a system can only exists in a very short frequency band.  
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Figure 4.10 Purity plot of (a2) (MAC_1, damping_2, 

noise_1) 

 

Figure 4.11 Purity plot of (a3) (MAC_1, damping_1, 

noise_2) 

As for the case when the mode shapes of two close modes are orthogonal to each other, the singular 

value plot obtained from the FDD shown in Figure 4.12 gives a similar result as its counterparts in 

Figure 4.8 that there is only one peak in the first singular value plot where there are two close modes. 

However, when we compare the two full views of the singular value plot, we see that in Figure 4.8, the 

second singular values are smaller than the second singular values in Figure 4.12. In other words, the 

spacing between the first and the second singular values behaves differently for these two cases, namely 

MAC_1 and MAC_2. Accordingly, the Von Neumann entropy plot and the purity plot of these two 

cases are different from each other. In the case of MAC_2, the entropy plot shows dips around the peak 

frequency, while the purity plot shows large peaks around the peak frequency. Nevertheless, when the 

system approaches a pure state, its Von Neumann entropy will be close to zero, while its purity will be 

close to 1. Therefore, the criteria for finding the right frequency locations to estimate the mode shapes 

is essentially the same as we mentioned before for the MAC_1 case, which is the place where the system 

approaches a pure state with its purity close to 1. In the close view of Figure 4.12, we have clearly 

marked those locations for two close modes with red dashed vertical lines.  

As for the probability contribution of the singular vectors to each mode shape, from Figure 4.13 we see 

that in the lower frequency band, the first two singular vectors are constantly oscillating to be in line 

with either 1ψ  or 2ψ . This phenomenon only occurs when the mode shapes of two modes are almost 

orthogonal. Between the two vertical lines, we can see from the close view of Figure 4.13 that there is 

an exchange of the probabilities of the first two singular vectors. As we know, the location of the vertical 

line corresponds to the location of the peak in the purity plot. Thus, the left vertical line indicates that 

the 1ku  can fully explain 1ψ  because the probability 1 1_ kψ u  is close to 1. In the meantime, at the 

same frequency location, 2 2_ kψ u  is close to 1, meaning that we can use the first singular vector at the 

left vertical line to estimate the first mode while using the second singular vector at the same frequency 

location to estimate the second mode. This is the biggest contrast of the behaviours of the singular 

vectors between the two mode shape cases, i.e., MAC_1 and MAC_2.  
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(a) Full view (b) Close shot 

Figure 4.12 Singular value plot (top), Von Neumann entropy plot (middle) and Purity plot (bottom) of (b1) 

(MAC_2, damping_1, noise_1)  

In the case of MAC_1, if we use the first two singular vectors at the same frequency location, for 

instance, at one of the vertical lines, to estimate the mode shapes of two close modes, we will then 

scarify some accuracy for one of the modes. While in the case of MAC_2, we may use the first two 

singular vectors at the same location to estimate the mode shapes of two close modes without losing 

any precision for each mode. However, when two modes are extremely close, or they are repeated poles, 

it is difficult to predict the correspondence between the individual mode shapes and the singular vectors. 

In this case, we will not be able to identify any peaks around the peak frequency in the purity plot as 

well. Therefore, depending on different mode shape cases, we use different identification criteria to 

identify the mode shapes when we failed to identify the two vertical lines, or there is no prominent peak 

in the purity plot for the two close modes. 

For MAC_1, since the system usually approaches the mixed states around the peak frequency, we then 

select the two singular vectors corresponding to the frequencies on two sides of the peak frequency. In 

other words, if kf  is the peak frequency, f  is the frequency resolution, then the two locations is given 

by kf a f−   and kf a f+  , where   is a constant, here we assume it equals 1.  

While for MAC_2, we consider three cases. Before discussing those three cases, first, we recognise that 

there might be a situation that there is only one prominent peak (i.e., two peaks merged into one) in the 
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purity plot for the two close modes. In this case, the rule of thumb is to compare the location of this 

peak in the purity plot with the peak in the first singular value plot.  

To be more specific, suppose kf  is the peak frequency and pf  is the purity peak frequency, if k pf f , 

we use the first singular vector at pf  to approximate the second mode shape vector and the second 

singular vector to approximate the first mode shape vector. For the case when k pf f , the selection 

rule of the singular vectors at pf  is reversed. When k pf f=  or there is no prominent peak in the purity 

plot, we just use the first two singular vectors at the peak frequency to estimate the two mode shapes, 

but with the risk to losing some precision for each mode shape. It is possible that both the first and the 

second singular vectors are imperfect estimations for the mode shapes, or the correspondence between 

the singular vectors and mode shape vectors are completely swapped. As a result, the estimation for the 

mode shapes when two modes are extremely close or identical will not be as good as the case when we 

can successfully identify the two peaks for the close modes in the purity plot.  

Note that the different appearance between the entropy or purity plot of MAC_1 and MAC_2 can be 

used to determine if the two close modes are orthogonal or correlated to each other.  

 

  

(a) Full view (b) Close shot 

Figure 4.13 Probability of the first three singular vectors contributed to mode 1 (top), mode two (middle) and 

mode 3 (bottom) of (a1) (MAC_2, damping_1, noise_1)  

Although there are some differences between the case of MAC_1 and MAC_2, the damping ratios and 

the noise level have the same impact on them. As a comparison, the purity plot of the case (b2) (MAC_2, 

damping_2, noise_1) and case (b3) (MAC_2, damping_1, noise_2) are presented in Figure 4.14 and 
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Figure 4.15, respectively. The same as we discussed before in the cases of MAC_1, the purity of a 

system is damping sensitive but noise insensitive. The frequency band for a pure state decreases with 

the increase of the noise level. 

 

 

Figure 4.14 Purity plot of (b2) (MAC_2, damping_2, 

noise_1) 

 

Figure 4.15 Purity plot of (b3) (MAC_2, damping_1, 

noise_2) 

 

  

(a1) (MAC_1, damping_1, noise_1) (b1) (MAC_2, damping_1, noise_1) 

Figure 4.16 Identified mode shapes of (a1) (MAC_1, damping_1, noise_1) and (b1) (MAC_2, damping_1, 

noise_1). Mode 1 (top), mode 2 (middle), mode 3 (bottom) 

In order to show how good the results are by using the proposed method, the estimated mode shapes 

are presented in Figure 4.16. It is clearly shown from Figure 4.16 that when 1 0.625f =  (Hz), 

2 0.6309f =  (Hz), 1 2 0.1 = = % , and the disparity 9.4= , all three methods can successfully 

identify the mode shapes while the FDD cannot because we are unable to specify the peak frequencies 
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for the two close modes based on the first singular value plot. Besides, the large disparity, which is 

given by this example, also verified our statement in section 4.4.1 that it is inappropriate and 

meaningless to compare the goodness of each technique used by different authors to tackle close modes 

identification problems based on the same closeness index.  

Table 4.5 Identified modal parameters of (a1) (MAC_1, damping_1, noise_1) for one example run 

No. Natural frequencies (Hz) Damping ratios (%) 

 True M1 M2 M3 True M1 M2 M3 

1 0.625 0.6251 0.625 0.6251 0.1 0.13 0.19 0.08 

2 0.6309 0.6309 0.6309 0.6309 0.1 0.12 0.19 0.08 

3 1.875 1.8752 1.8752 1.8752 0.1 0.12 0.13 0.1 

(Note: M1 – Enhanced Polyreference; M2 – Polyrference; M3 – SSI-DATA.) 

As for the natural frequencies and damping ratios, the identified results are presented in Table 4.5 and 

Table 4.6 for the two cases we considered here. It is interesting to note that the proposed two-stage 

method (I.E., Enhanced Polyreference) gives better damping ratio estimates than the conventional 

Polyreference method. Although the natural frequencies estimated from the three methods are 

comparable, the SSI-DATA does produce better damping ratio estimates than the other two methods. 

This pattern will be shown visually in section 4.4.2.4 with a result of 100 times averaged multiple runs.  

Table 4.6 Identified modal parameters of (b1) (MAC_2, damping_1, noise_1) for one example run 

No. Natural frequencies (Hz) Damping ratios (%) 

 True M1 M2 M3 True M1 M2 M3 

1 0.625 0.6254 0.6253 0.6253 0.1 0.16 0.23 0.12 

2 0.6309 0.6306 0.6306 0.6307 0.1 0.13 0.2 0.08 

3 1.875 1.8749 1.8749 1.875 0.1 0.13 0.14 0.11 

(Note: M1 – Enhanced Polyreference; M2 – Polyrference; M3 – SSI-DATA.) 

4.4.2.4 Estimated modal parameters 

In the last subsection, we showed that in the vicinity of the peak frequency of two close modes, the 

system is usually in a mixed state. In order to estimate the individual mode shapes properly, we have to 

select the singular vector slightly away from the perturbed region on the frequency line. The Von 

Neumann entropy plot and the purity plot both provided us a way to find the best locations to estimate 

the mode shape vectors. To show the difference between the FDD peak frequencies and purity peak 

frequencies, we plotted the averaged frequencies of these two kinds of peak frequencies for the 8 cases 

in terms of Table 4.4 in Figure 4.17. Each point in Figure 4.17 is an average of 100 runs.  
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(a1) (MAC_1, damping_1, noise_1) (b1) (MAC_2, damping_1, noise_1) 

  

(a2) ((MAC_1, damping_2, noise_1) (b2) (MAC_2, damping_2, noise_1) 

  

(a3) (MAC_1, damping_1, noise_2) (b3) (MAC_2, damping_1, noise_2) 

  

(a4) (MAC_1, damping_2, noise_2) (b4) (MAC_2, damping_2, noise_2) 

Figure 4.17 Trajectories of the averaged peak frequencies of the FDD and the purity for the two close modes 

of the 8 cases. All the frequencies are in Hz. 
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From Figure 4.17, we see that with the increasing disparity between the two close modes, the two kinds 

of peak frequencies converge for both modes eventually. And the convergence rate is only affected by 

the damping ratio. The larger the damping ratio, the slower the convergence. After the FDD peak 

frequencies and the purity peak frequencies converged, we can use either of them to identify the mode 

shapes and the natural frequencies.  

Besides, for all 8 cases in Figure 4.17, the FDD peak frequency line start at 1f  for both modes with a 

single peak, then it gradually moves towards 2f . As the disparity between the two modes increases, the 

FDD peak frequency line splits into two frequency lines before each line converges to the corresponding 

true value lines. In general, before the FDD peak frequency line splits, we cannot use the FDD to 

identify the modal parameters of the two close modes, as it is unable to distinguish them from the peak 

frequency. This explains that for the cases with lower damping ratios in the disparity range from 3 to 

15, the Enhanced Polyreference method can successfully identify the natural frequencies, damping 

ratios, and mode shapes to a very high accuracy while the conventional FDD fails. While in the case of 

higher damping ratios, for the FDD to be successful, the disparity between the first two modes needs to 

be larger than 2.8.  

Furthermore, it must be pointed out that although the FDD peak frequency line of the two close modes 

separated from each other at a specific frequency, meaning that we can observe two peaks in the first 

singular value plot. Unfortunately, those two peak frequencies are far from the corresponding true 

values. Hence, it is still not a good idea to use the FDD to identify the natural frequencies, as the 

estimates will be biased. For example, the FDD peak frequencies line splits at a disparity of 1.7, but the 

two split lines are still in between the two true frequencies lines.  

Apart from the above discussion, it is worth mentioning that since we used different criteria to estimate 

the mode shapes from the purity plot in terms of the correlations relationship between the mode shapes 

of the two close modes, the starting points of the frequencies found by evaluating the purity plot are 

different for the cases of MAC_1 and MAC_2.  

In the previous subsection, we compared the modal parameters identified from three methods, i.e., 

Enhanced Polyreference, Polyreference, and SSI-DATA, in terms of a single numerical experiment. In 

this subsection, we want to show the performance of the proposed method with multiple runs. The 

estimated natural frequencies, damping ratios, and mode shapes (averaged MAC values) are presented 

in Figure 4.18, Figure 4.19, and Figure 4.20, respectively. All the results are plotted against the 

disparities between the first two close modes. For some outliers, we removed it based on the 

Interquartile Range (IQR) method. If the 25th and the 75th percentiles are denoted by Q1 and Q3, 

respectively, then IQR is equal to Q3 – Q1. By using the IQR method, we will only keep anything 

between (Q1 – 1.5*IQR) and (Q3 + 1.5*IQR) and discard the rest. In other words, each point in the 

figure is an average of 100 runs, but only with those that satisfy the IQR criteria. As for the mode shapes, 
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for the 3 active modes, they are fixed for different disparity values for all cases of MAC_1 and MAC_2, 

and they were shown in Figure 4.16.  

  

(a1) (MAC_1, damping_1, noise_1) (b1) (MAC_2, damping_1, noise_1) 

  

(a2) (MAC_1, damping_2, noise_1) (b2) (MAC_2, damping_2, noise_1) 

  

(a3) (MAC_1, damping_1, noise_2) (b3) (MAC_2, damping_1, noise_2) 
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(a4) (MAC_1, damping_2, noise_2) (b4) (MAC_2, damping_2, noise_2) 

Figure 4.18 Identified averaged natural frequencies of 3 active modes. Mode 1 (top), mode 2 (middle), mode 

3 (bottom). All the frequencies are in Hz 

From Figure 4.18 we see that all three methods give better natural frequency estimates in the case of 

MAC_2 regardless of the value of damping ratios and noise. Although the Enhanced polyreference does 

not perform very well in the cases of MAC_1 when two modes are extremely close to each other, one 

can see from (a1) and (a2) or (a3) and (a4) that it converges to the true as very fast, and the lower the 

damping, the faster it converges. Besides, it is clear from all four cases of MAC_1 that the two close 

modes have an impact on the well-separated mode, when the two close modes have correlated mode 

shapes. And it is mysterious that SSI-DATA gives poor frequency estimates of mode 2 in the case of 

(a2) (MAC_1, damping_2, noise_1), and Polyreference gives consistently poorer frequency estimates 

in mode 1 in all 4 cases of MAC_1 and 2 MAC_2 cases of the 3rd mode with higher damping level. 

  

(a1) (MAC_1, damping_1, noise_1) (b1) (MAC_2, damping_1, noise_1) 
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(a2) (MAC_1, damping_2, noise_1) (b2) (MAC_2, damping_2, noise_1) 

  

(a3) (MAC_1, damping_1, noise_2) (b3) (MAC_2, damping_1, noise_2) 

  

(a4) (MAC_1, damping_2, noise_2) (b4) (MAC_2, damping_2, noise_2) 

Figure 4.19 Identified averaged damping ratios of 3 active modes. Mode 1 (top), mode 2 (middle), mode 3 

(bottom).  
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As for the estimated damping ratios shown in Figure 4.19, we see that all cases indicate that SSI-DATA 

consistently gives the best damping ratio estimation. While for the Enhanced Polyreference and 

Polyreference, except for the last 3 cases in the MAC_1 category, the Enhanced Polyreference gives 

consistently better damping ratio estimates than Polyreference in all modes. However, in the case of 

(a4) (MAC_1, damping_2, noise_2), the damping ratios estimated from Enhanced Polyreference show 

a large deviation from the true values. Besides, when compare the frequency estimates and the damping 

ratio estimates in the case of (a2) (MAC_1, damping_2, noise_1), it is interesting to note that although 

SS-DATA gives poor frequency estimates, the estimated damping ratios are very close to the true values. 

 

  

(a1) (MAC_1, damping_1, noise_1) (b1) (MAC_2, damping_1, noise_1) 

  

(a2) (MAC_1, damping_2, noise_1) (b2) (MAC_2, damping_2, noise_1) 
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(a3) (MAC_1, damping_1, noise_2) (b3) (MAC_2, damping_1, noise_2) 

  

(a4) (MAC_1, damping_2, noise_2) (b4) (MAC_2, damping_2, noise_2) 

Figure 4.20 Identified averaged MAC values of 3 active modes. Mode 1 (top), mode 2 (middle), mode 3 

(bottom).  

The averaged MAC results between the estimated mode shapes and the reference mode shapes 

illustrated in Figure 4.20 shows that the Enhanced Polyreference gives consistently good estimates. 

However, all three methods struggled to identify the mode shapes for the two close modes when the 

disparity between them is extremely small in the cases of MAC_2. While in the cases of MAC_1, the 

MAC values of the mode shapes estimated via the Enhanced Polyreference are all larger than 0.8, even 

for the repeated pole case.  

Additionally, since different correlation condition between two mode shapes of the close modes can 

result in different purity plot, we can expect that the mode shape estimation results for the two cases 

MAC_1 and MAC_2 would be different. And it obvious in Figure 4.20 that the cases of MAC_2 give 

relatively better mode shape estimation results than the cases of MAC_1, as the averaged MAC values 

converge to 1 faster with the increase of the disparity between the two close modes. The same pattern 

is reflected in the natural frequencies and damping ratio estimations as well. And this phenomenon is 
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more prominent in the cases of (a4) (MAC_1, damping_2, noise_2) and (b4) (MAC_2, damping_2, 

noise_2) when the system has a large damping ratio and the corresponding vibration measurements 

have a high noise level.  

As for the SSI-DATA, by comparing (a2) (MAC_1, damping_2, noise_1) and (b2) (MAC_2, 

damping_2, noise_1), (a4) (MAC_1, damping_2, noise_2) and (b4) (MAC_2, damping_2, noise_2), we 

may conclude that the mode shape estimation accuracy of this method is sensitive to the correlation 

relationship between the two close modes. And the effect of the correlation between the close modes 

seems to have a bigger impact on the second mode than the first mode.  

Besides, compared to the other two methods, the Polyreference seems to perform very poorly when the 

system has both large damping and large noise in the measurements. Especially in the case of (a4) 

(MAC_1, damping_2, noise_2), when the first two modes are extremely close to each other, it almost 

failed to identify the mode shapes for the second mode. While for the third mode, which is well-

separated from the first two modes, the Polyreference struggled to identify the mode shape when the 

first two modes are close to each other. When we compare (a4) (MAC_1, damping_2, noise_2) with 

(b4) (MAC_2, damping_2, noise_2), it is not difficult to see that the Polyreference still gives poorer 

estimates for the well-separated mode.  

Regarding the common understanding about the mode shape estimates via the decomposition of a PSD 

estimator that only if the two mode shapes are orthogonal to each other, the first singular vectors are 

unbiased estimates of the mode shapes. According to our theoretical explanation given in section 4.2.2.5 

III and the estimation results illustrated in Figure 4.20, we can conclude that such understanding is 

misplaced. Because regardless of the orthogonality of the mode shapes, when we use the FDD or by 

analysing a density operator to estimate the mode shapes using the first singular vectors, the first 

singular vectors in the frequency domain are rotating in the state-space. At different frequency lines, 

they point in different directions. However, those directions are not the ones that best explain the mode 

shapes vectors but the ones that best explain a random state vector ( )kfy . Only if ( )kfy  is pointing 

to the same direction as one of the mode shapes, the corresponding singular vector can be deemed as a 

good estimate of that mode shape.  

One should bear in mind that the first singular vector does not discriminate the mode shapes in virtue 

of the correlation relationship among them. All the mode shapes are just a vector in the state-space. 

Therefore, there should not be any bias in the estimated mode shapes obtained based on the first singular 

vectors via the FDD or the proposed method, provided that the state vector ( )kfy  is in the same 

direction of the corresponding mode shape. However, bias does exist when we use the first two singular 

vectors to estimate two nonorthogonal mode shapes.  
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Now that we have tested the performance of our proposed method in estimating natural frequencies, 

damping ratios, and individual mode shape vectors based on 8 different cases with the increasing 

disparity between. In comparison with Polyreference, the Enhanced Polyreference has the ability to 

improve the estimation accuracy of the natural frequencies and damping ratio when two modes are 

slightly separated in the sense of the system purity, i.e., we can identify two peaks in the purity plot for 

the two close modes. As for the mode shapes, the estimation based on the proposed method for all 8 

cases is robust compared to the other two methods. Therefore, even if the proposed method cannot 

produce the best damping ratio estimation compared to SSI-DATA when two modes are extremely 

close or identical, the overall performance is good and stable, and it is noise insensitive for the mode 

shape estimation. Apart from this, unlike the Polyreference and SSI-DATA, we do not need to worry 

about the occurrence of the spurious modes when using the proposed method, and it is less dependent 

on the human-defined parameters. Except for the spectral resolution, which needs to be specified, we 

can easily automate the whole process without too much trouble.  

It is true that no method can perfectly adapt to all situations and give the best estimation results. There 

will always be some kind of compromise. But overall, the proposed method is user friendly and easy to 

implement, and it is capable of dealing with close modes. In the next section, we will have a further 

discussion of the close modes problem with respect to the points we may have missed so far.  

4.4.3 Further discussion and future work 

For close mode analysis, there are still lots of unsolved puzzles around this topic which worth exploring. 

For example, we have noticed that if there is a pair of close modes in the system, it could have some 

sort of impact on the estimation of the well-separated modes depending on the identification methods 

were used as well as the modal parameters are concerned. Such a phenomenon needs to be further 

investigated. Also, this work only studied two closely spaced modes the case of the cluster modes was 

untouched. As an important case, the cluster modes case will be investigated in future work.   

Apart from this, although we included the repeated pole case in this study, this problem is rather 

complicated than others. It is true that in the forward analysis, we can obtain a complete set of 

eigenvectors from the characteristic equation of motion to form the modal space provided that both 

stiffness and mass matrix is positive semidefinite. But such eigenvectors are only one representative of 

many potential mode shape vectors in the modal space that can explain the close modes. In other words, 

the mode shape vectors we obtained from any FE model are not unique, and different computing setup 

could give us different eigenvectors.  

This can be further demonstrated by considering the eigenvalue problem of a 3 3  positive definite 

symmetric matrix A , i.e., =Ax x , ( )
T

1 2 3, ,x x x=x . When we solve for each eigenvector, we need 
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to solve ( ) 0k− =A I x  for each eigenvalue we obtained, here 1,2,3k = . If all three eigenvalues of 

this matrix are distinct, for each k , there will be two independent linear equation expressed by the 

components of vector x , i.e.,  

 
1 1 1 2 1 3

2 1 2 2 2 3

0

0

a x b x c x

a x b x c x

+ + =


+ + =
 (4.97) 

where , ,a b c  are the constant coefficients derived from ( )k−A I . Each equation in Eq. (4.97) 

represents an equation of a plane which passes through the origin in the 3-dimensional Euclidean space. 

Solving Eq. (4.97) is equivalent to find the intersection between two planes, which is a line, and it passes 

through the origin. And it is realised by giving one of the components x  a convenient value (say 1), 

and solving for the other x ’s. This process implies that all the vectors connecting the origin and the 

points on this intersection line is a valid representation of the eigenvector corresponding to k . Usually, 

we would like to normalise the eigenvector to length 1. 

In the case of repeated poles, two of  s will be identical. Assume 1  is a double root of the 

characteristic equation, it will be a complete eigenvalue when ( ) 0k− =A I x  has two independent 

solutions. This will happen when ( ) 0k− =A I x  has essentially only one equation, and the other two 

equations are constant multiples of it or identically zero. This means that we can only obtain one 

equation in Eq. (4.97), and it is a plane equation. It implies that all the vectors connecting the origin and 

the points on this plane is a valid representation of the eigenvector corresponding to 1 . Unlike the 

previous case that we can use a unit vector to span the intersection line of two planes, we need two 

vectors to span a plane in the case of repeated eigenvalues. Because of this, it becomes problematic 

when the conventional MAC is used to assess the correlation between two modal vectors. To resolve 

this problem, D'Ambrogio and Fregolent [190] proposed to evaluate the correlation between a modal 

vector and a subspace spanned by two modal vectors, while Brincker and Lopez-Anelle [113] suggested 

using the angle between two subspaces. However, both of their discussion was restricted to the subspace 

of order 2. Therefore, whether or not the proposed solutions can be extended to the case with more than 

2 repeated eigenvalues needs to be further investigated.  

It must be pointed out that we adopted neither of the proposed methods given by D'Ambrogio and 

Fregolent [190] and Brincker and Lopez-Anelle [113] to assess the accuracy of our estimates for the 

close modes. On the contrary, we applied MAC to all our cases. It is because we want to test how well 

our proposed method, in the meantime compared to other promising methods, can estimate the 

individual mode shape vectors in a frequency band that the conventional FDD fails. In this case, low 

MAC values when does indicate bad mode shape estimates. 
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Besides, when we use two fixed mode shape vectors to simulate the system responses, we have 

automatically assumed that the system under the current measurement is oscillating in the direction 

governed by those two predefined mode shape vectors. According to our theoretical explanation of the 

FDD in terms of PCA, which shall also apply to our density operator, that the first and the second 

singular vectors point to the directions that explain most of the information of the system. Therefore, in 

the case when two predefined mode shapes are orthogonal, we can use the first two singular vectors to 

estimate the mode shapes. However, this may only work well when two modes are very close but not 

identical. Also, it is quite challenging for us to locate a proper frequency location that could give us the 

best estimates when there is no prominent peak in the purity plot. Moreover, there is no direct 

correspondence between the individual mode shape vectors and the first two singular vectors when the 

system is given a white noise excitation at all locations. More precisely, the first two singular vectors 

alternate between the two mode shapes. Therefore, for a damped system with close modes under the 

ambient excitation, when two modes are very close but not identical, their modes become indefinite. 

Hence, the relation between the estimated mode shapes and the reference mode shapes should be more 

appropriately described by statistical laws, and this is something that need further investigation. 

Usually, when we use the conventional FDD to estimate the mode shapes, our estimates are complex-

valued. In this case, the common practice is to keep the real part and discard the imaginary part. 

However, it is unwise to do so when we have two orthogonal close modes. Since the mode shapes are 

rotating in the subspace, the estimated mode shapes based on the singular vectors may have a small real 

part and large imaginary part. And it is likely that the imaginary part of a singular vector gives better 

estimates, even if the reference mode shape vector is real. Therefore, caution is needed when dealing 

with mode shape estimation for close modes. In this work, when calculating the MAC values, we used 

the complex-valued singular vectors. Although one should mind this identification issue, it is not a 

problem for well-separated modes. So, the regular practice is still valid.  

Apart from the above discussion, it is worth showing the difference between the singular value plot of 

a density operator and the FDD. In the last subsection of section 4.2.2.5, we have discussed the 

connection between the FDD and the decomposition of a density operator, see Eq. (4.82). We are now 

quite familiar with the FDD, and its corresponding singular value plot has been shown throughout this 

chapter, see for examples in section 4.2.2.3. The same as the FDD, we can also plot the singular values 

of a density operator against the frequency line. In Figure 4.21, the first three singular values are plotted 

for the same cases of (a1) (MAC_1, damping_1, noise_1) and (b1) (MAC_2, damping_1, noise_1) that 

we have discussed in section 4.2.2.3. It is interesting to note that the first singular value plot of a density 

operator has the same trend as the purity plot of the density operator, while the second singular values 

behave in the same way as the Von Neumann entropy plot. Such correspondence between the first two 

singular values of a density operator and its purity and the entropy plots need to be investigated further.  
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(a1) (MAC_1, damping_1, noise_1) (b1) (MAC_2, damping_1, noise_1) 

Figure 4.21 Singular values plot of a density operator against the frequency line. Only the first three singular 

values are considered.  

Finally, we want to point out that there is more than one way to obtain a plot that is similar to the purity 

plot we introduced in this chapter. For example, we can plot 1 2 1logk k   or 2 2 2logk k   against the 

frequency line, where 1k  and 2k  are the first and second singular value of a density operator at kf ; 

or we can plot ( )2 1 2log k k   against the frequency line, where 1k  and 2k  are the first and second 

singular value of a PSD estimator at kf . One can verify that the curves of those functions are similar 

to the purity plot. Therefore, we have multiple options to do the same analysis. However, compared to 

the Von Neumann entropy and the purity, which are well justified by the statistical theory and quantum 

mechanics, the other indicators bear less mathematical and physical foundation. Hence, we establish 

our theory based on the Von Neumann entropy and the purity of a density operator.  

4.5. Conclusion  

This chapter comprises 3 essential sections, which are given in section 4.2, section 4.3, and section 4.4, 

respectively. In section 4.2, the theoretical background for the FDD and a density operator is presented. 

The theory is given in two parts. In the first part, a PSD estimator is defined based on the Periodogram. 

While in the second part, the property of that PSD estimator is discussed. In the meantime, the FDD is 

redefined in terms of the PCA, and a density operator, which comes from quantum mechanics, is 

introduced and derived based on the PSD estimator to tackle the close modes estimation problem.  

In section 4.3, instead of applying the FDD to the stationary data, we tested its ability to deal with some 

nonstationary random processes with some simulated data. The discussion in this section served as a 

preparation for the modal analysis in chapter 6, as we want to use the FDD to identify the mode shapes 

of a bridge by using the output only responses of it in the first stage of our Vehicle Bridge Interaction 

(VBI) analysis. Since in our VBI model, the impact of the vehicle is insignificant, and the bridge’s 

modal parameters do not change over time, only the amplitude of the bridge responses diminish with 

time, and we can confidently apply the FDD to the bridge’s responses to extract the mode shapes.  
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While in section 4.4, we gave an in-depth discussion over the close modes problem based on our 

proposed method. The model we used here is similar to the one we used in chapter 3, with only a few 

changes to the parameters. Since the natural frequencies and damping ratio cannot be obtained by 

analysing a density operator alone, we designed a two-stage method, namely, Enhanced Polyreference. 

By using it we can extract all the modal parameters (i.e., natural frequencies, damping ratios, and mode 

shapes) we can get in an OMA analysis. As its name implies, it is a combination of the Polyreference 

method. In the first stage, we analysed a density operator to get the mode shape estimation, then used it 

to decompose the normal coordinates into a set of modal coordinates; in the second stage, we applied 

the Polyreference method to those modal coordinates to extract the natural frequencies and damping 

ratios. However, it must be pointed out that there is no particular reason to use the Polyreference in the 

second stage, and any pole analysing method fulfil the job. In order to evaluate the performance of our 

proposed method, the same data is also analysed by the Polyreference method and the data-driven 

Stochastic Subspace Identification (SSI-DATA) method.  

In our analysis, different cases regarding different MAC values of two close modes, damping ratios, 

and noise levels are investigated to reveal the underlying issues associated with the close modes 

identification problem. The results show that the Enhanced Polyreference improves the estimation 

accuracy of the natural frequencies and the damping ratios in comparison with the Polyreference, while 

the SSI-DATA can provide the best damping ratios estimation. When it comes to the mode shape 

identification, Enhanced Polyreference uses a density operator in the first stage to estimate the mode 

shapes gives the most robust performance than the comparison methods. Although the mode shape 

estimation procedure proposed in this work does not work perfectly when two modes are extremely 

close or identical, when the disparity between the two close modes are slightly larger, it gives 

comparable identification precision of the mode shapes estimates when compared to Polyreference and 

SS-DATA. Most importantly, the proposed method can work in a frequency band where the FDD fails.  

Besides, it is worth mentioning that the use of the Periodogram to define the PSD estimator is an 

essential step for us to use the PCA to explain the FDD, as it offers us a simple way to define a series 

covariance matrices in the frequency domain at each frequency line. With the idea of PCA, we can 

deem the FDD as a variance-based method. On the other hand, we can view a PSD estimator from 

another perspective. When transforming it into a density operator, we can use the Von Neumann entropy 

or the purity of a density operator to assess the state conditions of a system. If we plot the Von Neumann 

entropy or the purity of each density operator at each frequency line, the resulting curve can give us 

some insight into the system, whether it is in a pure state or a mixed state. When a system is in a pure 

state, the entropy approaches 0; accordingly, the purity approaches 1, whereas in a mixed state, the 

entropy will be large, and purity will be less than 1. Our analysis showed that the best mode shape 

estimates are not necessarily given by the peak frequency of the FDD. Rather, when two modes are 

very close to each other in the case that the first singular value plot of the FDD is unable to resolve it, 
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the best mode shape estimates are corresponding to the frequency locations where a system approaches 

a pure state. This is a significant result, as it reveals the protentional bias in using the FDD to estimate 

the mode shapes and the natural frequencies, see section 4.4.2.4. 

As we mentioned in section 4.2.2.4, the FDD is very good at detecting the close modes, but it is unable 

to resolve the mode shape and natural frequency identification problem when two modes are inseparable 

in the first singular value plot. Although good estimation results of the mode shape can be obtained by 

analysing a density operator when two modes are very close but not extremely close or identical, the 

dependence on the peak picking of the purity plot will cripple it when a system has large damping ratios. 

Nevertheless, the proposed method is noise insensitive, and for well-separated modes, it can also be 

used to estimated natural frequencies, as the peak frequencies in a purity plot converge to their FDD 

counterparts. Apart from this, according to our discussion, different correlation relations between the 

two close modes will generally give a different view of the entropy or the purity plot. Such information 

can be used to make reference to the orthogonality of mode shapes. Besides, when used in combination 

with the Polyreference method, the physical pole selection problem associated with the original method 

is disappeared, which largely simplifies the identification procedure.  

Furthermore, since the simply supported beam has well-separated modes, there is no need to use the 

Enhanced Polyreference method to estimate the mode shapes and natural frequency. Therefore, in the 

subsequent VBI analysis we will use the FDD to do the first stage identification. 
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5. A method for input-output system 

identification for moving force excitation 

5.1 Introduction  

As mentioned in chapter 1 that in order to develop a methodology to identify bridge modal parameters 

from vehicle induced vibration, we face two challenges, i.e., the correlation and the nonstationary nature 

of the measurements which originated from the spatial and temporal variation of the moving load from 

a passing vehicle. Overcome these two challenges is vital to estimate the modal parameters of interest.  

In the last chapter, we reformulated the theoretical background of the FDD to adapt to our nonstationary 

case. With such an extension, now we can confidently apply our two-stage strategy to extract the 

structural modal parameters from the system. In other words, we can use the FDD to estimate the mode 

shapes of the bridge by using the measurements solely from the bridge in the first stage, then use those 

identified mode shapes to decompose the system via the mode superposition technique. In which case, 

both the input signal from the vehicle and the output signal from the bridge will be decoupled at the 

same time. Then a complex SIMO system is being effectively decomposed into a series of SISO systems 

represented by the Frequency Response Functions (FRFs), a subspace identification procedure can be 

conducted to extract the modal parameters from the system in this fashion.  

In order to explain the proposed method, this chapter will first start with the discussion of the 

decorrelation of the input-output measurements. Then we will move on to present our two-stage system 

identification procedure. Two methods will be presented: one is the straightforward way through the 

optimisation of the FRFs, the other one will be the simple inverse method based on linear regression. 

Also, we will address the following question: should we use the estimated complex mode shape to 

decompose the system or its real counterpart? 

5.2 Decomposition of the bridge system 

To decorrelated the input and output of the measurement to identify the bridge modal parameters, we 

can think of transforming the correlated input-output measurements of the VBI system into independent 

subsystems, which are characterised by the modal coordinates. This decorrelation procedure, which is 

associated with the decomposition of the bridge system and its external moving force, can be achieved 

by applying the well-founded modal superposition technique to the equation of motion of the bridge 
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system. And to apply this technique, we need to have a clear understanding of the properties of the 

mode shapes associated with an equation of motion described by a special 2nd order ODE. Thus, in this 

section, we start our discussion with a system described by this special 2nd order ODE, then we can 

derive the important properties of the modes shapes associated with this system equation.  

5.2.1 Characteristics equation of motion 

Based on Newton’s law of motion, excluding the damping, the equation of motion for a n  DOF system 

is given by 

 ( ) ( ) ( )t t t= −My f Ky   (5.1) 

where ( ) nt f  is the external force vector, and ( ) nt y  is the state vector. M  and K  represent 

the mass and stiffness matrices, respectively, and they both are n n  matrix. For simplicity, in the 

following analysis we will drop the parenthesis with time.  

For no external forcing, the system equation of motion can reduce to  

 =My +Ky 0   (5.2) 

which is a second order differential equation, and it has a general solution which is the combination of 

pure exponential solutions. To make it clearer, we shall rewrite the equation of the motion as 

  
1= −−y M Ky  (5.3) 

And if we define  

 
-1=A M K   (5.4) 

Then 

 = −y Ay   (5.5) 

Now recall that in calculus, with two initial conditions, typically, the displacement ( )0y  and the 

velocity ( )0y , we assume that all solutions to the differential equation will have an exponential form, 

namely  

 
ste=y    (5.6) 

where 
n  is the amplitude.  
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This is a pure solution of the linear differential equation, the other solutions will be mixtures of these 

pure solutions, and the mixtures are adjusted to fit the initial conditions. The pure solutions are the mode 

shapes of the system.   

Now substituting this solution into Eq. (5.2), and define that is =  gives 

 
2=A    (5.7) 

The vector   must be an eigenvector of A , the corresponding eigenvalue is now 2 = , this equation 

is the characteristic equation. Now we have reduced the ODE problem to an eigenvalue problem.  

As we know from structural mechanics, the stiffness matrix K  and mass matrix M  are both symmetric 

positive definite matrices. However, the eigenvalues and eigenvectors of the characteristic equation 

depend on matrix A . Unfortunately, matrix A  is not generally symmetric. It means the eigenvectors 

of the characteristic equation do not have to be orthogonal to each other directly. And to calculate the 

eigenvalues and eigenvectors from an asymmetric matrix with current basis (defined by A ) is very 

costly. For this reason, we often try to find another basis in the same vector space, which not only 

preserves the system energy but also can largely simplify the procedure to find the eigenvalues and 

eigenvectors. Basically, to change the base, the conventional way is to manipulate the mass matrix M , 

which can be done by using Cholesky decomposition [194] [195].  

5.2.2 M-orthogonality of the mode shapes 

Since the mass matrix M  is positive definite, therefore we can always split it into 
T

D D  provided that 

D  has independent columns. This can be achieved by using Cholesky decomposition and 
T

D  will be 

a lower triangular matrix. Now, if we substitute 
T=M D D  into the characteristic equation, we will 

have  

  
T=K D D K   (5.8) 

As we know matrix D  has independent columns, so it is non-singular, its inverse exists. In the 

meantime, if we assume a new vector v  is related to   by the nonsingular matrix D , 1/ M=v D , 

where 1/ M  is a scaling coefficient, then plug this relation into this equation, we will have  

 -1 T=KD v D v   (5.9) 

And if we write Γ  for 
1−

D , and multiply through by ( )
1

T T
−

=D Γ , this becomes a standard eigenvalue 

problem for a single symmetric matrix 
T

Γ KΓ . Then Eq. (5.9) becomes 

 T =Γ KΓv v   (5.10) 
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The transformation from  

 =A   to 
T =Γ KΓv v   (5.11) 

More precisely, from  

 A  to T
Γ KΓ   (5.12) 

For the eigenvectors, the symmetric property of matrix  forces its eigenvectors y  to be 

orthogonal, i.e., 

 
T

1

0
i j

i j

i j

=
= 


v v  (5.13) 

This will lead to the so-called M-orthogonal (where M is the acronym of mass) of the eigenvectors or 

orthogonality of the eigenvectors with respect to the mass matrix of =K M  , 

 
T T T T

11 1

0
i j i i j j i j

i j i j

i j

i jM M M M

=
= = = 


v v D D M     (5.14) 

Particularly when i j= , we have  

 
T

i i iM=M   (5.15) 

which is the so-called the i th modal mass.  

From Eq. (5.14), we can conclude that the eigenvectors   of characteristic equation Eq. (5.2) are 

independent of each other, but the orthogonal property cannot be directly derived from the matrix A  

for the general case. If matrix A  happens to be a symmetric matrix, then the eigenvectors of A  will 

be orthogonal to each other directly, otherwise, the eigenvectors will satisfy the M-orthogonality, which 

we just defined.  

Now if we have r  i s and r  iv s, then we can group them into matrix Φ  and matrix V , respectively, 

then 

  =KΦ ΛMΦ (5.16) 

where Λ  is a diagonal matrix contains all the eigenvalues. 

With the matrix notation, Eq. (5.15) is given by 

 
T =Φ MΦ m   (5.17) 

where ( )1diag , , rM M=m  is the modal mass matrix. 

So if we pre-multiply 
T

Φ  to Eq. (5.16), we will have 

T
Γ KΓ
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T T= =Φ KΦ ΛΦ MΦ Λm   (5.18) 

If we define ( )1diag , , rK K= =k Λm , then it gives the modal stiffness matrix, where  is the 

th modal stiffness. Since 
2 = , then 

  
2 i
i

i

K

M
 =  (5.19) 

On the other hand, let us recall the mode superposition technique we discussed in chapter 4. As a quick 

review, we suppose the displacement vector of the structure is denoted by u , according to the mode 

superposition technique, u  can be expressed in terms of a set of mode shapes Ψ  of amplitudes q , 

 u = Ψq   (5.20) 

where 
du  denote a sample vector of d  sensors (or the number of the independent points that 

define the selected displacement patterns), which is known as the geometric coordinates. If the dynamic 

behaviour of the system can be represented by only  modes, then 
rq  denotes a sample vector of 

 modal coordinates. Accordingly, Ψ  is a d r  mode shape matrix. 

Note that the modal superposition technique given by Eq. (5.20) can also apply to the state vector y  as 

well. With the mass normalised mode shape matrix, y  is expressed as  

 =y Φq  (5.21) 

Normally, Eq. (5.20) and Eq. (5.21) is connected with an observation matrix dC , which is 

 d=u C y  (5.22) 

Thus,  

 d=Ψ C Φ  (5.23) 

Furthermore, when Ψ  is rank deficient but has full column rank, i.e., Ψ  is a d r  matrix with r  (<

d ) independent columns, we can establish the relation between u  and q  through a least square sense. 

For example, if we want to find q  based on Ψ  and u , we can project the vector u  in the d  

dimensional space onto the subspace determined by the r  columns in Ψ , then find the projection of u  

which is the closest to itself, that is 

  (5.24) 

Where the estimated modal coordinates are given by 

iK i

r

r

( )
1

T Tˆ
−

=u Ψ Ψ Ψ Ψ u
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   (5.25) 

So, in this subspace, Eq. (5.20) also stands, but it is relation between the estimated terms. 

   (5.26) 

Note that  

   (5.27) 

is the pseudo inverse of Ψ . 

5.2.3 System damping  

The M-orthogonal property of the mode shapes we discussed in section 5.2. plays a vital role in 

structural vibration analysis. However, this property is not applicable to all damping systems. 

Unfortunately, all real structures are damped to some extent, and in most cases, the actual damping 

mechanism of a system is unknown. To simulate the energy dissipating phenomenon, we have to model 

the damping force. Practically, there are two damping models we normally encounter in modal analysis, 

namely, viscous damping and hysteretic damping [73], [141].  

Table 5.1 Summary of the system damping models 

 Viscous damping Hysteretic damping 

Equation of motion 
  

Proportional damping 
  

General damping 
 

D
 

 

In table 5.1, a summary of the commonly used damping models is presented. Note that the proportional 

damping matrices C  and  in the table are given in the Rayleigh damping form, where  and  

are proportionality factors.  

From the equation of motion for those two damping models, we can see that the hysteretic damping 

case can be treated as an eigenvalue problem if one endeavours to find the damped vibration modes of 

the system regardless of the form of the damping matrix. The orthogonality property of the damped 

mode shapes is directly valid for this case since its equation of motion has the same format as Eq. (5.2), 

one only needs to replace  to . However, the eigenvector obtained for this case will be 

complex. Also, note that the concept of damped mode shapes should not be confused with the mode 

( )
1

T Tˆ
−

=q Ψ Ψ Ψ u

ˆˆ =u Ψq

( )
1

† T T
−

=Ψ Ψ Ψ Ψ

0+ + =My Cy Ky ( )i 0+ + =My K D y

0 1 = +C M K 0 1 = +D M K

C

D 0 1

K i+K D
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shapes or normal modes we defined from the undamped characteristic equation of motion, as the 

damped mode shapes can be complex rather than real due to the occurrence of the damping.  

For the viscous damping model, it is a general second order differential problem, which is more difficult 

than the eigenvalue problem if we use the general form of the damping element. However, when the 

damping matrix is proportional to the mass and stiffness matrices, it is theoretically easier for analysis. 

Because the proportional damping possesses a particular advantage that the modes of a structure with 

the proportional damping are almost identical to those of the undamped version of the model [73]. 

Therefore, it is common practice to analyse the undamped system in full then make a correction for the 

presence of the damping before we derive the modal properties of a proportionally damped system. 

However, this procedure is only valid in the case of this special type of distribution of damping, which 

may not apply to actual structures in modal tests [73]. Apart from this, the orthogonality property of the 

undamped mode shapes can be used to uncouple the damping forces as well, which is why the viscous 

damping model is widely used in engineering. 

To be more specific, when the damping matrix is a linear combination of the mass and stiffness matrices, 

the M-orthogonality of the mode shapes of the undamped system can also diagonalise the damping 

matrix. In other words, the normal coordinates transformation serves to uncouple the damping forces in 

the same way that it uncouples the inertia and elastic forces. 

Hence the Rayleigh form of the damping matrix will permit uncoupling of the equations of motion. In 

general, then, the orthogonal damping matrix may be of the form [141] 

 ( )1

0

j

j

j




−

=

= C M M K   (5.28) 

in which as many terms may be included as desired. Proportional damping is obviously contained in 

Eq. (5.28). 

For a non-rotating linear structure, the damped mode shapes can be complex only if the damping is 

distributed in a non-proportional way [73], and this situation is widely seen in real structures. It is 

because the majority damping in the real structure is normally concentrated at the joints between 

components of a structural assembly, which does not have a proportional distribution, whilst the internal 

(hysteresis) damping of most structural elements is distributed essentially proportional to the stiffness 

distribution [73]. Therefore, this bias ingredient of non-proportionality for complex modes is likely to 

exist in most structures [73]. Besides, it must be pointed out that non-proportionality is only a necessary 

condition for the presence of the complex modes, it is not sufficient, at least not if the degree of 

complexity is to be other than trivial [73]. 
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5.2.4 Complexity of the mode shapes 

In the last section, we had a brief introduction about the system damping and its impact on the mode 

shapes. In this section, we want to elaborate on the definition of the mode shapes and give a further 

discussion about the complexity of the mode shapes. It is worth mentioning that the definition of the 

mode shapes varies from field to field. Even in engineering, people have a different understanding of 

what mode shapes are.  

For example, in structural dynamics, the mode shapes, also known as normal modes, are defined 

according to the characteristic equation Eq. (5.2), which will always be real. While researchers working 

particularly in modal analysis, they see normal modes as the characteristic modes of the structure in its 

actual damped state [73], which could either be real or complex, and the imaginary part of the mode 

shape contains some important phase information. Based on such definition, the complex modes are 

commonly seen in practice. Accordingly, researchers in the modal analysis would argue that the 

estimated mode shapes are complex is normally due to the following reasons, such as system damping 

(not all system damping result in complex mode shapes, see section 5.2.3 ), poor measurement or 

analysis method or the occurrence of the repeated poles.  

For the mode shape complicity caused by the analysis method, a good example is the estimated mode 

shapes obtained based on the classical FDD technique. The classical FDD always gives complex mode 

shape estimates even if the structure has real modes.  

Clearly, these two definitions about the mode shapes are not consistent. Apart from this, it is believed 

that the real mode has the appearance of a standing wave, while the complex mode is better described 

as exhibiting of a travelling wave [73]. Such perception about the real mode and the complex mode is 

also misleading. The appearance of the standing wave or the travelling wave is our observation 

regarding the deflection shape of the structure, not the mode shape itself. The deflection shape is usually 

the linear combination of different mode shapes. Besides, if each mode is seeing as a standing wave, 

then the linear combination of two or more standing waves will produce a travelling wave. 

It is true that when the damping force (non-proportional) is introduced into Eq. (5.1), the calculated 

mode shapes will be complex. For each mode, we need to use two eigenvectors (they are complex 

conjugates) to describe it in order to generate the real displacement. This is similar to the case of 

repeated poles that one frequency is corresponding to the linear combination of two eigenvectors. As a 

result, we constantly observe complex modes for an symmetric structure even in the absence of damping 

[73]. 

Suppose a general expression of the structural response can be given by 

 ( ) ( )i
,

x t
y x t Be

 +
=  (5.29) 
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for some frequency   and wave number .  can be seen as the continuous form of the state 

vector  described in two-dimensions, and  is the dimension along the DOFs of the structure.  

Define  

 ( ) i xw x Be =  (5.30) 

where B  is the amplitude, and it can be real or complex. Then ( ) ( ),0w x y x=  gives the initial state 

of vibration, which we can see it as mode shapes. 

Since there is no complex value in the real world, the observation of  is given by 

 ( ) ( ) ( ) ( ) ( )* i -ii -i *,
x t x tt ty x t w x e w x e Be B e

     + +
= + = +  (5.31) 

where 
*B  is the complex conjugate of B . 

If 1 2iB  = + , expand the above equation, we obtain  

 ( ) ( )2 2

1 2, 2 cosy x t t x    + = + + +  (5.32) 

where ( )  2 1arctan 0, 2   =  . Eq. (5.32) represents a leftward-moving sinusoidal wave. Here, 

we added a plus sign in front x  to demonstrate the direction of the travelling wave. From Eq. (5.31) 

and Eq. (5.32), we learned that if  is complex, the net result of ( ),y x t  is a travelling wave, 

which is what we observe in real life.  

Similar to Eq. (5.31), the observation of ( )w x  in real life is given by is  

 ( ) i * -ix xw x Be B e = +  (5.33) 

Expand Eq. (5.33), we get 

 ( ) ( ) ( )1 22 cos 2 sinw x x x   = −  (5.34) 

Or we can express it as  

 ( ) ( )2 2

1 22 cosw x x   = + +  (5.35) 

which means the complex expression of ( )w x  given by Eq. (5.30) is corresponding to a real shape 

expressed as Eq. (5.35).  

 ( ),y x t

( )ty x

( ),y x t

( )w x
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Since the  given by Eq. (5.34) is two times the real part of  given by Eq. (5.30). Thus, it 

does not matter if we substitute the real part of Eq. (5.30) or the real expression of  given by Eq. 

(5.35) into Eq. (5.31). Suppose we substitute the real express of  given by Eq. (5.35) into Eq. 

(5.31), it simply becomes 

 ( ) ( ) ( )2 2

1 2, 4 cos cosy x t t x    = + +  (5.36) 

which represents standing wave in real life, with ( )2 2

1 24 cos t  +  being the amplitude. This 

corresponds to the case that if we have real mode shapes, the net result of our observation is a standing 

wave.  

Now consider the small-amplitude free vibration of a uniform string of unit length, the string lies at rest 

along the interval 0 1x  , prior 0t = , and it has two fixed ends, and ( ) ( )0 1 0w w= = . With such 

a hard boundary condition, based on Eq. (5.32) the rightward-moving wave can be given by 

 ( ) ( )2 2

1 2, 2 cosy x t t x    − = + − +  (5.37) 

The total wave is therefore, 

 ( ) ( ) ( ) ( ) ( )2 2

1 2, , , 4 sin siny x t y x t y x t t x    = + + − = − + +  (5.38) 

which represents a standing wave, with ( )2 2

1 24 sin t   + +  being the amplitude. This is the 

standing wave generated by a so-called complex mode. Similarly, based on Eq. (5.36), which is derived 

according to a real mode, we can obtain a standing wave as well, 

 ( ) ( ) ( ) ( )2 2

1 2, 8 cos cos cosy x t t x    = +  (5.39) 

with ( ) ( )2 2

1 28 cos cost   +  being the amplitude. 

Particularly for this special case that ( ) ( )0 1 0w w= = , if we substitute this boundary condition into 

Eq. (5.34), we have 1 0 =  and / 2 = , B  is pure imaginary, then Eq. (5.38) becomes 

 ( ) ( ) ( )2, 4 cos siny x t t x  = −  (5.40) 

On the other hand, if we substitute 1 0 =  and / 2 =  into Eq. (5.36), we obtained  

 ( ) ( ) ( )2, 4 cos siny x t t x  =  (5.41) 

( )w x ( )w x

( )w x

( )w x
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which is equivalent to Eq. (5.40).  

According to our analysis, even if the structure has complex mode shape, the structure can still vibrate 

like a standing wave, as long as the combination of the leftward-moving wave ( ),y x t+  and reflection 

wave ( ),y x t−  produces a standing wave. Therefore, it is not justified to use the observed standing wave 

and the travelling wave to refer to the real or complex mode shapes without mentioning the boundary 

conditions. However, if there is some energy loss at the reflection point or along the string, which alters 

the wavenumber, phase, or the amplitude of the leftward-moving wave and the reflection wave, the 

combination of them is unlikely to generate a standing wave, what we see will still be a travelling wave.  

It should be pointed out that the contribution of the force is not included here. It is true that the forced 

excitation response will constantly show relative phase differences between the structural responses of 

different locations, which, as a result, indicate a complex mode [73]. However, when talking about the 

normal modes, we normally refer to each mode shape with a certain natural frequency. Under forced 

vibration, when the excitation frequency of the structure differs a lot from its natural frequencies, the 

vibration shape will not be able to reveal the mode shape of the system. Even if the operating deflection 

shape reflects the shape of the nearby mode when an excitation frequency is close to one of the natural 

frequencies of the system, due to the contribution of all other modes (albeit small), such force-induced 

deflection shape will not be identical to the shape of the nearby mode [73], and it is usually referred to 

the forced vibration mode, or an operating deflection shape (ODS) [73]. Here, we shall separate this 

forced vibration mode from our discussion of the normal modes of the system.  

To sum up, we separate the complexity of the mode shapes into two categories: theoretical complexity 

and estimation complexity or observation complexity. We recognise the complexity of the mode shapes 

generated by the introduction of the system damping as the theoretic complexity. As for the estimation 

complexity, we admit it as the contribution of the system damping, repeated poles, bad measurements, 

analysis method, etc. It means that the estimation complexity of the mode shapes for the real structure 

is the combination of all sources. Whether we should discard the imaginary part of the estimated mode 

shapes depends on the damping distribution of the system and how significant the damping force is.  

Additionally, when we say the structure has real modes, we normally refer this to our observation of 

the standing wave, which is a misleading concept. Nevertheless, when a structure, such as a long-span 

bridge, has hard boundaries and its damping is very low, we can still observe the standing wave when 

it vibrates with a dominant mode. Therefore, we usually deem such structure has real modes. 
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5.2.5 Decoupling the damped system 

In this section, we consider a linear damped system with the proportional damping element. The system 

equation of motion is presented as follows with the introduction of the damping force to Eq. (5.1), that 

is 

 + + =My Cy Ky f   (5.42) 

In terms of our aforementioned discussion of the system damping, we know that for a viscous damping 

model, when the damping matrix is proportional to the mass and stiffness matrix, it can be decomposed 

in the same way as the mass and stiffness matrix. Therefore, we can utilise the M-orthogonal property 

of the mode shapes we obtained from the undamped system given by Eq. (5.2) to decouple the system 

expressed as Eq. (5.42). 

Now first substituting Eq. (5.21) into this equation using the mass normalised mode shapes, we obtain 

 + + =MΦq CΦq KΦq f   (5.43) 

Then if we pre-multiply both sides by 
T

Φ , we arrive at 

 
T T T T+ + =Φ MΦq Φ CΦq Φ KΦq Φ f   (5.44) 

where 
T=P Φ f  is the so-called modal force, and Eq. (5.44) denotes the decoupled system equation of 

motion, which can be further expressed as 

 ,    (5.45) 

where iC  is the i th modal damping coefficient, which can be further given by 

   (5.46) 

where  is the damping ratio associated with the mode shape . 

Therefore, from Eq. (5.19) and Eq. (5.46), Eq. (5.45) can be simplified as  

 
22 i

i i i i i i

i

P
q q q

M
 + + =   (5.47) 

It should be pointed out that Eq. (5.42) is the general equation of motion for a second order linear system, 

and it imposes no restriction on the form of the external forces, which means it also applies to the 

moving force. The mode shape matrix can be used to transform the geometric forces into the modal 

forces corresponding to each mode.  

i i i i i i iM q C q K q P+ + = 1, ,i r=

2i i i iC M  =

i i i
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5.3 Two-stage system identification method 

Having discussed the mode shape properties in the previous sections, now we can present the two-stage 

system identification strategy. As previously mentioned, the mode shape matrix serves as a medium to 

transform the geometric coordinates to modal coordinates and external forces to modal forces. When 

diagonalization of the damping matrix is achievable also, a damped bridge system can be decomposed 

into a series of uncoupled SISO systems using the mode shape matrix in the case of a moving force.  

 

 

Figure 5.1. The flow chart of the proposed two-stage identification method  

Therefore, in the first stage, we can use an appropriate output-only method, such as the FDD technique, 

to identify the mode shapes of the bridge. Then use the estimated bridge mode shapes to decouple the 

bridge system. The modal parameters, i.e., natural frequencies, damping ratios, and the modal masses, 

can then be identified in the second stage. Since the first stage techniques have been discussed 

extensively in the previous chapter, this section mainly focuses on presenting the second stage strategy, 

and an optimisation procedure and a least square method are discussed. The diagram shown in Figure 

5.1 gives the flow chart of the two-stage process. Note that the identified natural frequencies and 

damping ratios in the first stage are not necessary inputs for the second stage identification. If we use 

an optimisation method in the second stage, they can be used as initial guesses. However, if a least 

square method is adopted, then those estimates are redundant. 
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5.3.1 Modal force of the moving load 

Suppose the tires of a vehicle are connected to the bridge surface all the time when traversing a bridge, 

then the decoupled equation of motion for the bridge can be easily derived using the continuous form 

of Eq. (5.47). Figure 5.2 shows an example of a moving load traversing a bridge with length L . 

 

 

 

Figure 5.2. Simply supported Euler-Bernoulli beam model with moving point load  

Now define  as the distributed vertical loading on a bridge, where  denotes the location of the 

vertical loading. The continuous form of the decoupled bridge system is given by 

   (5.48) 

where L  is the bridge length. ( )i x  is the i th continuous mode shape. 

In the case of a  moving concentrated load with a given time varying intensity  and speed  , the 

load  can be expressed as [196] 
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  (5.49) 

where  is the time required for the load to cross the bridge of length . 

With Eq. (5.49), the right hand side of the Eq. (5.48) is given by 
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5.3.2 Stage I — estimation of the bridge mode shapes  

In this section, we shall answer two questions. One is whether or not we can use the mode shapes we 

estimated from the bridge responses under moving force excitation to decouple the bridge system. The 

other one is whether we should use the real or the complex mode shapes to decouple the system, as the 

mode shape estimates can be complex-valued.  

5.3.2.1 Legitimacy of the usage of the estimated mode shapes 

In our VBI bridge modal parameters analysis, we shall separate the bridge state into two-stages: vehicle 

moves across on the bridge, and vehicle leaves the bridge. When we use the output-only identification 

technique such as the FDD to estimate the bridge mode shapes based on the bridge output responses 

only when the vehicle is moving across the bridge, the mode shapes we identified is actually the mode 

shape of the whole VBI system (i.e., the combination of the vehicle subsystem and the bridge 

subsystem). When the vehicle is moving across the bridge, the location of the vehicle is changing all 

the time. As a result, the configuration of the whole VBI system is changing all the time. In other words, 

the mass and stiffness matrices of this VBI system are not constant anymore.  

Apparently, the mode shapes of the whole VBI system are different from the bridge’s actual mode 

shapes. However, as both the size and weight of the vehicle are usually smaller than the bridge, the 

bridge’s vibration will still dominate the vibration of the whole system. Apart from this, when the 

excitation frequency is close to being one of the system’s natural frequencies, the operating deflection 

shape will reflect the shape of the nearby mode but will not be identical to it because of the contributions, 

albeit small, of all the other modes [73]. Therefore, we can potentially use the estimated mode shapes 

of the whole VBI system to represent the bridge’s estimated mode shapes, provided that the estimated 

mode shapes of the whole VBI system and the bridge mode shapes are highly correlated.  

After the vehicle exits the bridge, the bridge subsystem enters a free vibration stage. It is beneficial to 

add the free vibration part into the VBI analysis of the bridge subsystem. This is because the longer the 

time history, the smaller the PSD bias we have if we use the FDD to estimate the mode shapes. Therefore, 

the whole-time history of the bridge system is used in our analysis, and it is used in both stages of the 

proposed method.  

Besides, it is worth mentioning that it is commonly believed that the VBI effect can offer an additional 

damping effect (i.e., an apparent increase in the damping ratio) and additional mass effect (i.e., an 

apparent decrease in natural frequency) on the railway bridge response [197], and it is improper to apply 

the FDD on the vibration responses excited by spatially correlated excitation [14], as it might result in 

falsely identified structural dynamic properties. Nonetheless, this is not a problem for this study for the 

following reasons.  
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Although the estimated bridge properties by using the FDD may result in erroneous results under the 

vehicle excitation, the actual context studied in [14] is under the traffic excitation, which is similar to 

the case of a passing train scenario. The actual mass ratio between the vehicle and the bridge is small, 

and the estimation is based on the output-only time histories of the bridge under forced vibration. As a 

result, the estimated resonance frequencies of the bridge based on an output-only identification method 

can be effectively alerted. Whereas the proposed method in this study only concerns a single vehicle, 

the mass ratio between the vehicle and the bridge is significantly smaller than the traffic excitation case.  

Apart from this, not only the VBI interaction responses of the bridge but also the free vibration of the 

bridge responses is included in the identification procedure. This is essential because the inclusion of 

the free decay part of bridge responses will introduce more energy to the bridge spectral density at each 

frequency point, including the resonance frequencies. When the bridge properties do not change with 

time, more data means more information and better estimation. It is true that when we use the forced 

vibration responses only of the bridge to estimate the bridge properties, we will end up with biased 

results. But when the bridge vibration is dominated, and the free decay vibration of the bridge is 

included in the analysis, the effect of the vehicle frequency that contributes to the bridge spectral density 

is limited. It means that a frequency domain technique such as the FDD should be able to extract the 

information we need from the bridge forced and free vibrations. In chapter 6, we will present our results 

of the FDD application in terms of two VBI systems.  

5.3.2.2 Complexity problem of the estimated mode shapes 

As for the complexity problem of the estimated mode shapes, from our previous discussion about the 

mode shape, we know that the observed complex modes are common in practice, and its complexity is 

depending on the damping force, repeated poles, measurements, or analysis method. Among the sources 

of the complexity, we wish to preserve the one contributed by the system damping. However, it is not 

possible for us to separate it from the influence of other sources, such as the ones come from bad 

measurements and analysis method. Note that the complexity of the estimated mode shapes for the 

repeated pole case is just a result of our observation. It does not necessarily mean the system has 

complex modes.  

Now this complexity property of the estimated mode shapes poses a problem for the two-stage system 

identification method we proposed in this thesis because the second stage identification of the proposed 

method depends on the goodness of the estimated mode shapes. Therefore, whether to use the real or 

the complex mode shapes to decouple the system is an important question to answer for this work.  

For a structure with low damping, its theoretical mode shapes can be real or close to real. In this case, 

most of the complexity of the estimated mode shape would come from bad measurements and analysis 

methods and such contribution might be more significant than the one contributed by the damping force. 
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In this case, keeping the imaginary part of the estimated complex mode shape will introduce extra errors 

for further analysis. On the other hand, the complex mode shape always corresponds to a real shape 

(see Eq. (5.35)), which we can perceive in real life, and that real shape is twice the amplitude of the real 

part of the complex mode shape. When a structure has close to a real mode shape with low damping, it 

is more appropriate to use the real part of the estimated mode shape or its corresponding real shape to 

represent the mode shapes of the structure. 

Besides, it must be pointed out that the essence of the modal superposition technique is to use a set of 

base functions to decompose the measurements into a set of independent modal coordinates. As long as 

the basis functions are independent of each other, we can always find a rotated version of them to make 

it satisfy the M-orthogonal property of the mode shapes we talked about in the last section. Since in the 

second stage of our method, all we need is to use the M-orthogonal property of the mode shapes to 

decouple the bridge system, as long as we have independent bases, the second stage analysis is valid.  

Additionally, the real-valued one-sided spectral density matrix we presented in chapter 3, if used in 

conjunction with the FDD, the mode shapes we estimated will be real immediately. Since the simulation 

case used in the next chapter is a simply supported beam, and it is assumed to have proportional viscous 

damping, the structure has real mode shapes theoretically. Therefore, we will use the estimated real 

mode shapes to decouple the system, and the real-valued one-sided spectral density matrix is adopted 

with the application of the FDD in this study.  

Furthermore, it is also worth mentioning that, as our purpose is to identify the modal parameters of the 

bridge, what we decoupled is the bridge system. The vehicle system only provides the external force. 

Thus, we are not talking about using the bridge mode shapes to decouple the vehicle system here, but 

we are talking about using the bridge mode shapes to decouple the measured response of the bridge 

system.  

5.3.3 Stage II — construction of the Frequency Response Functions (FRFs) 

for the moving force excited system 

Eq. (5.48) gives the general form of the decoupled equation of the motion of the beam system subjected 

to a moving force. When the force is on the bridge, the structure undergoes forced vibration. After the 

force leaves the bridge, it will experience free vibration until the vibration dies out because of the 

damping.  

If we assume the bridge is at rest before the moving force enters the bridge, and we measure its vibration 

from the time the moving force enters the bridge until it returns to its static state, we can still use Eq. 

(5.48) to described the vibration of the structure for each mode, due to the additive property of a linear 

system. In other words, if Eq. (5.48) represents the moving force induced vibration equation of motion 
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of the bridge and the free vibration of the bridge after the vehicle leaves the bridge, which is given by 

the following equation  

 ( ) ( ) ( )22 0f f f

i i i i i iq t q t q t + + =  (5.51) 

can be added to Eq. (5.48).  

Therefore, we can express ( )iq t  as 
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Now if we take the Fourier transform of both sides of Eq. (5.48),  
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Denote 
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In the meantime, observe that,  
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Substitute Eq. (5.54) to Eq. (5.56) into Eq. (5.53), we obtain 
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Now rearrange Eq. (5.57), we shall have the Frequency Response Function for our moving force 

excitation case 
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which has the same format as the normal FRF, the only difference is given by the generalised moving 

force. This equation is significant. It is because the once highly correlated MIMO system has been 

transformed into a series of SISO systems, and the FRF we are concerned with here is the simple direct 

point FRF, no direct transfer or cross transfer FRFs are associated. Thus, we can use some very simple 

optimisation or regression methods to identify the parameters from the above equation.  

Besides, it is worth mentioning that by using (5.58) to estimate the natural frequencies of the system 

shall result in better estimations if we compare the results with the estimates we obtain from any output-

only method. This is because, in the construction of the FRF, the effect of the input carried through the 

output-only method is eliminated.  

5.3.3.1 Optimisation of the Accelerance 

In practice, the dynamic response we normally measure on structures is the acceleration. 

Therefore, for practical use, we shall use ( )iq   rather than ( )iq   in Eq. (5.58). Then we have 
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which is called the Accelerance. 

In order to identify the modal parameters ,  and  in Eq. (5.59), we can choose an appropriate 

optimization method or a hybrid optimization strategy [198] to realise it. 

In numerical optimization, the aim is to minimise an objective function, depends on the parameters of 

the system, the general mathematical formulation in this case can be written as 

 ( )min ;
i

iJ


 


  (5.60) 

where ( );iJ    is the objective function, and ( ), ,i i i iM  =  represents the three-dimensional 

parameter vector. It is chosen so that the objective function  best agrees with the observation 

in some sense.   is the feasible set, in unconstrained optimization, it equals 
m

; in constrained 

optimization scenario, it is a subset of 
m

, and parameters will be subject to some constraints in the 

meantime [199].  

Now with the expression of the Accelerance given by Eq. (5.59) we consider the following objective 

functions, 

 ( ) ( )2

1

1
;

2

m

i j i

j
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=

=   (5.61) 

where m  is the number of points, and ( )j iR   can have the following three forms  

i i iM

( );iJ  
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and 
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  (5.64) 

where ( )i jI   and 
ijI  represent the parametrized model and the observed Accelerence, respectively. 

m  is the number of residuals. In this case, it is also the number of selected frequency lines from the 

transfer function, and the range of which is chosen here as [0.9, 1.1] times the natural frequency of the 

mode. Note that the sum of squares on the right side of the equation is divided by 2, which has no actual 

effect on the optimal solution. It’s introduced only for the convenience of the differentiation so that the 

square exponent will be cancelled out. More generally, Eq. (5.61) can be normalised by the number of 

summands m  [56], then the objective function becomes the average error per data point, or in a sense, 

the mean square error between the predicted model and the measured sample divided by 2. Then the 

sum of squared errors from different datasets with differing sizes are comparable since the error has 

been averaged over its sample length. 

Among the three representations of ( )j iR  , ( )2 j iR   and ( )3 j iR   are continuous functions. Thus, we 

can treat them as a least-square problem. Methods such as the Gauss-Newton line search method and 

the Levenberg-Marquardt trust-region method can be applied. As for , it is a direct measure of 

the discrepancy between the model and the observations. Here, it represents the difference between the 

observed and predicted FRFs. Since the least square methods need to take the partial derivative of 

 directly to form a Jacobian matrix, which, in this case, is a non-smooth function ( ( )1 j iR  is a 

complex function) in 
m

. As a result, the direct application of least square methods for the objective 

function with  is not available. Nevertheless, the objective function itself is continuous – its 

derivative information can still be calculated through either analytical or numerical methods (finite 

differencing) [199].  

In principle, one can choose other forms of the objective function other than Eq. (5.61) to optimize. For 

example, the conventional Circle-Fitting method [64], which is trying to find the FRF circle centre 

position and the radius, uses the mass normalised mode shape, but the mass information is incorporated 

( )1 j iR 

( )1 j iR 

( )1 j iR 
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in the modal constant, which is not a direct variable in the objective function. In other words, the modal 

mass is not being optimized, and without the mode shape information, it’s unable to be extracted neither.  

In order to formulate the optimisation strategy, we shall notice that the problem is dealt with herein has 

natural constraints on the variables. Specifically, the natural frequencies, damping ratios, and modal 

masses have positive values. However, it may be safe to disregard these constraints as they may not 

affect the solution and do not interfere with algorithms [66]. Therefore, in theory, both unconstrained 

optimization and constrained optimization techniques are applicable. 

Generally speaking, the global solution for an optimization problem is difficult to find, but the situation 

may be improved when constraints are added, as the feasible set might exclude many of the local 

minima, and it may be comparatively easy to pick the global minimum from those that remain [66]. 

Nonetheless, there are some issues that need to be addressed here, the most important one being the 

effect of constraints imposed on the variables. Even though constrained optimization methods have 

some advantages to trace the global minimum as previously mentioned, constraints can also make things 

more difficult. In other words, in some circumstances, the problem has a unique solution without 

constraints, but with constraints, the algorithm could illegalise certain points that might otherwise be 

the global optimum or find several feasible points near the neighbourhood of the local minimiser [199]. 

This means the algorithm could converge at different local solutions for each run even if the same 

sequence is used. In some cases, the different constraints added to the function could result in different 

results.  

For this reason, a hybrid optimization strategy is adopted. Specifically, the search for a minimiser begins 

with two unconstrained optimization methods, followed by a constrained optimization method with a 

“hot start” obtained from the previous step. This unconventional procedure is used to avoid the 

unpleasant termination of the mostly preferred unconstrained optimization program, which might stop 

at a local minimum, which is far from a global minimum. In the meantime, it can preserve both the 

advantages of the constrained and the unconstrained optimization methods to ensure a solution to Eq. 

(5.61) will always be found in the reasonable range of the parameters. 

The first unconstrained optimization algorithm used here is a first-order method or direct search method, 

which does not require derivative information and approximates the objective without recourse to 

Taylor expansions. In other words, such methods rely exclusively on values of the objective function 

and compare each trial solution with the best previous solution. Basically, there are three methods that 

can be drawn from this genre, pattern search methods, simplex methods (not the simplex method for 

the linear programming), and methods with adaptive sets of search directions [198], [200]. These three 

basic direct search methods are readily available in the MATLAB toolbox. Particularly for the non-

smooth problems, techniques like the simplex method can be superior to other approaches. In this 

research, the simplex algorithm of Nelder and Mead [201] is used. 
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Even though gradient-free methods can find many good solutions and can be used to deal with 

nondifferentiable problems, they are not necessarily guaranteed to find the true global optimal solutions. 

In other words, as one of the disadvantages mentioned before, the direct search methods used here can 

sometimes stop at places that are far from the global minimum, which will give a defective “hot start” 

for the next step. On the other hand, with the gradient information, the gradient-based optimizers are 

efficient at finding local minima for nonlinear problems. Hence, another method based on the trust-

region technique, namely Levenberg-Marquardt method [199], is employed at the same time to ensure 

the next step can enjoy superior local convergence properties.  

To be more specific, both ( )1 j iR   and ( )2 j iR   will be used in the first step to generate the “hot start”. 

For the objective function using , the unconstrained derivative-free optimisation method is used. 

While for the objective function based on , the unconstrained gradient-based optimisation 

method is applied. Then ( )3 j iR   is used in the second step to form a constrained optimisation problem. 

As for the constraints, the natural frequencies are bounded between zero and the Nyquist frequency, 

while the constraints of the damping ratios and modal masses, in this case, are released up to the 

software precision. 

Optimization algorithms are iterative. They need an initial guess of the parameters and generate a 

sequence of the improved estimates until they terminate. In many cases, good initial guesses result in 

better optimisation results. For the first two algorithms, the starting points are selected based on the 

previously identified information (natural frequencies and damping ratios) and general knowledge of 

the parameters (modal masses). Since two algorithms are being used in the first step, two groups of 

potential solutions are available when both of them successfully terminate at a solution. There will be 

eight combinations of the results. To select the best starting point for the next step, all eight 

combinations are substituted into Eq. (5.61) with ( )3 j iR   to see which combination gives the least 

value. By using this hybrid method, the whole optimisation program will be less sensitive to small 

changes to the initial conditions.  

5.3.3.2 Regression of the Apparent mass 

Instead of optimising the Accelerance directly, which needs an initial estimate, we can evaluate its 

inverse, which is called the Apparent mass, by using the regression method, which does not require an 

initial guess.  

The Apparent mass is defined as  

( )1 j iR 

( )2 j iR 
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Since 2

i i iK M = , we can rewrite the above equation as 
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Now we can separate the real and imaginary parts of the Apparent Mass, 
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Further, we can get  

 

( )

( ) ( )

2

1
Re 1

1
Im 2

i

i

i

i i i i

M
A

K

A K M




 


  
=      −  

 
= −    
 

  (5.68) 

For now, if we have the measured ( )nA   which is complex, we can always separate its real and 

imaginary part to do the analysis independently. At each frequency value there will be a corresponding 

measured  complex value. If we evaluate Eq. (5.68) at multiple frequency locations, we can 

obtain the matrix form of Eq. (5.68) as follows 
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where matrix D  is a tall triangular matrix with full column rank, so does the vector v . ( )i A  is a 

column vector of the Apparent mass.  

Therefore, to calculate the modal properties and the damping ratios, the pseudo-inverse is needed for 

the real value equation, but for the imaginary value equation, it can simply be done by vector projection, 

namely, 
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Since 
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The concerned modal parameters will be given by 
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  (5.72) 

In practice, if we have multiple measurements, we can introduce a weighting matrix to each line of Eq. 

(5.70), which will give the weighted least square solution for the modal parameters 
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  (5.73) 

The entries in the weight matrices RW  and IW  are defined in the following way that if the errors in 

the measured Apparent mass at different frequencies are independent of each other, and their variances 

are 
2

Rj  for the real part and 
2

Ij  for the imaginary part at the j th entry, then the right weights are 

1Rj Rjw =  and 1Ij Ijw = , where the subscriptions R  and I  denote real and imaginary, 

respectively. Thus, a more accurate measurement, which means a smaller variance, gets a heavier 

weight. With the independence assumption, both  and  are diagonal matrices with diagonal 

terms equal 
Rjw  and 

Ijw , respectively, and all the off-diagonal entries equal to zero. The case where 

the observations at different frequencies are not independent is not discussed here. 

5.4 Conclusion  

Starting with a discussion of the decomposition of the bridge system, this chapter presents a two-stage 

input-output method to solve the vehicle induced bridge modal parameters identification problem. We 

first discussed some properties of the mode shapes of a system defined by the second order differential 

equation and clarified some misunderstandings about the mode shapes in the structural dynamics and 

general modal testing communities.  

RW IW
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Having done this, we answered the question that if we should use the estimated complex mode shape 

or its real counterpart to decompose the system. Since we only need a set of independent basis functions, 

we decided to use the real shapes, which can be easily estimated by using use the FDD technique in 

terms of the real-valued one-sided SD matrix proposed in chapter 2.  

Later, the second stage of the proposed method is presented with an optimisation procedure based on 

the Accelerance and a regression approach based on the Apparent mass. Despite the Accelerance and 

the Apparent mass are formulated in two different ways, and the optimisation method needs an initial 

guess while the regression method does not need it, these two have a reciprocal relationship, and they 

are equivalent in estimating the modal parameters. However, regardless of the theoretical and the 

numerical differences between the two methods, the Apparent mass, when evaluates the real and 

imaginary part of it separately, is less meaningful than the Accelerence. Therefore, the verification in 

the next chapter will adopt the optimisation procedure based on the Accelerance. 

 



 

176 

 

6. Verification of the proposed input-output 

system identification method 

6.1 Introduction 

The VBI problem is a coupled linear dynamic problem, which is intrinsically convoluted. In order to 

identify the vehicle induced bridge parameters identification problem, we proposed a two-stage input-

output system identification methodology in chapter 5. Now, in this chapter, this two-stage 

identification method is verified by using two types of moving force, i.e., a moving point load and a 

quarter car, traversing a simply supported beam, respectively. These two types of moving force models 

correspond to two VBI systems, which have some different properties. For instance, the road roughness 

effect cannot be incorporated in the point load system. To make our discussion more generic, both 

systems will be discussed on the nondimensional basis. 

The discussion of this chapter is presented in the following fashion. We first give a brief introduction 

about the VBI systems, then focus on deriving the equation of the motions for the two proposed two 

VBI systems. Having done this, we model these two VBI systems in MATLAB, then use these 

numerical models to verify our proposed two-stage method. At the end of this chapter, a discussion 

about the identification impact factors is presented.  

6.2 Vehicle-bridge interaction system 

6.2.1 Car models and bridge models 

There are three car models that have been intensively investigated in literature, i.e., moving load, 

moving mass, and moving sprung mass models [31]. Among the three vehicle models, the moving load 

model is the simplest one, which has been adopted by researchers in studying traffic-induced bridge 

vibration [14], [49]. However, by using this model, the interaction between the two subsystems is 

intractable. Therefore, this model is only good for computing the response of the bridge system. When 

the inertia of the vehicle cannot be neglected, the moving load model is replaced by a moving mass 

model . However, the bouncing action of the moving mass relative to the bridge is not captured by this 

model, which is the well-known drawback of it. Since the impact of bouncing action of the vehicle is 

expected to be significant, especially in the presence of pavement roughness or for vehicles moving at 
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high speeds [31], the sprung mass model is proposed to incorporate elastic and damping effects of the 

suspension systems. For instance, a quarter car model, see Figure 6.3.  

Note that, although the use of a more sophisticated vehicle model can make the simulation more realistic, 

it may result in some computation problems, such as divergence or slow convergence problem when 

searching for a large number of contact forces in the process of iteration. Whereas by using the 

simplified models, the essential dynamic characteristics of the bridge can be captured with a sufficient 

degree of accuracy [31]. As a preliminary study of the feasibility of the proposed input-output system 

identification method, and our focus is on the system identification of the bridge modal parameters. 

Therefore, we consider the moving load and the quarter car model in this thesis. 

In general VBI analysis, especially for the moving load identification, we usually need to establish the 

relationship between the moving force and the bridge response, which means that a known and well-

defined bridge model is required [25]. Typically, there are two kinds of approaches widely adopted in 

the VBI analysis, i.e., analytical model based approach and finite element model based approach [23]. 

Although there is no restriction on the type of structures considered for the VBI problems, a simpler 

bridge model requires less preparation and computation efforts [31]. Apart from this, compared to the 

analytical approaches, the finite element approach is more flexible for general application, and it is 

more convenient for modelling some complex bridge structures. To simplify the problem, the simply 

supported Euler-Bernoulli beam is considered in this study. In this case, we can formulate the equation 

of motion for the VBI system analytically, and the 4th order Runge-Kutta method [202] is used to 

simulate the VBI system. 

6.2.2 Road roughness 

In VBI analysis, the role of road roughness cannot be ignored. Depended primarily on the workmanship 

involved in the construction of pavement or rail tracks and on how they are maintained [31], as it has 

been reported that the impact response of bridges can be significantly affected by the road unevenness 

[203]. Such impact, from the viewpoint of the structural dynamics, is caused by the frequencies implied 

by the surface roughness or rail irregularities [31]. And such spatial frequencies will be introduced to 

the bridge responses via the moving vehicle, see for instance Eq. (6.7), where the road roughness is 

incorporated in the vehicle’s equation of motion. When a vehicle is moving across a bridge, the bridge 

will be excited by the contact force, see Eq. (6.5) and Eq. (6.6). Due to the sprung-mass configuration 

of the vehicle, the road roughness is affecting both the bridge and the vehicle systems. As a result, 

resonance may occur on the bridge and traversing vehicles if the vehicle frequencies equal to or close 

to any of the frequencies implied by the road unevenness [31]. 
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To account for its random nature, the road profile can be modelled with a periodic modulated random 

process [204]. According to the ISO-8608 [205] specification, the road surface roughness can be 

simulated based on the displacement PSD given by the following formula 

 ( ) ( )0

0

w

d d

n
G n G n

n

−

 
=  

 
 (6.1) 

Where 0 0.1n =  cycle/m is the reference spatial frequency, and w  is the exponent of the fitted PSD, 

usually assumed it takes the value 2. As for n , which denotes the spatial frequency per meter, is usually 

determined by the vehicle speed and time frequency of the vehicle. The general expression for this 

relationship is given by ISO-8608 [205], 

 vfn


=  (6.2) 

where vf  (Hz) is the time frequency of the vehicle,   denotes the vehicle speed. In this study, the range 

of spatial frequency is taken as 0.01 – 100 cycle/m. 

Eq. (6.1) gives an estimate on the degree of roughness of a road from the value of ( )0dG n . In ISO-

8608, the road surface is divided into eight classes, see Table 6.1, which gives the guidance of the 

functional value  in terms of each roughness class.  

Table 6.1 Road classification 

Road class 
Degree of roughness ( ) 6 3

0 10dG n m−  ( 0 0.1n = cycle/m) 

Lower limit Geometric mean Upper limit Adopted value 

A — 16 32 0.001 

B 32 64 128 8 

C 128 256 512 16 

D 512 1024 2048 32 

E 2048 4094 8192 64 

F 8192 16384 32768 128 

G 32768 65536 131072 256 

H 131072 262144 — 215 

 

Now by applying the inverse Fourier transform on ( )dG n , we can calculate the road surface roughness 

function ( )r x , which can be simply given by 

( )0dG n
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 ( ) ( ) ( )
1

4 cos 2
rN

d i i i

i

r x G n n n x 
=

=  +  (6.3) 

where rN  is the number of data points, and n  is the sampling interval of the spatial frequency, and it 

is taken as 0.04 cycle/m in this study [206]. Note that, if we the geometric mean value of ( )dG n  in the 

above equation, the amplitude of roughness, i.e., ( )4 d iG n n , will be too large to be compatible with 

the road roughness from the field [206]. Therefore, we take the square root of the geometric mean of 

the functional value ( )dG n  in Table 6.1. for the simulation in this study. As for i , it represents a set 

of independent random phase angles uniformly distributed between 0 and 2 . As an example, three 

different road roughness levels are depicted in Figure 6.1 (a) – (c). 

 

(a) Nondimensionalised road roughness level B 

 

(b) Nondimensionalised road roughness level C 

 

(c) Nondimensionalised road roughness level D 

Figure 6.1 Nondimensionalised road roughness  
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6.3 VBI systems equation of motion 

In this section, our main task is to derive the equation of motion for the two VBI systems (see Figure 

6.2) to verify the proposed two-stage identification method. Figure 6.2 (a) shows a point load moving 

across a simply supported beam, while Figure 6.2 (b) depicts a quarter car traversing a simply supported 

beam. Where ( ),p x t  is the contact force between the two subsystems (vehicle and the bridge); L  is 

the length of the beam; x  denotes the location on the bridge in terms of the left entrance;   represents 

the speed of the vehicle. To generalise the problem, both of the considered systems are 

nondimensionalised accordingly.  

 

 

(a) Simply supported Euler-Bernoulli beam model with moving point load 

 

(b) Simply supported Euler-Bernoulli beam model with quarter car model 

Figure 6.2. Moving forces (a moving load and a quarter car) traversing a simply supported beam 

6.3.1 Subsystems 

6.3.1.1 System Equations—Bridge subsystem 

From last chapter we know that the vibration equation of the motion for a decoupled system subjected 

to a moving force is given by Eq. (5.48) 

 ( ) ( ) ( ) ( ) ( )2

0

1
2 , d

L

i i i i i i i

i

q t q t q t x p x t x
M

  + + =    (6.4) 

where ( )iq t  is the i th modal coordinates and ( )i x  is the i th continuous mode shape. i  and i  

represent the i th natural frequency and damping ratio, respectively. ( ),p x t  is the distributed vertical 

loading. 
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In the case of a moving concentrated load with a given time varying intensity ( )f t  and speed  , the 

load  can be expressed as Eq. (5.49) [196] 

 ( )
( ) ( ) 0

,
0

d

d

x t f t t t
p x t

t t

  −  
= 


  (6.5) 

where /dt L =  is the time required for the load to cross the bridge of length L . 

It is worth pointing out that although the energy loss of a structure is more accurately modelled by the 

hysteretic damping [141], viscous damping is commonly used for the bridge structure. Not only because 

the viscous damping model can linearise the equation of motion and facilitate it is solving [207], but 

also because it is deemed to be sufficient to reproduce the bridge responses accurately [208]. Therefore, 

we followed the convention by adopting the viscous damping in Eq. (6.4). 

6.3.1.2 System Equations — Vehicle subsystem 

When the vehicle is modelled as a point load,  is given by Eq. (6.5). To be more specific, we 

can define  as 

 ( ) ( )( )1vf t M g z t= − +  (6.6) 

where vM  is the mass of the vehicle, ( )1z t  represents the vehicle body acceleration, measured 

according to the equilibrium position, while 
29.8g m s=  is the acceleration due to gravity. 

Note that Eq. (6.6) is defined for the point load model; it also applies to the quarter car model (see 

Figure 6.3). It is because the active force between the vehicle and bridge is the contact force; no matter 

what kind of car models we use for each vehicle axis, such a contact force can also be modelled as a 

point load. However, the use of the quarter car model is more advanced than the moving load case we 

just discussed since it incorporates the mass-sprung effect of the vehicle into the analysis.  

 

Figure 6.3 A typical quarter car model 

( ),p x t

( ),p x t

( )f t



6 Verification of the proposed input-output system identification method 

182 

 

For a quarter car model, given by Figure 6.3, the vehicle subsystem vibration can be depicted by the 

following equation of motion, 

 

( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )

1 1 0 1 0

0

1

0v v v

N

i i

i

M z t C z t z t K z t z t

z t t q t r t  
=

 + − + − =



= +



 (6.7) 

where ( )1z t  is the vehicle body displacement measured at the equilibrium position; ( )0z t  is the 

contact point displacement, while ( )r t  is the road roughness, which is given by Eq. (6.3). N  

determines the number of modes for the bridge system. As for vC  and vK , they represent the vehicle 

damping coefficient and spring constant, respectively.  

Note that the quarter car model we adopted in this study, as given by Figure 6.3, has included the mass 

of the wheel to the vehicle body (suspended) mass vM . Likewise, the sprung and damping effect of the 

wheel are also included in vK  and vC , respectively.  

If we denote the vehicle frequency and damping ratio as v  and v , respectively, then  

 2v v v vC M =  and 2

v v vK M =  (6.8) 

6.3.2 Point load system 

6.3.2.1 Nondimensionalised equation of motion for the point load system 

For point moving load, the modal force iP  for the i th mode is  

 ( ) ( ) ( ) ( )
0

, d
L

i i iP x p x t x t f t  = =   (6.9) 

When the load is moving on the bridge, by substituting the above expression into Eq. (6.4), we can 

obtain the VBI system for this moving load case 

 ( ) ( ) ( ) ( ) ( )2 1
2i i i i i i i

i

q t q t q t t f t
M

   + + =   (6.10) 

Again, substitute Eq. (6.6) into the above equation, we will reach 

 ( ) ( ) ( ) ( ) ( )( )2

12 v
i i i i i i i

i

M
q t q t q t t g z t

M
   + + = − +   (6.11) 
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To nondimensionalise this system equation, we observe that we have the following eight parameters, 

i.e., vM , iM , i , 1 , i , L ,  , g , and three dimensions, i.e., mass, length, and time, where 1  is 

the fundamental frequency of the bridge, which is used to nondimensionalise the bridge system. 

Therefore, we will obtain five nondimensionalised groups, exclude the damping ratio, which is already 

nondimensional, the other four of them can be defined in the following fashion, 

 
2

1 1 1

, , ,v i
i i

i

M g

M L L

 
   
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= = = =    (6.12) 

There are the four nondimensional parameters of system given by Eq. (6.11). Further, we have 

 
1, , ,

q z x t
q z x t

L L L L


 = = = = = =   (6.13) 

With 1/ L  =  and 1t = , we can define 
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= = = =  (6.14) 

We will then have the following relations 
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  (6.15) 

On the other hand, for simply supported beam, we have  

 ( )2 2 2

14
sini i

EI i
i i t t

mL L


    

 
= = =  

 
  (6.16) 

where E  is the Young’s modulus, I  is the moment of inertia of the beam cross section, EI  is the 

bending stiffness, m  is the mass per unit length. For simplicity, we assume m  and EI  are constant.  

By nondimensionalise Eq. (6.16) 

 ( ) ( )2

1

sin sini i

i
i t i

L


    


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  (6.17) 
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Substitute Eq. (6.12) to Eq. (6.17) into Eq. (6.11), we shall obtain the nondimensionalised form of the 

equation of motion for the VBI system. 

  ( ) ( ) ( ) ( ) ( )( )2

12 sinn i i i i i iq q q i z          + + = − −  (6.18) 

6.3.2.2 Equations for the simulation 

To use MATLAB to generate the response, we shall write Eq. (6.18)for multiple modes into matrix 

form, 

           M q C q K q F + + =  (6.19) 

where 
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 (6.20) 

6.3.3 Quarter car system 

Having discussed the moving load system, in this section, we move on to investigate the system 

equations with a moving quarter car model, see Figure 6.2 (b).  

6.3.3.1 Nondimensionalised equation of motion for the quarter car system 

Since the contact force between the quarter car and the bridge has the same format of the interaction 

force between the moving load and the bridge. Thus, from Eq. (6.7) and Eq. (6.11) the interaction VBI 

system equation of motion for a quarter car model is given by 
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  (6.21) 

Please be aware of the notation n  (spatial frequency) in Eq. (6.3) which has a different meaning from 

the n  (number of modes) in Eq. (6.21) and the rest.  

To nondimensionalise the system equation given by Eq. (6.21), we observe that we have the following 

10 parameters, i.e., vM , v , v , iM , i , , i , L ,  , g , and three dimensions, i.e., mass, meter, and 

time. Therefore, we will obtain seven nondimensionalised groups, exclude the two damping ratios 

which are already nondimensional, the rest five of them will be given by  
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Further we have 
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We will then have the following relations 
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 (6.24) 

Substitute Eq. (6.22) to Eq. (6.24) into Eq. (6.21), we shall obtain the nondimensionalised form of the 

equation of motion for the VBI system. 
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For the bridge subsystem, the equation of motion is given by Eq. (6.18),  

 ( ) ( ) ( ) ( ) ( )( )2

12i i i i i i i iq q q z          + + = − +  (6.25) 

For the vehicle subsystem 

 ( ) ( ) ( ) ( ) ( )1 1 1 0 02 2v vz z z z z        + + = +  (6.26) 

Since  

 ( ) ( ) ( ) ( )0

1

N

i i

i

z q r    
=

= +   (6.27) 

then  

 ( ) ( ) ( ) ( ) ( ) ( )0

1 1

N N

i i i i
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z q q r       
= =

   = + +   (6.28) 

Now substitute Eq. (6.27) and Eq. (6.28) into the last equation of Eq. (6.26) and rearrange the equation, 

together with Eq. (6.25) we have 
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   (6.29) 

For simply supported beam, from Eq. (6.16) 

 ( ) ( ) ( ) ( )21 , sin , cosi i i

v

i t i i i


       


= = =   (6.30) 

Substitute the relations into Eq. (6.29), 
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  (6.31) 

Define  

 ( ) ( ) ( ) ( )sin , 2 sin , 2 cos sini i i v i vb i d i g i i i      = = = +   (6.32) 

Then Eq. (6.31) becomes 
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 (6.33) 

6.3.3.2 Equations for the simulation 

Again, to use MATLAB to generate the response, we write Eq. (6.33) into matrix form, 

           M q C q K q F + + =   (6.34) 

where 
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6.3.4 FRF of the nondimensionalised bridge subsystem 

For the considered two VBI systems, the equation of motion for the bridge subsystem is the same.  

Thus, regardless which car model we use, we can take the Fourier transform of Eq. (6.25), 
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 (6.36) 

This equation can be further written as 
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 ( ) ( ) ( ) ( )22i i i i i i i iq q q P        + + =  (6.37) 

where 
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is the Fourier transform of the nondimensionalised genialised force iP . 

Since 
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Use ( )iq   to represent ( )iq   and ( )iq  , we have  

 

( ) ( )

( ) ( )2

1
i

1

i i

i i

q q

q q

 


 


 = −

= −

 (6.40) 

Substitute Eq. (6.40) into Eq. (6.37) and rearrange the equation, we can obtain the Accelerence of the 

moving load system, 
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Further we have  
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When 0 = , 
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6.4 Input-output system identification and result 

Up to now, we have discussed two types of VBI systems, the moving load case without considering the 

mass-sprung effect of the vehicle, and the quarter car model, which considers the mass-sprung effect of 

the vehicle. In this section, we will verify the proposed input-output method by using these two systems. 

The identification results will be presented in the following manner as shown in the Figure. 6.4. The 

two systems are discussed in terms of noise-free and noise-corrupted scenarios. Particularly for the 

quarter car system, the effect of the road roughness is addressed. However, as we will point out later 

that the spectral density of the input signal of the quarter car is similar to the moving load case, the 

noise-contaminated case for the quarter car system without road roughness is not covered.  

 

Figure 6.4 Identification process for the bridge subsystem 

It is worth mentioning that, as an output-only method, by using the FDD alone, we cannot identify the 

damping ratios and the modal masses. However, we can use the identified mode shapes to decompose 

the measured responses, then evaluate the free vibrations of each mode. Thereby we can obtain the 

estimated damping ratios. As for the modal masses, without the input information, we are unable to 

extracted from the bridge measurements alone. Therefore, the output-only method we will use in this 

section is the combination of the FDD analysis plus the free decay analysis, the purpose of this is the 

same as the so-called Enhanced FDD method (EFDD) [90], which is the extension of the conventional 

FDD used for the identification of the damping ratios. However, the actual procedure is different, as the 

SDOF bell function is not evaluated.  

For simplicity, the resonance frequencies obtained from FDD in this study are fed into the free decay 

analysis to extract the corresponding damping ratios. Note that even though we can obtain the natural 

frequencies from determining the zero-crossing time of the free vibration, the free decay analysis in this 

study is only used to identify the damping ratios, and this procedure is performed upon the generalised 

free vibration response of the bridge. 



6 Verification of the proposed input-output system identification method 

190 

 

To obtain the damping ratios, the Hilbert transform [124] is used to find the envelope of the vibration 

response first. Specifically, let ( )x t  denotes the original real signal, the Hilbert transform is defined to 

be the convolution between ( )x t  and the Cauchy kernel ( ) 1/Ch t t= . Since the Cauchy kernel is not 

defined at 0t = , the integral defining the convolution may not converge. Therefore, the Hilbert 

transform is usually defined as the Cauchy principal value (denoted by p.v.) [112] of the convolution 

integral,  

 ( ) ( ) ( ) ( )
( )1

* p.v. dC

x
y t x t x t h t

t




 



−
= = =   −  (6.44) 

Particularly if ( )x t  is sinusoidal, for instance, ( ) ( )cosx t t= , the Hilbert transform will impart a 

/ 2−  phase shift to ( )x t , then ( ) ( )cos 2y t t = − . As a result, if a reasonably behaved function 

can have a Fourier decomposition, then by taking the Hilbert of the original function, the transformed 

function will be shifted as a whole.  

Thus, together with the original signal ( )x t , we can obtain a complex helical sequence (analytic signal)

( ) ( ) ( )iax t x t y t= + , where the real part is the original data while the imaginary part contains the 90-

degree shift version of the original data. The decaying amplitude of the free vibration is then found by 

evaluating the absolute value of an analytic signal. Having done this, the amplitude data are used to fit 

an exponential function, namely k kAe
  −

, where A  is the initial amplitude,   is the 

nondimensionalised time, while k  and k  are the k th natural frequency ratio and damping ratio, 

respectively. Then the damping ratios can be found from the fitted exponential decay k k   accordingly. 

The process for finding the damping ratios is illustrated in Figure 6.5. The solid line depicts the original 

signal, the dotted line represents the shifted signal, while the circles are the selected points (the crossing 

points of the difference between the real and imaginary part of the analytic signal) on the envelope to 

demonstrate the decaying amplitude data to use to fit the exponential function. The data of this figure 

is from the noise-free moving load system discussed in the next section. 

 

Figure 6.5. Generalised free vibration response of the 1st mode of the bridge 
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Apart from the mode shapes identified from the first stage, the natural frequencies and damping ratios 

identified from this stage serve two purposes. One purpose is to be used as a comparison with the 

parameters identified from the second stage. While the other one is to use them as the initial guess to 

the optimisation procedure we proposed in chapter 5 for the second-stage identification.  

6.4.1 Evaluation of the proposed input-output system method based on the 

point load system 

In this section, the proposed system identification approach will be demonstrated by using a moving 

load ( ),p x t , traversing a simply supported Euler-Bernoulli beam, as shown in Figure. 6.2 (a). The 

beam is of length L  and is assumed to be uniform, with bending stiffness EI  and mass per unit length 

m . The system is simulated based on Eq. (6.19) and Eq. (6.20) by using the ode45 function in 

MATLAB. To present the simulation and the results, a brief description of the simulation about the 

moving load system is given first. Then the identification results are presented according to Figure 6.4. 

The noise-free case is demonstrated first to verify the proposed method, and then the noise-corrupted 

case is presented in the same manner.  

6.4.1.1 Generation of simulated data for a point load system  

Before nondimensionalising, the simulation of this study is based on a 40 m long simply supported 

beam with measurement locations at 4m spacing. The bending stiffness and the mass per unit length of 

the bridge is set as EI =1.26e+11(Nm2) and m= 1.2e+04 (kg/m), respectively. Note that these bridge 

parameters are primarily drawn from the reference [196]. The speed of the moving concentrated load is 

set as 48 (km/h), the lowest national speed limit in the UK. The natural frequencies are computed from 

Eq. (6.16), but the damping ratios are randomly assigned, and only the first five modes are considered, 

see Table 6.2. The first natural frequency is about 3.181 (Hz), and the corresponding damping ratio is 

0.02, which are reasonable assignments based on the Institution of Civil Engineering (ICE) design and 

practice guides [209].  

Table 6.2. Actual modal parameters for the bridge 

Mode No. 

k  

Actual natural frequency 

kf  (Hz) 

Actual damping ratios 

k  

Actual modal masses 

kM  

1 3.181 0.020 240000 

2 12.725 0.020 240000 

3 28.631 0.020 240000 

4 50.900 0.020 240000 

5 79.531 0.020 240000 
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As for the moving point load, it is defined based on Eq. (6.6). The mass of the vehicle vM  is assumed 

to be 4.63e+04 (kg), while the vertical acceleration of the vehicle, which simulates the dynamic effect 

of vehicle motion due to road roughness, is characterised by “coloured noise”. Figure.6.6 (a) shows the 

simulated moving load acceleration ( )z   when the moving load is crossing the bridge. Note that the 

input signal is constructed from a normally distributed white noise with zero mean and 5% vM g  

standard deviation, then scaled by the corresponding frequency in the frequency domain, which is 

similar to the pink noise whose PSD is inversely proportional to the frequency of the signal. 

To nondimensionalise this moving load system, we will first nondimensionalise the dimensional 

parameters according to Eq. (6.12), which is presented in Table 6.3, then nondimensionalise the time-

dependent variables based on Eq. (6.13). 

Table 6.3. Nondimensionalised actual parameters for the bridge 

Actual frequency 

ratio 

Actual 

damping ratio  

Actual mass 

ratio  

Gravitational 

Acceleration  

Nondimensionalised 

vehicle speed  

     

2k  

( k = 1,2,3,4,5) 

0.020 

(same for all 

modes) 

0.1929 

(same for all 

modes) 

6.13e+04 0.0167 

 

In consideration of the spectral leakage problem in the subsequent Fourier analysis, the total 

measurement time length should be as long as possible to let the bridge response dies out. In terms of 

the nondimensionalised vehicle speed given by Table 6.3, the total measurement time length is set as 

360, which according to Eq. (6.13), is equivalent to 18.0106s.  

Figure.6.6 (b) illustrates the acceleration response of the bridge at the middle of the span due to the 

moving load. It clearly shows that within this period, the amplitude of the response attenuates to zero. 

As for the red vertical lines shown in Figure.6.6 (b), they depict the time that the vehicle enters and 

leaves the bridge, respectively.  

Note that the same level of noise was added to the input signal (5% noise) and the acceleration responses 

(5% noise) measured from the bridge. In Figure 6.6, the solid black line depicts the noise-free case, 

while the red dot line demonstrates the noise-contaminated scenario. Besides, as one can observe from 

Figure 6.6 that both the input and the output signals are nonstationary. 

 

 

k k k  
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(a) Time history of the moving load acceleration when moving across the bridge (5% noise-corrupted) 

 

(b) Time history of the bridge acceleration (obtained at the middle of the bridge) (5% noise-corrupted) 

Figure 6.6. Time history of the input (moving loading) and output (bridge) acceleration responses 

As for the mode shape of the structure, for the simply supported beam, the mode shapes are sinusoids, 

they can be simulated based on Eq. (6.17). After being nondimensionalised, the original 40m long 

bridge will have unit length. Accordingly, the mode shapes of the bridge are confined within one, see 

Figure 6.7 (c). 

6.4.1.2 Identification results  

In this section, the noise-free identification results based on the moving load will be presented first, 

followed by the noise-contaminated case. In terms of our proposed two-stage method, the output-only 

analysis will be conducted first. In the first stage, the natural frequency ratios, mode shapes, and 

damping ratios are identified from the nondimensionalised bridge acceleration response only by using 

the FDD associated with the real-valued spectral density matrix.  
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I. Noise-free 

 

(a) Noise-free 1st and 2nd singular value plot (log-log scale) 

     

(b) Actual and identified mode shape plot. From left to right, mode 1 to mode 5. 

Figure 6.7 Noise-free output-only identification of the frequency ratios and mode shape identification based on 

the FDD according to the moving load system 

Figure 6.7 (a) shows the traditional FDD singular value plot, while Figure 6.7 (b) is the comparison 

between the actual and the estimated mode shapes. From Figure 6.7 (a), we can see that there are five 

dominant peaks in the 1st singular value plot. Compare the identified peak values shown on the plot 

with the actual values given in Table 6.3, it is obvious that they are very close. Further, by looking at 

the actual and the identified mode shape comparison plot in Figure 6.7 (b), it is clear that at the dominant 

frequency ratios, the system is effectively governed by the corresponding modes. This means that the 

identified mode shapes for the VBI system can be used to represent the mode shapes of the bridge 

subsystem. Then we can use the estimated mode shapes to decouple the bridge system.  

From Figure 6.8, we observe that the optimised line fit perfectly with the measured data for all five 

modes, and they are in line with the theoretical lines (calculated based on the actual modal parameter 

values), even for the higher modes. Note that the values are shown in Figure 6.7 and Figure 6.8 are all 

identified modal parameter values.  

It is worth mentioning that, in the first stage, to identify the frequencies from the singular value plot, 

we can use the peak-picking method, namely, take the frequency value where the peak occurs. While 

in the section stage, the optimisation method we discussed in chapter 5 is used to extract the modal 

parameters in terms of Eq. (6.41). Whereas in the second stage, a frequency range needs to be defined 

for each mode. In this case, we can use the estimated frequencies obtained in the first stage to define 

the frequency ranges needed in the second stage. These frequencies are used as the reference frequencies, 
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and the boundary of the frequency range for each mode is set empirically with 10% below and 10% 

higher than the reference frequency.  

 

 

(a) Noise-free Nyquist Accelerance FRF plots for the SDOF systems 

 

 

(b) Noise-free Accelerance FRF plots for the SDOF systems (linear scale) (1st row: amplitude ratio between the 

input and output responses; 2nd row: phase angle between the input and output responses) 

Figure 6.8. Noise-free input-output system identification Accelerance FRF plots. From left to right, mode 1 to 

mode 5. 

It is well known that for viscous damping, it is the Mobility (ratio between the response velocity and 

the input force) traces out an exact circle, while others, such as the Receptance (ratio between the 

response displacement and input force) and the Accelerance (ratio between the response acceleration 

and input force) only approximate to this shape [73]. From Figure 6.8 (a), we can see that except for 

the first mode, the Nyquist plot of the rest modes all close to a circle.  

The estimated modal parameters together with their actual values and the relative errors (shown in the 

bracket below the estimates) from both the first stage and the second stage are grouped together in Table 

6.4. Note that the values given in Table 6.4 are from a sample case, and a small change to the random 

input can result in a different value. Therefore, by analysing each value in the table is useless and 

unnecessary. Nevertheless, some overall phenomena can still be observed from the results given in 

Table 6.4.  
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According to Table 6.4, we can see that the accuracy of the identified frequency ratios is improved in 

the second stage, as the input-output method generates smaller relative errors. While for the damping 

ratios, the accuracy of the results obtained from the free decay analysis is comparable with the ones 

obtained from the optimisation procedure. As for the modal mass ratios, the optimisation procedure 

successfully identified them, with the highest relative errors being -4.642%.  

Table 6.4 Noise-free dentification result based on the moving load system 

k  

Actual 1 4 9 16 25 

Output-only 
0.9948 

(-0.517) 

4.0142 

(0.356) 

9.0058 

(0.065) 

15.9347 

(-0.408) 

24.5915 

(-1.634) 

Input-output 
1 

(0.001) 

4.0001 

(0.002) 

9.0006 

(0.006) 

16.0020 

(0.013) 

24.9748 

(-0.101) 

k  

Actual 0.02 0.02 0.02 0.02 0.02 

Output-only 
0.0201 

(0.515) 

0.0200 

(-0.030) 

0.0201 

(0.348) 

0.0202 

(1.047) 

0.0205 

(2.663) 

Input-output 
0.0200 

(-0.014) 

0.0201 

(0.273) 

0.0201 

(0.352) 

0.0205 

(2.515) 

0.0201 

(0.385) 

k  

Actual 0.1929 0.1929 0.1929 0.1929 0.1929 

Input-output 
0.1931 

(0.070) 

0.1932 

(0.154) 

0.1918 

(-0.584) 

0.1940 

(0.581) 

0.1840 

(-4.642) 

(Note: k — Frequency ratios; k — Damping ratios; k — Modal mass ratios; values inside the brackets 

represent the relative errors (%)). 

 

Besides, we can observe that for three modal parameters of interest, the estimated results obtained from 

the optimisation procedure has an overall increased relative error in terms of the number of the modes. 

In contrast, the results estimated from the output-only method does not have a clear trend. Overall, the 

proposed two-stage method successfully identified the bridge modal parameters by using both the input 

and the output signals, as the largest relative error among all three estimates is less than 6%. 
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II. Noise-corrupted 

 

(a) Noise-corrupted 1st and 2nd singular value plot (log-log scale) 

     

(b) Actual and identified mode shape plot. From left to right, mode 1 to mode 5. 

Figure 6.9. Noise-corrupted frequency ratios and mode shape identification based on the FDD 

 

(a) Noise-corrupted Nyquist Accelerance FRF plots for the SDOF systems 

 

 

(b) Noise-corrupted Accelerance FRF plots for the SDOF systems (linear scale) (1st row: amplitude ratio 

between the input and output responses; 2nd row: phase angle between the input and output responses) 

Figure 6.10. Noise-corrupted input-output system identification Accelerance FRF plots. From left to right, mode 

1 to mode 5. 
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Table 6.5 Noise-corrupted dentification result based on the moving load system 

k  

Actual 1 4 9 16 25 

Output-only 
0.9948 

(-0.517) 

4.0142 

(0.356) 

9.0058 

(0.065) 

15.9347 

(-0.408) 

24.5915 

(-1.634) 

Input-output 
1 

(0.004) 

4.0001 

(0.003) 

9.0029 

(0.033) 

15.9945 

(-0.035) 

25.0044 

(0.018) 

k  

Actual 0.02 0.02 0.02 0.02 0.02 

Output-only 
0.0200 

(-0.087) 

0.0197 

(-1.518) 

0.0189 

(-5.263) 

0.0191 

(-4.521) 

0.0187 

(-6.743) 

Input-output 
0.0200 

(0.188) 

0.0200 

(0.025) 

0.0197 

(-1.501) 

0.0206 

(3.103) 

0.0192 

(-4.226) 

k  

Actual 0.1929 0.1929 0.1929 0.1929 0.1929 

Input-output 
0.1932 

(0.135) 

0.1929 

(-0.021) 

0.1904 

(-1.323) 

0.1938 

(0.435) 

0.1723 

(-10.695) 

(Note: k — Frequency ratios; k — Damping ratios; k — Modal mass ratios; values inside the brackets 

represent the relative errors (%)). 

From Table 6.5, we see that after adding the noise, we can see that there is an increase in the maximum 

relative error (-10.695%), which is coming from the 5th modal mass ratio. However, the proposed two-

stage method can still identify the modal parameters to a certain level of accuracy. Compared to the 

output-only result, the input-output results of the frequency ratios and the damping ratios are generally 

better, as they still maintain lower relative errors. 

6.4.2 Evaluation of the proposed input-output identification method based 

on the quarter car system 

In this section, the proposed system identification approach will be demonstrated by using a quarter car 

model with a total vehicle mass vM  traversing a simply supported Euler-Bernoulli beam, as shown in 

Fig. 6.2 (b). The properties of the beam are the same as the beam we used in the moving load system. 

Likewise, the way to demonstrate the simulation and the identified results are the same as the previously 

discussed moving load system.  

6.4.2.1 Generation of simulated data for a quarter car model system  

The simulation of the quarter car model traversing a simply supported beam is similar to the moving 

load system we have discussed before. The weight of the moving load is assumed to be equal to the 

weight of the quarter car, i.e., vM = 4.63e+04 (kg). However, since a spring and a damper are 

introduced into the vehicle system, the suspension stiffness vK  and the damping coefficient vC  need 
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to be defined. The value of these two coefficients are obtained according to reference [210] that vK  

and vC  equal to 4.87e+06 (N/m) and 3.14e+05 (Ns/m), respectively. Accordingly, the frequency of the 

sprung mass system /vv vK M = = 10.2559 (rad/s). / 2v v v vC M = = 0.3306.  

For the quarter car system, it is simulated based on Eq. (6.34) and Eq. (6.35) by using the ode45 function 

in MATLAB. In the meantime, the road roughness is considered. In section 6.2.2, we had a brief 

introduction to the road roughness. In this section, we simulate the road roughness based on Eq. (6.3), 

and road class D (see Figure 6.1 (c)) is selected to represent a relatively bad road surface.  

To see the effect of the road roughness on the identification results, our discussion in the next section 

is started with a road roughness-free case. Note that the noise-contaminated case for the quarter car 

system without road roughness will not be discussed. It is because the input spectral density (SD) of the 

quarter car is similar to the simulated moving load case.  

Table 6.6. Nondimensionalised actual parameters for VBI system 

Actual 

frequency ratio 

Actual bridge 

damping ratio 

Actual vehicle 

damping ratio 

Actual mass 

ratio 

Gravitational 

Acceleration 

Nondimensionalised 

vehicle speed 

      

2

1k   

( 1 = 1.949, 

k = 1,2,3,4,5) 

0.020 

(same for all 

modes) 

0.3306 

0.1929 

(same for all 

modes) 

0.0023 0.0325 

 

The same as before, to nondimensionalise this quarter car model VBI system, we first 

nondimensionalise the dimensional parameters according to Eq. (6.22), which is presented in Table 6.6, 

then nondimensionalise the time-dependent variables based on Eq (6.23). And in consideration of the 

spectral leakage problem in the subsequent Fourier analysis, the total measurement time length should 

be as long as possible to let the bridge response dies out. In terms of the nondimensionalised vehicle 

speed given by Table 6.6, the total measurement time length is set as 150, which according to Eq. (6.23), 

is equivalent to 14.6257s.  

k k v k  
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(a) Time history of the moving quarter car suspended mass acceleration when moving across the bridge (5% 

noise-corrupted without road roughness) 

 

(b) Time history of the bridge acceleration (obtained at the middle of the bridge) (5% noise-corrupted without 

road roughness) 

Figure 6.11 Time history of the input (moving quarter car suspended mass) and output (bridge) acceleration 

responses (without road roughness) 

 

(a) Time history of the moving quarter car suspended mass acceleration when moving across the bridge (5% 

noise-corrupted) 

 

(b) Time history of the bridge acceleration (obtained at the middle of the bridge) (5% noise-corrupted) 

Figure 6.12 Time history of the input (moving quarter car suspended mass) and output (bridge) acceleration 

responses (with road roughness) 

Figures 6.11 and Figures 6.12 depict the input and the output acceleration responses of the quarter car 

system. Figure.6.11 (a) and Figure 6.12 (a) show the simulated moving quarter car suspended mass 

acceleration  when the vehicle is crossing the bridge. In Figure. 6.11 (b) and Figure 6.12 (b), the 

acceleration response of the simply supported beam at the middle of the beam due to the moving quarter 

car clearly shows that within this period, the amplitude of the response attenuates to zero. As for the red 

( )1z 
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vertical lines shown in both Figure. 6.11 and Figure 6.12, they represent the time that the vehicle enters 

and leaves the bridge, respectively. 

Compare Figure.6.11 (a) and Figure 6.12 (a), we can see that, without and with the effect of road 

roughness, the behaviour of the quarter car suspended mass acceleration  is different. This is 

because we assume the initial values of the vehicle, i.e., displacement and velocity, are equal to  

and . Thus, when there is no road roughness, Figure.6.11 (a), the contact point load acceleration 

between the two subsystems equals zero before the vehicle enters the bridge. In other words, the vehicle 

starts to move at . 

Besides, the same level of noise was added to the input signal (5% noise) and the acceleration responses 

(5% noise) measured from the bridge. As one can observe from Figure 6.11 (a) and Figure 6.12 (a), the 

introduction of the road roughness transformed the nonstationary suspended mass acceleration signal 

into a stationary signal. However, in either case, the acceleration signal of the bridge is still 

nonstationary.  

  

( )1z 

( )0r

( )0r

10 =
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6.4.2.2 Identification results and discussion 

In this section, we will present our simulation results for different cases first, namely, noise-free 

(without and with road roughness) and noise-contaminated cases, then discuss the results afterward.  

I. Identification results 

Noise-free without road roughness 

 

(a) Noise-free 1st and 2nd singular value plot (log-log scale) 

     

(b) Actual and identified mode shape plot. From left to right, mode 1 to mode 5. 

Figure 6.13 Noise-free output-only identification of the frequency ratios and mode shape identification based on 

the FDD according to the quarter car system without roughness  
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(a) Noise-free Nyquist Accelerance FRF plots for the SDOF systems 

 

 

(b) Noise-free Accelerance FRF plots for the SDOF systems (linear scale) (1st row: amplitude ratio between the 

input and output responses; 2nd row: phase angle between the input and output responses) 

Figure 6.14. Noise-free input-output system identification Accelerance FRF plots (without road roughness). 

From left to right, mode 1 to mode 5 

Table 6.7 Noise-free dentification result based on the quarter car system with road roughness 

k  

Actual 1.9489 7.7958 17.5405 31.1832 48.7237 

Output-only 
2.0106 

(3.162) 

7.8329 

(0.476) 

17.5507 

(0.058) 

31.3315 

(0.476) 

49.0497 

(0.669) 

Input-output 
1.9476 

(-0.068) 

7.7864 

(-0.120) 

17.5503 

(0.056) 

31.2497 

(0.213) 

49.0508 

(0.671) 

k  

Actual 0.02 0.02 0.02 0.02 0.02 

Output-only 
0.0180 

(-9.966) 

0.0191 

(-4.644) 

0.0125 

(-37.268) 

0.0128 

(-35.801) 

0.0001 

(-99.481) 

Input-output 
0.0206 

(2.800) 

0.0190 

(-5.182) 

0.0202 

(0.943) 

0.0197 

(-1.420) 

0.0000 

(-99.950) 

k  

Actual 0.1929 0.1929 0.1929 0.1929 0.1929 

Input-output 
0.1986 

(2.949) 

0.1780 

(-7.727) 

0.1655 

(-14.202) 

0.1246 

(-35.398) 

0.0059 

(-96.933) 

(Note: k — Frequency ratios; k — Damping ratios; k — Modal mass ratios; values inside the brackets 

represent the relative errors (%)). 



6 Verification of the proposed input-output system identification method 

204 

 

Noise-free with road roughness 

 

(a) Noise-free 1st and 2nd singular value plot (log-log scale) 

     

(b) Actual and identified mode shape plot. From left to right, mode 1 to mode 5. 

Figure 6.15 Noise-free output-only identification of the frequency ratios and mode shape identification based on 

the FDD according to the quarter car system (with road roughness) 

 

(a) Noise-free Nyquist Accelerance FRF plots for the SDOF systems 

 

 

(b) Noise-free Accelerance FRF plots for the SDOF systems (linear scale) (1st row: amplitude ratio between the 

input and output responses; 2nd row: phase angle between the input and output responses) 

Figure 6.16. Noise-free input-output system identification Accelerance FRF plots (with road roughness). From 

left to right, mode 1 to mode 5 

  



6 Verification of the proposed input-output system identification method 

205 

Table 6.8 Noise-free dentification result based on the quarter car system with road roughness 

k  

Actual 1.9489 7.7958 17.5405 31.1832 48.7237 

Output-only 
1.9268 

(-1.136) 

7.7072 

(-1.136) 

17.4669 

(-0.420) 

31.1639 

(-0.062) 

49.0497 

(0.669) 

Input-output 
1.9490 

(0.002) 

7.7925 

(-0.043) 

17.5408 

(0.001) 

30.9698 

(-0.684) 

49.2158 

(1.010) 

k  

Actual 0.02 0.02 0.02 0.02 0.02 

Output-only 
0.0203 

(1.311) 

0.0203 

(1.513) 

0.0203 

(1.376) 

0.0090 

(-55.047) 

0.0071 

(-64.485) 

Input-output 
0.0200 

(0.147) 

0.0205 

(2.396) 

0.0200 

(-0.068) 

0.0236 

(18.009) 

0.0001 

(-99.650) 

k  

Actual 0.1929 0.1929 0.1929 0.1929 0.1929 

Input-output 
0.1927 

(-0.114) 

0.1939 

(0.4970) 

0.1934 

(0.2330) 

0.1006 

(-47.8710) 

0.0009 

(-99.557) 

(Note: k — Frequency ratios; k — Damping ratios; k — Modal mass ratios; values inside the brackets 

represent the relative errors (%)). 

 

Noise-corrupted with road roughness 

 

(a) Noise-corrupted1st and 2nd singular value plot (log-log scale) 

     

(b) Actual and identified mode shape plot. From left to right, mode 1 to mode 5. 

Figure 6.17 Noise-corrupted output-only identification of the frequency ratios and mode shape identification 

based on the FDD according to the quarter car system (with road roughness) 
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(a) Noise-corrupted Nyquist Accelerance FRF plots for the SDOF systems 

 

 

(b) Noise-corrupted Accelerance FRF plots for the SDOF systems (linear scale) (1st row: amplitude ratio 

between the input and output responses; 2nd row: phase angle between the input and output responses) 

Figure 6.18. Noise-corrupted input-output system identification Accelerance FRF plots (with road roughness). 

From left to right, mode 1 and mode 5 

Table 6.9 Noise-corrupted dentification result based on the quarter car system 

k  

Actual 1.9489 7.7958 17.5405 31.1832 48.7237 

Output-only 
1.9268 

(-1.136) 

7.7072 

(-1.136) 

17.4669 

(-0.420) 

29.6141 

(-5.032) 

49.0497 

(0.669) 

Input-output 
1.9490 

(0.004) 

7.7921 

(-0.048) 

17.5411 

(0.003) 

30.7052 

(-1.533) 

46.7473 

(-4.056) 

k  

Actual 0.02 0.02 0.02 0.02 0.02 

Output-only 
0.0192 

(-4.033) 

0.0090 

(-54.866) 

0.0201 

(0.729) 

0.0001 

(-99.677) 

0.0000 

(-99.865) 

Input-output 
0.0200 

(-0.014) 

0.0205 

(2.729) 

0.0200 

(0.202) 

0.0003 

(-98.455) 

0.0000 

(-99.928) 

k  

Actual 0.1929 0.1929 0.1929 0.1929 0.1929 

Input-output 
0.1925 

(-0.236) 

0.1941 

(0.627) 

0.1934 

(0.254) 

0.0047 

(-97.542) 

0.0004 

(-99.776) 

(Note: k — Frequency ratios; k — Damping ratios; k — Modal mass ratios; values inside the brackets 

represent the relative errors (%)). 
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II. Identification results analysis  

We have a lot of similar figures and tables presented in the last subsection to demonstrate the ability of 

the proposed method for the quarter car case. However, we are unable to, and it is also unnecessary to 

discuss all the figures and values listed in each table because each plot and table are just one realisation 

of our numerical experiment. Instead, we will concentrate on explaining the most obvious phenomena 

one can observe from those figures and tables. Here, we identify the following two phenomena. 

1. If we cannot successfully identify the mode shapes in the first place, then we are unable to 

identify the modal parameters in the second stage. We can see this from noise-corrupted with 

road roughness case. However, even if we can successfully identify all the mode shapes from 

the first stage identification, we could still fail to extract the rest of the modal parameter 

information from the second stage identification. This phenomenon is visible from the noise-

free with road roughness case.  

2. The accuracy of the identification results deteriorates with the increase of the mode number. 

Especially for the damping ratio and modal mass of the last two modes, we almost failed to 

identify them. This phenomenon can be observed from all three cases, i.e., noise-free without 

road roughness, noise-free with road roughness, and noise-corrupted with road roughness.  

To explain these two phenomena, first, we shall observe the impact factors for the VBI system 

identification via the proposed method. Typically, noise level, mass ratios, vehicle frequency, vehicle 

speed, the maximum value of the spatial frequency, and the amplitude of the road roughness are all the 

potential factors that can influence the identification result. And for this proposed two-stage method, 

the accuracy of the estimated mode shapes from the first stage should also be counted as an influencing 

factor because we used the mode shape decomposed responses to estimate the rest of the modal 

parameters in the second stage of our identification.  

Effect of the estimated mode shapes 

It is obvious that if the mode shapes are inaccurate, then the decomposed responses will be distorted. 

As a result, we cannot obtain the correct modal information through the proposed method. This is 

verified in the noise-corrupted road roughness case. Figure 6.17 (b) shows that we successfully 

identified the first three mode shapes, with the 4th and the 5th being very bad. As a result, we successfully 

identified the frequency ratios, damping ratios, and modal mass ratios in the second stage with good 

accuracy for the first three modes. From Figure 6.18, we can see that the optimised curves of the 

Accelerance FRF for the first three modes fit the measured data perfectly, which are aligned with their 

theoretical counterparts, but not for the 4th and the 5th modes. The estimation results given in Table 6.9 

verifies the plots shown in Figure 6.18.  
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However, a good mode shapes estimation in the first stage does not guarantee a good second stage 

identification, and this is a problem mainly concerned with the bridge response itself rather than the 

technique being used. An example is given by the noise-free with road roughness case. From Figure 

6.15 (b), we see that all the mode shapes are properly estimated. However, when we look at the values 

listed in Table 6.8, we know we only successfully identified the modal parameters for the first three 

modes. And only for the first three modes do the optimised curves of the Accelerance FRF are aligned 

with their theoretical counterparts. The reason for this is that the last two modes received less energy 

from the vehicle excitation than the first three modes. We can see from Figure 6.15 (a) that there is an 

abrupt fall in the singular value plot. Compared to the first three modes, which are located on the plateau 

before the drop, the 4th and the 5th modes are seated on the right-hand side of the drop with narrow peaks 

and lower energy.  

Since we can observe all the peaks on the singular value plot, the estimated mode shapes obtained from 

the corresponding first singular vectors can be good estimates of the actual mode shapes. However, due 

to the low energy the 4th and the 5th modes received from the excitation and the narrow active frequency 

ranges, we are unable to trace out a circle for the Accelerance around the corresponding resonance 

frequency. As a result, even with a good mode shape estimation from the first stage, we still failed to 

identify the modal parameters in the second stage.  

Nondimensionalised spatial frequency 

It seems that the abrupt change in the singular value plot of the bridge output response is the tipping 

point to separate a good estimation and a bad one. Thus, this tipping point is worthy of further 

investigation. Interestingly, we can calculate the location of this tipping point based on vehicle 

frequency, vehicle speed, and maximum value of the spatial frequency. Since the location of the tipping 

point is so important, we shall give it an official name, namely, the nondimensionalised spatial 

frequency, and it is given by the following equation 

 
2

v

n 



=  (6.45) 

where n  is the spatial frequency,   is the vehicle speed, v  is the vehicle’s natural frequency. 

Actually,   is not unfamiliar to us, we showed that the spatial frequency is related to the vehicle 

frequency and vehicle speed through Eq. (6.2) in section 6.2.2. Hence, we named it the 

nondimensionalised spatial frequency in analogy to the spatial frequency n . The range of the plateau 

we saw in Figure 6.17 (a) is determined by this parameter, and it is exactly the frequency ratio that 

corresponds to the critical point or the dropping point of the plateau.  
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It is worth pointing out that since   is a function of three parameters, and those three parameters are 

related to the vehicle and the road roughness. Therefore, we will discuss their effect separately in the 

following context. 

(a) Effect of the input spectral density with road roughness 

According to our identification results for the quarter car system with road roughness, the modes which 

are located on the left-hand side of the critical point of the plateau can definitely be identified by the 

proposed two-stage method. But for those located on the right-hand side of the critical point of the 

plateau, the proposed method is unable to generate a satisfactory result. Therefore, we can make an 

inference about the estimation results just by looking at the singular value plot of the output response 

of the bridge.  

From the definition of the nondimensionalised spatial frequency, we know that it a function of three 

parameters the vehicle speed and the vehicle’s natural frequency. So, it makes sense that we plot the 

generalised input spectral density (SD), the generalised output (modal coordinates) SD, and the 

Accelerance FRF together in the same figure for each mode in the following Figure 6.19. 

 

 

(a) Noise-free generalised input SD, generalised output SD and the Accelerance FRF plots for the quarter car 

system with road roughness 

 

(b) Noise-corrupted generalised input SD, generalised output SD and the Accelerance FRF plots for the quarter 

car system with road roughness 

Figure 6.19 Quarter car system generalised input SD, generalised output SD and the Accelerance FRF plots with 

road roughness. From left to right, mode 1 and mode 5 

From Figure 6.19, we can observe three things. First, the input SD for each mode has a plateau-like the 

output SD as well. Second, the spectral density of the generalised input does not have a prominent peak 

for each mode. Third, if the output SD has a similar profile as the input SD along the frequency line, 
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the closer their trends are, the smoother the FRF is, which as a result, will give us a better identification 

result.  

(b) Effect of the input spectral density without road roughness 

As for the moving load system and the quarter car system without road roughness, we plotted the 

generalised input SD, generalised output SD, and the Accelerance FRF plots in Figure 6.20.  

 

 

(a) Noise-free generalised input SD, generalised output SD and the Accelerance FRF plots for the moving load 

system 

 

(b) Noise-corrupted generalised input SD, generalised output SD and the Accelerance FRF plots for the moving 

load system 

 

(c) Noise-free generalised input SD, generalised output SD and the Accelerance FRF plots for the quarter car 

system without road roughness 

Figure 6.20 The generalised input SD, generalised output SD and the Accelerance FRF plots. From left to right, 

mode 1 and mode 5 

Figure 6.20 shows that the generalised input SD for each mode for the moving load system has a similar 

trend as the generalised input SD for the quarter car system without road roughness. They all have an 

almost linear monotonic decreasing trend. The simulated pink noise (i.e., moving load) has higher 

power and decays slower than the generalised input SD for quarter car system without road roughness. 

If we compare Figure 6.20 (c) with Figure 6.19 (a), we see that the addition of the roughness has 
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effectively changed the generalised input SD. Besides, from Figure 6.20, it is not difficult to derive that 

even if the input SD is not flat, in light of our previous output-only analysis, as long as the input SD 

does not smear the Accelerance FRF of the system at the resonance frequency, we can still observe the 

peak in the singular value plot. If this condition is satisfied, this means that the FDD will be able to 

identify the modal shapes and natural frequencies of the system, provided that we have the input in the 

frequency range around the relevant natural frequency.  

However, it does not guarantee good estimates of the modal parameters we identified in the second 

stage. If and only if the Accelerance FRF of the system is smooth around the resonate frequencies, we 

are able to get some good estimates, and this explains why the last two modes in Figure 6.14 give bad 

estimates. While for the bad estimates of the last two modes illustrated in Figure 6.16, the reasons are 

similar but with some extra features that the peaks of the last two modes are positioned at the right hand 

of the critical point, where the input SD and the output SD are both very small. As a result, the 

Accelerance FRF of the system is not smooth.  

(c) Effect of the road roughness 

Now recall the identification results in the previous sections. For the moving load system, we can 

identify the bridge modal parameters via the two-stage method to a certain accuracy. But for the quarter 

car system, we were struggling to identify the last two modes, especially the 5th modes. From Figure 

6.20 (c), we can see that the Accelerance FRF of the 5th mode is very noisy. This implies that the 

smoother the Accelerance FRF, the better the estimation is. In other words, if the input and the output 

are both significantly greater than the respective noise levels that we can get a good estimate of the FRF, 

which is smooth.  

Therefore, the effective frequency range we need to define for the second stage identification can be 

determined from the Accelerance FRF plot. All we need is to select a frequency range that encompasses 

the resonance frequency within the smooth region of the Accelerance FRF plot. When the vehicle speed 

and frequency are relatively fixed, the only influence factor of this frequency range is the spatial 

frequency, which is an important factor used in section 6.2.2 to determine the road roughness. To further 

demonstrate the effect of the road roughness, we plot the measured input SD in geometric coordinate 

for the quarter car system in the following Figure 6.21. 

In this study, we treat the moving vehicle as an external input to the bridge system. However, we can 

also see the bridge as the external input to the vehicle system. It means that we could observe the bridge 

frequency component from the vehicle acceleration SD plot as well. Thus, the SD plot of the vehicle 

acceleration response will be the mix of bridge frequencies and the vehicle frequency. Since the bridge 

has two frequencies, i.e., spatial frequency and vibration frequency, we may see three kinds of 

frequencies in the vehicle acceleration SD plot. Usually, the spatial frequency of the bridge is very small 

(for a unit length beam, the first frequency is 0.5), and it occurs in a low frequency range. In Figure 
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6.21 (a), we can see that there is a hump around 0.5, which should be the contribution of the spatial 

frequency. While around 2, there is a prominent peak, which should be contributed by the frequency 

ratio 1 1.949 = . As for the vehicle’s nondimensionalized frequency, it is equal to 1, and we can 

observe a small peak in Figure 6.21 (a) around 1.  

 

 

(a) Input acceleration SD plot for the for the quarter car system without road roughness 

 

(b) Input acceleration SD plot for the for the quarter car system with road roughness 

Figure 6.21 Input SD in geometric coordinate for the quarter car system 

Now if we compare Figure 6.21 (a) with Figure 6.21 (b) we can see that the power of the road 

displacement PSD has an impact on the input SD, which means the amplitude of the road roughness 

can affect the identification results. Besides, the plateau in the input SD plot shown in Figure 6.21 (b) 

is consistent with its time domain counterpart illustrated in Figure 6.12 (b), that the road roughness 

transformed the nonstationary input signal to stationary signal when the vehicle is moving across the 

bridge. However, this transformation totally depends on the power of the road roughness compare to 

the vehicle’s power.  

Note that the nondimensionalised spatial frequency   in Figure 6.21 (c) is obtained when n = 100 

(cycle/m),  = 13.333 (m/s), and v =  10.256 (rad/s). As we see from Figure 6.19 that the first three 

modes are less than  , therefore we can identify the first three modes very accurately.  

(d) Variation of the nondimensionalised spatial frequency  

Since the accuracy of the identification result largely depends on  , it is worth showing how this 

parameter is affecting the identification. Without further explanation, we shall demonstrate the effect 

of this parameter with the following three cases, see Table 6.10. The identification results are presented 
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in Figure 6.22. For all three cases, the simulations are based on the 5% noise-corrupted quarter car 

system. Only the parameters shown in Table 6.10 are changed each time, while the rest of the system 

parameters remain the same with the quarter car system we discussed in the last section.  

Here, the label, i.e., (a), (b), (c), is associated with the figure number in Figure 6.22. Under each label, 

it has two figures. The first one shows the generalised input SD, generalised output SD and the 

Accelerance FRF plots. In each plot, the estimated frequency ratios from the first stage identification 

are shown in the figure. The second figure gives Accelerance FRF plots for each mode. The identified 

frequency ratios, damping ratios, and the modal mass ratios from the second stage identification are all 

marked appropriate on the plot. 

Note that among the three parameters, i.e., spatial frequency, vehicle speed, and vehicle natural 

frequency, only the vehicle natural frequency is related to the frequency ratios k . According to the 

relationship defined between the frequency ratio and the vehicle’s natural frequency, i.e., 

, where 1 12 f = , and 1f  is given by Table 6.2. Thus, if v  did not change, 

then the frequency ratios k  will stay the same as the previous examples. Now in case (a), we only 

increased the spatial frequency from 100 to 200. As a result, only the critical point of the plateau is 

being moved rightward, the rest of the system parameters stay the same. Based on our discussion, since 

the nondimensionalised spatial frequency   in this case is larger than the frequency ratio of the 4th 

mode, i.e., 41.380 > 31.183 (see Table 6.9), then we can identify the 4th mode modal parameters 

successfully.  

Similarly, in case (b), when we change the vehicle speed, we only moved the tipping point of the plateau 

rightward, the rest of the system parameters stay the same. Since the new nondimensionalised spatial 

frequency is 55.608, which is larger than the 5th frequency ratio 48.7237 (see Table 6.9), we can identify 

all five modes properly. 

Table 6.10 Nondimensionalised spatial frequency calculation breakdown 

Figure 

label 

Spatial frequency 

n (cycle/m) 
Vehicle speed 

  (m/s) 

Vehicle natural 

frequency 

v  (rad/s) 

Nondimensionalized 

spatial frequency 

2 vn   =  

Modes that 

can be 

identified 

(a) 200 13.333 10.256 41.380 1, 2, 3, 4 

(b) 100 35.833 10.256 55.608 1, 2, 3, 4, 5 

(c) 100 13.333 20.512 10.346 1, 2, 3 

 

2 2

1 1k vk k   = =
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(a1) ( n = 200 (cycle/m)) Noise-corrupted generalised input SD, generalised output SD and the Accelerance 

FRF plots for the quarter car system with road roughness 

 

 

(a2) ( n = 200 (cycle/m)) Noise-corrupted Accelerance FRF plots for the SDOF systems (linear scale) (1st row: 

amplitude ratio between the input and output responses; 2nd row: phase angle between the input and output 

responses). From left to rigth, mode 1 to mode 5. 

 

(b1) ( = 35.8333 (m/s)) Noise-corrupted generalised input SD, generalised output SD and the Accelerance 

FRF plots for the quarter car system with road roughness 

 

 

(b2) ( = 35.8333 (m/s)) Noise-corrupted Accelerance FRF plots for the SDOF systems (linear scale) (1st row: 

amplitude ratio between the input and output responses; 2nd row: phase angle between the input and output 

responses) 



6 Verification of the proposed input-output system identification method 

215 

(c1) ( v = 10.3455 (rad/s)) Noise-corrupted generalised input SD, generalised output SD and the Accelerance 

FRF plots for the quarter car system with road roughness 

 

 

(c2) ( v = 10.3455 (rad/s)) Noise-corrupted Accelerance FRF plots for the SDOF systems (linear scale) (1st 

row: amplitude ratio between the input and output responses; 2nd row: phase angle between the input and output 

responses) 

Figure 6.22 The spectral density and the Accelerance FRF plots for the verification of influence of the 

nondimensionalised spatial frequency. From left to right, mode 1 to mode 5 

While in case (c), as  has changed, the frequency ratios  will change as well. When we substitute 

the new vehicle frequency into the relation defined between the bridge’s natural frequency and the 

vehicle’s natural frequency, i.e., , we obtain a new set of frequency ratios , 

i.e., 0.9745, 3.8979, 8.7703, 15.5916 and 24.3619 for each mode, respectively. Therefore, compared to 

the  calculated in Table 6.10, we can only identify the first three modes. 

Noise level and mass ratios 

For the effect of the noise level, we can easily observe it by comparing the noise-free and noise-

contaminated identification results we discussed in the last section for the moving load system and the 

quarter car system. However, the effect of the noise is not as interesting as the influence factors we 

mentioned above. If white noise is assumed, then its effect is very straightforward and universal (i.e., 

all the modes will be affected at the same time). Therefore, we will not spend more time on explaining 

the noise effect.  

v k

2 2

1 1k vk k   = = k


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As for the mass ratios between the two subsystems, from Eq. (6.41), we see that it only affects the 

amplitude of the Accelerance FRF. For low vehicle mass, the modal mass ratio k v kM M =  for each 

mode will be small. The forcing and the response will be lower, as a result, the amplitude of the FRF 

will be small, then the noise will be more important.  

Furthermore, the change of the vehicle mass will affect the vehicle natural frequency. In turn, it will 

change the frequency ratios k  between the two subsystems and the nondimensionalised spatial 

frequency. Also, if the mass of the bridge is changed, it will result in the change of the bridge modal 

mass for each mode. Then the bridge’s natural frequencies change accordingly if the stiffness of the 

bridge remains the same. As a result, the frequency ratios k  will change. In this case, even if the spatial 

frequency remains the same, the identification result could be very different.  

In short, anything that could change the configuration of the two subsystems, such as the bridge length, 

the stiffness of the bridge, and stiffness of the vehicle, are all influence factors, as they can affect the 

relative location of the tipping point defined by the nondimensionalised spatial frequency.  

6.5 Conclusion 

In this chapter, we verified the proposed two-stage method with a moving load system and the quarter 

car system. The identification results were discussed in terms of both noise-free and noise-contaminated 

cases for the moving load system. While for the quarter car system, we not only considered the noise-

free and noise-corrupted cases but also included the road roughness impact in our consideration.  

We found that the estimated mode shapes from the first stage, nondimensionalised spatial frequency, 

noise level, and the modal mass ratios between the two subsystems are the main influence factors for 

the bridge system identification via our proposed two-stage method. Among all these factors, the effect 

from the nondimensionalised spatial frequency is dominant. By comparing the nondimensionalised 

spatial frequency to the frequency ratios between the two subsystems in terms of the singular value plot, 

we can make inferences about the identification results. When the interested frequency ratios are smaller 

than the nondimensionalised spatial frequency, then we can successfully identify all the modal 

parameters we are interested in, namely, frequency ratios, damping ratio. Whereas the 

nondimensionalised spatial frequency is smaller than one of the frequency ratios, then all the modes 

with frequency ratios larger than the nondimensionalised spatial frequency cannot be identified.  

In practice, when we do the modal analysis of a bridge via moving vehicle excitation, we can utilise the 

influence factors we discussed in this chapter to control the input spectrum, or more precisely the 

nondimensionalised spatial frequency, to excite the higher order modes. Such as by increasing the 
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vehicle speed to increase the value of the nondimensionalised spatial frequency. As the larger the 

nondimensionalised spatial frequency, the more modes can be identified. 
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7. Conclusion and prospects 

7.1 Conclusions 

We have accomplished essentially three main objectives in this thesis. The first two objectives are the 

main content in chapter 3 and chapter 4, respectively. As for the third objective, it is mainly discussed 

in chapter 5 and chapter 6.  

We first proposed a concept of the real-valued spectral density matrix and proved its usefulness in 

estimating real mode shapes with better accuracy in chapter 3. Then we redefined the Frequency 

Domain Decomposition (FDD) technique and extended its application to a certain kind of nonstationary 

process in chapter 4. In the same chapter, we proposed a new technique by using a density operator 

from quantum mechanics to identify the close modes mode shapes. While in chapter 5, we proposed a 

two-stage system identification methodology to identify the bridge modal parameters, i.e., natural 

frequencies, damping ratios, modal masses, based on the measured moving force acceleration response 

and the bridge acceleration responses measured from several measurement locations on the bridge. And 

we verified this two-stage method in chapter 6 with simulated case studies. 

Except for the essential work we have done from chapter 3 to chapter 6, we summarised some 

fundamental ideas in system identification. Continuously, our discussion starts from the general form 

of a time invariant linear differential equation with constant coefficients to the state-space models. We 

also covered the concepts of the transfer function and the frequency response function in the Laplace 

domain and the frequency domain, respectively. Discretely, we gave a brief discussion of some ARMA 

models and introduced the linear Gauss-Markov model, which is a basic model used in Kalman filtering. 

Apart from this, we overviewed some of the traditional identification techniques used in both EMA and 

OMA. Special attention was given to the Data-Driven Stochastic Subspace Identification (SSI-DATA) 

method and the Polyreference method. For the Polyreference method, a more rigorous theoretical 

background is proposed based on the modified version of the Yule-Walkers equation. While for the 

SSI-DATA method, we gave it a more accessible interpretation in terms of the state estimate equation 

used in the Kalman Filter process. Both the Polyreference method and the SSI-DATA method were 

used in a comparative case study in chapter 4 to do close mode analysis.  

Since chapter 3 to chapter 6 contain most of our important conclusion, we will discuss them separately 

in the next few subsections.  
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7.1.1 Chapter 3: Real-valued and one-sided spectral density matrix 

In this chapter, a real-valued one-sided spectral density matrix is proposed based on the Parseval’s 

theorem in the hope that the absence of the imaginary part of a spectral density matrix will have no 

negative impact on the estimated modal parameters. This new concept is verified by conducting a 

comparative simulation case study with the classical complex-valued spectral density matrix.  

In the case study, we considered a numerical model with five DOF’s, where three modes are active, 

while the other two modes are inactive (i.e., by forcing the corresponding mode shapes to be zero). For 

the three active modes, two of them have fixed frequencies, while the other one is moving between 

them from the lower frequency to the higher frequency. The identification process for the two different 

spectral density matrices is realised by using the Polyreference method we introduce in chapter 2.  

The simulation results clearly show that both approaches give the same level of accuracy for the 

measured frequencies and damping ratios. For the mode shapes, the error measured as the angles 

between the exact and the estimated mode shapes seem to be smaller than when we use the real-valued 

spectral density matrix. Upon the numerical analysis, we also provided a simple theoretical explanation 

for this new concept based on the Periodogram. Therefore, we concluded that we could remove the 

complex part of the spectral density matrix without losing quality in the identification process, provided 

that the mode shapes are real or close to real.  

7.1.2 Chapter 4: On the theory of the FDD identification technique and the 

close modes estimation via a density operator 

Chapter 4, without a doubt, is the most important chapter in this thesis, as we have achieved two main 

goals in this chapter. First, we redefined the FDD method and showed the possibility of using it to 

estimate modal parameters from some nonstationary processes. The reason why for doing this is 

because the original theoretical background of the FDD was weak and inconsistent with its application, 

which, as a result, largely restricted its application. As for the second achievement, we proposed a new 

way of identifying the mode shapes when two modes are very close to each other by evaluating a density 

operator. These seemly unrelated topics are related to a power spectral density (PSD) estimator, which 

is the essential objective the FDD works on. Therefore, the theoretical background given in this chapter 

was essentially revolving around a PSD estimator.  

To be more specific, the theoretical background comes in two parts. In the first part, our goal is to define 

a PSD estimator, while in the second part, we aimed to understand the properties of that estimator and 

investigated the possible ways to analyse it.  
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Technically speaking, there are two ways to define a PSD estimator, one is derived by taking the Fourier 

transform of a sample correlation function is known as a Correlogram, the other one is estimated in 

terms of its original definition with a limit, and an expectation notion is known as a Periodogram. In 

this thesis, we adopted the second approach because the definition of a Periodogram can help us to 

interpret the PSD estimator as a covariance matrix, while the Correlogram cannot provide us with the 

same level of understanding. By reckoning a PSD estimator as a covariance matrix in the frequency 

domain, we can use the idea of PCA to explain the FDD as a variance-based method. Based on this, we 

explained the behaviour the meaning of singular values and pointed out that the FDD can be used to 

detect the close modes. However, when the two modes are very close to each other, it fails to identify 

the mode shapes of the two close modes. It is because its conventional procedure requires us to identify 

the mode shapes from the first singular vectors, which correspond to the peak values of the first singular 

value plot. When two modes fall into the spectral resolution, the two peaks are inseparable in the 

frequency domain.  

To tackle the mode shape estimation problem for two close modes, we proposed a new way to analyse 

a PSD estimator by converting it into a density operator. In order to do this, we spent quite a lot of space 

discussing the properties of the PSD estimator and recognised it as a self-adjoint compact operator 

living in a finite-dimensional Hilbert space, which is complete. Hence, it bears a Spectral decomposition, 

and every vector in such a Hilbert space can be expressed by the linear combinations of the basis vectors. 

Upon which we explained the reason why we can use the FDD to estimate the mode shapes in a 

combination of the mode superposition. Finally, by normalising a self-adjoint PSD estimator, we 

obtained a density operator, which satisfies all the requirements given in quantum mechanics.  

With a valid density operator, we can either use the purity or the Von Neumann entropy to estimate the 

close modes mode shapes. When the purity is close to 1, it means we are almost in a pure state. If it is 

less than 1, it implies that we are in a mixed state, while the Von Neumann entropy quantifies the 

departure of the system from a pure state for a given finite system. When the entropy is close to zero, it 

means the system is almost in a pure state, otherwise, it is in a mixed state. Under the classical mechanics 

setting, in a pure state means that we can assume the system is governed by a single mode, whereas a 

mixed state means that more than one mode is active. Both purity and Von Neumann entropy tell us 

how mixed the system states are. Thus, either of them can be used to estimate the mode shapes.  

Apart from our discussion of the properties of a PSD estimator, we also explain the relationship between 

the Spectral theorem and the Singular Value Decomposition (SVD). And we pointed out that they are 

both widely used techniques in PCA.  

Having redefined the FDD, we investigated the capability of the FDD to be used to deal with some 

nonstationary processes with a simple case study. This extended discussion of the nonstationary random 

process by using the FDD is unconventional, but it is a necessary preparation for its application in 
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chapter 6 for the vehicle induced bridge vibration analysis. There are many kinds of nonstationary 

processes. The application of a technique like the FDD built upon a stationary theory to a nonstationary 

process is quite limited. Fortunately, the nonstationary problem we encountered in chapter 6 is the one 

the FDD can solve. 

As for the close mode analysis, the same dynamic system we used in chapter 3 was used again in this 

chapter to investigate the close mode identification problem. Since the natural frequencies and damping 

ratio cannot be obtained by analysing a density operator alone, a two-stage method, namely, Enhanced 

Polyreference, is designed to identify them. As its name implies, it is a combination of the Polyreference 

method. In the first stage, we analysed a density operator to get the mode shape estimation, then use it 

to decompose the normal coordinates into a set of modal coordinates; in the second stage, we applied 

the Polyreference method to those modal coordinates to extract the natural frequencies, and damping 

ratios. To evaluate the performance of our proposed method, a comparison study is conducted by 

applying the Polyreference method and the data-driven Stochastic Subspace Identification (SSI-DATA) 

method to the same data set. 

Three possible influence factors, namely, the Modal Assurance Criteria (MAC) value between the two 

close modes, damping ratios, and the noise level, are considered in our study. According to those three 

factors, 8 cases, which are the different combinations of those factors, are investigated in our case study. 

The results show that the Enhanced Polyreference improves the estimation accuracy of the natural 

frequencies and the damping ratios in comparison with the Polyreference, while the SSI-DATA can 

provide the best damping ratios estimation. When it comes to the mode shape identification, Enhanced 

Polyreference uses a density operator in the first stage to estimate the mode shapes gives the most robust 

performance than the comparison methods. Although the mode shape estimation procedure proposed 

in this work does not work perfectly when two modes are extremely close or identical, when the 

disparity between the two close modes are slightly larger, it gives comparable identification precision 

of the mode shapes estimates when compared to Polyreference and SS-DATA. Most importantly, the 

proposed method can work in a frequency band where the FDD fails.  

Particularly, our analysis showed that the best mode shape estimates are not necessarily given by the 

peak frequencies of the FDD. Rather, when two modes are very close to each other in the case that the 

first singular value plot of the FDD is unable to resolve it, the best mode shape estimates are 

corresponding to the frequency locations where a system approaches a pure state. This is a significant 

result, as it reveals the protentional bias in using the FDD to estimate the mode shapes and the natural 

frequencies. 

It is true that different methods have their own merits. The FDD is good at detecting the close modes, 

but it is unable to resolve the mode shape and natural frequency identification problem when two modes 

are inseparable in the first singular value plot. Although good estimation results of the mode shape can 
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be obtained by analysing a density operator when two modes are very close but not extremely close or 

identical, the dependence on the peak picking of the purity plot will cripple it when a system has large 

damping ratios. Nevertheless, the proposed method is noise insensitive, and for well-separated modes, 

it can also be used to estimated natural frequencies, as the peak frequencies in a purity plot converge to 

their FDD counterparts. Apart from this, according to our discussion, different correlation relations 

between the two close modes will generally give a different view of the entropy or the purity plot. Such 

information can be used to make a reference to the orthogonality of mode shapes. Additionally, when 

used in combination with the Polyreference method, the physical pole determination problem associated 

with the original method is eliminated, which largely simplifies the identification procedure.  

7.1.3 Chapter 5 and Chapter 6: Two-stage method and its verification 

The last object of this thesis is presented in chapter 5 and chapter 6. In chapter 5, a two-stage system 

identification method was proposed to tackle the bridge modal parameters estimation problem under 

the excitation of a moving vehicle. The main idea is to use the estimated mode shapes we obtained from 

the first stage identification based on the bridge output only responses to decompose the bridge system 

in the second stage identification.  

To be more specific, the mode shapes are identified in the first stage by applying an output only system 

identification technique to the bridge output-only responses, and the technique we used in this study is 

the FDD. Once we have the estimated mode shapes, we can use them to decouple the bridge responses 

and the vehicle response into modal coordinates. With the measured moving force vibrational 

information and the bridge acceleration response, a series of FRFs can be constructed. Then the modal 

parameters of the bridge can then be estimated through an optimisation procedure with the objective 

function formed in terms of the theoretical FRF expression, and this procedure forms the second stage 

identification. To utilise all the information and alleviate the smearing and leakage problem, the full-

length record of the bridge was used in both stages in this work. 

In general, the proposed two-stage method has the following merits. First and foremost, it can be used 

to identify the modal masses of the system, which is an important modal parameter in forced response 

analysis, and it can be used to scale the mode shapes. For such an important parameter, unfortunately, 

none of the current OMA techniques is able to identify it. Second, theoretically, it can produce a better 

natural frequency identification compared to the ones we obtained from the ambient vibration test, as 

the influence of the input is separated from the bridge system according to the FRF expression given 

by Eq. (5.58). More specifically, by separating the extra mass on the bridge, the estimated natural 

frequencies will be larger than its OMA counterparts but close to the actual values. Third, the 

experiment setup is simpler and cheaper than the traditional forced vibration test. This is helpful when 

one needs to conduct dynamic experiments on some structures such as a long-span bridge. Also, because 
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of the moving nature of the force, the excitation of the higher modes of the system can be easily achieved. 

In this case, as one of the benefits of using OMA, that all DOFs can be excited by assuming white noise 

input along the structure, will be dwarfed by the proposed two-stage method devised for the moving 

load case. Apart from this, due to the simplicity of the measurement procedure, we can run the vehicle 

on the bridge multiple times, which allows a statistical analysis of the results.  

Finally, in chapter 6, the proposed two-stage method is verified with two nondimensionalised VBI 

systems, i.e., a moving load and the quarter car traversing a simply supported Euler-Bernoulli beam. 

The identification results are discussed in terms of both noise-free and noise-contaminated cases. We 

found that the estimated mode shapes from the first stage, nondimensionalised spatial frequency, noise 

level, and the modal mass ratios between the two subsystems are the main influence factors for the 

bridge system identification. Among all these factors, the effect from the nondimensionalised spatial 

frequency is the most important one.  

7.2 Prospects 

For future work, it can be wrapped into the following aspects: 

• For the close mode analysis  

According to our analysis in chapter 4, we see that there is no problem for us to use the FDD 

or any other techniques to identify the modal parameters when the modes are well-separated. 

However, when two modes are very close to each other, and its frequency is inseparable under 

the analysing resolution, then FDD is unable to identify the close mode frequencies correctly. 

As a result, it cannot provide us proper estimates of the mode shapes for the two close modes. 

However, we saw in our analysis that the time domain method and the proposed purity or the 

Von Neumann entropy of a density operator measure are capable of estimating the mode shapes 

when two modes are very close to each other. When compared to the time domain methods, the 

proposed method via the density operator is more robust and user-friendly. Most importantly, 

it does not need any reference information. When combining it with the Polyreference method, 

we can easily automate the identification procedure.  

Nevertheless, none of the methods we studied in this thesis is able to deal with the identical 

mode case. We believe that the problem lies in three aspects. The first one is the identification 

objects. When the two modes are extremely close to each other or identical, they are interacting 

in the subspace. Especially when the two modes are identical, identify either of them 

individually is meaningless, as any two linear combinations of them are valid basis vectors for 

those two modes. Because of this, we need a technique to identify a subspace rather than the 

individual mode shape vectors. While in the case of two mode shapes, our goal is to identify a 
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hyperplane. So, the second problem is the identification technique. We could potentially use 

the first two singular vectors at the resonance frequency in the FDD. However, the two vectors 

only give us two random points in the vector space. Without any prior information about the 

mode shape vectors, we are unable to determine if those two points fall onto the hyperplane we 

are looking for. Then there comes the third problem, which is about the assessment measure. It 

is obvious that the conventional MAC, which works on individual vector, will not work in this 

case.  

Now, our discussion of the FDD and the density operator provided us an easy way to analyse 

the behaviours of each mode frequency by frequency. It is possible that we can extend our work 

to tackle the identical mode estimation problem. Apart from this, the estimation uncertainty 

analysis has not been done in this study yet. As an important topic, we shall investigate it in 

future work.  

• For the proposed two-stage system identification methodology 

This thesis presents a preliminary work for the proposed method, which needs to be further 

verified with experiments in the lab or on a real bridge. Also, since the case study illustrated in 

chapter 6 only comprises a single point moving load and a quarter car model, it is unclear if the 

proposed method is still valid if a more supplicated car model is used. Thus, further numerical 

analysis is needed. 

Besides, it must be pointed out that the proposed method is not restricted by the bridge equation 

of motion for the simply supported beam. It means that this two-stage method can be applied 

to other cases with a single moving force input.  
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