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Abstract

Contemporary individuals are the combination of genetic fragments inherited from ancestors 
belonging to multiple populations, as the result of migration and admixture. Isolating and 
characterising these layers is crucial to the understanding of the genetic history of a given 
population. Ancestry deconvolution approaches make use of a large amount of source 
individuals, therefore constraining the performance of local ancestry inferences when only few 
genomes are available from a given population. Here we present WINC, a local ancestry 
framework derived from the combination of ChromoPainter and NNLS approaches, as a 
method to retrieve local genetic assignments when only a few reference individuals are 
available. The framework is aided by a score assignment based on source differentiation to 
maximise the amount of sequences retrieved, and is capable of retrieving accurate ancestry 
assignments when only two individuals for source populations are used.
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Significance Statement

As the results of migration and admixture between populations, contemporary genomes can 
be seen as a mosaic, where each piece is an inherited genomic fragment. Isolating and 
characterising these fragments helps the understanding of the genetic and evolutionary history 
of a given population. The key approach to study the admixed fragments is Ancestry 
Deconvolution, though it is generally limited by both the quality and amount of the genomes 
of source populations. Here we developed a local ancestry framework derived from the 
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combination of ChromoPainter and NNLS approaches, as a method to perform Ancestry 
Deconvolution when only a few reference individuals are available.
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Introduction

In the last decade, the advent of dense genotyping arrays and high throughput sequencing 

technologies has paved the way to the development of methods aimed at reconstructing Local 

Ancestry patterns along the chromosomes.

A large variety of local ancestry deconvolution methods have been proposed, harnessing 

different statistical algorithms such as Hidden Markov Models (HMM) (HapMix (Price et al., 

2009), LAMP-LD (Baran et al., 2012), ELAI (Guan, 2014), MOSAIC (Salter-Townshend and 

Myers, 2019)), Principal Component analysis (PCAdmix (Brisbin et al., 2012)) and machine 

learning classification tools (RF-Mix (Maples et al., 2013)). 

Most Local Ancestry Inference (LAI) methods available to date, identify fragments putatively 

descending from a limited number of reference populations, for which tens of individuals are 

typically required. Although a reasonable amount of data for most of the contemporary human 

groups are available (Yelmen et al., 2019), this is not the case for many key populations. Some 

human groups remain poorly sampled (hindered by social, geographic or ethical factors), and 

historical populations are often incompletely captured by ancient DNA, which is reliant on 

preservation conditions, burial practice, extent of archaeological activity and other biasing 

factors. Furthermore and beyond the human realm, for contemporary or extinct species, few 

individuals are usually available to represent source populations due to the limited availability 

of samples or resources. A limited number of source individuals causes an under-estimation 

of the genetic diversity within populations, increasing the assignment error of the traditional 

LAI methods.

In this study, we propose that leveraging a larger panel of populations to genetically 

characterize both the sources and the admixed population could yield a better performance 

even when little amounts of source individuals are available for the analyses.

ChromoPainter provides the best approach to overcome the issue of lack of data for the 

sources of the target admixed population, as it uses the genetic information acquired from a 

large panel of populations, even unrelated to the admixture event, to describe (or paint) both 

sources and target individuals. A NNLS (Non-Negative Least Squares) is then used to 

summarize the painting information.

ChromoPainter/NNLS (Hellenthal et al., 2014; Lawson et al., 2012; Leslie et al., 2015) 

approach has been successfully employed to reconstruct the global ancestry of modern-day 
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and ancient populations, and simulation-based comparisons showed that it yields high 

accuracy at a genome wide level, even when a limited number of reference samples are 

available (Busby et al., 2016; Hofmanová et al., 2016; Järve et al., 2019; Montinaro et al., 

2015; Ongaro et al., 2019; van Dorp et al., 2015).

We propose to turn the ChromoPainter/NNLS framework into a Local Ancestry Inference tool, 

by applying the NNLS step on genetic windows, instead of the entire genomes. This approach 

could leverage on a large number of donor populations to characterize not only the admixed 

targets, but also the source populations, and thus provide a versatile solution when only a few 

samples are available for source populations. 

We tested the performance of the proposed approach through coalescent simulations, 

validated it on an additional set of simulated individuals and applied it to real case scenarios. 

All simulated individuals were admixed 100 generations ago, a limit date for which most dating 

tools can detect an admixture event (Moorjani et al., 2011).

We benchmarked our performance against three Local Ancestry tools: a machine learning 

based tool (RFmix, a commonly used LAI software), a Principal Component analysis based 

tool (PCAdmix) and a HMM based tool (ELAI, shown to outperform many of the state-of-the-

art methods (Geza et al., 2018) and to perform well even in regions with small ancestral track 

length (Guan, 2014)).

The results showed that our method is capable of outcompeting all methods and particularly 

ELAI, which shows higher performances than PCAdmix and RFmix, when harnessing admixed 

individuals whose sources diverged at least 30 kiloyears ago (kya), using as little as two  

individuals as sources.

RESULTS
Proposed window-based ChromoPainter/NNLS framework

As the core of our strategy we used the recently developed approach implemented in the 

ChromoPainter/NNLS (Hellenthal et al., 2014; Lawson et al., 2012; Leslie et al., 2015) 

algorithm (the combination of ChromoPainter and NNLS algorithms). 

In a given phased dataset, ChromoPainter (Lawson et al., 2012) identifies the closest 

neighbour “donor” for any “recipient” individual haplotype. Along the chromosome, the 

combination of all the identified closest neighbours summarises the different ancestry of an 
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individual. Given the high complexity and computational resources needed for computing the 

whole set of genealogies, ChromoPainter exploits the approximation provided in the Hidden 

Markov Model developed by Li and Stephens (2003) (Li and Stephens, 2003), reconstructing 

recipient individuals as a combination of genomic segments, or chunks, “donated” by any other 

individual in the dataset. The information is then stored in a copying vector, an array that 

summarizes the amount of genome copied by a given recipient from each donor sample. 

However, the coalescent events in natural groups may predate the time of population split, 

therefore creating only small differences in the amount of genetic fragments copied by closely 

related populations, adding a confounding factor in the ancestral deconvolution approach. This 

limitation is solved using a multiple linear regression approach, in which a modification of the 

Non-Negative Least Square approach (NNLS) is exploited to reconstruct the painting profile 

of a given individual as a combination of copying vectors from a set of source individuals or 

populations. In this approach, the target admixed individuals are usually set as recipients, and 

the putative sources of the admixture as donors. We propose to set as recipients both the 

admixed individuals and the unadmixed sources, in order to paint them with a large panel of 

donor populations not necessarily related with the admixture event.

Here we develop a framework for performing Local Ancestry Decolvolution using 

ChromoPainter/NNLS onto genomic windows that approximate the expected ancestry tiling in 

an admixed individual, and named it WINC as short for Window-based NNLS/ChromoPainter.

Unlike the regular pipeline, we applied it on 500 kilo-base (kb) genomic windows, rather than 

the whole genomes. The length of 500kb genomic windows has been chosen to fall within the 

expected chunk length of an admixture event that happened 100 generations ago (see 

methods). In doing so, we aim to convey ChromoPainter/NNLS accuracy as a global ancestry 

estimator onto a genomic localized context, hence turning it into a local ancestry tool. 

A schematic representation of the process is shown in Figure 1. More in detail i) we performed 

a ChromoPainter run in which source and target individuals are painted using the entire donor 

panel. The donor panel is composed of presumably unadmixed groups. The admixed target 

populations were set as recipients, along with the source populations. Setting as recipients 

both the target and the source individuals allowed us to obtain the copying vectors for both, 

which were then used for the following step. ii) For each painted haplotype, we splitted the 

copying vector into genomic windows of the same length. For any window, we averaged the 

amount of genome copied from any donor populations and normalized the resulting copying 

vector to sum 1. iii) We then moved to the NNLS step, in which we described each target 

individual as a mixture of the selected source populations. The NNLS approach identifies the 

sources’ copying vector that better match the copying vector of recipient populations as 

estimated by ChromoPainter. In this way, for each window belonging to admixed individuals, 
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we used NNLS to assign the window to one of the putative sources. The assignment indicates 

the proportion of the admixed copying vector that matches each source’s copying vector. iv) 

Each ancestry assignment proportion can be seen as a score (Assignment Score or AS), on 

which we apply several cutoffs. We then averaged the window-based copying vectors through 

all the individuals. 

We tested the performance of the proposed approach through coalescent simulations, 

validated it on an additional simulated dataset and finally on real individuals, and benchmarked 

our performance against other LAI tools. Each analysis was performed twice, first using 50 

individuals as sources and then only 2 (100 and 4 haplotypes respectively), but maintaining in 

both cases a large number of donor populations unrelated to the admixture event.

FIGURE 1 - Schematic representation of WINC approach. WINC is based on the 

ChromoPainter/NNLS framework, with the additional step of splitting the copying vectors 

resulting from the ChromoPainter (CP) run before analyzing them through the NNLS step. 

First step: ChromoPainter run. CP identifies the closest neighbour “donor” for any “recipient” 

individual haplotype. ChromoPainter then reconstructs the recipient individuals as a 

combination of genomic segments, or chunks, “donated” by any other individual in the dataset. 

The information is then stored in copying vectors, where, for each recipient haplotype, it is 
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indicated which donor individual is the closest neighbour. In this way, we obtain the copying 

vectors of our target populations: both the sources and the admixed individuals. Second step: 

splitting copying vectors. We then split the copying vectors in genomic windows of the same 

length. Window size depends on the ancestry chunks, which in turn depends on the amount 

of generations since the admixture.  Third step: performing  Non-Negative Least Square 

(NNLS) analyses on the copying vector's genomic windows obtained from the previous step. 

The NNLS step assigns a window to a specific ancestry, by reconstructing the painting profile 

of a given individual as a combination (or proportion) of copying vectors from the source 

individuals.

Evaluation Parameters

All Local Ancestry Inference (LAI) tools tested here assign a probability of ancestry to each 

genomic window. On the other hand, our approach employs the proportion assignment given 

by the NNLS (see methods). In both cases, we refer to the value assignments as Assignment 

Score (AS). The AS values range from 0 to 1 and they are used to evaluate the performance 

of all tools by applying several cutoffs. 

We set different thresholds for each run in order to remove windows with an AS (or ancestry 

assignment probability/proportion) lower than the threshold. All removed windows are then 

labeled as "Unassigned". We set for all LAI tools the following AS thresholds: .55, .6, .65, .7, 

.75, .8, .85, .9, .91, .92, .93, .94, .95, .96, .97, .98, 99.

Given the presence of unassigned values, we accounted for accuracy and assignation 

separately. We set Accuracyg as the portion of windows correctly assigned given all genome 

windows, taking into consideration both the assigned and the unassigned windows. We set 

Accuracya as the portion of windows correctly assigned given only the windows that passed 

the threshold, therefore not taking into account the ‘Unassigned’ blocks. We calculated 

separately ‘Assigned Genome’ as the portion of all the windows that reached the AS threshold.

Simulating Admixed Individuals

We simulated a Test Set of 13 populations with different population sizes and with divergence 

times ranging from 250 to 4000 generations (7.5 kilo year ago (kya) to 120 kya), to represent 

current European, East Asian and African groups, following a modified Van Dorp et al model 

(van Dorp et al., 2015).

We then added seven sister groups, characterised by a divergence time from their sister group 
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of 100 generations (3 kya), for a total of 20 simulated populations. These additional sister 

groups were not present in the model of Van Dorp et al, and were labelled as “Ghost” (GST) 

(Figure S1). These populations were later used to create admixed groups, but were not 

included in any following step, as in a real scenario it would not be possible to perform Ancestry 

Deconvolution with the actual sources of the admixture. 

We generate eight two-ways admixed populations combining pairs of simulated Ghost demes, 

and one three-ways admixed population with admix-simu 

(https://github.com/williamslab/admix-simu) with an admixture time of 100 generations and 

proportions of 70%-30% and 40%-30%-30% respectively (See in Supplementary Table S1).

Similarly, we also simulated an Empirical Set of three two-ways admixed populations and one 

three-ways admixed population from the 1000 Genome project (The 1000 Genomes Project 

Consortium, 2015) using admixture proportions and generation times as per the Test Set 

(70%-30% for the two ways, 40%-30%-30% for the three ways and 100 generations since the 

admixture in all cases). We simulated the admixture events between a European (TSI, Toscani 

in Italy) and African (YRI, Yoruba in Nigeria) population, European (TSI) and Asian (CHB, Han 

Chinese in Beijing) population, within European populations (TSI and FIN, Finnish in Finland). 

The three-way continental admixture was created between YRI, CHB and TSI. We used CEU 

(Utah residents with European ancestry) as a source population to retrieve TSI fragments, 

ESN (Esan in Nigeria) for YRI and CHS (Han Chinese South) for CHB. To retrieve FIN 

fragments, we set as source all FIN individuals not used to create the admixed population TSI-

FIN. As donor panel, we used all populations from the 1000 Genomes Project.

Global ancestry estimates

First, we analyzed the pairwise genetic distance among all pairs of simulated populations from 

the Test Set and showed that they are consistent with those observed among modern 

populations (Figure S2 and S3). We then applied ChromoPainter/NNLS global ancestry 

methodology on the entire chromosome and showed that it correctly assigns the two 

ancestries (Figure S4), with a discrepancy of 0.01% when the sources diverged 75 kya and 

10% when they diverged just 7.5 kya.

WINC performance on the Testing Set

To test our approach, we applied WINC on a set of simulated individuals (Test Set). All 

populations are characterized by a distant admixture time (100 generation), which causes the 

ancestral fragments to be relatively small in all target individuals. On the other hand all 
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admixed populations vary on the similarity of the sources of the admixture, given by the 

different divergence time between sources. Thus, we expect that the LAI tools more robust in 

inferring ancestries in small regions will yield high performances. On the other hand, we expect 

that each tool performance will decrease as the divergence between sources  decreases, 

despite the admixture generations. We compared WINC with RFmix, PCAdmix and ELAI. To 

compare LAI tools we considered both Assigned Genome, the portion of the windows that 

reached the threshold, and accuracya, an accuracy computed only on windows for which 

ancestry assignment was performed.

Overall, RFmix performance does not exceed the accuracya of 85% in any target population 

(Figure 2), probably due to the high number of generation elapsed since the admixture (Dias-

Alves et al., 2018) (Figure S5). This is shown when using 50 individuals per source as well as 

2. WINC outcompetes RFMix, showing that our framework could detect ancestries in a target 

population with small ancestry tiles.

PCAdmix results are comparable with WINC and ELAI when using 50 individuals per source. 

When 2 individuals are employed to deconvolute the target population, PCAdmix accuracya is 

always lower than 0.8, regardless of the divergence between sources (Figure 2). 

Of all tested tools, the only one matching WINC’s performance appears to be ELAI (Figure 2). 

In fact, when using 50 samples for each source population, both ELAI and WINC display a 

comparable amount of Assigned Genome and accuracy levels for all divergences between 

the sources (Figure 2 and Table S2-S7). 

Supported by the promising evidence, we moved to test our approach using only two 

individuals per source, the main focus of our investigation.

ELAI and WINC show comparable levels of accuracya and Assigned Genome when only two 

individuals are used per source. For populations with highly differentiated sources and older 

split times, such as 75 kya or 30 kya, WINC assigns up to 99% of the genome with a minimum 

accuracya of 0.9 (Figure 2, Table S2-S7). When tested on the 30 kya populations, WINC 

outperforms ELAI in terms of accuracy levels reached and proportion of Assigned Genome 

maintained. For more recent split times (up to 24 kya), both WINC and ELAI show a decrease 

in accuracya and amount of genome retrieved, as expected when the sources of the admixture 

are genetically similar. 

We further provide specific results for both WINC and ELAI considering only one AS threshold 

(0.8), to provide performance for a standard run under default parameters (Figures S6-S9).
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Given that RFmix is suited for more recent admixture times (Figure S5) and PCAdmix does 

not reach high performance levels when only two individuals are used as sources, we 

performed the subsequent tests using only ELAI as a benchmark.

FIGURE 2 - WINC performances on the Test Set compared to several Local Ancestry tools: 

ELAI, PCAdmix and RFmix. The eight panels represent results for different admixed 

populations with different divergence times. Within each series, different data points linked by 

a grey line represent experiments run using increasingly stringent AS thresholds, and for which 

a non zero amount of genomes was assigned to at least one ancestry by that particular LAI 

method. X-axis shows accuracy(a) values, y-axis shows the proportion of genome windows 

retrieved. Red points indicate the results obtained using ELAI, green dots indicate PCAdmix 

results, orange dots list RFmix results, while blue points list WINC results. Triangles indicate 

Local Ancestry results using 50 individuals per source, while dots list results using 2 

individuals. We note that in the ‘12 KYA’ panel, when two individuals are used as reference, both 

PCAdmix and WINC accuracy values decrease with increasingly stringent AS thresholds. This 

effect is however minor (PCAdmix accuracy values range from 0.44 to 0.43 and WINC values 

range from 0.51 to 0.49). 
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WINC calibration using a Correlation-Assignment Score (C-AS) matrix

LAI approaches are expected to have a higher accuracy when the admixing sources are 

genetically distant at the locus of interest. The more two sources are differentiated at a given 

genomic window, the easier it should be for NNLS to assign a haplotype to one or the other 

source population. We can leverage the similarity between sources to predict when NNLS has 

sufficient information to correctly infer the local ancestries, providing a calibration for WINC. 

To assess the similarity between different sources, we computed a Pearson correlation 

coefficient (rho) between ChromoPainter copying vectors obtained on the same window for 

each pair of source populations. We then performed the NNLS analysis applying different 

cutoffs, therefore removing all windows where the AS was lower than the specified threshold. 

We calculated the accuracy obtained considering windows in ten equally spaced rho values 

and AS thresholds. In doing so, we obtained a Correlation-Assignment Score (C-AS) matrix 

(Figure 3) that, given different values of similarity between sources (correlation) and 

assignment score (AS), should inform on the expected accuracy values.

FIGURE 3. Reference C-AS matrix on Test Set, a correlation matrix obtained using rho values 
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between sources and Assignment Scores. Each slot indicates accuracya values obtained by 

selecting a given set of Assignment Scores (x axis) threshold and rho values of similarity 

between source populations (y-axis). High accuracya values are listed with lighter colours, low 

accuracya values are indicated by darker colours.

Application of Reference C-AS matrix and effects on WINC performance

We tested the applicability of the C-AS matrix (estimated on the Test Set) on the Empirical Set 

(see Figure 3 and Figure S10 for a schematic representation). For a given correlation in a 

specific window, we used the minimum AS threshold needed to obtain the desired accuracya 

value. We analyzed the overall performance and transferability of the C-AS matrix on the 

Empirical Set and compared it with the results obtained by selecting the windows only by AS 

thresholds.

Our tool operates with high accuracya values (over 0.9) also on the Empirical Set when 50 

individuals are available for the Local Ancestry Inferences, and the sources are genetically 

differentiated (See Figure 4 panel A and B and Tables S8-S9). In fact, similarly with the Test 

Set results on populations with genetically similar sources, all LAI tools tested do not reach 

satisfactory accuracya levels on TSI-FIN (Figure 4 Panel C and Table S10).

We thus moved to study its performances when only two individuals per source were set. We 

observed that, for both TSI-YRI and TSI-CHB populations, WINC calibrated with the C-AS 

matrix performs equally well to WINC alone in terms of accuracya, but retrieves higher portions 

of the genome (Figure 4 panel A and B and Tables S8-S9), with the additional notable 

difference that WINC+C-AS is predictable in its outcome. By applying the C-AS matrix to WINC 

we could in fact assign windows with the desired accuracya, with the only exception being 

reaching an observed accuracya of ~0.97 when the expected one was set at 0.99 (See Figure 

S11 and S12 and Table S8-S9).

Differently from WINC alone, WINC + C-AS matrix tends to not assign any genomic window 

of TSI-FIN (maximum 0.1%), when threshold values were set to 0.85 or higher (Figure 4 panel 

C and Table S10), hence providing an effective way of drastically reducing false positives 

when true positives cannot be obtained at all. 

The C-AS matrix, created from the Test Set and applied to the Empirical Set, returned windows 

that reached the selected desired accuracya, showing its efficacy when used on a different 

dataset. We also applied the C-AS matrix on the Test set, as a control (Figure S13).
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Additionally we investigated WINC performance of different window lengths: 1000 kb, 100 kbs 

and on variable lengths depending on the SNP-density (See Supplementary Figure S14-S15) 

and confirmed 500kb to be the optimal window size for the current study.

FIGURE 4 -  WINC and WINC+C-AS performances compared with ELAI on the Empirical Set. 

Red points indicate the results obtained using ELAI, blue points list WINC results and light 

blue points list WINC+C-AS performances. Triangles indicate Local Ancestry results using 45 

individuals per source, while dots lists results using 2 individuals. On the x-axis we listed 

accuracya values, computed only on windows for which ancestry assignment was performed, 

and on the y-axis we listed the proportion of genome windows retrieved.

Evaluating WINC performance on three-way admixtures

As a proof of principle, we show the analyses on the three ways admixtures simulated in the 

Test Set and Empirical Set jointly. Results on the Test Set show that ELAI outcompetes both 

WINC and WINC+C-AS when harnessing the ancestries of a three-ways admixture, even 

when only a few individuals are used as source. On the other hand, on the Empirical Set, 

WINC and WINC+C-AS outperformed ELAI when two individuals are set per source (See 
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Figure S16 and S17 and Table S11-S12).

Evaluating WINC performance on real data

Lastly, we applied the WINC and WINC+C-AS matrix approaches to real genomes from ASW 

(American of African Ancestry in SW) and from MXL (Mexican Ancestry from Los Angeles 

USA)  (The 1000 Genomes Project Consortium, 2015). To analyze ASW, we used CEU and 

ESN as sources, while for MXL we used CEU, PEL and ESN. Each analysis was composed 

of either 45 or 2 of source individuals. For comparison, we also performed ELAI analyses on 

ASW and MXL using 2 individuals per source. To assess WINC and ELAI accuracies, being 

a real case not resulting from simulations, we chose to take as “truth” the results with ELAI 

ancestry assignments using 45 individuals. 

On ASW population, both ELAI (when using 2 individuals) and WINC (when using 50 or 2 

individuals as sources) show accuracya levels of 0.9 or higher (see Figure 5 panel A and Table 

S13). Consistently with the highly divergent simulated populations of the Test Set, WINC and 

WINC+C-AS matrix both show accuracya levels higher than 0.9. Discrepancies on the portions 

of the assigned genome could be due to the fact that ELAI assigns windows that WINC set as 

NA, or vice versa. 

On MXL population, (panel B in Figure 5 and Table S14), WINC reaches accuracya of 0.9 or 

higher when using 45 individuals per source, but unlike ELAI, it does not reach high accuracya 

levels when inferring the three MXL ancestries when only 2 individuals are used per source.
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Figure 5. WINC and WINC+C-AS results compared to ELAI in ASW and MXL populations.  

All results were obtained comparing our methods WINC (in blue) and WINC+C-AS matrix (in 

light blue) with ELAI runs in which we use 45 individuals as sources. Additionally, we show 

ELAI results using only 2 individuals as sources and benchmarked them with ELAI runs using 

45 individuals as sources.  Red points indicate the results obtained using ELAI, blue points list 

WINC results and light blue points list WINC+C-AS performances. Triangles indicate Local 

Ancestry results using 45 individuals per source, while dots lists results using 2 individuals. 

On the x-axis we listed accuracya values, on the y-axis we listed the percentage of genome 

windows retrieved.

Discussion 

In this work, we describe WINC, a local ancestry approach based on chromosome painting 

through ChromoPainter/NNLS. The approach is aimed at characterising genomic fragments 

in admixed populations, with different degrees of relatedness and small sample sizes among 

source populations and with as many as 100 generations since the admixture.

We applied the method on genomic data obtained through coalescent simulations which also 

forms the basis for the C-AS matrix, a reference grid to inform a priori on the accuracya to be 
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expected by WINC for a given set of Ancestry Assignments and local diversification between 

sources.

When applied on a set obtained by admixing real genomes, WINC and the C-AS matrix match 

ELAI for admixture scenarios involving African and European sources and outperform it for 

admixtures involving European and East Asian sources when using as little as two individuals 

as reference. We speculate that the reduced diversity in the source populations is 

compensated by the large donor panel used by ChromoPainter. This factor allowed our 

method to reach high accuracy levels when only two individuals were used per source, but 

only when the sources retained a certain level of genetic differentiation. In fact, in the case of 

a subcontinental admixture, the donor panel populations used were not able to fully 

characterize and differentiate the two sources of the admixture.

All the tested methods fail at yielding acceptable performance when applied on admixtures 

between two European populations, with the notable difference represented by the ability of 

the C-AS matrix to filter out most of the potentially inaccurate output, hence avoiding spurious 

ancestry assignments.

Another unique feature of our method is the option to know in advance (based on the 

ChromoPainter power to discriminate between the source populations) what fraction of the 

genome will be assigned with satisfactory accuracya. This feature can be exploited in the C-

AS matrix, where specific windows of the genome can be selected to obtain the desired 

accuracya level.

Our method relies on biological information to perform optimally: the user needs to set the 

window length of the genome on which the local ancestry can be inferred, this information can 

be estimated from the admixture generation time. Additionally, given that our approach relies 

on ChromoPainter, it also uses phased data and a recombination map in the ChromoPainter 

step.

In conclusion, since the majority of ChromoPainter discriminatory power relies on the 

availability of a sufficiently diverse panel of donors, we envisage that a constant improvement 

of the donor panel may allow any user to maximize the performances of our approach even 

for trials where the admixing populations are particularly similar and for which the number of 

available source individuals is limited, like in the cases of aDNA or of most non-human species. 

Future improvements of the method, including a more flexible definition of the sliding window 

used to perform the local ancestry, will contribute to increase the fraction of the confidently 

assigned genome.

Materials and Methods 
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Simulating Admixed Individuals: Test Set

We simulated 13 populations with changing population sizes and divergence times ranging 

from 250 to 4000 generations (7.5 kya to 120 Kya), to represent current European, East Asian 

and African groups. We simulated approximately 250 Mb (for a total of 4745025 SNPs) which 

mimics the length of chromosome 1. We used a constant mutation and recombination rate, 

both set at 1.25*10-8 (Scally and Durbin, 2012). In detail, we assigned 20,000 and 10,000 as 

effective population size (Ne) for African and Eurasian populations, respectively and followed 

a similar model as in Van Dorp et al 2015 (van Dorp et al., 2015).

We then added seven sister groups, characterised by a divergence time from their sister group 

of 100 generations (3 kya), for a total of 20 simulated populations. These additional sister 

groups were not present in the model of Van Dorp et al, and were labelled as “Ghost” (GST) 

(Figure S1). These populations were later used to create admixed groups, but were not 

included in any following step, as in a real scenario it would not be possible to perform Ancestry 

Deconvolution with the actual sources of the admixture. 

Simulations were carried out with mspms (Kelleher et al., 2016) software using the following 

command: 

mspms 2000 1 -t 15000 -r 12500 -I 20 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 -

p 10 -n 1 20.0 -n 2 20.0 -n 3 20.0 -n 4 20.0 -n 5 20.0 -n 6 20.0 -n 7 20.0 -n 8 10.0 -n 9 10.0 -n 10 10.0 -n 11 10.0 -n 12 10.0 -n 13 

10.0 -n 14 20.0 -n 15 10.0 -n 16 10.0 -n 17 10.0 -n 18 10.0 -n 19 10.0 -n 20 10.0 -ej 0.025 14 4 -ej 0.025 15 8 -ej 0.025 16 9 -ej 

0.025 17 10 -ej 0.02 5 18 11 -ej 0.025 19 12 -ej 0.025 20 13 -ej 0.0625 13 12 -ej 0.075 12 11 -ej 0.1 9 8 -ej 0.125 3 2 -ej 0.175 6 

5 -en 0.175 11 2.0 -ej 0.2 10 8 -ej 0.25 11 8 -ej 0.25 7 5 -ej 0.425 5 4 -ej 0. 45 4 2 -en 0.45 2 10.0 -en 0.45 8 2.0 -ej 0.625 8 2 -ej 

1.0 2 1 -en 1.0 1 1

We generated 8 admixed populations (50 individuals each) combining pairs of simulated 

Ghost demes, with admix-simu (https://github.com/williamslab/admix-simu) with the 

proportions of 70%-30%, constant recombination rate (1.25*10-8) and admixture time of 100 

generations. We included an additional population obtained from a three-way admixture with 

the proportion of 40%-30%-30%, using the same parameters of the two-way admixture runs.

The pairs of admixing Ghosts were selected to cover a broad spectrum of divergence times, 

allowing us a deeper evaluation of the framework performance. The resulting data were 

combined with the previously simulated dataset, after the removal of Ghosts demes.

Admix-simu records the source for each SNP in a “truth file”, which was harnessed to infer the 

accuracy of the Local Ancestry methods.
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We analyzed the pairwise genetic distances among all pairs of simulated populations and 
elected populations from the 1000 Genome Project with smartpca (Patterson et al., 2006) 

(eigensoft-7.2.0), with the option fstonly: YES.

Simulating Admixed Individuals: Empirical Set

We simulated three admixed populations (N=50 individuals each), from the 1000 Genome 

project (The 1000 Genomes Project Consortium, 2015), using admix-simu 

(https://github.com/williamslab/admix-simu) and using chromosome 1 (943790 SNPs) as 

input; with admixture time of 100 generations ago and 70%-30% proportions. We simulated 

the admixture events between a European (TSI, Toscani in Italy) and African (YRI, Yoruba in 

Nigeria) population (comparable to approximately 75KYA TMRCA of the Test Set (Pagani et 

al., 2016)), European (TSI) and Asian (CHB, Han Chinese in Beijing) population (comparable 

to approximately 30KYA TMRCA of the Test Set (Pagani et al., 2016)), within European 

populations (TSI and FIN, Finnish in Finland, comparable to approximately 7.5KYA TMRCA 

of the Test Set (Pagani et al., 2016)) and created a three-way continental admixture between 

YRI, CHB and TSI (with the proportion of 40%-30%-30% respectively). We used CEU (Utah 

residents with European ancestry) as a source population to retrieve TSI fragments, ESN 

(Esan in Nigeria) for YRI and CHS (Han Chinese South) for CHB. To retrieve FIN fragments, 

we set as source all FIN individuals not used to create the admixed population TSI-FIN. We 

then run WINC using first 45 individuals from each source then we downsampled to two 

individuals. As donor panel, we used all populations from the 1000 Genome Project.

Real Case Scenario: ASW and MXL We applied the developed framework on ASW 

and MXL (American of African Ancestry in SW and Mexican Ancestry from Los Angeles USA) 

from the 1000 Genome Project (The 1000 Genomes Project Consortium, 2015). We painted 

61 ASW individuals using all the non-American populations in the dataset. We set as source 

populations CEU (Utah residents with European ancestry) and ESN (Esan in Nigeria), first 

performing Local Ancestry analyses using 45 individuals each and then downsampled to 2 

individuals per source. We deconvoluted 64 MXL with CEU, ESN and PEL (Peruvians from 

Lima in Peru), using first 45 and then only 2 individuals. We applied both WINC and WINC 

with the addition of the Reference C-AS matrix for several AS. Given that in this case we could 

not compare our result with a ‘truth file’, we used ELAI results on ASW and MXL obtained 

using 45 individuals as sources as benchmark.

ChromoPainter 
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We estimated the nuisance parameters mu (mutation rate) and Ne (effective population size), 

through an Expectation-Maximization algorithm for both the Testing Set and Empirical Set. 

For the Test Set we set the mu parameter as 0.0011, and Ne as 2516.3133, while for the 

Empirical Set mu was set as 0.0008281 and Ne as 939.2658. The parameters used for the 

Empirical Set were also used for MXL and ASW analyses. 

Splitting Copying Vector

We splitted both sources and target populations’ copying vectors in windows each containing  

500 kilo-bases (kb). The expected tile length of the ancestry block in a population is:

L=[1−m]r[t−1])^-1 (Racimo et al., 2015)

 

with L= expected length, m= mixing proportion,  r=recombination rate rate t= time (in 

generations) since the admixture event

The expected length of the ancestry tiles in our dataset, in which all populations admixed 100 

generations ago, is ~1 Mega bases. We thus chose the length of 500kb genomic windows in 

order to retrieve ancestry blocks that fall within the expected tile length.

Non-Negative Least Squares

We performed the Non-Negative Least Squares (NNLS) on the window-based copying 

vectors. In this step, for each genomic window, we summarized the copying vector of the target 

individuals as a combination of the copying vectors of the sources.

We used the NNLS function, as described in Hellenthal et al, Leslie et al and Ongaro et al  

(Hellenthal et al., 2014; Leslie et al., 2015; Ongaro et al., 2019), which is a modification of the 

Lawson-Hanson NNLS implementation of non-negative least squares function (Lawson and 

Hanson, 1995) available in the statistical software package R 3.5.1 (R Core Team, 2020).

Taken together all steps should take the following running time at the current level of software 

optimization: ChromoPainter, which can be run upstream, can take up to three hours per 

sample, while splitting windows and NNLS steps should take less than 10 minutes per sample. 

However, we note that these estimates are highly dependent on the study design (e.g. number 

of ChromoPainter donor samples and overall number of SNPs: 4745025 for the simulated 
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dataset and 943790 SNPs for the Empirical dataset in our case), hence these running time 

are to be intended for the current design only.

Evaluating WINC performance on different window lengths

The expected ancestry tiling length of a population that admixed 100 generations ago is 

~1Mbp long. We chose to show WINC results with genomic window length set at 500 kilo-

base pairs, to select a haplotype block that could be contained entirely within a given ancestry 

tile. 

Additionally, we applied our method on the Test Set using a longer window length (1 million 

base pairs) and  a shorter one (100 kilo-base pairs per window) (Figure S14). 

We also took into account the amount of markers ChromoPainter can harness in the analyses 

and therefore the density of the biological information contained in each window. Thus, we 

tested our approach by splitting the copying vectors based on the average number of markers 

per 500 Kb window, so that the length of the windows would be dependent on the number of 

SNPs within. We ran the SNP density analyses only on the Empirical Set, since the Test Set 

SNP density had low variance, on windows containing 1892 SNPs (Figure S15).

Benchmarks

In order to provide a comparative measure of the performance of the newly developed 

framework, we performed Local Ancestry inference using different Local Ancestry softwares.

ELAI We performed 10 independent runs and averaged the ‘estimated ancestral 

allele dosages for each individual at each SNP’ (Guan, 2014). ELAI analyses were performed 

on phased data using the following parameters: -C 2, for two upper clusters when inferring a 

two-way admixture, and -C 3 when inferring a three-way admixture. We used -c 10 for ten 

lower-layer clusters when harnessing 50 individuals and -c 8 when harnessing 2, -mg 100 for 

100 admixture generations, -s 20 for twenty Expectation Maximizations (EM) iterations, as 

recommended in ELAI manual. All the ELAI inferences have been obtained by averaging the 

results of all individuals tested.

PCAdmix We used PCAdmix (Brisbin et al., 2012) with default parameters with windows 

size set to 0.5 cM for all analyses.

RFmix We performed RFmix (Maples et al., 2013) with the following parameters: -w 

0.5 for 0.5 cM window-size, -G 100 to indicate 100 generation since admixture, -e 2 to perform 

2 number of EM iterations, --forward-backward to output the forward-backward probabilities. 

The parameters not listed here were set as default.

http://mc.manuscriptcentral.com/gbe

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/advance-article/doi/10.1093/gbe/evab025/6135079 by guest on 16 M

arch 2021

https://www.zotero.org/google-docs/?6UjUaZ
https://www.zotero.org/google-docs/?YtdlUV
https://www.zotero.org/google-docs/?BRqxgV


Refining WINC inference using window-based affinity among sources

We evaluated the performance of WINC with respect to the similarity of the copying vectors 

for each window in the Test Set. For each analysed window, we estimated the Pearson 

correlation among the averaged copying vectors from the two sources. In order to increase 

the number pairs at a given correlation, we performed WINC resampling N source individuals 

10 times, with N ∈ (2, 10, 20, 30, 40, 45).

We then binned Assignment Scores (AS) and Pearson’s r in 10 and 20 intervals respectively, 

and summarised the accuracy of WINC. In doing so, we obtained a Correlation Assignment 

Score reference matrix. 
The C-AS matrix generated is suited for human populations at cross-continental level, or 

populations with pairwise genetic distances values similar to the groups we simulated 

(indicated in Figure S2). We note that the C-AS matrix can be re-calibrated by any user through 

a new set of simulations believed to be more fitting to the case study. The advised procedure 

would be simulating a dataset as similar as possible to the one the user would like to apply 

WINC on, and recreate a C-AS matrix that is more suited to the dataset of interest. 

Code Availability:
WINC pipeline can be found in: https://github.com/lm-ut/WINC-pipeline.  

Data Availability Statement
Human genomic data used in this study were taken from: 
https://www.internationalgenome.org/;

Software used for this study were downloaded from:
https://people.maths.bris.ac.uk/madjl/finestructureold/chromopainter.html,
https://github.com/williamslab/admix-simu,
https://haplotype.org/software.html,
https://pypi.org/project/msprime/.
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Captions

Caption Figure 1: Schematic representation of WINC approach. WINC is based on the 
ChromoPainter/NNLS framework, with the additional step of splitting the copying vectors 
resulting from the ChromoPainter (CP) run before analyzing them through the NNLS step. 
First step: ChromoPainter run. CP identifies the closest neighbour “donor” for any “recipient” 
individual haplotype. ChromoPainter then reconstructs the recipient individuals as a 
combination of genomic segments, or chunks, “donated” by any other individual in the dataset. 
The information is then stored in copying vectors, where, for each recipient haplotype, it is 
indicated which donor individual is the closest neighbour. In this way, we obtain the copying 
vectors of our target populations: both the sources and the admixed individuals. Second step: 
splitting copying vectors. We then split the copying vectors in genomic windows of the same 
length. Window size depends on the ancestry chunks, which in turn depends on the amount 
of generations since the admixture.  Third step: performing  Non-Negative Least Square 
(NNLS) analyses on the copying vector's genomic windows obtained from the previous step. 
The NNLS step assigns a window to a specific ancestry, by reconstructing the painting profile 
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of a given individual as a combination (or proportion) of copying vectors from the source 
individuals.

Caption Figure 2: WINC performances on the Test Set compared to several Local Ancestry 
tools: ELAI, PCAdmix and RFmix. The eight panels represent results for different admixed 
populations with different divergence times. Within each series, different data points linked by 
a grey line represent experiments run using increasingly stringent AS thresholds, and for which 
a non zero amount of genomes was assigned to at least one ancestry by that particular LAI 
method. X-axis shows accuracy(a) values, y-axis shows the proportion of genome windows 
retrieved. Red points indicate the results obtained using ELAI, green dots indicate PCAdmix 
results, orange dots list RFmix results, while blue points list WINC results. Triangles indicate 
Local Ancestry results using 50 individuals per source, while dots list results using 2 
individuals. We note that in the ‘12 KYA’ panel, when two individuals are used as reference, both 
PCAdmix and WINC accuracy values decrease with increasingly stringent AS thresholds. This 
effect is however minor (PCAdmix accuracy values range from 0.44 to 0.43 and WINC values 
range from 0.51 to 0.49). 

Caption Figure 3:  Reference C-AS matrix on Test Set, a correlation matrix obtained using rho 
values between sources and Assignment Scores. Each slot indicates accuracya values 
obtained by selecting a given set of Assignment Scores (x axis) threshold and rho values of 
similarity between source populations (y-axis). High accuracya values are listed with lighter 
colours, low accuracya values are indicated by darker colours

Caption Figure 4: WINC and WINC+C-AS performances compared with ELAI on the Empirical 
Set. Red points indicate the results obtained using ELAI, blue points list WINC results and 
light blue points list WINC+C-AS performances. Triangles indicate Local Ancestry results 
using 45 individuals per source, while dots lists results using 2 individuals. On the x-axis we 
listed accuracya values, computed only on windows for which ancestry assignment was 
performed, and on the y-axis we listed the proportion of genome windows retrieved.

Caption Figure 5: WINC and WINC+C-AS results compared to ELAI in ASW and MXL 
populations.  All results were obtained comparing our methods WINC (in blue) and WINC+C-
AS matrix (in light blue) with ELAI runs in which we use 45 individuals as sources. Additionally, 
we show ELAI results using only 2 individuals as sources and benchmarked them with ELAI 
runs using 45 individuals as sources.  Red points indicate the results obtained using ELAI, 
blue points list WINC results and light blue points list WINC+C-AS performances. Triangles 
indicate Local Ancestry results using 45 individuals per source, while dots lists results using 2 
individuals. On the x-axis we listed accuracya values, on the y-axis we listed the percentage 
of genome windows retrieved.
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