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Optimal extraction of ultrasonic scattering features
in coarse grained materials

Eduardo Lopez Villaverde, Anthony J. Croxford, Alexander Velichko

Abstract—Ultrasonic array imaging is used in non-destructive
testing for detection and characterisation of defects. The scat-
tering behaviour of any feature can be described by a matrix
of scattering coefficients, called the scattering matrix. This
information is used for characterisation, and contrary to image-
based analysis, the scattering matrix allows characterisation of
defects at the subwavelength scale. However, the defect scattering
coefficients are in practice contaminated by other nearby scat-
terers or significant structural noise. In this context, an optimal
procedure to extract scattering features from a selected region of
interest in a beamformed image is here investigated. This work
proposes two main strategies to isolate a target scatterer in order
to recover exclusively the time responses of the desired scatterer.
In this paper such strategies are implemented in delay-and-sum
and frequency-wavenumber forms, and optimised to maximise
the extraction rate. An experimental case in a polycrystalline
material shows that the suggested procedures provide a rich
frequency spectrum of the scattering matrix and are readily
suited to minimise the effects of surrounding scattering noise.
In doing so, the ability to deploy imaging methods that rely on
the scattering matrix is enabled.

Index Terms—Ultrasonic imaging, scattering matrix, defect
characterization, grain noise.

I. INTRODUCTION

Ultrasonic phased arrays are largely employed in non-
destructive testing (NDT) for detection and characterisation
of critical defects. Their location, size and orientation are key
parameters to establish the risk of failure of structural compo-
nents. Considerable progress has been achieved in ultrasonic
array imaging providing reliable solutions for different sectors
such as nuclear, aerospace, and oil and gas. Over the last
decades, advanced solutions have typically been based on the
post-processing of the full matrix of transmit-receive signals
[1], involving application of various imaging techniques [2],
[3], [4], [5] and scattering matrix analysis [6], [7] for defect
characterisation.

Conventional imaging methods convert the array data into
an image, which facilitates the interpretation of the data for
characterisation purposes. For example, the full extent of
cracks can be imaged by focusing the specular reflections
of different wave mode combinations, known in the NDT
community as multi-mode imaging [8], or multi-view. This
technique has been studied by different research groups in
order to minimise artefacts in realistic configurations [9], [10],
and to estimate the length and orientation of cracks [11], [12].
However, prior knowledge of the position and shape of the
defect is sometimes needed to choose the appropriate mode
combination, especially in presence of complex interfaces. If
the defect is smaller than the wavelength, super resolution

techniques [13], [14] can be employed, but their performance
is very unstable in presence of noise.

A more suitable alternative for the subwavelength scale in
noisy environments is the study of defect scattering patterns.
The scattering information is commonly represented by a
matrix containing the far-field complex scattering coefficients
for every combination of incident and scattered directions after
interaction with a single scatterer. Such a scattering matrix
is well suited to characterise features through the patterns
of the response and can potentially enhance the sensitivity
for detection purposes. However, when other scatterers are
located close to the target, the measured scattering descriptor
is contaminated due to the overlapping of individual responses
of different scatterers. This is the case in granular structures,
where grains act as randomly distributed scatterers adding a
coherent structural noise to the defect signal. In addition, if
used for detection purposes, the scattering matrix must be
calculated at many points in an image so speed and efficiency
of scattering matrix extraction is key.

In this context, there exist two methods to extract the
scattering matrix from collected array data. The first is known
as the subarray approach [6] where focused subapertures are
synthetically created in order to increase the spatial selectivity
of the array data. The limitation of this method is that it
provides smoothed amplitude scattering coefficients due to the
use of large subapertures. The second method is based on a
reversible imaging concept [15] presenting the advantage of
preserving amplitude and phase of the scattering matrix over
a rich frequency range. The potential drawback of such an
approach is relatively high computation cost.

For these reasons, this paper focuses on developing an op-
timised and accelerated extraction of scattering features using
the above-mentioned reversible imaging approach. Here, an
image is first produced using the forward imaging method with
full dynamic transmit-receive focusing. Then, the optimal-
resolved image is spatially filtered according to a region of
interest where scattering matrix extraction is desired. After
that, the inverse imaging operation is performed in order
to recover temporal responses corresponding to the scattered
signals from the defect located in the selected region. Finally,
the target scattering information is retrieved from the extracted
local array data. Two implementations of this procedure are
developed on a graphics processing unit (GPU), using delay-
and-sum and frequency-wavenumber approaches [16], [17].
The performance of such implementations is evaluated in
terms of accuracy, complexity, processing time, and hardware
required. Also, optimal spatial windowing functions for the
measurement of the scattering matrix are determined. This will
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allow the optimal properties of scattering matrix extraction
to be determined with a view to enabling detection and
characterisation approaches reliant on its determination. The
optimised extraction of scattering matrices is experimentally
compared against the commonly used subarray approach.

This paper is organized as follows. Sec. II introduces the
scattering matrix concept and the available methods for its
extraction from the array data. Sec. III recalls the reversible
back-propagation imaging method, which is exploited in this
work. Sec. IV focuses on different implementations of the
back-propagation method and points out the advantages and
drawbacks of the suggested solutions. Finally, Sec. V presents
different strategies for the optimal extraction of defect scat-
tering matrices in granular structures using simulated and
experimental data.

II. EXTRACTION OF THE SCATTERING MATRIX

The scattering matrix describes the acoustic properties re-
sulting from the geometric properties of a scatterer in the far-
field [18], [19]. The coefficients of this matrix provide the
amplitude and phase of the scattered wave for a given incident
plane wave.

θT
θR

rT rR

r

x

z

xT xR

Fig. 1. Imaging array system.

Let us consider the diagram in Fig. 1. For a single mode, the
full array data recorded using a linear array can be modelled
in the frequency domain by

u(rT, rR, ω) = A(ω)P (r− rT, ω) (1)
×S(θT, θR, ω)
×P (r− rR, ω),

where A is the spectrum of the transmitted signal. P describes
the propagation from a transmitter element at rT to the
scatterer located at r, and reciprocally from the scatterer to
a receiver element at rR, which can be defined as follows

P (ρ, ω) = D(ρ, ω)H
(2)
0 (k‖ρ‖)e−α(ω)‖ρ‖. (2)

Here, D is the directivity function of an array element, H(2)
0 is

the Hankel function of the second kind, k is the wavenumber,
and α is the attenuation coefficient. Finally, S is the scattering
matrix which contains the complex scattering coefficients of
the defect located at the position r, and depends on the
directions of incident and scattered waves (angles θT and θR).

In the NDT community, the dataset u(rT, rR, t) is known
as full matrix capture (FMC), and contains the temporal
responses for all combinations of individual transmit and
receive elements in the array. Due to reciprocity, this matrix
is symmetric, and only the lower triangle elementary signals
measured at positions xT ≤ xR are required for imaging

or analysis. The acquisition containing all non redundant
information in u is called half matrix capture (HMC).

In the particular case of an isolated scatterer, the associated
scattering matrix can be directly measured from the array
data by correcting the phase and the amplitude losses using
Eq. (2). However, in many ultrasonic applications, the array
data contain a superposition of signals, coming from surface
waves, structural features, material microstructure (a particular
challenge in NDT due to grain scattering), or other defects.
To extract the target scattering matrix, those unwanted signals
must be filtered. This section describes two techniques to
reduce the contribution of undesirable information: a subarray
approach [6], and a reversible imaging concept [15].

A. Subarray approach

The idea of the subarray approach is to focus on the
target scatterer with a selected number of adjacent elements
in transmission and in reception. In this case, due to the poor
spatial selectivity, the scattering matrix cannot be calculated
by simply inverting Eq. (2) and correcting the phase and
amplitude losses in the frequency domain. Alternatively, a
synthetic transmit-receive focusing using each sub-aperture is
performed by summing the corresponding time-delayed target
reflections. In practice, a narrow bandpass filter is applied
to the array data in order to maximise the response at the
frequency of interest. The procedure is summarised by the
following equation [6]:

Ssub(θT(n), θR(m), ω0) =∣∣∣∣∣∑Tn ∑Rm u0
(
rT, rR, t =

‖r−rT‖+‖r−rR‖
c

)∣∣∣∣∣∣∣∣∣∣∑Tn ∑RmA(ω0)P (r− rT, ω0)P (r− rR, ω0)

∣∣∣∣∣
, (3)

where c is the speed of sound, ω0 is the centre angular
frequency of the bandpass filter, u0 is the narrow-band filtered
array data, Tn and Rm denote the sets of elements in the n-th
transmitter subarray and m-th receiver subarray, respectively;
and θT/R(n) is the angle of view from the center of the n-th
subarray in direction to the scatterer located at r. The ex-
pression in the denominator in Eq. (3) is the global amplitude
correction due to the effects of array element directivity, beam
spreading and attenuation.

The sub-aperture size is a key parameter for a reliable
measure but remains an arbitrary empirical choice. There are
two important factors, that need to be considered. First, larger
sub-apertures provide better focusing power and enhance the
spatial selectivity in comparison with individual elements. In
this context, the choice of the sub-aperture size could be based
on a fixed f-number which is defined as the ratio of the focal
depth to the aperture size. For example, f-number of 1 means
that the lateral resolution equals the wavelength. However,
incident and scattered angles of the extracted scattering matrix
are determined by the direction from the center of each sub-
aperture to the center of the defect, and the corresponding
scattering value represents an average over the angular range
of the sub-aperture. Therefore, the sub-array approach acts as a
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smoothing filter on the extracted scattering matrix and reduces
its angular range.

Note that the coefficients of Ssub keep only the amplitude
at ω0 and lose all information related to the phase. In low-
scattering materials, this is enough for the characterisation
of defects such as voids, inclusions, or cracks. In materials
with high grain scattering noise, amplitude and phase at
multiple frequencies are needed for accurate characterisation,
in particular while sizing defects [20]. For this reason, an
alternative approach is required to access the multi-frequency
scattering behaviour of defects.

B. Reversible imaging approach

The reversible imaging concept explores the fact that the
imaging algorithm can be considered as a reversible transfor-
mation and allows recovery of the original array data from
the array image [21], or a subregion of the image. The first
step is to perform full dynamic focusing in transmission and
reception, which converts the superposition of time traces into
an image where the scatterers can be spatially localized. The
main information about a scatterer resides in the vicinity of its
location in the image. If the scatterer is spatially resolved, its
temporal responses can be separated from the other scatterers
present in the material. To this end, a spatial filter is applied
on the image in order to isolate the scatterer of interest, then
the associated local array data are extracted from the image
by performing the inverse imaging operation.

Unlike the subarray approach, the target scatterer signals
can be completely isolated. Thus, the scattering matrix can be
estimated from the spectrum of the spatially filtered array data
urev by

Srev(θT, θR, ω) =
urev(rT, rR, ω)

A(ω)P (r− rT, ω)P (r− rR, ω)
. (4)

Here, Srev contains amplitude and phase information across a
range of frequencies.

III. BACK-PROPAGATION IMAGING METHOD

In this paper, the reversible imaging procedure discussed
above is based on the back-propagation algorithm [15].
This method introduces the notion of a generalized image
g(xT, xR, z), which represents the full array data focused in
transmission at (xT, z), and in reception at (xR, z). Note that
when xT = xR, the focusing point is common in transmission
and in reception, such as in the total focusing method (TFM)
[3]. Indeed, the plane spanned by xT = xR corresponds to a
classic image produced by conventional beamformers, hence
the terminology of generalized image. So, the classic image
is given by

I(x, z) = g(x, x, z). (5)

The extra information in the generalized image, where xT 6=
xR, is essential for the reversible process.

A. Forward imaging

The back-propagation imaging method can be defined by a
linear operator B that converts the full array data u(xT, xR, t)
into the generalized image:

g(xT, xR, z) = B [u(xT, xR, t)] . (6)

The back-propagation operator is defined as a series of
Fourier transforms, written as

B = F−1MF, (7)

where F and F−1 are the multidimensional direct and inverse
Fourier transforms, respectively. Concisely, F transforms the
data u from a spatio-temporal domain into a frequency-
wavenumber domain:

U (kxT
, kxR

, ω) = F [u(xT, xR, t)]. (8)

Then, M maps the frequencies of the data into the wavenum-
bers kz of the generalized image:

G (kxT
, kxR

, kz(ω)) =M [U (kxT
, kxR

, ω)], (9)

where

kz =

√
ω2

c2
− k2xT

+

√
ω2

c2
− k2xR

. (10)

Finally, F−1 transfers the angular spectrum G of the gener-
alized image from the wavenumber domain into the spatial
domain:

g(xT, xR, z) = F−1[G (kxT
, kxR

, kz(ω))]. (11)

B. Inverse imaging

The invertibility of the back-propagation operator B allows
recovery of the full array data from the generalized image:

u(xT, xR, t) = B−1 [g(xT, xR, z)] , (12)

where, the inverse imaging operator is defined by

B−1 = F−1M−1F. (13)

Here, F transforms the generalized image into its angular
spectrum G. Then, M−1 remaps the wavenumbers into the
frequencies of the data. Finally, F−1 transforms the spectrum
U from the frequency-wavenumber domain into the spatio-
temporal domain. Thus the time series contribution from a
region in space can be directly extracted.

The frequency-wavenumber formalism described in this
section has been used in previous works to extract local array
data. In particular, this paper introduces an alternative time
domain technique, which is more common in array imaging
and fully compatible with hardware and software of modern
imaging systems. Both approaches represent a mathematically
robust strategy to extract scattering information, however the
details and optimisation of their implementation are key to the
practical applicability of scattering matrix extraction and will
be discussed next.
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IV. IMPLEMENTATION OF THE BACK-PROPAGATION
IMAGING

This section describes two implementations of the back-
propagation method. The first approach exploits the computa-
tional efficiency of the fast Fourier transform (FFT) algorithm,
and performs the migration in the frequency domain, as
described in the previous section. The second approach uses
a delay-and-sum (DAS) technique operating in the temporal
domain, which is based on the asymptotic approximation
of the back-propagation method (see Appendix A for a full
description).

A. Fast Fourier transform approach

In this paper, the approach based on the application of
Fourier transforms (as described in subsections III-A and
III-B) is referred to as the FFT approach. Here, the fast
computational speed of the discrete Fourier transform allows
high imaging rates. However, the discrete implementation of
the Fourier transform potentially leads to periodicity effects
causing artefacts when the imaging range is reduced. In effect,
all available time-traces in the data are mapped in the image
even if they are associated with scatterers physically outside
of the imaging range. This effect is commonly tackled by
calculating the image on a large spatial domain in order
to map the scatterers at their correct position. Essentially,
producing a much larger image than the region of interest
required. In addition to the potential periodicity issues, we
must also consider the problem of artefacts resulting from the
interpolation step following Eq. (10).

The Fourier transform operator F in Eq. (7) is performed
using the tridimensional fast Fourier transform (3D-FFT)
algorithm. Then, the angular spectrum G is obtained by
interpolating the frequency-wavenumber array data U , in such
a way as to avoid interpolation artefacts. To this end, every
dimension, xT, xR and t, of the array data u(xT, xR, t) is
commonly padded with zeros in order to oversample the
spectrum, at the cost of operation complexity and a significant
memory space requirement. Alternatively, the extra memory
cost can be reduced by using a sinc interpolator, also known
as ideal interpolator, which is equivalent to the zero-padding
operation translated to a convolution in frequency [22], [23].
While either of these approaches implemented correctly yields
accurate results, the sinc interpolator is used in this paper
in the ω domain due to its lower memory footprint. Zero-
padding is still applied in the xT and xR directions to avoid
multimensional sinc interpolations, where the latter could lead
to an extremely high computation cost. This algorithmic choice
is simple to implement, gives accurate migration results, and
showed the best compromise between speed and memory
among the possible FFT-based implementations. Once the
migration is done, the operator F−1 is performed on the
angular spectrum G using the tridimensional inverse fast
Fourier transform (3D-IFFT) algorithm.

The implementation steps for the FFT based inverse imaging
are the same as those for the forward imaging. First, the
3D-FFT is applied to the generalized image g(xT, xR, z)
converting it to the angular spectrum G, then the angular

spectrum is interpolated using Eq. (10), and finally the 3D-
IFFT is performed transforming the array data from the
wavenumber-frequency (kxT

, kxR
, ω) domain to the spatio-

temporal (xT, xR, t) domain.

B. Delay-and-sum approach

DAS approaches are the most widely used in array imaging
because of their robustness and ease of implementation. In
these methods, times-of-flight from array elements to a fo-
cusing point are calculated in order to sum in phase all the
set of signals. In this subsection, an implementation of back
propagation imaging using DAS is explored, with the final
equations of the forward and inverse operations provided. For
further details of their derivation, see Appendix A.

1) DAS forward imaging: As mentioned before, in the
generalized image g(xT, xR, z), the array data are focused
in transmission at r(T) = {xT, z}†, and in reception at
r(R) = {xR, z}†. The contributions of every transmitter-
receiver pair are then summed in phase using

gDAS(xT, xR, z) = (14)

−z2

2πc

∫∫ ut

(
x′T, x

′
R,
‖r(T)−r′T‖+‖r(R)−r′R‖

c

)
‖r(T) − r′T‖

3
2 ‖r(R) − r′R‖

3
2

dx′Tdx
′
R,

where ut is the derivative of u with respect to t.
2) DAS inverse imaging: The derivation of expressions for

the inverse DAS imaging follows the same far-field approx-
imations as for the forward DAS imaging. In the forward
imaging (see Eq. (14)), the method extracts the amplitude
of the transmitter-receiver signals at the instant t that is a
function of the transmitter-receiver positions xT and xR, and
the coordinates of the focusing point (x′T, x

′
R, z). In the inverse

imaging, the algorithm recovers the temporal signals by sum-
ming the generalized image intensities at the focusing depth z
that is a function of coordinates x′T and x′R in the generalized
image domain, and spatio-temporal coordinates (xT, xR, t) of
the array data. So, solving t = (‖r′(T)−rT‖+‖r′(R)−rR‖)/c
for z yields the following relationship

z =
1

2ct

[
c4t4 − 2c2t2

(
(xT − x′T)2 + (xR − x′R)2

)
+
(
(xR − x′R)2 − (xT − x′T)2

)2 ] 1
2

, (15)

and the associated expression for the inverse imaging is given
by

uDAS(xT, xR, t) = (16)

1

2πc

d

dt

∫∫ g
(
x′T, x

′
R, z(xT, xR, x

′
T, x

′
R, t)

)
‖r′(T) − rT‖

1
2 ‖r′(R) − rR‖

1
2

dx′Tdx
′
R.

Note that the DAS back-propagation operator has to be
performed for every set of three variables (xT, xR, t), leaving
the approach computationally inefficient. However, these far-
field approximations do not present the periodicity effect,
seen in the FFT approach. Therefore, the image can be
calculated directly in the desired region of interest, without
any additional zero-padding, since there is no need to expand
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the imaging region. This leads to a significant reduction in
memory requirements over the FFT approach.

The next subsection compares both implementations, FFT
and DAS, discussing the imaging performance, the computa-
tional complexity, and the required memory size.

C. Implementation performances

For the initial comparison between the FFT and DAS im-
plementations, only the forward imaging is considered. Since
the computational performance of the inverse operators are
the same as for the forward operator in each implementation,
reliable conclusions about best practise may be drawn in this
way.

1) Imaging: In the following comparison, the imaging con-
figuration presented in Fig. 2 is considered. A 64-element array
(0.5 mm pitch) with 2.5-MHz centre frequency (1-cycle pulse)
imaging a 2-mm diameter through hole at 30 mm depth in a
coarse grained material is simulated. The material properties,
including grain size, are chosen similar to a copper sample
used for experimental validation later in the paper. The mean
grain size is 100 µm and the orthotropic material properties
are E11 = 168.6 GPa, E12 = 121.4 GPa, E44 = 75.4 GPa and
ρ = 8960 kg/m3. The average longitudinal wave velocity is
4700 m/s yielding a wavelength of 1.88 mm. The full matrix
capture is generated using a finite-element (FE) model imple-
mented in the Pogo software package [24], [25]. The element
edge length is 30 µm corresponding to a spatial sampling of 60
elements per wavelength. This investigation is carried out in
FE to allow repeatable results where experimental variability
can be completely eliminated in order to determine the best
case performance of each approach.

N elements

−60 −40 −20 0 20 40 60
x (mm)

10

20

30

40

50

z
(m

m
)

Fig. 2. Contact imaging configuration: a linear array of N elements is used to
image and analyse a 2-mm side-drilled hole in a material with copper elastic
properties.

Fig. 3 displays the back-propagated images I(x, z) with
an amplitude range of 40 dB for the FFT and DAS imple-
mentations. In the FFT case, inactive array elements were
effectively placed at both sides of the real array (spatial zero-
padding) to oversample the data spectrum and simultaneously
cover a larger lateral imaging range. This allows the imaging
artefacts previously discussed to be explored. The images are
calculated in an extended area but displayed in a region just
below the probe. When the imaging zone is not large enough,
the FFT images present artefacts caused by reflectors that
are periodically repeated in the lateral direction where the
period equals the lateral size of the image, this can be seen

in the changes in the images from Figs. 3(a)–(c). To limit
this effect, an angular filter of 30◦ is applied to the angular
spectrum array data U in the Fourier domain. However, even
in this case, spatial zero-padding of factor 4 is still needed to
achieve accurate artefact-free results. This leads to increased
algorithmic complexity and computer memory required in the
FFT method, which will be studied next. Contrary to the
FFT approach, every imaging point in the DAS algorithm is
independent, and thus any imaging region can be calculated
without the imaging artefacts seen in the FFT approach. This
can be seen in the good match between the oversampled
FFT image and DAS image, Figs. 3(c) and (d) respectively.
Having shown that the imaging performance is comparable, we
will now explore the optimum approach in terms of memory
demand and speed.

2) Memory: In the following, N is the number of array
elements, Nt is the number of temporal samples, Nx is the
number of sampling points in the lateral image dimension, and
Nz is the number of sampling points in the z-direction of the
image.

Table I summarizes the size of volumetric data needed to
calculate the generalized image for FFT and DAS implemen-
tations, at each signal processing step. The only difference
between the two approaches consists of the interpolation of
the complex-valued spectrum in the FFT implementation,
which represents a significant factor in terms of the required
computer memory. As mentioned before, the migration in
the FFT approach has to be performed using an accurate
interpolation. The easiest method and common practice is to
apply an extensive zero-padding, but this requires a significant
memory space to hold the oversampled spectrum.

TABLE I
COMPARISON OF VOLUMETRIC DATA SIZES IN THE FFT AND DAS

FORWARD IMAGING.

Volumetric data FFT DAS
u(xT, xR, t) NNNt NNNt

U(kxT , kxR , ω) 2NxNx(Nt/2 + 1) –
G(kxT , kxR , kz) 2NxNx(Nz/2 + 1) –
g(xT, xR, z) NxNxNz NxNxNz

Fig. 4(a) displays the memory requirements to execute the
forward imaging algorithm in both cases. Here, Nt = 512,
Nz = 256, and Nx = 4N (to ensure no problems with peri-
odicity), where the number of array elements is the variable N .
Here the raw data were downsampled satisfying the Nyquist
condition to minimise the number of temporal samples. The
figure spans linear array sizes usually used in NDT, going from
32 to 128 elements, but also covers a 192-element array seen in
medical ultrasonic imaging [26]. The memory is represented in
gigabytes (GB) and is calculated considering single precision
data. From that figure it is seen that the extra allocated data
(spectra data U and G) exponentially increases the memory
usage. In the case of N = 128, which is common in array
imaging, more than 1 GB of memory must be allocated. This
is feasible for offline processing on personal computers, but
may be a limiting factor for portable imaging systems or
if implemented on dedicated GPUs to increase processing
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Fig. 3. Back-propagated images using FFT and DAS approaches zooming in the region below the probe. FFT calculated with a spatial zero-padding factor:
(a) 1, (b) 2, and (c) 4. (d) DAS image directly calculated in the region displayed.

speed. In addition, if the area of imaging, or its resolution,
is increased, this problem will only be magnified.

(a)
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Fig. 4. Comparison of the forward imaging FFT and DAS implementations
as a function of the number of elements N . (a) Total memory required in GB.
(b) Algorithmic complexity using full matrix capture (FMC) and half matrix
capture (HMC). Parameters used: Nt = 512, Nz = 256, and Nx = 4N .

3) Algorithmic complexity: The algorithmic complexities of
the forward imaging at every stage are summarized in Table II.
Here, CFFT is the complexity coefficient corresponding to
the interpolation performed in the frequency domain in order
to transform angular spectrum from the angular frequency
ω to the wavenumber kz domain; and CDAS represents the
complexity factor of a linear interpolation in the time do-
main. Concerning the FFT approach, the complexity order is
predominantly governed by the first 3D-FFT, since generally
Nt > Nz (Nt � Nz if extensive zero-padding is applied in
the time domain).

Fig. 4(b) illustrates the evolution of the complexity orders
according to the number of array elements. For simplicity,

TABLE II
DESCRIPTION OF THE ALGORITHMIC COMPLEXITIES IN THE FFT AND

DAS FORWARD IMAGING.

Stage FFT DAS
u→ U NxNxNt log2(NxNxNt) –
U → G CFFTNxNx(Nz/2 + 1) –
G→ g NxNxNz log2(NxNxNz) –

u→ g – CDASN
2NxNxNz

CDAS = 1 which is associated with a temporal linear inter-
polation, and CFFT = 2 when a complex linear interpolation
is performed in the frequency domain. Note that for a large
number of array elements, the computational gain in the FFT
implementation is more than 100 in comparison with the DAS
ones, using full or half matrix captures. This factor can be
translated to a computation time gain which means that, in
the same conditions, the FFT solution is 100 times faster than
the DAS approach.

This study shows that the primary advantage of the DAS
implementation resides in the low memory usage. However
this does not take into account the added benefit that in
the DAS approach the back-propagation can be calculated
locally without artefacts, which reduces its computation time.
Moreover, the acoustic reciprocity can be exploited to reduce
this time by 2. This is because the symmetry of the generalized
image relative to the main diagonal plane xT = xR, and the
use of the half matrix capture. Also, an angular filter can be
integrated (keeping constant f-number in the whole image)
which reduces the number of operations and thus accelerates
the DAS imaging rate. Each of these factors mean that for the
application discussed here, of extracting multiple scattering
matrices, the real world performance differential will be much
smaller. This practical application is explored fully in the next
section.

V. SCATTERING MATRIX EXTRACTORS BASED ON
BACK-PROPAGATION

Scattering matrix extractors based on the FFT and DAS
implementations of the back-propagation method were devel-
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Fig. 5. Flowchart of the scattering matrix extraction using the back-propagation: (a) FFT, and (b) DAS procedures.

oped with the CUDA programming model and run on Matlab.
This enables rapid computation of these readily parallelisable
approaches to support the overall goal of fast scattering matrix
extraction. The computer is a standard desktop with Intel Core
i7-6700 CPU @3.4GHz (16 GB RAM) and an NVIDIA GPU
GeForce GTX 1060 (6 GB RAM). The basic process applied
in the FFT and DAS procedures to extract the scattering matrix
from a region of interest are illustrated in Fig. 5.

In the FFT approach, the generalized image is calculated in
an extended zone to avoid periodicity. Then, a spatial mask is
used to isolate the region of interest. After that, the inverse
imaging gives the local array data. Finally, the scattering
matrix is calculated from these filtered data.

In the DAS approach, the generalized image is calculated
only in the region of interest. Then, the associated time traces
are recovered using the inverse operation in order to calculate
the scattering matrix.

Here the DAS complexity is significantly reduced, in com-
parison with the results in the previous section, because only
a small part of the generalized image is computed (skipping
the first step in the FFT approach as seen in Fig. 5). In order
to quantitatively illustrate this fact, the computation time of
the whole procedure (forward imaging, inverse imaging, and
scattering matrix calculation) is compared for different number
of array elements N . The imaging configuration is the same
as previously (see Fig. 2), but instead of calculating the whole
image, the image domain is the region of interest defined by
a 5×5×5 mm3 cuboid centred on the defect location.

Fig. 6 shows the evolution of the processing time and
extraction rate by varying the number of array elements. For
N < 128, both implementations give processing times below
a hundred milliseconds. However, in terms of extraction rate,
there is a noticeable difference between them, showing that in
these conditions the DAS technique performs better. In particu-
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Fig. 6. (a) Computation time (in seconds) and (b) extraction rate (scattering
matrices per second) of the FFT and DAS implementations as a function of
the number of elements N .

lar, the DAS-HMC technique has overall the best performance
since it requires low memory usage and is faster than the
FFT approach. For example, when N = 64, the FFT based
method extracts 30 scattering matrices per second, whereas the
DAS-HMC algorithm gives the rate of 90 extracted scattering
matrices per second. This highlights the computation time
reductions inherent in the practical application of the DAS
method, that is reduced imaging regions, as outlined in the
previous section. It should be noted that the speed of the DAS
method depends on the dimensions of the region of interest,
so, for larger regions this technique could be much slower,
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but it represents an acceptable compromise between speed and
memory.

One important point to mention is that these computation
times correspond to the scattering matrix extraction from
a single region of interest. If several positions need to be
processed from the same array data, the FFT solution can be
accelerated. To this end, the generalized image is calculated
only once and held in memory, then the spatial filtering and
inverse operation are performed for every region of interest in
the retained image. This means that the computation time in
the first step can be practically neglected and only the next
steps have an effect in the extraction rate. Assuming that this
is the case, the FFT approach gives similar rates as those in
the DAS-FMC approach in this comparison.

Previous studies have validated the accurate extraction of the
scattering matrix for different defects (holes and cracks with
different orientations) in materials with low grain scattering
noise using the back-propagation method [15], [27]. While an
important step, the ability to measure scattering matrices in the
presence of complex real world noise and scattering artefacts is
key. As such the present work studies the extraction of defect
scattering matrices in highly scattering materials. To this end,
the local array datasets are extracted at 30 mm depth in the
presence and absence of defects using simulated FE data (same
array and material properties as described in the previous
section). Fig. 7 allows us to compare visually the scattering
matrices at 2.5 MHz obtained using both algorithms. The first
row corresponds to a 2-mm side-drilled hole, the second row to
a 2-mm horizontal crack, and the last one to the grain structure
without defect. The theoretical scattering matrices of the
defects were calculated using analytical scattering solutions for
a cylindrical void [28] and a straight crack [29]. The scattering
matrix of the grain noise was calculated by adding individual
grain scattering responses based on a single scattering model
[30], [31], described in Appendix B. This initial dataset was
extracted using a cuboid region of interest as illustrated in
Fig. 5. This will later be extended to investigate the optimum
approach to mask the generalized image in order to extract
accurate scattering matrices.

This comparison shows qualitatively that the scattering
matrix shapes given by the FFT and DAS extractors are the
same. The spatial filter reduces the grain scattering noise,
but defect information is lost at large angles because of the
spatial mask shape and the low signal to noise ratio. The
high-amplitude information in the scattering matrix for the
hole is located on the diagonal θT = θR which contains the
scattering coefficients in pulse-echo configuration; whereas the
main information in the scattering matrix for the crack lies on
the anti-diagonal which corresponds to the specular reflection.
From the image, this discrimination between crack-like defect
and void is not possible due to the sizes of the defects which
are close to the wavelength. In the case of the structural
noise, the measured matrices and the theoretical one exhibit
the same anti-diagonal behaviour which is a key characteristic
of the grain noise in the single scattering regime [32], [33].
This illustrates the clear benefit of using scattering matrices,
specifically in a noisy environment.

In practice, as both approaches offer similar scattering

coefficients, the choice of the extractor should be based on
the trade-off between computation speed and memory re-
quirements, and depends on the available computing hardware
capabilities. For example, the hardware specifications used
in this work allow large 3D-FFTs to be performed without
memory issues and thus to produce very large images for
most of the NDT linear array imaging applications, so here
the speed of the FFT extractor is fully exploited, and it is the
extractor used hereafter. In practical applications where either
the available memory is limited or the region of interest is
small, the DAS extractor is likely the preferred option.

In this example, the generalized image domain was filtered
using a simple cuboid spatial filter to illustrate the scattering
matrix extraction procedure. This has allowed the optimal
extraction algorithm to be investigated. The next subsection
investigates how to optimise the extracted scattering matrix,
both in terms of the size of the spatial filter and its shape.

A. Spatial filtering in the generalized image

The spatial filtering in the generalized image is a crucial
step for the extraction of the desired scattering features in
the presence of noise and represents the final part of its
optimisation. Here we investigate the optimisation of such a
spatial filter. The following analysis is common to both the
proposed extraction implementations since it is applied to the
generalized image, so conclusions may be applied to either
approach.

The generalized image can be approximated by the follow-
ing convolution:

g(xT, xR, z) ≈ o(xT, xR, z) ∗ h(xT, xR, z), (17)

where h(xT, xR, z) is the generalized point spread function,
and o(xT, xR, z) is the object function (reflectivity map) in
the generalized space. The point spread function describes the
spatial response of the array when a point-like scatterer is
located at (x0, z0) in the conventional plane x-z [34], [35].
In this case the object function is defined as o(xT, xR, z) =
δ(xT − x0, xR − x0, z − z0), where δ is the delta function.

Recently, the generalized point spread function for a scat-
terer centred below the probe has been fully described [21].
The main side lobes are located in the xT-z and xR-z
planes, and the analytical expressions of their amplitude
have been developed. This result can be used to design an
adapted filtering mask for defects with sizes comparable to
the ultrasonic wavelength λ0. For larger defects, the expected
response in the generalized image domain can be calculated
using the expression in Eq. (17). However, the signature of
the point spread function may dramatically differ from one
position to another. Thus, the point spread function has to be
calculated for every region of interest, which is not a major
concern thanks to the high imaging rate of the suggested
implementations. Another solution is to precompute the point
spread functions at strategically chosen positions in order to
cover most of the imaging space [36].

Fig. 8 displays the generalized point spread function when
an isolated ideal point scatterer is centred below the array
at the depth of 30 mm (64-element array at 2.5 MHz). The
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Fig. 7. The left panel shows the TFM images at 2.5 MHz obtained for different cases (sample with a hole and crack located at 30 mm depth, and defect-free
material) using an array of 64 elements with 0.5 mm-pitch. The right panel presents the associated scattering matrices corresponding to the region of interest
shown as a red square area on the TFM images (FFT and DAS approaches, and theoretical solutions).
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suggested spatial mask is based on the region covered by the
point spread function at a given amplitude level. For example,
the associated mask at a –30 dB level is defined by the faces
of the volume in Fig. 8(a). The mask amplitude level can be
chosen according to the signal to noise ratio in the image.

To assess the effect of such spatial filtering, the generalized
image is first calculated in a cuboid of dimensions L×L×L
centred at the defect location using the FE data described ear-
lier in this section. Then, the scattering matrices are extracted
using the full volume and also when a mask at –25 dB is
applied. To quantify the extraction performance, a correlation
score between extracted scattering matrices and the theoretical
defect scattering matrix is calculated [37]. Fig. 9 shows the
similarity scores as a function of the box size, for a hole and
for a crack. In both cases, the maximal score lies close to
2.5 wavelengths which corresponds to the box size used in
the previous subsection (5×5×5 mm3). Beyond this size, the
full volume introduces more noise than defect information.
On the other hand, larger boxes with the mask preserve signal

information without introducing noise. After the size of the
box L reaches the lateral extent of the mask at –25 dB, which
is about six wavelengths, the spatial filtering mask has reached
its maximum extent and remains the same.

Fig. 10 shows the scattering matrices extracted when
L = 10 mm (about 5 wavelengths) to qualitatively compare the
masking effect. Using the full volume, the presence of noise is
visible in the scattering matrix, but defect information is still
present allowing the similarity metric to clearly distinguish
the defect (hole and crack) from the noise. This is in contrast
to the masked version where only the defect remains. For
characterisation purposes, the use of the mask is a more
appropriate option as it provides defect scattering coefficients
over a large angular range.

Because of the size of defects tested here, their behaviour in
the generalized image is very similar and follows the pattern of
the point spread function. In ideal circumstances, the proposed
mask filter allows the recovery of the focused information
of a small reflector by recovering complementary scattering
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Fig. 10. Scattering matrices extracted from a cuboid of dimensions
10×10×10 mm3: Full volume (left column), and masked by the point spread
function at –25 dB (right column). Cases: hole, crack, and defect-free.

information at the main lobes. However, practically in most
conditions the box shaped spatial filter is the best option.
The shape of the mask changes significantly across the image
space and with the type of defect studied, thus an optimised
(2.5-wavelength-sized) box filter represents the best solution
in most conditions.

B. Experimental evaluation of the subarray and back-
propagation extractors

In the previous subsection, the reliability of the scattering
matrix extraction using the back-propagation method has been
demonstrated. The subarray approach has been largely used
over the last decade for the extraction of scattering features and
has given accurate results, but typically in materials with low
levels of grain scattering noise. In this subsection, the proposed
extractor is compared against the subarray approach in the
cases of low and high grain scattering noise using experimental
data. This is key for use in real world engineering materials
and is used to investigate the effect of multiple scattering on
the developed scattering matrix extraction approaches.

The experimental set-up is the same as described in Fig. 2,
but the specimen is a copper sample rather than a numeri-
cal simulation. A 64-element array (0.5 mm element pitch),
operating at 5 MHz with a 60% fractional bandwidth at
−6 dB is used. The aim here is to validate the scattering
matrix extraction for a 2-mm side-drilled hole at 30 mm depth
in the single and multiple scattering regimes. The level of
multiple scattering can be controlled by applying different
frequency filters to the array data before imaging in order
to determine the relative robustness of the different scattering
matrix extraction methods.
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Fig. 11. Single scattering rate at 30 mm depth in the copper sample. The
shaded region represents one standard deviation from the mean of different
realizations.

The single scattering rate can be estimated from the specific
properties of the generalized image [38]. The main contribu-
tion from single scattering is located around the main diagonal
of the generalized image (when xT = xR). Contrary to
this, the multiple scattering contribution is spread over the
whole generalized image. Note that this property means that
appropriate spatial filtering in the generalized imaging space
can significantly reduce multiple scattering noise in the ex-
tracted data. This means that the developed back-propagation
approach will be more robust to the presence of multiple
scattering than the subarray approach. The single scattering
rate as a function of frequency is shown in Fig. 11 for the
copper sample. It can be seen that at this depth, the copper
sample exhibits a high rate of multiple scattering, greater than
50% of the total image intensity, above approximately 3 MHz.

To assess the extraction robustness, scattering matrices are
measured using the subarray approach (8-element subaperture
[6]) and the optimised back-propagation method, in the pres-
ence and absence of a defect. Similarity scores between these
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matrices and the expected theoretical scattering matrix of a
hole are calculated for different frequencies, as seen in Fig. 12.
At relatively low frequencies, both algorithms are able to
resolve the scattering features of the hole from the background
noise, although the back-propagation method gives a higher
correlation coefficient than the subarray approach as a result
of the averaging inherent in the subarray method and spatial
filtering in the generalized imaging domain. This becomes
particularly important and apparent at higher frequencies,
when the multiple scattering noise increases. For example,
at 4 MHz, the scattering matrix extracted using the subarray
approach behaves as noise, while that extracted using the back-
propagation method preserves defect information.
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Fig. 12. Similarity between the expected scattering matrix of a hole and the
extracted ones using the subarray approach and the back-propagation.
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Fig. 13. Experimental scattering matrices measured using the subarray and
back-propagation extractors.

Fig. 13 displays the scattering matrices at 2.5 MHz (low
multiple scattering rate) and 4 MHz (high multiple scattering
rate). The back-propagation gives uniform scattering coef-
ficients as expected for a hole, while showing significant

variability in the noise response. Qualitatively and quantita-
tively, the back-propagation extractor performs better than the
subarray approach and is more suitable for characterisation
in grainy materials since it provides amplitude and phase
information over a broad frequency range.

VI. CONCLUSION

In this work, the reversible back-propagation method is used
to extract scattering features in highly scattering materials.
The imaging algorithm is presented in its integral form (FFT
approach) and in its asymptotic expression (DAS approach).
These strategies are optimised in a parallel implementation
achieving high extraction rates. For example, using a 64-
element array, at least 30 scattering matrices can be extracted
per second. This is suitable for massive offline processing, or
for real-time characterisation. In particular, the DAS approach
is more convenient for limited-memory embedded systems
giving the same accuracy and rates as the FFT approach. Each
of these approaches are well suited to spatial filtering in the
generalized imaging domain. Either using an optimised box
size to minimise the contribution from noise, or using a mask
derived from the point spread function. Although the latter
offers marginally better performance, practical considerations
mean that its application is significantly more complex, so in
general the box mask is a better solution. Besides the speed,
the proposed strategies provide a rich frequency spectrum
of the scattering matrix, preserve phase information and are
readily suited to minimising the effects of structural scattering
noise.

The access to the scattering coefficients is only one of a
diverse range of applications. In effect, the power of the pro-
posed method is based on the possibility of the rapid extraction
of the local array data, which could be post-processed for
different purposes. For example, additional signal processing
might include imaging enhancement via eigendecomposition
of the time reversal operator [39], [40], or to estimate the rate
of single and multiple scattering in the data [38].

APPENDIX A
ASYMPTOTIC EXPRESSIONS OF THE REVERSIBLE

BACK-PROPAGATION METHOD

In this appendix, the expressions of the DAS forward and
inverse imaging are derived from the integral form of the back-
propagation method using an asymptotic development [41].

A. Time-domain forward imaging

The generalized image calculation is thoroughly described
by [15]:

g(xT, xR, z) =
1

(2π)3

∫∫∫
u(x′T, x

′
R, ω)e

jkxT (xT−x′
T)

× ejkxR (xR−x′
R)ejkzz

× dx′Tdx′RdkxT
dkxR

dω, (18)

where kz =
√
k2 − k2xT

+
√
k2 − k2xR

.
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A convenient reordering of the integrals in the previous
equation yields

g(xT, xR, z) =
1

(2π)3

∫∫∫ ∫
ej(kxT (xT−x′

T)+z
√
k2−k2xT )dkxT

×
∫
ej(kxR (xR−x′

R)+z
√
k2−k2xR )dkxR

× u(x′T, x′R, ω)dx′Tdx′Rdω. (19)

The two inner integrals can be asymptotically approximated
using ∫

ej(kxx+z
√
k2−k2x)dkx ≈

√
−j2πkz
R3/2

ejkR, (20)

where R =
√
x2 + z2. By doing so, the expression of the

generalized image becomes

g(xT, xR, z) ≈
1

(2π)3

∫∫∫
−j2πkz2

R
3/2
T R

3/2
R

u(x′T, x
′
R, ω)

× ejk(RT+RR)dx′Tdx
′
Rdω. (21)

Finally, the DAS imaging method is obtained by calculating
the inverse Fourier transform over the frequencies, which is

gDAS(xT, xR, z) =

−1
2πc

∫∫
z2

R
3/2
T R

3/2
R

ut

(
x′T, x

′
R, t =

RT +RR

c

)
dx′Tdx

′
R,

(22)

where ut is the derivative of u with respect to t.

B. Time-domain inverse imaging

The inverse operation is given by [15]:

u(xT, xR, t) =
1

(2π)3

∫∫∫
g(x′T, x

′
R, kz)e

jkxT (xT−x′
T)

× ejkxR (xR−x′
R)ejωt

× dx′Tdx′RdkxT
dkxR

dkz, (23)

where

ω =

√
k4z + 2k2z(k

2
xR

+ k2xT
) +

(
k2xR
− k2xT

)2
2kz/c

, (24)

which is the inverse of kz with respect to ω.
The previous equation can be conveniently reorganised as

u(xT, xR, t) =

1

(2π)3

∫∫∫ ∫∫
ej(kxT (xT−x′

T)+kxR (xR−x′
R)+ωt)dkxT

dkxR

× g(x′T, x′R, kz)dx′Tdx′Rdkz. (25)

The double inner integral is asymptotically evaluated yield-
ing ∫∫

ej(kxT (xT−x′
T)+kxR (xR−x′

R))

× e
jct
2kz

√
k4z+2k2z(k

2
xR

+k2xT
)+(k2xR−k

2
xT
)
2

dkxT
dkxR

≈ j2π
√
RTRR

(RT +RR)ζ
kze

jkzζ (26)

where RT/R =
√
(xT/R − x′T/R)2 + ζ2 and

ζ =
1

2ct

[
c4t4 − 2c2t2

(
(xT − x′T)2 + (xR − x′R)2

)
+
(
(xR − x′R)2 − (xT − x′T)2

)2 ] 1
2

. (27)

Note that previous expression is the inverse of t = (RT +
RR)/c with respect to ζ.

This approximation leads to

u(xT, xR, t) ≈
1

(2π)3

∫∫∫
j2π
√
RTRR

(RT +RR)ζ
kzg(x

′
T, x

′
R, kz)

× ejkzζdx′Tdx′Rdkz. (28)

Finally, the inverse Fourier transform over kz gives the
expression of the inverse DAS operator:

uDAS(xT, xR, t) =

1

2π

∫∫ √
RTRR

(RT +RR)ζ
gz(x

′
T, x

′
R, z = ζ)dx′Tdx

′
R, (29)

where gz is the derivative of g with respect to z.
Alternatively, the previous equation can be expressed as

uDAS(xT, xR, t) =

1

2πc

d

dt

∫∫
1√

RTRR

g(x′T, x
′
R, z = ζ)dx′Tdx

′
R. (30)

APPENDIX B
SCATTERING MATRIX OF GRAIN NOISE

This appendix describes the formulation of the theoretical
scattering matrix of grain noise in a single scattering assump-
tion. In this simplified model, every grain is considered as a
point-like scatterer with a given amplitude, which could be
related to the size or orientation of the physic grain.

The far-field expression of the grain scattering matrix is
given by the superposition of individual responses:

S(θT, θR, ω) =

Ng∑
n=1

ane
jk(eθT+eθR )·rn , (31)

where Ng is the number of scatterers uniformly distributed
in a region of interest at positions rn = {xn, zn}†. The
amplitudes an of these scatterers follow a centred normal
distribution, whose standard deviation is adjusted in order
to have the same single scattering behaviour as a given
polycrystalline material [30]. Finally, eθT = {sin θT, cos θT}†
is the unit vector in direction to the n-th point-like scatterer,
and eθR = {sin θR, cos θR}† is the unit vector of the associated
scattered wave.
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