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ABSTRACT

We investigate the relationship between the halo mass, M200, and concentration, c, for
a sample of 26 group- and cluster-scale strong gravitational lenses. In contrast with
previous results, we find that these systems are only ∼ 0.1 dex more over-concentrated
than similar-mass halos from dark matter simulations; the concentration of a halo with
M200 = 1014M⊙ is log c = 0.78 ± 0.05, while simulations of halos with this mass at
similar redshifts (z ∼ 0.4) predict log c ∼ 0.56− 0.71. We also find that we are unable
to make informative inference on the slope of the M200−c relation in spite of our large
sample size; we note that the steep slopes found in previous studies tend to follow the
slope in the covariance between M200 and c, indicating that these results may be
measuring the scatter in the data rather than the intrinsic signal. Furthermore, we
conclude that our inability to constrain the M200 − c slope is due to a limited range
of halo masses, as determined by explicitly modelling our halo mass distribution, and
we suggest that other studies may be producing biased results by using an incorrect
distribution for their halo masses.

Key words: galaxies: groups: general - gravitational lensing: strong

1 INTRODUCTION

Dark matter only simulations predict a tight power law re-
lationship between the masses and concentrations of dark
matter halos that has a logarithmic slope of ∼ −0.1 (e.g.,
Bullock et al. 2001; Neto et al. 2007; Macciò et al. 2008;
Duffy et al. 2008). The normalisation of this trend agrees
with observations of massive galaxy clusters (M ∼ 1015;
e.g., Ettori et al. 2010, and references therein), but lower-
mass clusters and rich groups appear to deviate from the
predicted relation by nearly an order of magnitude (e.g.,
Oguri et al. 2012). This tension between observations and
simulations may be due in part to selection effects, as mass
measurements of groups and poor clusters typically rely on
strong gravitational lensing. More concentrated halos are
more efficient lenses, and strong lensing may also preferen-
tially occur in halos that are oriented such that the long
axis of the mass distribution is along the line of sight (e.g.,
Hennawi et al. 2007), an effect that can mimic higher con-
centrations. However, both of these biases are weak, and
Oguri et al. (2012) explicitly include these effects in their
analysis but still find that the observed mass-concentration
trend is significantly stronger than the relation in simula-
tions.

The paucity of well-studied groups and low-mass clus-

ters makes it difficult to characterise the mass-concentration
relation below M ∼ 1014M⊙, where the tension with theory
is most significant. To remedy this, we have compiled a sam-
ple of ∼100 group-scale gravitational lens systems identified
by the CASSOWARY survey (Belokurov et al. 2009). The
strong lensing signals can be combined with total masses
derived from group richnesses (e.g., Wiesner et al. 2012) to
determine halo concentrations for these systems with masses
potentially as low as M ≈ 1013M⊙. Here we present a pre-
liminary analysis of 26 lenses, and we find that our objects
are only slightly more concentrated than simulations pre-
dict. We introduce the sample and our mass measurements
in Section 2, describe our analysis techniques in Sections 3
and 4, then compare with previous studies in Section 5. We
assume a ΛCDM cosmology with ΩΛ = 0.7 and h = 0.7.

2 LENS SAMPLE AND MASS

MEASUREMENTS

The CASSOWARY sample includes nearly 100 strong
gravitational lens candidates discovered in Sloan Digi-
tal Sky Survey (SDSS; York et al. 2000) imaging data
(e.g., Belokurov et al. 2007, 2009). The selection algorithm
searches around luminous red galaxies (LRGs) for resolved
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blue neighbours that potentially correspond to z ∼ 1 − 3
gravitationally lensed arcs. The arcs are required to be
bright and the distances between the arcs and the LRG must
lie in the range 1.5′′to 15′′. This imaging selection preferen-
tially selects Einstein radii between galaxy-scale lenses (e.g.,
SLACS; Bolton et al. 2006) and massive cluster-scale lenses
(e.g., Oguri et al. 2012), enabling our investigation of group-
scale dark matter halos. In this paper we focus on 26 lenses
that have sufficiently good SDSS imaging to robustly deter-
mine Einstein radii. Additionally we require that all of the
lenses have well-constrained lens and source redshifts. All of
the source redshifts and 23 of the lens redshifts are spectro-
scopically determined (Stark et al. 2013), whilst three of the
lenses have photometric redshifts; the mean lens redshift of
the sample is z = 0.4, and details for the lenses can be found
in Table 1.

2.1 Strong Lensing

Strong lensing provides a precise and robust measurement
of the Einstein radius, i.e., the radius within which the mean
surface mass density is equal to the lensing critical density.
We use the SDSS imaging data to constrain the Einstein
radii for each of our 26 lenses, and the mass distributions of
the lenses are assumed to be singular isothermal ellipsoids;
although this model may be a poor description of the true
density profile, the inferred Einstein radii are nevertheless
robust (e.g., Schneider et al. 2006). Following the modelling
scheme of Auger et al. (2011), we use an optimiser to simul-
taneously find the best mass and surface brightness models
for the lens and the source in the g, r, and i imaging from
SDSS. The Einstein radius is typically constrained at the
1-2% level but we impose a minimum uncertainty of 5% to
account for systematics, including line-of-sight structure. In
some cases there is no visible counter-image and the Einstein
radius becomes significantly degenerate with the flattening
of the mass distribution, and for these lenses we therefore
impose a conservative 25% uncertainty on the Einstein radii
(compare with the galaxy-scale lenses that lack counter im-
ages in Brewer et al. 2012); this is comparable to the spread
of reasonable models for the least-constrained lens systems.

2.2 Mass estimate from optical richness

We supplement the central mass constraint from lens-
ing with an estimate of M500 based upon the number of
group/cluster galaxies around the lens. Our richness esti-
mates are defined for 1 Mpc apertures as in Budzynski et al.
(2012), but here we employ some slight modifications. We se-
lect objects from the SDSS Data Release 9 catalogue within
5 Mpc of the lens that meet the following criteria: absolute
magnitude brighter than Mr = −21.2, photometric uncer-
tainties less than 0.2 mag in the griz filters, and photometric
redshifts within 5% of the lens redshift. These requirements
lead to a small bias towards under-richness for the highest-
redshift systems (z & 0.6) due to group members not be-
ing detected in the bluer filters, but loosening these criteria
leads to a much noisier estimator and the uncertainties for
the highest redshift systems are larger than the bias.

We determine the ‘background’ density of objects in
an annulus between 2.5 Mpc and 5 Mpc and subtract the

inferred number of background objects from the number
of objects in the central 1 Mpc to determine our richness
statistic. The uncertainty on the richness is dominated by
the variance of the cosmological background structure, and
we estimate this by determining the variance between ran-
dom 1 Mpc radius patches in the annulus between 2.5 and
5 Mpc. We use the same sample of X-ray luminous clusters
from Budzynski et al. (2012) to calibrate the mass-richness
relation, and we find that our richness statistic produces a
relation that has a slope of 1.00±0.07, intercept 14.21±0.03,
and scatter 0.21 ± 0.02. Typical uncertainties on our M500

estimates range from 0.2 dex for the most rich systems to
0.5 dex for the sparsest lenses.

3 GROUP AND CLUSTER MASS MODELS

We model our lenses with two mass components, one de-
scribing the dark matter distribution and the other describ-
ing the baryonic mass distribution. The dark matter distri-
bution is modelled as an NFW profile with two free pa-
rameters, the mass M200 and the concentration c (there
is some evidence that real dark matter halos may deviate
from NFW halos within the scale radius, e.g., Newman et al.
2013; Sonnenfeld et al. 2012; Grillo 2012, but here we con-
strain our analysis to an NFW context). The baryonic mass
is only significant for the strong lensing, and we therefore
approximate the total baryonic mass with the mass of the
central lensing galaxy (note that the baryonic contribution
to M500 is at most the cosmological fraction, i.e., 0.07 dex,
which is much smaller than the uncertainties on M500). We
use the r−band luminosity inferred from the SDSS photom-
etry and assume a broad uniform prior on the mass-to-light
ratio Υ between 1.8 and 3.2 (i.e., spanning a range between
Chabrier and Salpeter initial mass functions). Our model
therefore has three free parameters for each lens: M200, c,
and Υ.

Our model mass distributions are treated as spherical,
and it is therefore straightforward to calculate the observ-
ables, rEin and M500, from the models (Appendix A). The
normalisations of the dark matter halo and the bulge are
perfectly degenerate for a single mass measurement, but the
degeneracy can be broken with multiple aperture mass mea-
surements if the halo profile and the light profile are suf-
ficiently different. However, these mass normalisations are
still degenerate with the scale (i.e., concentration) of the
dark matter halo if only two aperture mass estimates are
available, although the model can be made tractable if we as-
sume that there is some underlying physics or phenomenol-
ogy that relates at least two of the model parameters. For-
tunately, the mass-concentration relation provides the phe-
nomenology that helps to break this remaining degeneracy.

4 ANALYSIS

We use the data described in Section 2 to constrain the prop-
erties of the model described in Section 3. The inference on
the model parameters is given by employing Bayes’ theorem,

P(c,M200,Υ|r̃Ein, M̃500) = P(r̃Ein, M̃500|c,M200,Υ)

×
P(c,M200,Υ)

P(r̃Ein, M̃500)
, (1)

c© 2002 RAS, MNRAS 000, 1–6
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Table 1. Properties of the 26 Lenses. Columns: (1) lens name; (2) right ascension (J2000); (3) declination; (4) lens redshift; (5) source
redshift; (6) Einstein radius in arcseconds; (7) richness estimator; (8) uncertainty on the richness; (9) inferred mass within r500; (10)
uncertainty on log M500; (11) r-band luminosity in solar units. Daggers indicate the Einstein radii for which we have adopted a 25%
uncertainty, while the other systems have 5% uncertainty.

Name RA Dec zlens zsrc rEin(
′′) N1Mpc σN1Mpc

log M500 σM500
log Lr

SDSSJ0022+1431 5.6704915 14.5195652 0.3800 2.7300 3.26 11.987 3.101 14.277 0.245 11.39
SDSSJ0105+0144 16.3318837 1.7489944 0.3613 2.1300 3.48 5.213 3.489 13.876 0.411 11.36
SDSSJ0143+1607 25.9588685 16.1274983 0.4360 1.5100 2.67 0.413 2.427 13.358 0.539 11.42
SDSSJ0145-0455 26.2678898 -4.9309974 0.6040 1.9580 1.93 0.880 1.010 13.159 0.486 11.45
SDSSJ0146-0929 26.7333707 -9.4979150 0.4400 1.9440 11.94 24.240 2.682 14.602 0.217 11.72
SDSSJ0232-0323 38.2077827 -3.3905627 0.4500 2.5180 3.66 2.760 2.579 13.631 0.457 11.67
SDSSJ0807+4410 121.8812994 44.1801468 0.4490 2.5360 2.06† 4.053 2.163 13.767 0.370 11.23
SDSSJ0846+0446 131.6977631 4.7680718 0.2410 1.4052 3.36† 17.667 3.601 14.454 0.229 11.24
SDSSJ0854+1008 133.6196933 10.1374270 0.2980 1.4370 4.16† 8.507 2.621 14.119 0.265 11.28
SDSSJ0900+2234 135.0110189 22.5680156 0.4890 2.0325 7.90 8.640 2.331 14.132 0.247 11.35
SDSSJ0952+3434 148.1676045 34.5794650 0.3490 2.1896 4.16† 22.253 5.254 14.550 0.237 11.03
SDSSJ0957+0509 149.4132999 5.1588678 0.4400 1.8230 5.39† 1.853 1.569 13.440 0.451 11.24
SDSSJ1115+1645 168.7683082 16.7607213 0.6030 1.7180 4.57† 3.307 0.735 13.720 0.243 11.39
SDSSJ1137+4936 174.4169025 49.6098718 0.4480 1.4110 2.80† 4.040 2.499 13.763 0.405 11.26
SDSSJ1138+2754 174.5373066 27.9085314 0.4470 0.9090 6.15† 23.267 3.255 14.577 0.219 11.42
SDSSJ1147+3331 176.8470946 33.5315538 0.2120 1.2050 4.58† 17.307 2.628 14.448 0.220 11.27
SDSSJ1148+1930 177.1380745 19.5008726 0.4440 2.3790 5.12 1.333 3.391 13.568 0.503 11.45
SDSSJ1206+5142 181.5087122 51.7082044 0.4330 2.0000 3.88 5.867 2.040 13.949 0.287 11.55
SDSSJ1209+2640 182.3486973 26.6796452 0.5580 1.0180 8.44† 9.960 2.254 14.202 0.236 11.79
SDSSJ1240+4509 190.1345157 45.1507908 0.2740 0.7252 2.93† 8.680 2.436 14.132 0.250 10.97
SDSSJ1450+3908 222.6276986 39.1386469 0.2890 0.8613 3.39† 8.307 3.251 14.094 0.310 11.34
SDSSJ1511+4713 227.8280648 47.2278725 0.4520 0.9800 4.40† 5.907 1.986 13.957 0.278 11.73
SDSSJ1629+3528 247.4773470 35.4776361 0.1700 0.8500 3.58† 12.253 3.258 14.284 0.248 10.95
SDSSJ1958+5950 299.6471715 59.8496884 0.1800 2.2200 6.19† 6.040 4.324 13.944 0.415 11.53
SDSSJ2158+0257 329.6819958 2.9583904 0.2850 2.0800 3.47 8.627 2.668 14.129 0.263 11.33
SDSSJ2222+2745 335.5357320 27.7598969 0.4850 2.8070 7.96 9.040 2.487 14.150 0.252 11.62

where tildes describe observed quantities and

P(r̃Ein, M̃500|c,M200,Υ) = P(r̃Ein|rEin)P(M̃500|M500) (2)

with rEin and M500 functions of c, M200, and Υ as described
in Appendix A. The two probabilities on the righthand side
of Equation 2 are given by normal (i.e., Gaussian) distribu-
tions, e.g.,

P(r̃Ein|rEin) ∼ N(rEin(c,M500,Υ), σ2
Ein),

where σEin is the measurement uncertainty on r̃Ein.
Our inference on the mass and concentration of a typ-

ical object is shown in Figure 1. We have assumed a uni-
form prior of 1.8 < Υ < 3.2 and subsequently marginalised
over the mass-to-light ratio. The requirement for strong lens-
ing excludes low-mass, low-concentration halos (the grey re-
gion), and we show the independent constraints from using
only the richness (red contours), only the Einstein radius
(blue contours), and the joint constraint from both (closed
black contours). We note that none of these distributions
are well-approximated by Gaussians, and in our evaluation
of the mass-concentration relation we therefore use this full
likelihood space.

4.1 The Mass-Concentration Relation

The numerator of the final term in Equation 1,
P(c,M200,Υ), is formally the prior on our mass

model parameters c, M200, and Υ. However, the mass-
concentration relation from simulations (e.g., Bullock et al.
2001; Neto et al. 2007; Macciò et al. 2008; Duffy et al. 2008)
acts as a conditional prior on the concentration, so that

P(c,M200,Υ) = P(c|M200)P(M200)P(Υ) (3)

where

P(log c|log M200) ∼ N(a log M200/10
14 + b, σ2). (4)

Therefore, fitting for the mass-concentration relation (i.e.,
determining a, b, and σ in Equation 4) is an example of
hierarchical inference. Indeed, our problem is the same as
the ‘fitting a straight line with scatter to noisy data’ problem
addressed by Kelly (2007), with the exception that our ‘data’
– here, our inference on the mass and concentration of each
lens, as shown by the black contours of Figure 1 – have
highly-correlated non-Gaussian uncertainties.

The prior on the halo mass, P(log M200), should, in
principle, be chosen to encode the parent distribution of our
sample of groups, including the halo mass function and the
selection imposed by lensing (i.e., that more concentrated
and/or more massive halos have a larger cross-section for
strongly lensing a background source). However, the CAS-
SOWARY selection function is extremely difficult to deter-
mine from first principles, and we therefore choose to also
infer the underlying distribution from which our lenses are
sampled. Kelly (2007) also addresses this problem, and he
develops a framework that uses a mixture of Gaussian com-

c© 2002 RAS, MNRAS 000, 1–6
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Figure 1. The inference on the halo mass and concentration for
one lens, SDSSJ2222+2745, from strong lensing (blue contours),
richness (red contours), and both constraints (black contours);
the solid and dot-dashed contours define the regions that contain
68% and 95% of the probability, respectively. The gray-shaded
area in the lower left corner is excluded by our lensing selection
(these halos would not yield Einstein radii greater than 1′′for all
of the Υ values investigated). The black solid line is our best-fit
mass-concentration relation, including a strong prior on the slope,
with the 1-σ scatter shown with black dotted lines. The green
and magenta dashed lines are simulations-derived relations from
Duffy et al. (2008) and Macciò et al. (2008) respectively, and the
cyan dashed line is from the observations of Oguri et al. (2012).

ponents to describe the underlying distribution of the inde-
pendent variable (here, log M200); in this work, for the sake
of simplicity we choose to investigate two different models
for P(log M200). The first model assumes that our masses are
drawn from a uniform distribution with central mass log MU

and half-width ∆MU, while the second model assumes that
our masses are drawn from a normal distribution with mean
log MN and variance σ2

N (i.e., a Gaussian mixture model
with a single component). The priors on log MU and log
MN are normal distributions centred on 14 with variance 1
dex, whilst the priors on the widths are both uniform in the
log of ∆MU and σN over several decades from 0.02 to 2 dex.

A comprehensive description of the statistical model we
use to turn our measurements of r̃Ein and M̃500 in to infer-
ence on a, b, and σ is provided in Appendix B.

4.2 Results

Our inference for the mass-concentration relationship of the
CASSOWARY lenses is shown in Figure 2. The prior on a
is uniform between −2 and 0, the prior on b is uniform be-
tween 0 and 2, and for the scatter we use a prior that is
uniform in log σ between 0.001 and 1. Our choice of the
form of the prior for the halo masses (i.e., uniform or nor-
mal) does not significantly affect our results, although the
normal prior leads to marginally more precise inference and
smaller intrinsic scatter in the mass-concentration relation.
We find that we are unable to constrain the slope a, although
the data show a preference for a shallow slope. There is a
significant tail towards steeper slopes that is covariant with
the intercept such that the concentration of a halo with the

sample mean mass (M200 = 1014.2 M⊙) is always ∼ 7. We
robustly constrain the intercept to be b = 0.85 ± 0.13, in
spite of our poor inference on the slope; this is due to the
limited dynamic range of halo masses, which we empirically
find to span only 0.5− 1 dex (∆MU ∼ σN ∼ 0.2− 0.5).

The small range of M200 in our sample motivates us to
also investigate a model with a prior on the slope consis-
tent with the mass-concentration relations found in simula-
tions (Figure 3). We choose P(a) to be normally distributed
with mean 0.09 and variance 0.0122, consistent with, e.g.,
Duffy et al. (2008) and Macciò et al. (2008). The imposition
of this prior leads to significantly more precise inference on
the intercept, which we find to be b = 0.78 ± 0.05. Using
a mean redshift of z = 0.4, this concentration is in good
agreement with Macciò et al. (2008), who find the equiva-
lent of b = 0.71, but is somewhat larger than the values of
0.56− 0.62 implied by Duffy et al. (2008). We find that the
intrinsic scatter is σ = 0.17 ± 0.06, also in agreement with
simulated dark matter halos. We note that if we explicitly
set Υ to a Salpeter or Chabrier value and repeat the infer-
ence, we find log c is between 0.64 and 0.82, respectively.

5 DISCUSSION

We find that dark matter halos of groups and poor clusters
(i.e., objects with log M200 ∼ 14) appear to be only 17−66%
more concentrated than simulated dark matter halos of the
same mass. This result appears to conflict with several re-
cent analyses of strong lensing clusters that find systemati-
cally larger concentrations than simulations at lower cluster
masses (e.g., Oguri et al. 2012; Wiesner et al. 2012). Indeed,
both of those results included strong lens systems investi-
gated in this paper, so the differing conclusions are a bit
alarming. However, there are several points that may re-
solve the tension between our results and these other obser-
vational findings.

Wiesner et al. (2012) infer a steep slope but with a very
large uncertainty that makes their measurement consistent
with simulations at the 1.5-σ level. Unfortunately they do
not report an uncertainty on the intercept, nor do they pro-
vide details of the assumed prior on the slope or whether
the posterior is Gaussian or highly skewed towards shallow
values (e.g., Figure 2). Moreover, and perhaps most impor-
tantly, details of the fitting procedure are not provided, in-
cluding whether the significant covariance between c and
M200 is taken into account (e.g., Figure 1) and what prior
is assumed for the distribution of halo masses.

If the prior on the halo masses (i.e., the contribution
from the halo mass function and the CASSOWARY selec-
tion function) is assumed to be uniform and wide, then indi-
vidual lens systems are given significant freedom to scatter
along the degeneracy line illustrated by the black contours in
Figure 1. These typically have slopes of ∼ −0.5, consistent
with the slopes found in previous strong lensing analyses
(Oguri et al. 2012; Wiesner et al. 2012). This suggests that,
at least for the case of Wiesner et al. (2012) who use the
same type of constraints as we present here, these results
may arise from fitting the observational scatter rather than
the intrinsic mass-concentration relation.

The limited dynamic range of the CASSOWARY lenses
presented here does not allow us to place interesting con-

c© 2002 RAS, MNRAS 000, 1–6
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Figure 2. Inference on the mass-concentration relation parameters for the CASSOWARY lenses, assuming a broad uniform prior on
the slope; solid contours and dot-dashed contours enclose 68% and 95% of the marginalised posterior probability, respectively. The black
contours are for our model that assumes the halo masses are drawn from a uniform distribution and the red contours are the results
when we assume a normal distribution. We find that the lenses prefer a shallow mass-concentration relation with a very extended tail
to steep slopes. The intercept implies a concentration of log c = 0.85± 0.13 (i.e., c ≈ 7.1± 2) for a halo with mass M200 = 1014M⊙; by
comparison, Oguri et al. (2012) find a concentration of 14 from strong lensing clusters (cyan points and dashed lines) while simulations
suggest c is between 3.6 and 5.1 (e.g., Duffy et al. 2008; Macciò et al. 2008, green and magenta points/lines, respectively).

straints on the slope of the mass-concentration relation,
although our data are consistent with the slopes typi-
cally found in simulations (e.g., a ∼ −0.1). We never-
theless find evidence for a slightly higher normalisation
than dark-matter-only simulations (e.g., Duffy et al. 2008;
Macciò et al. 2008; Neto et al. 2007). Oguri et al. (2012)
model the lensing selection function and find that this leads
to a steeper inference on the mass-concentration relation and
a higher normalisation than dark matter simulations predict
for M ≈ 1014M⊙. We do not find significant evidence for
this over-concentration in our sample, although we explic-
itly fit (and subsequently marginalise over) the form of the
parent population of the halos; this may signal that group-
scale halos do not, in fact, suffer from an over-concentration
problem.

Gralla et al. (2011) find that, if the mass-concentration
relation from simulations is assumed, their halo masses de-
rived from Sunyaev-Zel’dovich effect measurements in strong
lensing clusters predict Einstein radii ≈ 30 per cent smaller
than the observed Einstein radii. This result appears to dis-
agree with what we find, but because it is not cast in terms of
the slope and normalisation of the mass-concentration rela-
tion it is difficult to compare with our analysis. Fedeli (2012)
has re-analysed several compilations of mass-concentration
data from a variety of different observations and also in-

fers a significantly steeper slope than simulations predict.
He subsequently finds that halos can fit approximately the
data if very efficient star formation and halo contraction
due to baryonic cooling is included in his model. However,
this model is difficult to reconcile with our result, and the
huge discrepancy between the derived mass-concentration
relations of Fedeli (2012) and e.g., Ettori et al. (2010) in-
dicates that his model may be fitting scatter in the data
rather than intrinsic signal. On the other hand, Deason et
al. (2013) use strong lensing, a central stellar velocity dis-
persion profile, and satellite-galaxy kinematics to simulta-
neously constrain the normalisation of the central galaxy
mass-to-light ratio and the group dark matter halo of the
lens SDSSJ2158+0257, finding a halo with mass M200 =
1014.2M⊙ and concentration c = 4.4; this concentration is
even lower than what we find and agrees well with simula-
tions.

6 CONCLUSIONS

We have investigated constraints on the mass-concentration
relation of 26 massive group/poor cluster strong lenses by
combining strong lens Einstein radius measurements with
estimates of halo masses from a mass-richness relation. Con-
trary to previous studies, our lenses – with typical mass
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Figure 3. The same inference as Figure 2 but with a normal-distribution prior on the slope a as motivated by simulations. The prior
leads to slightly smaller inferred concentrations (log c = 0.78 ± 0.05, c ∼ 6, for a halo with mass M200 = 1014 M⊙) that agree with
simulations at the 2-σ level.

M200 = 1014.2 M⊙ – are only slightly (∼ 0.1 dex) over-
concentrated compared to halos in dark matter simulations,
and we also find that we are unable to constrain the slope
of the mass-concentration relation. This latter point is pri-
marily due to the small range of halo masses spanned by
our sample and the lack of precise constraints on the halo
masses and concentrations for individual systems. Our halo
mass dynamic range is inferred directly from the data by ex-
plicitly fitting for the mass selection function of the lenses,
and we find that this is approximately two times smaller
than the range of masses we would have found by consider-
ing, e.g., the distribution of the maximum likelihood masses
for each system. We therefore conclude that explicitly mod-
elling the halo mass selection function and directly account-
ing for the covariance between the ‘measured’ halo masses
and concentrations are required to make robust, unbiased
inference.

Future prospects for constraining the slope of the mass-
concentration relation are favourable. We have only pre-
sented constraints from a quarter of the lenses in the CAS-
SOWARY sample, and our data can be combined with data
from more massive clusters to improve our halo mass dy-
namic range and therefore get a longer lever arm for mea-
suring the M200−c slope. Furthermore, two additional mass
tracers can readily be obtained for the systems investi-
gated here. Central stellar velocity dispersion measurements
should help to significantly improve our constraints for in-
dividual systems (e.g., Deason et al. 2013), while measuring
the radial magnifications of the lensed arcs allows the log-

arithmic slope of the projected total mass distribution to
be constrained with ∼ 2% precision at the Einstein radius
(Dye et al. 2008). Indeed, this latter measurement will also
allow a direct investigation of one of the most significant as-
sumptions in this paper, that the halos follow NFW profiles!
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APPENDIX A: CALCULATING MODEL

OBSERVABLES

The mass-richness relation described in Section 2.2 yields
an estimate of M500, the mass within r500, where r500 is
defined as the radius at which the mean density enclosed by
the mass distribution is 500 times greater than the critical
density of the universe, ρc. In order to compare this mass
with our models we must compute r500 for each set of model
parameters M200 and c. We note that the mean mass density
for an NFW profile within radius x (in units of the scale
radius for that profile, rs = r200/c) is given by

ρ(x) = 3ρ0x
−3

[
ln (1 + x)−

x

1 + x

]
, (A1)

where ρ0 fixes the normalisation of the profile (see, e.g.,
Wright & Brainerd 2000). The definition of r500 implies that
ρ(r500/rs) = 500ρc, and we therefore solve for r500/rs by

approximating the inversion of Equation A1 with a spline.
Finally, the mass of the NFW profile within r500 is given by,

M500 = ρ(r500)
4

3
πr3500 = 500ρc

4

3
πr3500.

In principle, the model M500 is then the sum of this and
the baryonic mass within r500, but we neglect the effect of
baryons on M500 because the baryon fraction within r500 is
typically quite small (i.e., less than 10 per cent; Ettori et al.
2010).

The lensing data offer two possibilities for comparing
with the model: we may choose to determine the model Ein-
stein radius and compare with the observed Einstein radius,
or we may calculate the mass of the model within the ob-
served Einstein radius and compare with the measured mass
from our observations. We have chosen to employ the former
option because the latter requires the assumption that we
know the aperture (the Einstein radius) with perfect pre-
cision. The Einstein radius is defined as the radius within
which the mean surface mass density is equal to the lensing
critical density,

Σ(rEin) = Σcrit

where

Σcrit =
c2Ds

4πGDlDls

with Ds, Dl, and Dls the angular diameter distances to the
source, lens, and between the lens and source, respectively.
In practice, our mass density comes from the dark matter
component and the baryonic component, and therefore

ΣNFW(rEin) + Σ∗(rEin) = Σcrit.

The mean mass surface density for an NFW halo is

ΣNFW(x) = rsρ0F(x) (A2)

with F(x) provided by Wright & Brainerd (2000). We as-
sume that Σ∗(rEin) is only contributed to by the luminosity
of the lensing galaxy and that all of the lens galaxy light,
Llens, is within r̃Ein; for simplicity, here we also ignore the
uncertainty on r̃Ein so that the only free parameter for this
component is the stellar mass-to-light ratio, i.e.,

Σ∗(rEin) =
ΥLlens

πr̃2Ein

.

The Einstein radius is therefore given by

Σcrit −
ΥLlens

πr̃2Ein

= rsρ0F(rEin/rs), (A3)

which can be solved by approximating the inversion of F
with a spline.
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APPENDIX B: HIERARCHICAL INFERENCE STATISTICAL MODEL

The typical scheme for fitting a linear relation with scatter includes defining ‘true’ parameters for the independent and depen-
dent variables and subsequently marginalising over these parameters (e.g., Kelly 2007); this is usually only done implicitly, as
the marginalisation often can be performed analytically in the case of Gaussian uncertainties on the measured parameters.
In our analysis, an explicit definition of the variables is necessary (e.g., Equation 1) because we are not fitting a line to our

measurements r̃Ein and M̃500 (indeed, even these are not really ‘measurements’ but are instead quantities derived from the
SDSS imaging).

Our full inference for a single lens can be written as

P(a, b, σ|r̃Ein, M̃500) =

∫
P(r̃Ein, M̃500|rEin(c,M200,Υ),M500(c,M200)) P(c,M200,Υ|a, b, σ, log MX,∆M)

P(a, b, σ, log MX,∆M) dc dM200 dΥ dlog MX d∆M (B1)

where we use the compact notation log MX and ∆M to denote the mean and width of the priors on M200 for the uniform and
normal distribution models, as described in Section 4.1. The first term on the right is, suppressing the explicit dependence on
c, M200, and Υ,

P(r̃Ein, M̃500|rEin,M500) = P(r̃Ein|rEin) P(M̃500|M500)

=
1

2πσEinσM

e
− 1

2

(r̃Ein−rEin)2

σ2
Ein e

− 1
2

(M̃500−M500)2

σ2
M , (B2)

with σM the uncertainty on M̃500. Furthermore, following Equations 3 and 4,

P(c,M200,Υ|a, b, σ, log MX,∆M) = P(log c|a, b, σ, logM200) P(log M200|log MX,∆M)P(Υ) (B3)

with

P(log c|a, b, σ, logM200) ∼ N(a log M200/10
14 + b, σ2) (B4)

P(log M200|log MX,∆M) ∼

{
U(log MU −∆MU, log MU +∆MU)

N(log MN, σ
2
N)

(B5)

P(Υ) ∼ U(1.8, 3.2). (B6)

Finally, our priors on the hyper-parameters, the final term in Equation B1, are all independent and are

P(a) ∼

{
U(−2, 0)

N(−0.090, 0.0122)
(B7)

P(b) ∼ U(0, 2) (B8)

P(log σ) ∼ U(−3, 0) (B9)

P(logMX) ∼ N(14, 1) (B10)

P(log ∆M) ∼ U(−1.7, 0.3). (B11)

It may appear that Equation B1 is just an integral over a product of Gaussian and uniform distributions and should
therefore be analytically tractable. However, Equation B2 is only Gaussian in the transformed variables rEin and M500 and
it actually has a non-trivial form in the variables of integration c, M200, and Υ (e.g., Figure 1). In practice, our inference is
performed by first evaluating Equation B2 for each lens on a grid of c, M200, and Υ. The Υ marginalisation integral can then
be evaluated, and we use a Markov chain Monte Carlo simulation to generate samples for a, b, σ, log MX, and ∆M as the
solution to Equation B1.
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