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Abstract

Background: Whether elevated blood pressure (BP) is a modifiable risk factor for atrial fibrillation (AF) is not
established. We tested (1) whether the association between BP and risk of AF is causal, (2) whether it varies
according to individual’s genetic susceptibility for AF, and (3) the extent to which specific BP-lowering drugs are
expected to reduce this risk.

Methods: First, causality of association was assessed through two-sample Mendelian randomization, using data
from two independent genome-wide association studies that included a population of one million Europeans in
total. Second, the UK Biobank data of 329,237 participants at baseline was used to study the effect of BP on AF
according to genetic susceptibility of developing AF. Third, a possible treatment effect with major BP-lowering drug
classes on AF risk was predicted through genetic variants in genes encode the therapeutic targets of each drug
class. Estimated drug effects were compared with effects on incident coronary heart disease, for which direct trial
evidence exists.

Results: The two-sample Mendelian randomization analysis indicated that, on average, exposure to a higher systolic
BP increased the risk of AF by 19% (odds ratio per each 10-mmHg [OR] 1.19 [1.12 to 1.27]). This association was
replicated in the UK biobank using individual participant data. However, in a further genetic risk-stratified analysis,
there was evidence for a linear gradient in the relative effects of systolic BP on AF; while there was no conclusive
evidence of an effect in those with low genetic risk, a strong effect was observed among those with high genetic
susceptibility for AF. The comparison of predicted treatment effects using genetic proxies for three main drug
classes (angiotensin-converting enzyme inhibitors, beta-blockers, and calcium channel blockers) suggested similar
average effects for the prevention of atrial fibrillation and coronary heart disease.

Conclusions: The effect of elevated BP on the risk of AF is likely to be causal, suggesting that BP-lowering treatment may
be effective in AF prevention. However, average effects masked clinically important variations, with a more pronounced
effect in individuals with high genetic susceptibility risk for AF.
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Background
Atrial fibrillation (AF) is the most common clinically im-
portant cardiac arrhythmia and its incidence and preva-
lence are on the rise worldwide [1]. AF is associated
with an increased risk of fatal and nonfatal cardiovascu-
lar events [2], and its associated care and management
impose substantial burden on healthcare systems [3].
Evidence on how to effectively prevent AF, thus far,

has been limited. Observational studies have estimated
that a 20-mmHg higher systolic blood pressure (SBP)
was associated with a higher risk of AF [hazard ratio
(HR) 1.21, 95% confidence interval (CI) 1.19 to 1.22] [2].
However, randomized controlled trials (RCTs) and their
meta-analyses have shown no compelling evidence that
blood pressure (BP)-lowering treatment reduces the risk
of AF [4–6]. This apparent discrepancy between obser-
vational and randomized evidence may be related to lim-
itations of observational studies which are prone to
reverse causality and residual confounding. It is also pos-
sible that randomized trials have been underpowered to
detect an effect size that, based on observational evi-
dence, seems more modest than what has been reported
for atherosclerotic events like stroke or myocardial in-
farction. Besides, a meta-analysis of RCTs investigating
the effect of BP-lowering treatment on the risk of AF
found observable heterogeneity in effect sizes that were
partially explained by differences in trial-level baseline
risk for AF [6]. This has raised the hypothesis that the

overall weak or lack of apparent treatment effects could
be masking stronger effects in high-risk individuals in
whom BP-lowering could have benefits in reducing their
future risk of AF.
Recent advances in genome-wide association studies

(GWAS) have revealed a large number of genetic vari-
ants that play an important role in the etiology of AF
[7]. These, together with the increasing availability of
genetic data from large-scale biobanks, provide an op-
portunity to utilize Mendelian randomization (MR) to
take the evidence from previous observational epidemio-
logical studies and clinical trials further. In this multi-
step study, the main aims were to investigate the causal
association between elevated SBP and risk of AF and to
assess the extent to which this association varies accord-
ing to genetic susceptibility for AF. Furthermore, to in-
form clinical decision-making, we also aimed to predict
the effects of BP-lowering treatment for major BP-
lowering drug classes. Results of this study have been
published as an abstract at the European Society of Car-
diology (ESC) congress 2020 [8].

Methods
We employed different MR techniques to investigate
several complementary research questions (Fig. 1 and
Additional file 1: Supplementary methods). In general,
MR takes advantage of the similarities between the ran-
dom allocation of genetic variants at fertilization and

Fig. 1 General structure of study including research questions and the specific research designs used to answer the stated questions
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that of random allocation of interventions in RCTs [9–
11]. The different techniques and stages of analyses are
described in more detail herein.

Two-sample Mendelian randomization
Data for exposure
Our main exposure was genetically determined SBP as an
instrumental variable. This was estimated from genetic
variants with minor allele frequency > 0.01 that was inde-
pendently associated (linkage disequilibrium r2 < 0.05)
with SBP at p < 5 × 10−8. Overall, 251 genetic variants were
used, all with imputation quality > 0.9 that have been
shown to be associated with SBP in a GWAS meta-
analysis including over one million European population
(Additional file 2: Table S1 and Additional file 3: Figure
S1) [12]. Because of partial overlap between the GWAS
selected for exposure and outcome (UK biobank contrib-
uting to both) [7, 12], and to avoid weak instrument bias
[13], we extracted the corresponding beta coefficients and
standard errors from the International Consortium for
Blood Pressure GWAS (ICBP), which did not include the
UK biobank [14] and therefore provided a non-
overlapping sample. ICBP is a GWAS meta-analysis in-
cluding about 200,000 European population, and its esti-
mations were adjusted for sex, age, age-squared, body
mass index (BMI), within-cohort stratification, and also
for BP-lowering medications use [14]. The ICBP analyses
were conducted using linear regression model and com-
bined across studies using inverse-variance weighted
meta-analysis [14].

Data for outcome
The main outcome of interest was AF. We retrieved cor-
responding summary statistics from the largest and re-
cently published GWAS meta-analysis, which included a
total of 60,620 AF cases and 970,216 controls of Euro-
pean ancestry [7]. The GWAS included all genetic vari-
ants that were available for meta-analysis in the
following studies: The Nord-Trøndelag Health Study
(HUNT), DeCODE (The Icelandic AF population), The
Michigan Genomics Initiative (MGI), The DiscovEHR
collaboration cohort, AFGen Consortium, and UK Bio-
bank. Estimations from each GWAS were combined
using fixed-effects inverse-variance weighted meta-
analysis with adjustment for population stratification
within each cohort study [7].
We tested the validity of the instrumental variable by

examining the causal association between SBP and posi-
tive outcomes including coronary heart disease, myocar-
dial infarction, and ischemic stroke. For this analysis, we
used two-sample MR using MR-base analytical platform
[15]. We used the same genetic variants for SBP, but the
variants-outcome association was extracted from inde-
pendent GWAS studies [16, 17].

Analysis of two-sample Mendelian randomization
The summary data were harmonized before conducting
the statistical analysis as recommended by Fortier et al.
[13, 18]. We estimated the causal effects using a
random-effect inverse variance weighted and applied
various sensitivity analysis methods of two-sample MR
including weighted median, MR pleiotropy residual sum
and outlier [MR-PRESSO], Mendelian randomization
analysis using mixture models (MRMix), Robust Ad-
justed Profile Score (RAPS), and MR-Egger and mode-
based estimate (MBE) (Additional file 1: Supplementary
methods). We examined the heterogeneity of the esti-
mates by using a scatter plot and applying Cochran’s Q
test [19]. We also assessed the probable directional plei-
otropy using a funnel plot similar to that being used to
assess for publication bias in meta-analysis [19]. A leave-
one-out sensitivity analysis was conducted by removing
a single variant from the analysis in turn. The fluctuation
of the estimates in response to excluding each variant
reflects the possibility of an outlier variant in the causal
estimation. The “MendelianRandomization” and “Two-
SampleMR” packages for R were used to implement the
MR analyses [15, 20].

Complementary analysis
All the GWAS studies with SBP as phenotype routinely
adjust for the effect of BMI [14, 21]. Using the estimates
from BMI-adjusted GWAS to conduct an MR study
could introduce collider bias. Therefore, we explored
whether the identified causal association is driven by
BMI using unadjusted BP estimations and by including
BMI as a phenotype in multivariable MR. The UK Bio-
bank dataset was used to derive the unadjusted estimates
[22]. We used multivariable MR through inverse-
variance weighted method [23, 24] to calculate adjusted
versus unadjusted causal estimations.

Stratified Mendelian randomization
To assess the stratified effect of SBP on AF by genetic
susceptibility of developing AF, we followed a one-
sample MR framework using individual participant data
from the UK Biobank. The genetic variants used in this
analysis were extracted from the UK Biobank imputation
dataset (version 3). The details of inclusion and exclu-
sion criteria are described in Additional file 1: Supple-
mentary methods. In brief, 329,237 white British
individuals with valid genetic data and complete BP
measurements were included in this analysis. To deter-
mine genetic susceptibility of AF for each participant,
we generated a genetic risk score using 102 genetic vari-
ants with minor allele frequency > 0.01 that were inde-
pendently (r2 < 0.05) associated with AF at p < 5 × 10−8

in the last published GWAS in the European population
(Additional file 1: Supplementary methods, Additional

Nazarzadeh et al. Genome Medicine           (2021) 13:38 Page 3 of 10



file 3: Figure S2, and Additional file 2: Table S2) [7].
Four categories were developed including the low, mild,
moderate, and high genetic risk of AF (Additional file 3:
Figure S3). We conducted a one-sample MR overall and
then stratified by four categories of genetic susceptibility
for AF to investigate whether the magnitude of the
causal effect varied according to the category of genetic
susceptibility. Details of statistical analysis and diagnostic
codes are described in Additional file 1: Supplementary
methods. To test whether the effect of SBP on the risk
of AF was modified by genetic susceptibility for AF, we
applied a likelihood ratio test for heterogeneity of trends
comparing two multivariable logistic regression models.

Sensitivity analyses
The validity of the instrumental variable was checked
through positive control analysis using coronary heart dis-
ease, myocardial infarction, and stroke as positive out-
comes. We further performed a sensitivity analysis
excluding all cases of coronary heart disease, heart failure,
and valvular heart disease in the UK biobank to check that
the observed associations between SBP and AF are not
driven by the well-known association of SBP with these
outcomes [25]. We performed a sensitivity analysis to in-
vestigate the possible impact of AF case definition on the
associations by restricting the analysis to various compo-
nents of AF definition (primary or secondary causes of
hospitalization, or self-reported diagnosis). We adjusted
the association for possible confounders (BMI, alcohol in-
take, smoking status, Townsend deprivation index, LDL-
cholesterol level, and blood glucose level) to further assess
the possible role of other risk factors on the association.
Finally, we conducted a sensitivity analysis and re-
constructed a genetic risk score for AF, excluding genetic
variants associated with any type of well-known cardiovas-
cular risk factors or diseases (Additional file 3: Figure S2).

Genetic analysis for the effect of blood pressure-lowering
drug classes
BP-lowering drug effects can be predicted through vari-
ants in genes that encode receptors related to the mech-
anism of action. For example, ADRB1 is a gene that
encodes the adrenergic receptor beta 1, present in cardi-
omyocytes and the heart conduction system, thus,
modulating inotropy and chronotropy. Beta-blockers
prevent activation of those receptors by adrenaline and
noradrenaline and, hence, have a negative inotropic and
chronotropic effect [26]. Therefore, genetic variants in
the ADRB1 gene associated with SBP can be used as a
proxy for exposure to beta-blockers and thus help pre-
dict the effect of that drug class on the risk of AF. We
used the approach suggested by Gill et al. [27] to select
genetic variants that mimic the effect of each BP-
lowering drug class. Details of variant selection have

been reported by Gill et al. [27]. Two-sample MR
method through the inverse-variance weighted approach
was used for the statistical analysis. We used the ratio of
coefficients (Wald ratio) method as an alternative ap-
proach when only a single variant was available [28].
The same GWAS studies for SBP and AF were used for
this stage of the analysis [7, 14].

Results
Elevated systolic blood pressure increases the risk of
atrial fibrillation
Using the inverse-variance weighted method, each 10-
mmHg genetically predicted higher SBP was associated
with a 19% higher risk of AF (odds ratio [OR] 1.19 [95%
CI 1.12 to 1.27], p < 0.001) (Fig. 2). The strong associa-
tions between SBP and coronary heart disease (OR 1.30
[95% CI 1.23 to 1.38], p < 0.001), myocardial infarction
(OR 1.22 [95% CI 1.12 to 1.32], p < 0.001), and ischemic
stroke (OR 1.32 [95% CI 1.15 to 1.51], p < 0.001) suggest
that the instrumental variable was valid. The MR regres-
sion slopes are shown in Additional file 3: Figures S4
and S5. Overall, estimated ORs based on different MR
methods were similar, except the MR-Egger method that
showed no effect and wide CIs (Additional file 3: Figure
S6). However, after excluding outlier variants, the MR-
Egger estimation was consistent with the main estima-
tion and other sensitivity analyses (Additional file 3: Fig-
ure S6). There was evidence of directional pleiotropy
based on MR-Egger intercept (beta 0.004; [standard
error = 0.002] p = 0.02), which was considerably diluted
after excluding outlier variants (beta = 0.001; [standard
error = 0.001] p = 0.54). In the leave-one-out analysis, we
found that no single genetic variant was strongly driving
the overall effect of SBP on AF (Additional file 3: Figure
S7). Sensitivity analysis using a series of sequentially re-
stricted linkage disequilibrium threshold for clumping
approved no material change in the main estimation
(Additional file 3: Figure S8). The multivariable MR ana-
lysis showed similar findings before and after adjustment
for BMI (Additional file 3: Figure S9).

The stronger effect in participants with greater genetic
susceptibility of atrial fibrillation
Additional file 2: Table S3 describes the characteristics
of 329,237 UK Biobank participants with and without
AF. We identified 12,391 cases of AF (prevalence 3.7%
[95% CI 3.6 to 3.8%]) through diagnostic codes in the
UK Biobank. The overall finding of this one-sample ana-
lysis was in keeping with the two-sample analysis (Add-
itional file 3: Figures S6 and S10). Risk-stratified analyses
further showed evidence for interaction in the relative
effect of SBP on AF. We found no material difference in
measured SBP values by AF genetic risk score (mean
SBP, 138 mmHg in all subgroups including low, mild,
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Outcomes

Main outcome    

Positive outcomes

Atrial fibrillation

Coronary heart disease
Myocardial infarction
Ischemic stroke

No. Cases

60620

60801
43676
10307

No. Controls

970216

123504
128199
 19326

0.5 1 2

Odds ratio per 10-mm Hg higher 
systolic blood pressure (95% CI)

1.19

1.30
1.22
1.32

[1.12; 1.27]

[1.23; 1.38]
[1.12; 1.32]
[1.15; 1.51]

Fig. 2 Two-sample Mendelian randomization estimates for the association between genetically predicted systolic blood pressure per 10-mmHg and atrial
fibrillation as the main outcome, and coronary heart disease, myocardial infarction, and ischemic stroke as positive control outcomes. Solid squares represent
point estimates and vertical lines 95% confidence intervals (CI). Cases and controls: number of cases and controls in genome-wide association studies. Odds
ratio estimated using the inverse-variance weighted method

Fig. 3 Stratified Mendelian randomization for the effect of genetically predicted higher systolic blood pressure and risk of atrial fibrillation by
genetic susceptibility for atrial fibrillation. The analysis adjusted for age, sex, genotype measurement batch, genetic kinship to other participants,
UK Biobank assessment center, and first ten genetic principal components (population stratification adjustment). AF, atrial fibrillation; SBP, systolic
blood pressure
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moderate, and high genetic susceptibility for AF), but a
linear gradient increase in causal association between SBP
and AF risk was observable (Fig. 3). When stratified ac-
cording to the AF genetic risk score, the causal effect of
increasing SBP on AF risk was least in participants with
low genetic risk (OR 1.20 [95% CI 0.95 to 1.53]), modest
in those with mild or moderate genetic risk (OR for mild,
1.34 [95% CI 1.10 to 1.63], and OR for moderate, 1.43
[95% CI 1.20 to 1.69]), and strongest among those with
high genetic risk (OR 1.51 [95% CI 1.32 to 1.74]) (Fig. 3).

Sensitivity analyses
The positive control findings further support the validity of
the analyses, confirming the causal link between SBP and
coronary heart disease, myocardial infarction and stroke
(Additional file 3: Figure S10). Also, exclusion of all patients
with the diagnosis of coronary heart disease, heart failure,
and valvular heart disease in the UK biobank led to no ma-
terial change in the one-sample MR overall estimation
(Additional file 3: Figure S11). Finally, the rest of the sensi-
tivity analyses showed that the analyses based on different
case definitions, adjustment levels, and modified genetic risk
score for AF were in line with the main results (Additional
file 3: Figures S12 and S13, Additional file 2: Table S4).

Prediction of BP-lowering drug effects
Candidate variants have been previously reported for
angiotensin-converting enzyme inhibitors (ACEI) (one
variant), beta-blockers (6 variants), and calcium channel

blockers (24 variants), enabling investigation of effects
by major drug classes (Additional file 2: Table S5) [27].
Each 10-mmHg decrement in SBP determined through
genetic variants for ACEI, beta-blockers, and calcium
channel blockers classes showed similar magnitude and
direction of effects to those for coronary heart disease,
as an established evidence-based target for preventive
BP-lowering treatment (Fig. 4).

Discussion
This study has shown that exposure to a higher SBP in-
creases the risk of AF by 19% per each 10-mmHg higher
SBP, but this average effect varied according to genetic
susceptibility to AF. While there was no clear evidence
of an increased risk in people with low genetic suscepti-
bility, those with a high genetic predisposition have a
51% increase in AF risk for each 10-mmHg increment in
SBP. Furthermore, by using genetic variants for three
major antihypertensive drug classes as corollary evi-
dence, we have shown a similar relative effect on AF
prevention compared to their effects on coronary heart
disease. Findings from this study complement those seen
in previous research and may help explain some of the
conflicting findings between epidemiological observa-
tional studies and clinical trials.
Previous MR study, with the main focus on the causal

pathway from ischemic stroke to atrial fibrillation, re-
ported a similar causal effect between SBP and AF [29].
The association we found is broadly consistent with a

Fig. 4 Association of genetically predicted systolic blood pressure reduction for each major class of antihypertensive medications on the risk of
atrial fibrillation or coronary heart disease. CI, confidence interval; ACEI, angiotensin-converting enzyme inhibitors; n, number; p, p value for
heterogeneity between two outcomes, calculated using the chi-square test. Odds ratio estimated using the inverse-variance weighted method
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previous large-scale observational cohort study, which
suggested a 10% increase in risk per 10-mmHg higher
SBP [2]. The stronger association for the same magni-
tude of increase in SBP found in our study is likely indi-
cative of lifelong risk exposure measured in MR studies
as opposed to more limited follow-up duration in con-
ventional prospective cohort studies. More importantly,
our analyses support the causal nature of this association
by mitigating reverse causality and confounding as po-
tential alternative explanations. Moreover, we report the
consistency of effect estimates for three major antihyper-
tensive classes on AF and coronary heart disease, which
provides further evidence for the modifiable nature of
the risk of AF through the use of common antihyperten-
sive drugs.
One of the major implications of our research is the

finding that the same level of BP-lowering treatment
might have quantitatively different relative (and abso-
lute) effects in people with varying genetic predisposition
for AF, despite having phenotypically similar SBP values.
This could offer a strategy for the selection of a group of
individuals in whom treatment might have no or little
preventative effect and help target interventions on those
with the highest genetic risk of development of AF. This
is in line with the ambition of precision or stratified
medicine [30], despite inherent limitations to its scope
[31] and often lack of rigorous analytical techniques to
support its claims [32]. In particular, in the context of
common multi-cause cardiovascular diseases such as AF,
evidence for the value of stratified treatment remains
limited. A common approach by previous genetic studies
has been to search for “treatment responders” through
stratification of patients based on their genetic suscepti-
bility for a particular drug target (i.e., exposure) with
often disappointing results [33]. For instance, findings
from the Heart Protection Study revealed that the risk
reduction of major vascular outcomes during 5 years of
statin therapy was not different across common genetic
variants associated with lipid response [33].
An alternative strategy is to stratify individuals based

on the risk of the outcome that is to be prevented. A
commonly adopted approach here is to perform a sub-
group analysis based on clinical risk scores. However,
previous individual patient data (IPD) meta-analyses of
trials that stratified participants based on baseline clin-
ical risk of cardiovascular disease showed that the pro-
portional risk reductions during 5 years of statin therapy
or BP-lowering therapy to be largely similar across risk
categories [34, 35]. The lack of treatment interaction by
clinical risk in these studies might be due to the rela-
tively narrow range of clinical risk of trial populations or
the fact that increasing age, which is often a strong pre-
dictor of clinical risk, counteracts the expected higher
relative effects in high-risk groups [36].

Genetic risk scores capture lifelong risks and overcome
these issues, particularly when the predictive ability of
conventional clinical risk scores is not as high as genetic
risk scores, which seems to be the case in AF [37]. We
are not aware of any prior study that focused on the ef-
fect of BP-lowering drugs and stratified patients by their
genetic susceptibility for AF or other cardiovascular out-
comes. Our study fills this gap in evidence and broadly
follows the same principle as in an earlier IPD meta-
analysis of four statin trials which stratified patients by
their genetic risk for coronary heart disease and demon-
strated a gradient in relative risk reductions across low
to high genetic risk categories (13 to 48%) [38].
Although our study provides a strong foundation for the

hypothesis that BP-lowering treatment could be more
beneficial in patients with higher genetic risk of AF, RCTs
with access to genetic information are necessary to con-
firm its findings and to compare perhaps the value of AF
genetic risk scoring against other potential indicators of
risk. However, the high resources required for such trials,
particularly in the presence of compelling evidence for the
efficacy of BP-lowering to reduce the risk of adverse car-
diovascular events [39], may render conduct and design of
trials with AF as their primary outcome unfeasible or un-
ethical. To our knowledge, no RCT of antihypertensive
treatment with AF as its primary outcome has been pub-
lished or is currently ongoing. However, several major tri-
als of antihypertensive drugs have reported incidence of
AF as their secondary outcomes or through adverse event
reporting. The largest tabular meta-analysis of these trials
showed substantial heterogeneity in effects on risk of AF
across trials, with a 25% risk reduction in patients with
heart failure but no effect in patients without heart failure
[6]. The same meta-analysis reported a graded effect by
the trial-level rate of AF, with a risk ratio (RR) of 0.86
(95% CI 0.81 to 0.93) for trials in the highest event rate
versus a RR of 0.98 (95% CI 0.88 to 1.09) for lowest event
rate. This observation raised the hypothesis that the over-
all null findings in the non-heart failure trials might have
been due to the inclusion of participants at low risk of AF.
However, the study lacked data to estimate risk at the level
of individuals and could not adequately take account of
other important determinants of treatment effect such as
the intensity of BP reduction or disease interaction, in par-
ticular for heart failure, where mechanisms of antihyper-
tensive drugs might differ from hypertension [40]. Future
analyses of individual-participant data from a consortium
of large-scale BP-lowering trials could investigate this
question in more detail [41]. Our findings could also in-
form future trial designs for an enriched selection of trial
participants to test this hypothesis directly.
Our findings should be interpreted considering the

limitations of this study. First, we used AF cases from
linked hospital electronic health records, and a degree of
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misclassification could not be excluded. However, previ-
ous studies have revealed that the diagnostic validity of
AF in electronic health records is above 85% compared
with electrocardiographic assessment, and any misclassi-
fication is only expected to have diluted the observed as-
sociations [42]. Second, MR analysis assumes that there
is no alternative causal pathway and the variants selected
as an instrumental variable for SBP influence AF only
through the exposure of interest (i.e., no pleiotropic ef-
fect). Although it is impossible to be certain that the var-
iants used in this study do not have pleiotropic effects,
we did not find any strong evidence in favor of the pleio-
tropic effect using extensive sensitivity analyses. Finally,
our study was restricted to a population of European
descent for the sake of genetic homogeneity. However,
this limits the generalizability of the observed associa-
tions to other ethnicities with different genetic
backgrounds.

Conclusions
This study shows that the association between elevated
BP and increased risk of AF is likely to be causal, with a
more pronounced impact in individuals with high gen-
etic susceptibility for AF. In the absence of clinical trials,
this study provides another indication for BP-lowering
treatment, in particular, among individuals at high gen-
etic risk for AF. The concept of stratifying management
based on an individual’s genetic susceptibility for AF
seems to overcome some of the challenges of identifica-
tion of treatment responders or simple clinical risk
scores that have often failed to show a modifying effect
on treatment effects. Investigations into the value of
such outcome- versus exposure-based genetic suscepti-
bility selection for other multi-cause outcomes would be
of great relevance in “precision” or “stratified” medicine.
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