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Abstract: 

Exposure to endocrine disrupting chemicals (EDCs) is ubiquitous. EDC exposure, especially 

during critical periods of development like the prenatal window, may interfere with the body’s 

endocrine system, which can affect growth and developmental outcomes such as puberty. Most 

studies have examined one EDC at a time in relation to disease; however, humans are exposed to 

many EDCs. By studying mixtures, the human experience can be more closely replicated. We 

investigated the association of prenatal exposure to persistent EDCs (poly- and perfluoroalkyl 

substances (PFAS), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs)) as 

mixtures with early menarche among female offspring in a nested case-control study within the 

Avon Longitudinal Study of Parents and Children (ALSPAC) recruited in the United Kingdom in 

1991–1992. Concentrations of 52 EDCs were quantified in maternal serum samples collected 

during pregnancy. Daughter’s age at menarche was ascertained through mailed questionnaires sent 

annually. We used repeated holdout weighted quantile sum (WQS) regression and Bayesian kernel 

machine regression (BKMR) to examine the association between prenatal exposure to multiple 

EDCs and early menarche (<11.5 (n=218) vs. ≥11.5 years (n=230)) for each chemical class 

separately (PFAS, PCBs, and OCPs) and for all three classes combined. Models adjusted for 

maternal age at menarche, maternal education, parity, pre-pregnancy body mass index, maternal 

age, prenatal smoking, and gestational week at sample collection. Mixture models showed null 

associations between prenatal exposure to EDC mixtures and early menarche. Using WQS 

regression, the odds ratio for early menarche for a one-decile increase in chemical concentrations 

for all three classes combined was 0.89 (95% CI: 0.76, 1.05); using BKMR, the odds ratio when 

all exposures were at the 60th percentile compared to the median was 0.98 (95% CI: 0.91, 1.05). 

Results suggest the overall effect of prenatal exposure to persistent EDC mixtures is not associated 

with early menarche. 

 

Keywords: puberty; menarche; poly- and perfluoroalkyl substances; polychlorinated biphenyls; 

organochlorine pesticides; ALSPAC 

 

Capsule statement:  

We examined the association of prenatal exposure to persistent endocrine disrupting chemicals 

as a mixture and early menarche (<11.5 years) and observed largely null associations.  
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Introduction 

 Puberty is a critical phase of development and growth. The timing and patterning of 

milestones during puberty can offer insight into general health and earlier exposures, while 

possibly forecasting later health (1, 2), like breast cancer (3). Menarche, which is a girl’s first 

menstrual period, has been a frequently utilized marker of pubertal development because of its 

clearly observable occurrence and accurate recall even years later (4-6). 

 On average, age at menarche has trended younger since the end of the 19th century (7, 8) 

and earlier occurrence of secondary sexual characteristics has also been observed (9). Current 

estimates of mean age at menarche (12.4 years) are close to one year younger than the mean age 

at menarche of women born in the 1920s (13.3 years); further, decreases in average age at 

menarche have been seen across races and ethnicities in the United States (10). There are a number 

of factors potentially contributing to this trend of altered pubertal timing and patterning, including 

improvements in nutrition, a higher prevalence of childhood obesity, and exposure to endocrine 

disrupting chemicals (EDCs) (11-14). 

 The National Institute of Environmental Health Sciences (NIEHS) defines an EDC as a 

chemical that may interfere with the body’s endocrine system and produce adverse developmental, 

immune, neurological, and reproductive effects in humans (15). Environmentally persistent EDCs, 

such as poly- and perfluoroalkyl substances (PFAS), polychlorinated biphenyls (PCBs), and 

organochlorine pesticides (OCPs), are often very resistant to degradation, likely to bioaccumulate 

in living organisms, and have been used throughout the 20th and 21st centuries for a variety of 

purposes (16-18). Many countries have banned or severely limited the production, handling, and 

disposal of several PCBs and OCPs and certain PFAS. While exposure appears to have declined 

in the general population, nearly every human has detectable concentrations of some of these 
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chemicals (19, 20). Further, biologically persistent EDCs are able to cross the placental barrier, 

leading to potential fetal exposure (21-24). Exposure to EDCs during critical windows of 

vulnerability, such as the prenatal period, can lead to increased risks of disease and disability across 

the lifespan (25). EDCs in maternal and cord sera are strongly correlated with each other (26). 

EDC concentrations tend to be higher in maternal serum than cord serum, and characteristics such 

as parity potentially influence the transfer of EDCs from mother to fetus (27, 28). Maternal age, 

pre-pregnancy body mass index (BMI), and parity are often predictive of maternal serum 

concentrations of EDCs (27, 29).  

 EDCs may affect synthesis, binding, bioavailability, and metabolism of steroid and thyroid 

hormones (30). EDCs may interfere with pubertal development and reproductive function through 

actions at various levels, including changes to neuroendocrine signaling, the hypothalamic-

pituitary axis, the gonads, and peripheral target organs such as breasts, hair follicles, and genitals 

(31). Prior epidemiologic studies of prenatal exposure to persistent EDCs and age at menarche 

have shown mixed results. Previous examinations of prenatal PFAS exposure and age at menarche 

have shown no association (32), earlier menarche (33), and later menarche (34). Prenatal PCB 

exposure was not associated with age at menarche in previous studies (12, 35, 36), though some 

observed weak associations with early menarche (37, 38). Previous studies of prenatal OCP 

exposure and age at menarche have shown both null results (35, 39) and associations with earlier 

menarche, namely for dichlorodiphenyldichloroethylene (DDE) (37, 38).  

 Most studies to date have examined one EDC at a time in relation to health outcomes, and 

this may have led to inconsistent results in the association between prenatal exposure to EDCs and 

growth and developmental outcomes in offspring. Because humans are exposed to many EDCs, 

the human experience can be more closely replicated by studying combined exposures, or 
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“mixtures” (40). In this context, NIEHS defines an environmental mixture as a combination of 

three or more independent chemicals or chemical groups (41). 

 While there have been a number of studies examining prenatal exposure to persistent EDCs 

and age at menarche, none have examined persistent EDCs as a mixture. Our aim was to investigate 

the association of maternal gestational concentrations of 52 persistent EDCs (PFAS, PCBs, and 

OCPs) and prospectively collected age at menarche data in a nested case-control study of a 

population-based birth cohort.  

Materials and methods 

Study population 

The Avon Longitudinal Study of Parents and Children (ALSPAC) is a continuing 

prospective birth cohort following 14,541 pregnancies. Pregnant women from three health districts 

in the former county of Avon, Great Britain were enrolled in ALSPAC. To be enrolled, women 

needed to have an expected delivery date between 1 April 1991 and 31 December 1992. ALSPAC 

collected information on parents and children through clinic visits, interviews, and mailed 

questionnaires. Details on study recruitment and methods have previously been described (42, 43). 

A nested case-control study (N=448) was conducted to investigate associations of prenatal 

concentrations of EDCs and early menarche among the daughters (Figure S1). The nested case-

control study design has previously been described in detail (32). Briefly, from the original base 

population of 14,062 live births, cases and controls were selected from singleton daughters who 

had completed at least two (out of five possible) puberty staging questionnaires at 8, 9, 10, 11, or 

13 years old. A cut-off of 11.5 years was selected to define ‘early’ menarche. To be eligible, cases 

had to complete at least two questionnaires, with one needing to be completed after menarche. 

Controls had to return the 13-year old questionnaire to establish that menarche had not occurred 

before the cutoff of 11.5 years. 
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 The study website contains details of all the data that are available through a fully 

searchable data dictionary and variable search tool (http://www.bris.ac.uk/alspac/researchers/our-

data/). Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee, 

the Local Research Ethics Committees, and the Centers for Disease Control and Prevention (CDC) 

Institutional Review Board. Consent for biological samples was collected in accordance with the 

Human Tissue Act (2004). Informed consent for the use of data collected via questionnaires and 

clinics was obtained from participants following the recommendations of the ALSPAC Ethics and 

Law Committee at the time. 

Exposure assessment 

Maternal fasting blood samples were collected from mothers during pregnancy at median 

15 (interquartile range (IQR): 10–28) weeks gestation. Samples were collected in 1991–1992, and 

processed and frozen at -80˚C for later analysis. Maternal serum samples were stored at the 

University of Bristol until they were transferred under controlled conditions and analyzed at the 

CDC National Center for Environmental Health (Atlanta, GA). Laboratory analyses included low- 

and high-concentration pooled quality control materials, standards, reagent blanks, and study 

samples. Concentrations below the limit of detection (LOD) were imputed by dividing the LOD 

by the square root of 2 prior to statistical analysis. EDCs detected in greater than 75% of mothers 

were included in the main analyses. 

Poly- and Perfluoroalkyl substances 

Eight PFAS were quantified (Table S1) in serum via on-line solid-phase extraction coupled 

to isotope dilution high-performance liquid chromatography-tandem mass spectrometry (44). 

LODs were 0.082 (PFNA), 0.10 ng/mL (FOSA, PFHxS, PFOA), 0.174 (MeFOSAA), and 0.20 

ng/mL (EtFOSAA, PFOS, PFDA). Coefficients of variation (CVs) were generally below 10%.  
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Organochlorine pesticides and polychlorinated biphenyls 

 Nine OCPs and 35 PCBs were measured (Table S1) in serum using gas chromatography 

isotope dilution high resolution mass spectrometry (45). PCB congeners 138 and 158 could not be 

separated and were quantified as a summed concentration hereafter referred to as PCB138. 

Similarly, PCB congeners 196 and 203 could not be separated and were quantified as a summed 

concentration hereafter referred to as PCB196. LODs for PCBs and OCPs are dependent on the 

size of the sample available, thus an individual LOD was reported for each individual result rather 

than an overall LOD. CVs were generally below 10%.  

Outcome assessment 

A ‘Growing and Changing’ questionnaire was used to collect information on pubertal 

development. The questionnaire was mailed annually to participants between the ages of 8–17 

years (1999–2008), except in the year 2003 due to funding constraints. The parent or child reported 

menarche status. If it had occurred, month and year of occurrence was reported and used to 

calculate age at menarche. Age at menarche was reported quite consistently across questionnaires: 

correlation between adjacent questionnaires was high (r=0.93) and 258 (58%) of girls reported the 

same age at menarche in each response and another 142 (32%) never reported ages differing by 

more than one year.  

Covariates 

Covariate information was collected by clinical staff or through self-report on 

questionnaires completed by the mother during or immediately after pregnancy. Covariates under 

consideration include: gestational age at biological sample collection (weeks), maternal age at 

delivery (years), maternal pre-pregnancy BMI (kg/m2), maternal race ethnicity (white/nonwhite), 

maternal education (defined as <ordinary level (O-level: required and completed at 16 years of 
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age), O-level, or > O-level), parity (nulliparous/multiparous), smoking during pregnancy 

(any/none), hours of physical activity (enough to work up a sweat) per week during pregnancy (>0 

hours/0 hours), and maternal age at menarche (years). Breastfeeding the index child (yes/no and 

duration) was considered as an effect modifier.  

Statistical analyses 

Descriptive analyses were conducted to compare mother-daughter dyad characteristics by 

case-control status using chi-square tests. Wilcoxon rank sum tests were utilized to compare 

median EDC concentrations by case-control status.  

The chemical concentrations under study were modeled as natural log-transformed 

continuous variables. Per the nested case-control study design, age at menarche was dichotomized 

as early (<11.5 years; cases) versus not early menarche (≥11.5 years; controls) (32). Confounding 

was evaluated using previous knowledge which we assessed using a directed acyclic graph (DAG) 

and by taking into consideration the associations between persistent EDCs with maternal 

characteristics. All models were adjusted for maternal age at menarche, maternal education, parity, 

pre-pregnancy body mass index, maternal age at delivery, prenatal smoking, and gestational week 

at sample collection and included all participants with complete data on relevant exposures and 

covariates (Figure S2).  

First, we ran single-chemical logistic regression models to examine independent 

associations between each chemical and early menarche. Next, we ran multi-chemical logistic 

regression models to examine associations between each chemical in a class (e.g., PFAS) and early 

menarche, independent of other chemicals in the class (e.g., adjusting for other chemicals in the 

class). Sensitivity analyses were conducted comparing the odds of early menarche among those 

with versus without detectable concentrations.  
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Bayesian kernel machine regression (BKMR) was used to visualize the exposure-response 

function and verify assumptions using the R package bkmr (46-48). In the case of no identification 

of non-linearity and or interaction within the mixture through BKMR, weighted quantile sum 

(WQS) regression was used to estimate associations of maternal EDC mixtures with early 

menarche using the R package gWQS (49). Mixtures under study included each chemical class 

separately (PFAS, PCBs, and OCPs) and all three chemicals classes combined.  

WQS regression allows for the creation of a weighted linear index of correlated predictors 

that are weighted by their strength of association with the outcome of interest (50). Specifically, 

the equation seeks to calculate the weights of c set of correlated variables:  

𝑔(𝜇) = 𝛽0 + 𝛽1 (∑𝑤𝑖𝑞𝑖

𝑐

𝑖=1

) + 𝑧′𝜑 

The sum term is the index for c items, scored into quantiles (denoted qi), and weights are 

signified by the sum of wi. Each wi is constrained between 0 and 1. All covariates are represented 

by z'φ. Before analysis, the data are randomly split into two datasets: a training dataset (40%) 

and a validation dataset (60%). Bootstrap samples (n=100) are selected using the training dataset, 

and the strength of the associations for each c item is determined by the beta coefficient (50). 

The index is calculated based on the average wis across all bootstrap samples and is readily 

interpretable as an estimation of the total mixture effect (50-53). To improve the stability of the 

estimates of weights across training and validation data partitions, repeated holdout validation 

was applied; this approach combines cross-validation and bootstrap resampling (54). A 

distribution of results was generated by repeating WQS regression 100 times on data split 

randomly into training (40%) and validation (60%) sets and the mean was taken as the final 

estimate. 
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Bayesian kernel machine regression (BKMR) was used as a complementary mixture 

method to WQS regression. BKMR is a flexible semi-parametric technique that models the 

combined effects of different chemicals, while also allowing for nonlinearity and interactions 

among chemicals (55). This approach allows for the examination of independent effects of mixture 

members, interactions among them, and the overall mixture effect. We used hierarchical variable 

selection to obtain group importance scores (posterior inclusion probabilities (PIPs)) for pre-

defined mutually exclusive groups of variables. Additionally, we estimated the importance of a 

chemical given that the group that contained the chemical was important (conditional PIPs) (46-

48). Within BKMR, we standardized all continuous variables to improve computational efficiency. 

SAS software 9.4 (Cary, NC) was used for descriptive analyses. R software 3.5.0 (Vienna, Austria) 

was used for WQS regression and BKMR analyses.  

Results 

Descriptive statistics 

 The study sample consisted of predominantly white mothers (>97%) who achieved 

secondary levels of education or higher (81.9%) (Table 1). About half of mothers were nulliparous 

(49.6%) and most were 25 years or older (79.3%). Some mothers smoked during pregnancy 

(18.5%) and the majority were physically active during pregnancy (≥1 hour per week) (65.5%). 

Mothers of cases were more likely to be non-white (3.3% among case mothers versus <2.2% 

among control mothers) and to have experienced early menarche (between 8–11 years) themselves 

(32.5% versus 15.2%). Additionally, case mothers were more likely to enter pregnancy at an 

overweight or obese BMI (≥25 kg/m2) (29.4% versus 15.1%).  

There were associations between maternal characteristics and concentrations of EDCs 

(PFOA, PCB153, and p,p'-DDE were selected as representative EDCs) (Table S2). Higher 
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maternal education was associated with higher PCB153 and p,p'-DDE concentrations. Older 

maternal age was also associated with higher PCB153 and p,p'-DDE concentrations. Mothers 

carrying their first-born child had higher concentrations of PFOA. 

Of the 52 chemicals measured, 31 chemicals were detected in greater than 75% of mothers. 

Certain OCPs were very rarely detected (<2% of samples >LOD) (e.g., o,p′-DDT and Mirex) and 

certain PCBs were also rarely detected (e.g., PCB128 and PCB151) (Table 2). The majority of 

PFAS were detected in most samples, except for PFDA (<3% of samples >LOD). 

Correlation among the 31 chemicals was high (Figure 1). Overall, PCBs and OCPs showed 

high inter-class correlation, while PFAS were less correlated with PCBs and OCPs. Among PCBs, 

there was strong intra-class correlation (up to rSpearman=0.98 between PCB170 and PCB180). 

Correlation within OCPs was also strong (as high as rSpearman=0.82 between HCB and β-HCH). 

PFAS exhibited lower intra-class correlation but were still positively correlated with some strong 

correlations (up to rSpearman=0.72 between PFOA and PFOS).  

Single- and multi-chemical models 

Few differences were observed in chemical concentration by case-control status. PCB180, 

which was detected in all samples, was higher among controls than cases (median 47.1 versus 44.0 

ng/g lipid) (Table 3). Similarly, PCB170 was also higher among controls than cases (19.8 versus 

18.1 ng/g lipid). No differences were observed by case-control status among PFAS or OCPs. In 

adjusted single-chemical models, no PFAS or OCPs were associated with early menarche (Table 

3). PCB180, PCB196, and PCB206 were inversely associated with early menarche. For example, 

the odds ratio for early menarche for 10% higher PCB180 was 0.93 (95% CI: 0.87, 1.00).  

In the multi-chemical PFAS model, 10% higher EtFOSAA was associated with 5% higher 

odds of early menarche (OR: 1.05, 95% CI: 1.01, 1.10) when adjusting for all other PFAS (Table 
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3). In the multi-chemical PCB model, PCB172 and PCB187 were associated with higher odds of 

early menarche, while PCB177 and PCB206 were associated with lower odds of early menarche 

when all PCBs were in the model. With 21 chemicals in the multi-chemical PCB model, some 

estimates were highly imprecise, exhibiting very wide confidence intervals. Null associations were 

observed for all OCPs in the multi-chemical OCP model, though β-HCH appeared somewhat 

protective (OR: 0.96, 95% CI: 0.91, 1.02).  

Weighted Quantile Sum Regression 

Weighted quantile sum regression models showed null associations between the indices 

for mixtures (PFAS, PCBs, OCPs, and all three classes combined) and early menarche (Table 3). 

The odds ratio for early menarche for one-unit higher of the WQS index (representing a one-decile 

increase in chemical concentrations) for all three classes combined was 0.89 (95% CI: 0.76, 1.05). 

When examining classes on their own, the PFAS mixture, driven by EtFOSAA (weight: 0.40), was 

weakly associated with early menarche (OR: 1.09, 95% CI: 0.98, 1.21), while the PCB mixture, 

driven by PCB206 (weight: 0.18), was weakly inversely associated with early menarche (OR: 0.88, 

95% CI: 0.78, 1.00). Being breastfed did not modify the association of prenatal exposure to 

persistent EDC mixtures and early menarche.  

Bayesian Kernel Machine Regression 

In the BKMR model for all three classes combined, the independent chemical associations 

all appear fairly linear (Figure S3). Some chemicals had slightly positive associations (PFHxS, 

EtFOSAA), some appeared to have negative associations (MeFOSAA, PCB206, β-HCH), but 

most showed no association with early menarche. We observed no interaction among mixture 

members (Figure S4). We did not find an overall mixture effect for any of the mixtures; the overall 

effect of the PFAS mixture was in the positive direction while all other mixtures (PCBs, OCPs, 
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and all three classes combined) were in the inverse direction (Figure 2, Table 3). PIPs, which 

indicate the importance of a chemical to the mixture, are reported in Table 3.  

Sensitivity analyses 

We conducted a sensitivity analysis to explore differences in early menarche status among 

those with detectable concentrations versus those with non-detectable concentrations (Table S3). 

We found that daughters born to women with detectable concentrations of PCB189 were less likely 

to experience early menarche (OR: 0.45, 95% CI: 0.26, 0.78) than those with non-detectable 

concentrations. Some other differences were seen for other chemicals: those with MeFOSAA, 

PCB177, PCB178, and PCB206 concentrations above the LOD were less likely to experience early 

menarche, while those with detectable FOSA concentrations were more likely to experience early 

menarche, but these estimates were imprecise.  

Discussion 

In this study, we examined the association of prenatal exposure to multiple PFAS, PCBs, 

and OCPs (as individual classes and collectively) and early menarche (<11.5 years) among British 

girls, and mostly observed null associations. We employed WQS regression and BKMR to 

accomplish this, and results from these two methods were largely in agreement. This study 

responds to a recent call for research to evaluate the combined effects of exposure to EDCs on 

pubertal timing (56).  

The results from single-chemical logistic regression, WQS regression, and BKMR 

models were quite similar. First, almost all models suggested that higher prenatal exposure to 

persistent EDCs was not associated with early menarche, though effect sizes varied. Associations 

were further away from the null in WQS regression models than in BKMR. WQS regression 

assumes that all associations are in the same direction; if this assumption is not met, results can 
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be biased away from the null (57). This potential for bias could explain the differences in 

magnitude between WQS regression and BKMR. Second, models were generally in agreement 

on the most important contributors in each class; for PFAS, EtFOSAA; for PCBs, PCB206; and 

for OCPs, β-HCH was consistently the most important component of the mixture.  

Previous studies in this ALSPAC population examined prenatal exposure to single EDCs 

and early menarche, specifically for PFAS (32) and OCPs (39). Neither study found an effect of 

prenatal exposure to EDCs on early menarche, as we confirmed here when examining mixtures of 

these chemicals using WQS and BKMR. The null findings from ALSPAC are in agreement with 

many studies published for these EDCs under the single-chemical paradigm (12, 32, 34, 36-39), 

though two previous studies found an association between DDE and early menarche (37, 38). The 

DDE and early menarche association was not replicated in our study in single-chemical analyses 

nor was DDE identified as an important component in mixture analyses using WQS and BKMR. 

Within ALSPAC, this is the first study to report on the association of PCBs and early menarche, 

and we found that certain PCBs, including PCB180, decreased the odds of early menarche in 

single-chemical models. In mixture models, associations of PCBs and early menarche were null 

though in the inverse direction.  

While there has been previous work on the topic of persistent EDCs (modeled as single 

chemicals) and early menarche, there is motivation for a study using a mixtures approach. Because 

it is thought that several EDCs can operate through a common mechanism to affect an outcome, it 

seems reasonable that individual EDCs could act together at lower concentrations than the 

concentration that would be required for each chemical to achieve the same outcome on its own 

(58). This idea has been shown in in vitro and in vivo studies where mixtures of EDCs are able to 

produce significant effects, even when each individual EDC is present at concentrations below the 
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no-observed-effects levels (59-62). For example, a mixture effect was observed in an 

epidemiological study of breast cancer using a novel biomarker of combined EDC exposure. A 

positive association was seen between the mixture and breast cancer, yet individual EDCs showed 

no associations with breast cancer (63). These results suggest that the numerous studies of single 

EDCs with null findings may have considerably underestimated the risks of exposure to EDCs (64, 

65), which is why we have re-analyzed data within this ALSPAC nested case-control study of 

early menarche using mixture methods.  

Twelve persistent organic pollutants including PCBs, DDT, and HCB were banned or 

limited globally in a 2004 treaty at the Stockholm Convention on Persistent Organic Pollutants 

(POPs), and HCH was one of nine pollutants added in a 2009 amendment (66). In the years since, 

global monitoring of POPs has increased (67, 68). Human PCB and OCP concentrations have 

decreased among the general population in recent decades and concentrations among ALSPAC 

mothers (1990–1992) were higher than was last seen when the National Health and Nutrition 

Examination Survey (NHANES) measured these chemicals in Americans (2003–2004) (69). 

PFAS concentrations were higher in Americans than ALSPAC mothers the first time NHANES 

examined PFAS (1999–2000), but Americans’ PFAS concentrations have since dropped below 

concentrations of ALSPAC mothers (20). Like PCBs and OCPs, there has been a downward trend 

for a number of PFAS (70); however, newer PFAS formulations have replaced them. Moreover, 

there have been changes in age at menarche over time and place. In the United States, median age 

at menarche decreased from 1995 (12.1 years) to 2013-2017 (11.9) (71). The same downward 

trend is seen in the United Kingdom, though age at menarche has been consistently been slightly 

older in the United Kingdom compared to the United States (10, 72). 
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Our study is strengthened by its prospective design within a population-based birth cohort. 

Further, the frequent and thorough longitudinal data collection over a long follow up period allows 

us to examine exposures during pregnancy with distal outcomes such as pubertal development. 

Thirdly, we have utilized reliable biomarker indicators of exposure to over 50 persistent EDCs, 

allowing us to examine some less commonly studied chemicals as part of chemical mixtures. 

Further, our study is enriched by the extensive covariate data available within ALSPAC. Lastly, 

our mixtures approach using multiple complementary methods (WQS regression, BKMR) allowed 

us to better replicate the human experience of exposure to multiple chemicals. Strengths of these 

mixture methods include their robustness to multicollinearity due to correlated exposures, 

dimensionality reduction, and ability to estimate mixture health effects while identifying important 

mixture components.   

This study also has some limitations. The size of this sub-sample (n=448) of ALSPAC is 

modest. Due to the study design, we are unable to examine the association between prenatal 

mixtures of persistent EDCs and late age at menarche; there are a limited number of girls in the 

study with both measured maternal EDC concentrations and menarche at or after 14 years old 

(n=24). We are unable to account for persistent EDC exposure during childhood, which could 

also influence pubertal development, though there is evidence to suggest that prenatal exposure 

to persistent EDCs affects pubertal development independent of childhood exposures (12). 

Additionally, there may be residual confounding by unknown and unmeasured (e.g., health-

seeking behaviors) or poorly measured covariates (e.g., SES). Approaches to mixture analyses 

that involve regressing the outcome on several correlated exposures simultaneously can in some 

cases amplify rather than reduce confounding bias (“coexposure amplification bias”) (73). As 

recommended, we controlled for variables (to the extent that they were known and measured) 
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that introduce confounding to the association of prenatal EDC exposure and early menarche. 

Further, due to the large number of variables (many with some missing data) used in mixture 

analyses, we were missing data on roughly one-third of the sub-sample (Figure S2). We 

compared mother-daughter characteristics for those in the analytic dataset used for mixture 

analyses (n=284) to those in the nested case-control study (n=448) and to the population from 

which the case-control study was drawn (n=3,913) (Table S4). Characteristics were similar 

across subsets; while we saw a higher proportion of mothers with an earlier maternal age at 

menarche and overweight/obese pre-pregnancy BMI in the nested case-control study and 

analytic data compared to those enrolled at puberty, this was expected due to the relation of these 

factors with case status. There is the potential for misclassification of daughter’s age at menarche 

because it was self-reported annually between the ages of 8 and 17, though this is unlikely to be 

a concern given the close proximity of the event to the time of reporting and generally good 

recall of this outcome (4-6). Lastly, the sub-sample used in the present study differed from the 

original base population of ALSPAC in a few ways. Mothers in our sub-sample were more 

highly educated and older than mothers in the original ALSPAC cohort. These differences are 

somewhat expected given that to be included in this sub-sample, children still had to be involved 

in the study during puberty. Largely, nonparticipation and loss to follow-up are more common 

among the less healthy and less advantaged (74-80).  

Conclusions 

We found no association between prenatal exposure to mixtures of persistent EDCs and 

early menarche status. This study fills a knowledge gap relating to prenatal exposure to mixtures 

of EDCs and puberty and comes closer to replicating the human experience by accounting for low-

level exposure to many chemicals.   
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Table 1. Characteristics of the Avon Longitudinal Study of Parents and Children (ALSPAC) 

nested case-control study population (N=448 mother-daughter dyads). 

 Menarche <11.5 years 

Cases (n=218) 

Menarche ≥11.5 years 

Controls (n=230) 

Characteristicab n (%) n (%) 

Maternal race   

    White 205(96.7)*  218(--)c* 

    Non-white 7(3.3)* <5(--)c* 

Maternal educationd   

    < O-level 43(21.0) 32(15.2) 

    O-level 67(32.7) 73(34.8) 

    >O-level 95(46.3) 105(50.0) 

Maternal age at menarche, years   

    8–11 63(32.5)* 30(15.2)* 

    ≥12 131(67.5)* 168(84.8)* 

Maternal pre-pregnancy BMI, kg/m2   

    <25 (under/normal weight) 139(70.6)* 174(84.9)* 

    ≥25 (overweight/obese) 58(29.4)* 31(15.1)* 

Prenatal smoking   

    Any 45(21.4) 34(15.7) 

    None 165(78.6) 183(84.3) 

Physical activity   

    Any 123(66.5) 129(64.5) 

    None 62(33.5) 71(35.5) 

Maternal age at delivery, years   

    <25 44(20.4) 48(21.0) 

    25–29  83(38.4) 81(35.4) 

    ≥30  89(41.2) 100(43.7) 

Child birth order   

    First born 110(53.9) 98(45.6) 

    Second born or later 94(46.1) 117(54.4) 

Child birth weight, g   

    <2500 7(3.3) 10(4.4) 

    ≥2500 208(96.7) 215(95.6) 

Breastfeeding   

    Any 164(80.8) 174(80.2) 

    None 39(19.2) 43(19.8) 

Gestational age at sample, weeks   

    <20 147(67.4) 150(65.2) 

    ≥20 71(32.6) 80(34.8) 

Abbreviations: g, grams; kg/m2, kilograms per meter-squared  
a Compared using chi-square tests (or Fisher’s exact test, where appropriate) 
b Percentages are among mothers with non-missing data for each characteristic. Data were missing on 

maternal race (n=17, 3.8%), maternal education (n=33, 7.4%), maternal age at menarche (n=56, 12.5%), 

maternal pre-pregnancy BMI (n=46, 10.3%), prenatal smoking (n=21, 4.7%), physical activity (n=63, 

14.1%), maternal age at delivery (n=3, 0.7%), child birth order (n=29, 6.5%), child birth weight (n=8, 

1.8%), and breastfeeding (n=28, 6.3%). Gestational age at sample data were complete (n=0, 0.0%). 
c Counts and percents suppressed due to small cell sizes 
d <O-level=none, Certificate of Secondary Education, and vocational education, which are equivalent to 
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no diploma or a GED in the United States. O-levels (ordinary levels) are required and completed at the 

age of 16. >O-level=A-levels (advanced levels) completed at 18, which are optional, but required to get 

into university; and a university degree. 

* Cases and controls are significantly different (p<0.05)  
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Table 2. Serum concentrations of persistent endocrine disrupting chemicals among mothers of 

the Avon Longitudinal Study of Parents and Children (ALSPAC) during pregnancy by age at 

menarche of their daughters  (N=448 mother-daughter dyads).  

 Menarche <11.5 years 

Cases 

Menarche ≥11.5 years 

Controls 

 
Q1 Median Q3 

% 

<LODa 
Q1 Median Q3 

% 

<LODa 

Per- and polyfluoroalkyl substances (PFAS) (ng/mL) 

PFOA 2.9 3.85 5.0 0.0% 2.7 3.6 4.7 0.0% 

PFOS 15.4 19.5 24.8 0.0% 14.6 20.0 24.9 0.0% 

PFHxS 1.3 1.7 2.2 0.0% 1.2 1.6 2.2 0.4% 

PFNA 0.41 0.57 0.66 0.5% 0.41 0.49 0.66 0.0% 

FOSA <LOD 0.1 0.3 29.8% <LOD 0.2 0.3 31.3% 

MeFOSAA 0.26 0.35 0.61 17.9% 0.26 0.35 0.70 11.3% 

EtFOSAA 0.4 0.7 1.0 2.8% 0.4 0.6 0.9 2.2% 

PFDA <LOD <LOD <LOD 97.7% <LOD <LOD <LOD 97.0% 

Polychlorinated biphenyls (PCBs) (ng/g lipid) 

PCB28 3.6 5.6 8.4 7.8% 3.5 5.2 8.1 9.6% 

PCB44 <LOD 1.8 4.0 29.8% <LOD 2.0 3.9 30.9% 

PCB49 <LOD <LOD 1.8 60.6% <LOD <LOD 1.9 56.1% 

PCB52 <LOD 3.1 7.7 30.3% <LOD 3.4 7.2 30.0% 

PCB66 <LOD 1.6 2.6 29.4% <LOD 1.6 2.5 31.3% 

PCB74 8.4 11.1 15.1 0.5% 8.6 11.1 15.2 0.0% 

PCB87 <LOD <LOD 1.5 60.6% <LOD <LOD 1.8 58.7% 

PCB99 6.6 9.4 11.9 0.9% 7.2 9.3 12.2 0.9% 

PCB101 <LOD 2.2 5.1 33.0% <LOD 2.2 5.9 27.8% 

PCB105 2.0 3.0 4.1 6.4% 2.0 2.8 3.9 8.3% 

PCB110 <LOD <LOD 2.3 54.1% <LOD <LOD 2.9 53.0% 

PCB118 10.7 15.2 20.7 0.0% 10.9 14.8 20.4 0.0% 

PCB128 <LOD <LOD <LOD 87.2% <LOD <LOD <LOD 91.7% 

PCB138b 30.2 40.5 52.5 0.5% 30.9 43.5 54.3 0.0% 

PCB146 4.6 5.9 8.1 2.8% 4.6 6.0 8.1 2.2% 

PCB149 <LOD <LOD 1.7 63.8% <LOD <LOD 2.0 58.3% 

PCB151 <LOD <LOD <LOD 80.3% <LOD <LOD <LOD 78.7% 

PCB153 48.1 62.1 85.5 0.0% 48.7 68.2 86.0 0.0% 

PCB156 4.6 6.0 8.1 1.4% 5.0 6.6 8.5 2.2% 

PCB157 <LOD 1.3 1.8 34.4% <LOD 1.4 2.0 33.5% 

PCB167 0.5 2.0 2.9 24.8% <LOD 2.1 2.8 27.4% 

PCB170 14.0 18.1 24.6 0.0% 14.7 19.8 25.8 0.0% 

PCB172 1.1 1.9 2.7 21.6% <LOD 2.0 2.7 24.4% 

PCB177 2.3 3.0 4.2 8.7% 2.4 3.1 4.1 9.1% 

PCB178 1.8 2.7 3.6 15.6% 1.9 2.8 3.9 13.0% 

PCB180 31.6 44.0 59.3 0.0% 36.0 47.1 61.8 0.0% 

PCB183 4.6 6.1 8.0 2.3% 4.7 6.3 8.2 4.4% 

PCB187 8.4 10.9 15.8 0.9% 9.0 11.5 14.9 1.3% 

PCB189 <LOD <LOD <LOD 79.4% <LOD <LOD 1.0 69.6% 

PCB194 5.3 7.3 10.0 3.7% 5.7 7.8 10.8 3.0% 

PCB195 1.3 2.1 2.9 20.6% 1.6 2.3 3.0 17.4% 

PCB196b 5.3 7.4 10.0 2.3% 6.0 7.9 10.7 1.7% 
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PCB199 3.7 5.1 7.5 2.8% 4.2 5.7 8.0 2.6% 

PCB206 1.6 2.2 3.0 10.6% 1.8 2.5 3.3 10.0% 

PCB209 <LOD 1.4 1.9 30.7% <LOD 1.6 2.1 24.8% 

Organochlorine pesticides (OCPs) (ng/g lipid) 

HCB 37.4 50.7 63.7 0.0% 38.3 50.0 63.4 0.0% 

β-HCH 33.5 45.3 59.9 1.8% 37.3 47.5 63.2 1.7% 

γ-HCH <LOD <LOD <LOD 80.7% <LOD <LOD <LOD 77.4% 

Oxychlordane <LOD <LOD 3.5 74.3% <LOD <LOD 4.6 69.6% 

Trans-nonachlor <LOD <LOD 4.7 66.5% <LOD <LOD 4.6 67.4% 

p,p'-DDE 184 314 522 0.5% 200 310 484 0.0% 

o,p'-DDT <LOD <LOD <LOD 98.6% <LOD <LOD <LOD 98.3% 

p,p'-DDT 7.4 11.3 16.5 10.6% 8.0 10.5 16.1 12.2% 

Mirex <LOD <LOD <LOD 100.0% <LOD <LOD <LOD 98.7% 

Abbreviations: Q1, quartile 1; Q3, quartile 3; LOD, limit of detection; ng/mL, nanogram per milliliter; 

ng/g lipid, nanogram per gram lipid 
a The LODs for PFAS were 0.082 ng/mL for PFNA, 0.10 ng/mL for PFOA, PFHxS, and FOSA, 0.174 

ng/mL for MeFOSAA, and 0.20 ng/mL for PFOS, EtFOSAA, and PFDA. LODs of OCPs and PCBs are 

dependent on the sample size and blanks, thus, an individual LOD is reported for each individual result 

rather than an overall LOD. 
b PCB congeners 138 and 158 could not be separated and were quantified as a summed concentration 

hereafter referred to as PCB138. Similarly, PCB congeners 196 and 203 could not be separated and were 

quantified as a summed concentration hereafter referred to as PCB196.  
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Table 3. Adjusteda associations of maternal serum concentrations of persistent endocrine disrupting chemicals with early age at 1 
menarche (<11.5 years) of the Avon Longitudinal Study of Parents and Children (ALSPAC) nested case-control study, modeled as a 2 

mixture using weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR), as well as in single- and 3 
multi-chemical models using logistic regression. 4 

 Mixture  

ORb (95% CI) 

Average 

Weightcd 

Mixture  

ORe (95% CI) 

PIP Single-chemical  

ORf (95% CI) 

Multi-chemical  

ORg (95% CI) 

 WQS regression BKMR   

Per- and polyfluoroalkyl 

substances (PFAS) 

(n=331) 

1.09 (0.98, 1.21)  1.03 (0.93, 1.13)    

PFOA  0.19  0.48 1.02 (0.96, 1.09) 1.04 (0.95, 1.13) 

PFOS  0.07  0.44 1.01 (0.94, 1.07) 0.93 (0.82, 1.04) 

PFHxS  0.13  0.52 1.01 (0.97, 1.05) 1.02 (0.98, 1.07) 

PFNA  0.18  0.30 1.00 (0.95, 1.05) 1.03 (0.96, 1.10) 

MeFOSAA  0.02  0.51 0.98 (0.96, 1.01) 0.97 (0.94, 1.00) 

EtFOSAA  0.40  0.49 1.03 (0.99, 1.07) 1.05 (1.01, 1.10) 

Polychlorinated 

biphenyls (PCBs) (n=292) 

0.88 (0.78, 1.00)  0.92 (0.77, 1.10)    

PCB28  0.03  0.63 1.01 (0.97, 1.04) 1.00 (0.95, 1.05) 

PCB74  0.05  0.52 0.97 (0.92, 1.02) 0.98 (0.86, 1.12) 

PCB99  0.09  0.37 0.99 (0.94, 1.04) 0.94 (0.75, 1.17) 

PCB105  0.02  0.46 1.00 (0.94, 1.06) 1.13 (0.89, 1.45) 

PCB118  0.02  0.44 0.99 (0.95, 1.04) 0.89 (0.66, 1.21) 

PCB138h  0.03  0.41 0.97 (0.92, 1.02) 1.00 (0.68, 1.46) 

PCB146  0.00  0.42 1.00 (0.95, 1.05) 0.99 (0.85, 1.17) 

PCB153  0.00  0.50 0.96 (0.90, 1.02) 1.29 (0.71, 2.37) 

PCB156  0.05  0.49 0.96 (0.91, 1.01) 1.01 (0.88, 1.15) 

PCB170  0.01  0.43 0.94 (0.87, 1.00) 1.01 (0.68, 1.51) 

PCB172  0.01  0.48 1.02 (0.97, 1.06) 1.15 (1.05, 1.26) 

PCB177  0.02  0.48 0.98 (0.93, 1.02) 0.89 (0.80, 0.99) 

PCB178  0.02  0.35 0.97 (0.92, 1.02) 1.01 (0.92, 1.11) 

PCB180  0.04  0.48 0.93 (0.87, 1.00) 0.69 (0.40, 1.18) 

PCB183  0.05  0.54 0.97 (0.92, 1.03) 0.92 (0.74, 1.15) 

PCB187  0.00  0.56 0.99 (0.93, 1.04) 1.37 (1.08, 1.75) 

PCB194  0.04  0.39 0.97 (0.93, 1.02) 1.02 (0.94, 1.11) 

PCB195  0.26  0.51 0.96 (0.91, 1.01) 0.94 (0.86, 1.03) 
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PCB196h  0.04  0.45 0.92 (0.86, 0.99) 1.04 (0.79, 1.38) 

PCB199  0.03  0.39 0.96 (0.91, 1.01) 0.97 (0.86, 1.09) 

PCB206  0.18  0.63 0.92 (0.87, 0.98) 0.85 (0.73, 0.98) 

Organochlorine 

pesticides (OCPs) (n=302) 

0.95 (0.85, 1.05)  0.97 (0.91, 1.04)    

HCB  0.12  0.30 0.97 (0.92, 1.03) 1.01 (0.93, 1.09) 

β-HCH  0.50  0.67 0.96 (0.92, 1.00) 0.96 (0.91, 1.02) 

p,p'-DDE  0.26  0.36 0.98 (0.94, 1.01) 0.98 (0.93, 1.03) 

p,p'-DDT  0.12  0.33 0.98 (0.93, 1.03) 1.02 (0.95, 1.10) 

Overall mixture (PFAS, 

PCBs, OCPs) (n=284) 

0.89 (0.76, 1.05)  0.98 (0.91, 1.05)    

PFAS    0.49i   

PFOA  0.02  0.13   

PFOS  0.03  0.08   

PFHxS  0.03  0.15   

PFNA  0.03  0.11   

MeFOSAA  0.19  0.18   

EtFOSAA  0.02  0.36   

PCBs    0.53i   

PCB28  0.02  0.19   

PCB74  0.03  0.04   

PCB99  0.05  0.04   

PCB105  0.01  0.01   

PCB118  0.01  0.2   

PCB138h  0.01  0.03   

PCB146  0.00  0.02   

PCB153  0.00  0.03   

PCB156  0.03  0.07   

PCB170  0.00  0.05   

PCB172  0.01  0.01   

PCB177  0.01  0.04   

PCB178  0.01  0.04   

PCB180  0.02  0.04   

PCB183  0.01  0.03   

PCB187  0.00  0.03   

PCB194  0.04  0.07   
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PCB195  0.17  0.05   

PCB196h  0.02  0.05   

PCB199  0.02  0.05   

PCB206  0.12  0.10   

OCPs    0.66i   

HCB  0.01  0.16   

β-HCH  0.05  0.55   

p,p'-DDE  0.02  0.20   

p,p'-DDT  0.03  0.10   

Abbreviations: OR, odds ratio; CI, confidence interval; WQS, weighted quantile sum; BKMR, Bayesian kernel machine regression; PIP, posterior 5 
inclusion probability 6 
a Adjusted for maternal age at menarche, education, parity, pre-pregnancy body mass index, maternal age at delivery, prenatal smoking, and 7 
gestational week at sample collection 8 
b The odds ratio for early menarche for one-unit higher of the WQS index (representing a one-decile increase in chemical concentrations) 9 
c Weights greater than 1/number of chemicals in the mixture are considered significant contributors to the overall mixture effect 10 
d Weights may not add to 1 due to rounding 11 
e The odds ratio (and 95% credible interval) comparing the outcome when all exposures are at the 60th percentile to the median; estimates for other 12 
quantiles compared to the median can be seen in Figure 2 13 
f Single-chemical logistic regression models were run to examine independent associations between each chemical and early menarche. Odds 14 
ratios represent a change of 10% higher chemical concentrations 15 
g Multi-chemical logistic regression models were run to examine associations between each chemical in a class (e.g., PFAS) and early menarche, 16 
independent of other chemicals in the class (e.g., adjusting for other chemicals in the class). Odds ratios represent a change of 10% higher 17 
chemical concentrations 18 
h PCB congeners 138 and 158 could not be separated and were quantified as a summed concentration hereafter referred to as PCB138. Similarly, 19 
PCB congeners 196 and 203 could not be separated and were quantified as a summed concentration hereafter referred to as PCB196 20 
i Italicized numbers indicate group PIPs; all other PIPs in the overall mixture (PFAS, PCBs, OCPs) are conditional PIPs (representing the 21 
importance of a chemical given that the group that contained the chemical was important)22 
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 23 
Figure 1. Correlation heatmap of serum concentrations of persistent endocrine disrupting 24 
chemicals in women during pregnancy in the Avon Longitudinal Study of Parents and Children 25 
(N=448). Spearman correlation coefficients presented for untransformed distributions of per- and 26 

polyfluoroalkyl substances (PFAS), polychlorinated biphenyls (PCBs), and organochlorine 27 
pesticides (OCPs). PCB and OCP concentrations were lipid-adjusted. 28 

 29 

 30 
 31 

  32 
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Figure 2. Overall effect of the mixture on early menarche status (estimates and 95% credible intervals), comparing the outcome when 33 

all exposures are at a particular quantile to the median using Bayesian kernel machine regression for four different mixtures: PFAS, 34 

PCBs, OCPs, and all three classes combined (PFAS, PCBs, and OCPs). The model adjusted for maternal age at menarche, education, 35 

parity, pre-pregnancy body mass index, maternal age at delivery, prenatal smoking, and gestational week at sample collection. All 36 

chemical concentrations were natural log-transformed and standardized; PCB and OCP concentrations were lipid-adjusted.  37 
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Supplementary material 38 

Table S1. Persistent endocrine disrupting chemicals measured in maternal serum in the 39 

ALSPAC nested case-control study (N=448). 40 

Chemical Name Abbreviated 

Name  

Per- and Polyfluoroalkyl Substances  

Perfluorooctane sulfonamide  FOSA  

2-(N-ethylperfluorooctanesulfonamido) acetate  EtFOSAA  

2-(N-methyl-perfluorooctanesulfonamido) acetate  MeFOSAA  

Perfluorohexane sulfonate  PFHxS  

Perfluorooctane sulfonate  PFOS  

Perfluorooctanoate  PFOA  

Perfluorononanoate  PFNA  

Perfluorodecanoate  PFDA  

Polychlorinated Biphenyls  

2,4,4'-trichlorobiphenyl   PCB28  

2,2',3,5'-tetrachlorobiphenyl   PCB44  

2,2',4,5'-tetrachlorobiphenyl  PCB49  

2,2',5,5'-tetrachlorobiphenyl  PCB52  

2,3',4,4'-tetrachlorobiphenyl  PCB66  

2,4,4',5-tetrachlorobiphenyl PCB74  

2,2',3,4,5'-pentachlorobiphenyl  PCB87  

2,2',4,4',5-pentachlorobiphenyl  PCB99  

2,2',4,5,5'-pentachlorobiphenyl  PCB101  

2,3,3',4,4'-pentachlorobiphenyl  PCB105  

2,3,3',4',6-pentachlorobiphenyl  PCB110  

2,3',4,4',5-pentachlorobiphenyl PCB118  

2,2',3,3',4,4'-hexachlorobiphenyl  PCB128  

2,2',3,4,4',5'-hexachlorobiphenyl and 2,3,3',4,4',6-hexachlorobiphenyl  PCB138-158  

2,2',3,4',5,5'-hexachlorobiphenyl  PCB146  

2,2',3,4',5',6-hexachlorobiphenyl  PCB149  

2,2',3,5,5',6-hexachlorobiphenyl  PCB151  

2,2',4,4',5,5'-hexachlorobiphenyl  PCB153  

2,3,3',4,4',5-hexachlorobiphenyl  PCB156  

2,3,3',4,4',5'-hexachlorobiphenyl  PCB157  

2,3',4,4',5,5'-hexachlorobiphenyl PCB167  

2,2',3,3',4,4',5-heptachlorobiphenyl  PCB170  

2,2',3,3',4,5,5'-heptachlorobiphenyl  PCB172  

2,2',3,3',4',5,6-heptachlorobiphenyl  PCB177  

2,2',3,3',5,5',6-heptachlorobiphenyl  PCB178  

2,2',3,4,4',5,5'-heptachlorobiphenyl  PCB180  

2,2',3,4,4',5',6-heptachlorobiphenyl  PCB183  

2,2',3,4',5,5',6-heptachlorobiphenyl  PCB187  

2,3,3',4,4',5,5'-heptachlorobiphenyl  PCB189  

2,2',3,3',4,4',5,5'-octachlorobiphenyl  PCB194  
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2,2',3,3',4,4',5,6-octachlorobiphenyl  PCB195  

2,2',3,3',4,4',5',6-octachlorobiphenyl  and 2,2',3,4,4',5,5',6-octachlorobiphenyl  PCB196-203  

2,2',3,3',4,5,6,6'-octachlorobiphenyl  PCB199  

2,2',3,3',4,4',5,5',6-nonachlorobiphenyl  PCB206  

Decachlorobiphenyl PCB209  

Organochlorine Pesticides  

Hexachlorobenzene  HCB 

β-Hexachlorocyclohexane  β-HCH 

ϒ-Hexachlorocyclohexane (Lindane)  γ-HCH 

Oxychlordane  Oxychlordane 

Trans-Nonachlor  Trans-nonachlor 

2,2-Bis(4-chlorophenyl)-1,1-dichloroethene  p,p'-DDE 

2-(4-chlorophenyl)-2-(2-chlorophenyl)-1,1,1-trichloroethan  o,p'-DDT 

2,2-Bis(4-chlorophenyl)-1,1,1-trichloroethan  p,p'-DDT 

Mirex  Mirex  

 41 
  42 
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Table S2. Characteristics of the Avon Longitudinal Study of Parents and Children (ALSPAC) 43 

nested case-control study population by select endocrine disrupting chemicals (N=448 mother-44 

daughter dyads). 45 

Characteristic PFOA  

(ng/mL) 

PCB153  

(ng/g lipid) 

p,p'-DDE  

(ng/g lipid) 

Median (IQR) Median (IQR) Median (IQR) 

Maternal race    

    White 3.8 (2.9–4.8)* 64.8 (48.6–85.8) 308 (193–490)* 

    Non-white 2.3 (1.6–2.9)* 67.7 (47.4–95.1) 620 (363–1635)* 

Maternal educationa    

    < O-level 3.6 (2.8–4.5) 59.7 (45.5–78.6)* 298 (184–472)* 

    O-level 3.7 (2.9–5.0) 55.9 (44.2–72.3)* 257 (166–460)*  

    >O-level 3.9 (2.8–4.8) 74.4 (57.8–95.6)* 384 (227–536)* 

Maternal age at menarche, years    

    8–11 4.0 (3.0–4.9) 68.0 (48.1–90.2) 339 (194–544) 

    ≥12 3.7 (2.8–4.8) 63.5 (48.8–83.6) 308 (192–487) 

Maternal pre-pregnancy BMI, kg/m2    

    <25 (under/normal weight) 3.8 (2.8–4.8) 69.0 (51.2–88.1)* 329 (194–513) 

    ≥25 (overweight/obese) 3.7 (3.0–4.8) 57.2 (44.0–77.6)* 306 (211–541) 

Prenatal smoking    

    Any 3.4 (2.9–4.4) 59.8 (46.0–74.3) 283 (170–412) 

    None 3.8 (2.8–4.9) 65.7 (48.9–87.5) 323 (200–504) 

Physical activity    

    Any 3.8 (2.9–5.0) 65.2 (49.9–88.4) 322 (203–504) 

    None 3.7 (2.9–4.7) 66.3 (46.1–85.2) 316 (187–533) 

Maternal age at delivery, years    

    <25 3.9 (3.0–4.8) 44.2 (35.0–56.5)* 178 (136–292* 

    25–29  3.8 (3.0–4.9) 59.8 (48.1–74.1)* 289 (198–422)* 

    ≥30  3.6 (2.5–4.6) 81.9 (64.3–105.4)* 451 (283–620)* 

Child birth order    

    First born 4.4 (3.4–5.4)* 63.9 (46.3–84.3) 316 (198–513) 

    Second born or later 3.1 (2.4–4.0)* 66.9 (50.2–87.5) 323 (193–497) 

Child birth weight, g    

    <2500 4.1 (3.3–5.6) 74.4 (60.0–102.8) 461 (329–1390)* 

    ≥2500 3.7 (2.8–4.8) 63.7 (47.5–84.5) 302 (185–487)* 

Breastfeeding    

    Any 3.7 (2.8–4.7) 67.9 (49.4–88.6)* 323 (201–501) 

    None 4.1 (3.1–5.1) 56.0 (42.4–76.7)* 293 (164–472) 

Gestational age at sample, weeks    

    <20 4.0 (3.0–5.0)* 65.7 (48.7–84.8) 337 (206–516)* 

    ≥20 3.1 (2.5–4.2)* 60.8 (47.5–86.2) 276 (167–469)* 

Abbreviations: g, grams; kg/m2, kilograms per meter-squared  46 
a <O-level=none, Certificate of Secondary Education, and vocational education, which are equivalent to 47 
no diploma or a GED in the United States. O-levels (ordinary levels) are required and completed at the 48 
age of 16. >O-level=A-levels (advanced levels) completed at 18, which are optional, but required to get 49 
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into university; and a university degree. 50 
* Significantly different (p<0.05) using Wilcoxon rank sum test  51 
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Table S3. Sensitivity analysis exploring associations of detectable versus below the limit of 52 

detection serum concentrations of persistent endocrine disrupting chemicals with early menarche 53 

in the Avon Longitudinal Study of Parents and Children (ALSPAC) nested case-control study 54 
(N=448 mother-daughter dyads). 55 

 OR (95% CI)abc 

Perfluoroalkyl substances (PFAS) (ng/mL)  

PFOA N/A 

PFOS N/A 

PFHxS N/A 

PFNA N/A 

FOSA 1.46 (0.88, 2.42) 

MeFOSAA 0.53 (0.27, 1.04) 

EtFOSAA N/A 

PFDA N/A 

Polychlorinated biphenyls (PCBs) (ng/g lipid)  

PCB28 1.27 (0.55, 2.95) 

PCB44 1.02 (0.61, 1.70) 

PCB49 0.75 (0.46, 1.21) 

PCB52 1.00 (0.60, 1.67) 

PCB66 1.06 (0.63, 1.78) 

PCB74 N/A 

PCB87 0.75 (0.46, 1.23) 

PCB99 N/A 

PCB101 0.77 (0.46, 1.29) 

PCB105 1.78 (0.73, 4.36) 

PCB110 1.04 (0.65, 1.67) 

PCB118 N/A 

PCB128 0.94 (0.42, 2.11) 

PCB138d N/A 

PCB146 N/A 

PCB149 0.76 (0.47, 1.24) 
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PCB151 0.81 (0.45, 1.46) 

PCB153 N/A 

PCB156 N/A 

PCB157 0.88 (0.53, 1.47) 

PCB167 1.20 (0.69, 2.08) 

PCB170 N/A 

PCB172 1.11 (0.63, 1.95) 

PCB177 0.63 (0.27, 1.45) 

PCB178 0.57 (0.28, 1.16) 

PCB180 N/A 

PCB183 N/A 

PCB187 N/A 

PCB189 0.45 (0.26, 0.78) 

PCB194 N/A 

PCB195 0.74 (0.40, 1.35) 

PCB196d N/A 

PCB199 N/A 

PCB206 0.52 (0.22, 1.24) 

PCB209 0.69 (0.40, 1.20) 

Organochlorine pesticides (OCPs) (ng/g lipid)  

HCB N/A 

β-HCH N/A 

γ-HCH 0.82 (0.46, 1.45) 

Oxychlordane 0.62 (0.35, 1.07) 

Trans-nonachlor 0.84 (0.48, 1.46) 

p,p'-DDE N/A 

o,p'-DDT N/A 

p,p'-DDT 0.84 (0.40, 1.78) 

Mirex N/A 
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Abbreviations: OR, odds ratio; CI, confidence interval; ng/mL, nanogram per milliliter; ng/g lipid, 56 
nanogram per gram lipid 57 
a Adjusted for maternal age at menarche, parity, pre-pregnancy BMI, maternal age at delivery, education, 58 
prenatal smoking, and gestational age at sample collection 59 
b Restricted to those with % <LOD between 5% and 95% 60 
c OR represents the odds of early menarche for those with concentrations above the LOD, compared to 61 
those with concentrations below the LOD 62 
d PCB congeners 138 and 158 could not be separated and were quantified as a summed concentration 63 
hereafter referred to as PCB138. Similarly, PCB congeners 196 and 203 could not be separated and were 64 
quantified as a summed concentration hereafter referred to as PCB196.  65 
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Table S4. Comparison of characteristics of various sub-samples of mother-daughter dyads from 66 

the Avon Longitudinal Study of Parents and Children (ALSPAC) population. The nested case-67 

control study (N=448) was drawn from cohort daughters who were actively enrolled at puberty 68 
(N=3,913). Complete analytic data for mixture analyses was available for 284 mother-daughter 69 
dyads.  70 

 Enrolled at 

Puberty 

N=3,913 

Nested Case-

Control 

N=448 

Analytic 

Data 

N=284 

Characteristic n (%)a n (%)a n (%) 

Maternal race 

    White 

    Non-white 

Maternal educationb 

    < O-level 

    O-level 

    >O-level 

Maternal age at menarche, years 

    8–11 

    ≥12 

Maternal pre-pregnancy BMI 

    <25 kg/m2 (under/normal weight) 

    ≥25 kg/m2 (overweight/obese) 

Prenatal smoking 

    Any 

    None 

Maternal age at delivery 

    <25 years 

    25–29 years 

    ≥30 years 

Child birth order 

    First born 

    Second born or later 

 

3719 (98.2) 

68 (1.8) 

 

712 (19.5) 

1334 (36.5) 

1612 (44.1) 

 

639 (18.7) 

2785 (81.3) 

 

2876 (80.5) 

698 (19.5) 

 

542 (14.4) 

3212 (85.6) 

 

646 (16.5) 

1564 (40.0) 

1702 (43.5) 

 

1770 (47.3) 

1973 (52.7) 

 

423 (98.1) 

8 (1.9) 

 

75 (18.1) 

140 (33.7) 

200 (48.2) 

 

93 (23.7) 

299 (76.3) 

 

313 (77.9) 

89 (22.1) 

 

79 (18.5) 

348 (81.5) 

 

92 (20.7) 

164 (36.9) 

189 (42.5) 

 

208 (49.6) 

211 (50.4) 

 

179 (98.2) 

5 (1.8) 

 

48 (16.9) 

95 (33.5) 

141 (49.6) 

 

63 (22.9) 

219 (77.1) 

 

221 (77.1) 

65 (22.9) 

 

44 (15.5) 

240 (84.5) 

 

48 (16.9) 

109 (38.4) 

127 (44.7) 

 

142 (50.0) 

142 (50.0) 

Abbreviations: g, grams; kg/m2, kilograms per meter-squared  71 
a Missing data not represented 72 
b <O-level=none, Certificate of Secondary Education, and vocational education, which are equivalent to 73 
no diploma or a GED in the United States. O-levels (ordinary levels) are required and completed at the 74 
age of 16. >O-level=A-levels (advanced levels) completed at 18, which are optional, but required to get 75 
into university; and a university degree.  76 
  77 
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 102 

 103 

Figure S1. Flowchart of eligibility and exclusions in a nested case-control study of the Avon 104 

Longitudinal Study of Parents and Children examining prenatal exposure to endocrine disrupting 105 

chemicals with early menarche.  106 

N=14,062 

Avon Longitudinal Study of Parents 

and Children (ALSPAC) live births 

 

 

N=6,792 

ALSPAC daughters 

ALSPAC sons (n=7,270) 

N=3,913 

Reported menarche status on at least 

two questionnaires from age 8 to 13 

Daughters not actively engaged at puberty 

(n=2,879) 

N=338 

Menarche before age 11.5 

N=394 

Random sample from those with 

menarche after 11.5 

N=240 

At least one maternal serum sample 

No maternal serum sample  

(n=98)  

N=282 

At least one maternal serum sample 

Sample not analyzable  

(n=22) 

N=218 

Cases 

N=230 

Controls 

No maternal serum sample  

(n=112)  

Sample not analyzable  

(n=52) 
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Figure S2. Flowchart depicting missing data in the study of prenatal exposure to mixtures of 131 

persistent endocrine disrupting chemicals and early menarche in a nested case-control study of 132 

the Avon Longitudinal Study of Parents and Children.  133 

* Data were missing on maternal education (n=33, 7.4%), maternal age at menarche (n=56, 134 

12.5%), maternal pre-pregnancy BMI (n=46, 10.3%), prenatal smoking (n=21, 4.7%), maternal 135 

age at delivery (n=3, 0.7%), and child birth order (n=29, 6.5%). 136 

N=448 

n=218 cases, n=230 controls 

Complete nested case-control study 

 

 

N=331 

n=162 cases, n=169 controls 

Analytic dataset for PFAS mixtures 

Missing covariate information (n=117)* 

Missing lipids (n=16) 

N=315 

n=155 cases, n=160 controls 

Missing PCB data (n=23) 

N=284 

n=140 cases, n=144 controls 

Analytic dataset for overall mixture 

 

Missing OCP data (n=12) 

N=302 

n=150 cases, n=152 controls 

Analytic dataset for OCP mixture 

 

N=292 

n=145 cases, n=147 controls 

Analytic dataset for PCB mixture 
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 137 
Figure S3. Chemical-specific effect estimates of mixture members (all three classes combined) 138 
on early menarche in ALSPAC mother-daughter dyads estimated by Bayesian kernel machine 139 
regression (N=284). Single chemical associations and 95% credible bands are presented with 140 

other chemicals fixed at their median. The model adjusted for maternal age at menarche, 141 
education, parity, pre-pregnancy body mass index, maternal age at delivery, prenatal smoking, 142 

and gestational week at sample collection. All chemical concentrations were natural log-143 

transformed and standardized; PCB and OCP concentrations were lipid-adjusted. 144 
  145 
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Figure S4. Interaction terms for individual mixture members and the remaining chemicals in 147 

ALSPAC mother-daughter dyads estimated by Bayesian kernel machine regression (N=284). 148 

Each point represents the difference between the effect size of the chemical when all other 149 

chemicals are held at their 75th percentiles and the effect size of the same chemical when all 150 

other chemicals are held at their 25th percentiles. Range indicates 95% credible interval. Model 151 

adjusted for maternal age at menarche, parity, pre-pregnancy BMI, maternal age at delivery, 152 

education, smoking, and gestational age at sample collection. All chemical concentrations were 153 

natural log-transformed and standardized; PCBs and OCPs were lipid adjusted. 154 


