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Decentralized Ability-Aware Adaptive Control for
Multi-Robot Collaborative Manipulation

Lei Yan , Theodoros Stouraitis , and Sethu Vijayakumar

Abstract—Multi-robot teams can achieve more dexterous, com-
plex and heavier payload tasks than a single robot, yet effective
collaboration is required. Multi-robot collaboration is extremely
challenging due to the different kinematic and dynamics capabili-
ties of the robots, the limited communication between them, and the
uncertainty of the system parameters. In this letter, a Decentralized
Ability-Aware Adaptive Control (DA3C ) is proposed to address
these challenges based on two key features. Firstly, the common
manipulation task is represented by the proposed nominal task
ellipsoid, which is used to maximize each robot’s force capability
online via optimizing its configuration. Secondly, a decentralized
adaptive controller is designed to be Lyapunov stable in spite of
heterogeneous actuation constraints of the robots and uncertain
physical parameters of the object and environment. In the pro-
posed framework, decentralized coordination and load distribution
between the robots is achieved without communication, while only
the control deficiency is broadcast if any of the robots reaches its
force limits. In this case, the object’s reference trajectory is modified
in a decentralized manner to guarantee stable interaction. Finally,
we perform several numerical and physical simulations to analyse
and verify the proposed method with heterogeneous multi-robot
teams in collaborative manipulation tasks.

Index Terms—Distributed robot systems, manipulation
planning, mobile manipulation, redundant robots, robust/adaptive
control.

I. INTRODUCTION

COLLABORATION with other agents can often be benefi-
cial. For example, a multi-robot team like the one shown

in Fig. 1 is more dexterous and robust in heavy and large object
manipulation tasks [1] than a single robot. Also, in human-robot
collaboration scenarios [2], the human’s input can improve the
intelligence and adaptability of the team. Yet, collaboration is not
trivial, due to the effects of one agent’s actions on the planning,
control and decision of others.
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Fig. 1. Pictorial description of the multi-robot collaborative manipulation
setup, where the ability of each robot is illustrated as a force polytope.

Here, we investigate multi-robot collaborative manipulation
tasks, where a decentralized robot team needs to achieve a
common objective, while each robot has different motion and
force capabilities. To perform such collaborative tasks, each
robot within the team should maximize its contribution to the
task, appropriately distribute the load among other robots, and
adapt its behaviour according to the capabilities of the other
robots in the team. Traditional centralized control methods have
been used for multi-robot collaboration, but assume access to
an accurate model of the robot team and full observability of
the state of the other robots and the object. However, when con-
sidering the characteristics of real-world multi-robot teams [3],
the most pressing problems are: (i) heterogeneity of the robots’
capabilities, (ii) uncertainty of the system’s physical parameters
and (iii) lack of high bandwidth communication between the
robots.

Therefore, we propose a method to maximize the force ca-
pability of each robot while designing a decentralized adaptive
controller. Using this framework, we achieve the shared manip-
ulation task under modelling uncertainties, input constraints and
band-limited communication.

Motion and force capabilities: A manipulability metric [4]
was first proposed as a measure of the capability of robotic
mechanisms, and has been broadly used for redundancy con-
trol [5]. Utilizing the task-oriented manipulability measure, the
optimal joint configuration of a redundant manipulator can be
determined [6]. An efficient closed-form calculation of the task
space manipulability was presented for a 7-DOF manipula-
tor [7]. For a multiple-arm system, the task-space force and
velocity manipulability ellipsoids were given in [8]. Based on a
study of the dynamic manipulability of robots, two physically
meaningful choices for weighting matrix were provided [9].
To simplify the calculation of the dynamic manipulability, the
weighted manipulability ellipsoid can be used to approximate
the manipulability polytope [10]. In this letter, the weighted
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Fig. 2. Flowchart of decentralized ability-aware adaptive control.

force manipulability ellipsoid (WFME) will be adopted to opti-
mize the force polytope of the manipulator.

Redundancy exploitation: For dexterous manipulation [11],
[12], redundant manipulators were adopted to enlarge
workspace, avoid singularities and collisions with the environ-
ment. Further, manipulator’s redundancy can also be explored
to maximize manipulability [13]. The stiffness feasibility re-
gions of redundant manipulators and a global task-oriented
stiffness optimization were used to select robot poses [14] and
configurations [15] for force and stiffness control, respectively.
This highlights the important role of the robot’s configuration
in interaction tasks. The configuration of a redundant robot
was also optimized while manipulating an object in space, to
minimize disturbances on its base [16]. Geometry-aware meth-
ods were used to provide a manipulability-based redundancy
resolution [17], [18], which enabled tracking of manipulability
ellipsoids. Yet, the desired ellipsoid is either pre-defined by
a human expert or pre-recorded from demonstrations. Here,
we define a nominal task ellipsoid which is generated from
the manipulation task automatically and present a task-oriented
manipulability optimization to match the WFME of the robot
with the nominal task ellipsoid.

Decentralized adaptive control: A decentralized model ref-
erence adaptive controller was proposed to deal with uncertain
physical parameters of the collaborative multi-robot system [19].
For manipulation tasks with inaccurate kinematic model, the
adaptive controller was used to handle the closed kinematic
chain constraint and achieve accurate motion tracking with
minimum-norm actuation force [20]. Recently, Deep Neural
Networks were adopted to model system uncertainties in model
reference adaptive control [21]. In studies of multiple mobile
manipulators, distributed coordination control and synchronous
cooperation control were presented to deal with time delays and
switching topologies [22]. A distributed cooperation scheme was
adopted for networked mobile manipulators, which exploits the
formation-based task allocation and task-oriented strategy [23].

A distributed impedance controller has also been used for collab-
orative manipulation with event-triggered communication [24].
Recently, a decentralized adaptive controller [1] for multiple
collaborative mobile robots was introduced. This controller can
track the reference velocity trajectory without a priori knowledge
of the agent’s position and payload properties. Yet, all adaptive
controllers described above did not consider force and torque
constraints (manipulability) of the robots.

Considering a multi-robot collaborative manipulation task, a
decentralized ability-aware adaptive control (DA3C ) framework
(shown in Fig. 2) is proposed. Our method can handle both
uncertain system parameters and input constraints without full
communication between the robots. In the investigated multi-
robot collaborative manipulation setup each robot has access to
the desired manipulation task, which is described as a nominal
task ellipsoid. Each robot tracks the nominal task ellipsoid using
the task-oriented manipulability optimization method, while
the DA3C enables multi-robot coordination with respect to the
common manipulation task. The main contributions of this letter
are summarised as follows:

1) A nominal task ellipsoid is defined based on the common
manipulation task, and it is used to optimize the force
capability of each manipulator.

2) A decentralized adaptive controller under input constraints
is designed and proven to be Lyapunov stable.

3) Different heterogeneous multi-robot systems with input
and communication constraints realize collaborative
manipulation tasks using the proposed decentralized
ability-aware adaptive control that guarantees stability
and convergence.

The remainder of this letter is organized as follows. The
preliminary work is presented in Section II. In Section III, we
define the nominal task ellipsoid and present the task-oriented
manipulability optimization. The decentralized ability-aware
adaptive control is described in Section IV. In depth analysis of
the proposed method is carried out in Section V, where several
numerical and physical simulations of collaborative manipula-
tion tasks are performed. The conclusion and future work are
discussed in Section VI.

II. PRELIMINARIES

A. Manipulability Ellipsoid and Force Polytope

Generally speaking, the force manipulability ellipsoid can
be used to approximately describe the force capability of the
manipulator. In the simplest case, if we consider an arbitrary
n-DOF manipulator robot k with the same torque limit across
all its joints, we can obtain the force manipulability ellipsoid [4]
using joint torque τ k such that ‖τ k‖2 � 1. This ellipsoid is a
subset of all realizable forces and is defined as

F T
k

(
JkJ

T
k

)
F k � 1, (1)

where Jk is the Jacobian matrix of robot k and F k is the force
(and torque) at the end-effector of robot k.

However, typically manipulators have different torque limits
for each joint, expressed as |τ ik| � τ ik,max for i = 1, . . ., n, where
τ ik,max is the maximum torque of i-th joint of robot k. Thus,
the force polytope [10] of the manipulator is described by 2n
bounding inequalities as

−τ k,max � JT
kF k � τ k,max. (2)
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Fig. 3. Force polytope and WFME (left). Nominal task ellipsoids correspond-
ing to different manipulation tasks where Ft represents the desired force along
different directions (right).

As shown on the left side of Fig. 3, the force polytope
corresponding to joint torque limits in (2) can be approximated
by the weighted force manipulability ellipsoid (WFME) as

F T
k JkW

T
kW kJ

T
kF k � 1, (3)

where W k = diag( 1
τ1
k,max

, . . . , 1
τn
k,max

) is a weighting matrix used

to formulate the WFME.

B. Object’s Dynamics

For multi-robot collaborative manipulation scenarios, the
equation of motion of the object can be written as[

mov̇o

Ioω̇o + ωo × (Ioωo)

]
= F t + F f +Go, (4)

where mo and Io are the mass and inertia of the object, vo

and ωo are respectively the linear velocity and angular velocity
of the object, Go = [mog

T , 0]T is the gravity, F f is the
linear and rotational friction force which is modelled as F f =
[fT

l ,f
T
r ]

T = [−μlv
T
t ,−μrω

T
t ]

T , μl and μr are the linear and
rotational friction coefficients, respectively. F t is the external
force exerted on the object (in this letter it is task-related). All
the variables are expressed in the world coordinate system.

III. TASK-ORIENTED NULL-SPACE

MANIPULABILITY OPTIMIZATION

To utilize each robot’s maximum capability, its force polytope
needs to be optimized with respect to the manipulation task. As
WFME is a conservative approximation of the force polytope as
shown in Fig. 3, we optimize WFME instead to maximize each
robot’s force capability. To do this, we first define the nominal
task ellipsoid to encode the task’s force characteristics. Second,
we optimize the robot’s null-space motion to match the WFME
with the nominal task ellipsoid.

A. Nominal Task Ellipsoid

The nominal task ellipsoid is defined as an ellipsoid of rev-
olution, also called a prolate spheroid, whose two principle
axes have the same length, while the third principle axis is
the longest. The nominal task ellipsoid can be generated by the
transformation of unit sphere as

{ce = Ccs | ‖cs‖ � 1} , (5)

where ce is the Cartesian coordinates of the nominal task ellip-
soid, cs is the Cartesian coordinates of the unit sphere. C is the
transformation matrix and can be calculated asC = RrRs with

Rs being the scaling matrix and Rr being the rotation matrix.
The scaling matrix Rs is defined as Rs = diag(lx, ly, lz),
where lx, ly , lz , are the lengths of the principle axes. In this letter,
lx = 1 corresponds to the longest axis that is aligned with the
desired force. ly = lz = cf lx correspond to the other two axes
and cf ∈ (0, 1] can be set according to the task requirements, e.g.
cf = 1 (isotropic ellipsoid in Fig. 3) for manipulation tasks that
require force to be equally distributed along different directions,
while cf < 1 (other cases in Fig. 3) for manipulation tasks that
require force along a specific direction.

Given the desired force F t on the object and the unit vector
ax of the longest axis, the common perpendicular vector u and
the included angle φ between them, can be obtained by

u =
F t × ax

‖F t × ax‖ and φ = acos

(
F t · ax

‖F t‖‖ax‖
)
, (6)

respectively. Therefore, the rotation matrix Rr—which is used
to align the longest axis with the desired force— can be obtained
according to the angle-axis representation as

Rr = E3cφ + (1− cφ)uu
T + u×sφ, (7)

where sφ = sin(φ), cφ = cos(φ),E3 is the 3× 3 identity matrix
and u× is the skew symmetric matrix of u.

From (5), we can obtain the following equation

cTe M
−1
t ce � 1, with M t = CCT , (8)

where the symmetric positive definite matrix M t represents
the nominal task ellipsoid. A few nominal task ellipsoids for
different manipulation tasks are visualized in Fig. 3. The shape
of a nominal task ellipsoid is determined by the coefficient cf ,
while its orientation is determined by the direction of the desired
force F t.

B. Null-Space Manipulability Optimization

As multiple robots manipulate the object jointly, the end-
effector of each robot can be assumed to be fixed on the object
via the corresponding grasping point. Thus, the velocity of the
end-effector of each robot ẋk can be derived from the velocity
of the object ẋo as

ẋk =

[
E3 −r×k
0 E3

]
ẋo = GT

pkẋo, (9)

whereGpk is the grasp matrix of robotk,rk is the position vector
from the object’s center of mass to the grasping point of robot
k, and ẋo = [vT

o , ω
T
o ]

T . By differentiating (9) the acceleration
constraint can be obtained as

ẍk = GT
pkẍo + Ġ

T

pkẋo. (10)

At the same time, the pseudo-inverse solutions for joint velocity
Θ̇k and acceleration Θ̈k of each robot are

Θ̇k = J †
kẋk and Θ̈k = J †

k

(
ẍk − J̇kΘ̇k

)
, (11)

respectively; where J †
k is the pseudo-inverse of Jk.

In this letter, the null-space motion of the redundant manipula-
tors is used to optimize the force manipulability given the current
WFME of robot k and a desired nominal task ellipsoid (Sec-
tion III-A). By using the tensor representation and exploiting the
fact that ellipsoids lie on the Riemannian manifold of symmetric
positive definite (SPD) matrices [18], the velocity-level inverse
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kinematics with task-oriented manipulability optimization can
be derived as

Θ̇k = J †
kẋk +

(
I − J †

kJk

)(
J f†

Mk

)T
KM vec

(
Ṁ

f

k

)
.

(12)

The first term of the right hand side is same as in (11), while
the second term projects the difference between the nominal
task ellipsoid and WFME to the null space motion of the
manipulator. KM is the scaling matrix, vec() denotes the
vectorization of symmetric matrices with Mandel notation,1

Ṁ
f

k = LogMf
k
M t, the Log operator is a logarithm map [25]

which can find the tangent vector between two points in the SPD
manifold. Mf

k represents the WFME of robot k and is defined
as

Mf
k =

(
JkW

T
kW kJ

T
k

)−1
. (13)

The force manipulability Jacobian J f
Mk

projects the scaled rate

of change of Mf
k to the joint velocity Θ̇k and it is obtained as

J f
Mk

= −∂Mf−1
k

∂Θk
×1 M

f
k ×2 M

f
k ,

∂Mf−1
k

∂Θk
=

∂Jk

∂Θk
×2 JW +

∂JT
k

∂Θk
×1 JW , (14)

where JW = JkW
T
kW k, ×n is the n-mode tensor

product2 [26].
The force capability optimization is achieved in the null

space of manipulation task by using the proposed task-oriented
manipulability optimization (12).

IV. DECENTRALIZED ABILITY-AWARE ADAPTIVE CONTROL

According to the force polytope shown in Fig. 3, the maximum
operational force along any specific direction can be calcu-
lated. Subsequently, the decentralized ability-aware adaptive
controller (DA3C ) computes the control inputs in accordance
with the force capability of each robot.

A. Force Capability

The maximum operational force of each manipulator along
the specific task direction F t is calculated by

max
F k

‖F k‖2 (15a)

s.t. |HkΘ̈k +Ck +Gk + Jk
TF k| ≤ τ k,max (15b)

F×
t F k = 0, (15c)

where Hk is the inertia matrix of robot k, Ck is the Coriolis
and centrifugal force of robot k, Gk is the gravity of robot k.
The force polytope is defined by (15b) and can be obtained from
the dynamic equation of the manipulator, while (15c) is used to
define the specific task direction.

1The Mandel representation [ε] (as a column-vector) of any second rank,
symmetric tensor ε is defined as follows: [ε] = [ε11ε22,

√
2ε12]

T .
21-mode and 2-mode: A×1 UT = UTA, A×2 V T = AV .

B. Ability-Aware Adaptive Controller

In order to track the desired trajectory of the object during de-
centralized multi-robot collaborative manipulation, we propose
an ability-aware adaptive controller in which the force capability
of each robot is considered.

According to (4), the ideal reference dynamics model of the
object can be written as

ẍ∗
o = A∗ẋ∗

o +B∗ (F ∗
t −N cg) , (16)

where A∗ is a Hurwitz stable matrix written as A∗ =[− μl

m∗
o
E3 0

0 −μrI
∗−1
o

]
, B∗ =

[ 1
m∗

o
E3 0

0 I∗−1
o

]
, and N cg =[ −m∗

og
ωo × (I∗

oωo)

]
is a stacked vector of gravity term and nonlin-

ear term in (4), and m∗
o and I∗

o are the nominal mass and inertia
matrix of the object. Given the bounded reference (desired)
trajectory ẋ∗

o and ẍ∗
o of the object, the bounded reference control

input F ∗
t , which represents the external force exerted on the

object, can be computed from (16).
To design the adaptive controller, the actual object’s dynamics

model can be rewritten in the following linear form with respect
to the system state ẋo as

ẍo = Aẋo +

K∑
k=1

Bk (F k −Uk) , (17)

where A and Bk are unknown constant matrices, A =

−
[ μl

mo
E3 0

0 μrI
−1
o

]
, Bk =

[ 1
mo

E3 0

I−1
o r×k I−1

o

]
, F k is the input of

robot k, K is the total number of robots, Uk = W ∗T
φkΦk is

an unknown nonlinear term caused by modelling uncertainties
which can be approximated by a Radial Basis Functions (RBFs)
neural network, W ∗

φk is the weight matrix for the RBFs, Φk is
the vector of RBFs and output bias.

For each robot, the adaptive control input is designed as

F k = KT
xkẋo +KT

rkF
∗
t +KT

nkN cg +W T
φkΦk, (18)

where Kxk, Krk, Knk and W φk are control gain matri-
ces. Considering the force capability of each robot, the con-
trol input constraints of DA3C are guaranteed by positive
μ-modification [27]. Therefore, the modified ideal reference
dynamics model (see (16)) and the actual system dynamics
(see (17)) with input constraints are rewritten as

ẍ∗
o = A∗ẋ∗

o +B∗
(
F ∗

t +

K∑
k=1

KT
fkΔF k −N cg

)
, (19)

ẍo = Aẋo +

K∑
k=1

Bk (F k +ΔF k −Uk) , (20)

where Kfk is the control gain matrix, ΔF k is the control
deficiency, which is described in Appendix A, and is used to
generate the adaptive augmentation for the reference model.

Furthermore, by defining the tracking error e = ẋo − ẋ∗
o, the

tracking error dynamics can be obtained as

ė = ẍo − ẍ∗
o = A∗e−

K∑
k=1

B∗K̃
T

fkΔF k

+

K∑
k=1

Bk

(
K̃

T

xkẋo+K̃
T

rkF
∗
t+K̃

T

nkN cg+W̃
T

φkΦk

)
(21)
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Fig. 4. Simulation results with and without manipulability optimization.

where K̃ = K −K∗ is the error matrix of control gain and K∗
is ideal control gain (see Appendix B).

Last, the following adaptive laws are adopted in order to
guarantee asymptotic tracking of the reference trajectory.

˙̃Kxk = −Γ xkẋoe
TPBk,

˙̃Krk = −Γ rkF
∗
te

TPBk,

˙̃Knk = −Γ nkN cge
TPBk,

˙̃W φk = −Γ φkΦeTPBk,

˙̃Kfk = Γ fkΔF ke
TPB∗, (22)

where P is unique SPD solution of the Lyapunov equation,
PA∗ +A∗TP = −Q < 0, where Q is any SPD matrix; Γ xk,
Γ rk, Γ nk, Γ φk, and Γ fk are SPD gain matrices. The proof
for asymptotic stability and asymptotic tracking using the above
adaptive laws can be found in Appendix B.

C. Computed-Torque Control for Each Robot

According to the constrained operational force and the adap-
tive reference trajectory of the object, the controller of each robot
can be designed as the following well known computed-torque
feedforward control,

τ k = Hk

(
Θ̈k +KpΘ̃k +Kv

˙̃Θk

)
+Ck +Gk + Jk

T (F k +ΔF k) , (23)

where Θ̃k, ˙̃Θk are the error vectors of joint angle and joint
angular velocity, and Kp, Kv are the corresponding gains.

D. Level of Communication

In the proposed ability-aware adaptive controller, the levels
of communication between the robots in the team may vary
depending on the different states of the multi-robot system. As

Fig. 5. State of the object with ability-agnostic and ability-aware controller.

Fig. 6. Control input of each robot with ability-agnostic controller.

Fig. 7. Control input of each robot with ability-aware controller.

long as the desired operational force of each robot is within its
force polytope, each robot can be controlled in a fully decen-
tralized manner. Each robot should know the object’s velocity
and the grasping location on the object. However, in cases
where a robot would need to exceed its capabilities to track the
reference input—desired operational force lies outside of the
force polytope—then, the control deficiency ΔF k of each robot
should be broadcast to all the robots of the team. The control
deficiency of all the robots will be used in (19) to modify the
unfeasible reference control input for each robot, which results
in a coordinated adaptation of the robot team.

V. RESULTS

First, we perform three ablation studies to demonstrate the
benefits of each one of the proposed components and their
combination. Second, we demonstrate the adaptation capabil-
ities of the DA3C framework in a decentralized manipulation
setup. Third, we validate DA3C on a physical simulation, where
three heterogeneous robots manipulate an object. The control
frequency of all the simulations is set to 500 Hz.



2316 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 2, APRIL 2021

Fig. 8. Tracking errors of the object (1st column) and control inputs of robot A (2nd column) with and without manipulability optimization. The cyan regions
represent the force capability envelope of the robot without optimization while the orange regions represents the capability envelope with optimization.

A. Ablation Studies

1) Force Capabilities With and Without Manipulability Op-
timization: In this ablation study, three 4-DOF planar robots
manipulate an object from initial position [0, 0] m to final
position [−0.1, −0.2] m. The maximum joint torques of robot
A, B and C are set to 0.8, 0.6 and 0.6 N.m, respectively. The
simulation results without and with task-oriented manipulability
optimization are shown in Fig. 4. Using the proposed method
the WFME of each robot is optimized through the null-space
motion to track the nominal task ellipsoid (yellow ellipsoid), and
consequently the force capability (red arrow) along the specific
task direction is increased.

2) Ability-Aware vs Ability-Agnostic Adaptive Controller:
The second ablation study compares the tracking performance
of the proposed ability-aware adaptive controller (DA3C ) with
an ability-agnostic adaptive controller [1]. The task consid-
ers three robots manipulating an object, with 20 kg mass and
20 kg.m2 inertia (along z-axis), on a plane with a sliding friction
coefficient of 0.2. The adaptive controllers are initiated with
80% of these values. The reference control input is set to
F ∗

t = 4 ∗ [sin(0.4t), sin(0.3t)]T N. The maximum force Fmax
of each robot is set to [1.0, 1.0] N, and the constant vector δ
(see Appendix A) is set to 10% of Fmax. The object’s trajecto-
ries with ability-agnostic control (green line) and ability-aware
control (blue line) are shown in Fig. 5. For the ability-agnostic
adaptive controller, the control input (see Fig. 6) exceed the force
constraints, hence, we limit the control input to the maximum
force. This results in a significant deviation of the object’s
trajectory from the desired one (see Fig. 5). On the other hand,
given the limited capability of each robot in the ability-aware
controller (see Fig. 7) the new reference trajectory (red dashed
line) deviates from the original one (blue dashed line) according
to the control deficiency of all the robots as shown in Fig. 5. In
this way, the multi-robot system can track the modified trajectory
accurately with average tracking error 0.009 m/s and 0.013 m/s
along x-axis and y-axis, respectively.

3) DA3C With and Without Manipulability Optimization:
Here, we compare the proposed ability-aware adaptive con-
trol with and without manipulability optimization. The three

manipulators of Section V-A1) are used to manipulate the
same object as in Section V-A2). The reference trajectory is
circular and is described with vx = −0.1 ∗ π

6 ∗ sin(π6 t) m/s,
vy = 0.1 ∗ π

6 ∗ cos(π6 t) m/s and wz = 0. The nominal task el-
lipsoid is a sphere to equally allot the force capabilities along
different directions. The velocity tracking errors of the object
are shown in Fig. 8 (left). The average tracking errors along two
axes with manipulability optimization are (0.0138, 0.0143) m/s,
which outperforms (0.0138, 0.0301) m/s corresponding to the
one without. In the right part of Fig. 8, we can observe all the
control inputs along with the force limits (regions). The DA3C
with manipulability optimization regulates the robot’s configu-
ration to achieve similar force capabilities along both directions,
such that tracking performance is balanced in both directions.

B. DA3C On-the-Fly Adaptation

Here, we show that the proposed method is capable of han-
dling changes with respect to the mass of the object, the friction
coefficient and is also tolerant to faults of team members. We
consider the same circular task, where the mass of the object is
increased from 20 kg (white region 1©) to 30 kg (green region
2©) at 30 s, the friction coefficient is decreased from 0.2 (green

region 2©) to 0.1 (blue region 3©) at 50 s, and the max force of
robot B is reduced to 1/3 while robot C is shut off (purple region
4©) at 70 s. The results are shown in Fig. 9, the control inputs

of the robots increase when the object’s mass is increased and
decrease when the friction coefficient is decreased. Further, it is
worth noting that in the purple region 4©, the control input of
robot A is increased and the reference trajectory is adapted, due
to the loss of robot C and the reduced capability of robot B.

C. DA3C for Multi-Robot Collaboration

To verify the proposed DA3C framework, three heteroge-
neous robots, the torque-controlled Kuka-iiwa (A), the Franka-
panda (B), and one position-based admittance controlled mobile
manipulator (C), are used to manipulate an object on a surface
(see in Fig. 10), where both the object’s mass, and the friction
between the object and the surface are unknown. The task is
a circular motion and the maximum force for all the robots is
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Fig. 9. State of the object (1st column) and control inputs of robot A (2nd column) and robot B (3 rd column) and robot C (4th column). In region 2©, the mass
of the object is increased from 20 kg to 30 kg. In region 3©, the friction coefficient is decreased from 0.2 to 0.1, while in region 4©, the force capability of robot B
is reduced to 1/3 while robot C is shut off.

Fig. 10. A heterogeneous multi-robot team manipulates an object. The object’s circular motion is illustrated with respect to the yellow circle, which is fixed in
the world frame.

Fig. 11. Desired, modified reference and actual trajectory of the object (1st column), and desired (dashed line) and actual (solid line) end-effector forces of robot
A (2nd column), robot B (3 rd column) and robot C (4th column). By setting robot-specific safety zones (green region), the force of each robot is guaranteed not
to violate its actual limits after a few iterations.

limited to 10 N, while the constant δ (see Appendix A) are set to
1, 2, and 3 N, respectively. For the torque-controlled robots, the
feedback gainsKp,Kv in (23) are set todiag([16, 16, 16, 12, 12,
12, 12]) and diag([0.2, 0.2, 0.2, 0.1, 0.1, 0.1, 0.1]), respectively.
The interaction between the object and the robots is modelled
with a spring-damper (stiffness 5000 N/m and damping 500
Ns/m). The physical simulation and visualization are developed
in MATLAB Simscape and Simulink.

The object’s desired and actual trajectories, and the force
profiles of each robot are shown in Fig. 11. The reference
trajectory is modified according to the control deficiency, due
to the limits on the robots’ force capabilities. Robot C does not
always track the desired force accurately, due to the admittance
controller. Thus, its safety zone is set larger (green area) to
always experience forces within its limits. Also, such force
deviations introduce further unmodelled interaction forces, due
to the formed closed-chain. Yet, each robot adapts its control
gains on-the-fly to cope with these deviations too.

VI. CONCLUSION

In this letter we propose a decentralized ability-aware adaptive
control (DA3C) framework for multi-robot collaborative manip-
ulation, which can handle uncertain system parameters, input
constraints and band-limited communication. The key idea is
that the force capability of each robot is maximized by exploiting
its null-space motion, while the designed adaptive controller
enables decentralized coordination according to the capability
of each robot. The proposed method achieves accurate trajectory
tracking irrespective of the low-level controllers, and can be
used for heterogeneous fixed-base and mobile-base multi-robot
systems. An open challenge is the inclusion of joint position
limits into the ability-aware adaptive controller. In our future
work, we plan to use DA3C for human-robot co-manipulation
experiments where the access to human’s capability is not
straightforward.
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APPENDIX A
CONTROL INPUT WITH μ-MODIFICATION

The control input with μ-modification is written as

F̄ k =
1

1 + μ

(
F k + μF δ

kmaxsat

(
F k

F δ
kmax

))

=

⎧⎪⎨
⎪⎩

F k, |F k| � F δ
kmax

1
1+μ

(
F k + μF δ

kmax

)
, F k > F δ

kmax
1

1+μ

(
F k − μF δ

kmax

)
, F k < −F δ

kmax

, (24)

where μ is positive design constant, F δ
kmax = F kmax − δ, δ is

a constant vector, 0 < δ < F kmax, and F kmax is the maximum
force of robotkwhich is obtained from (15a). The corresponding
control deficiency can be calculated as

ΔF k = F kmaxsat

(
F̄ k

F kmax

)
− F k. (25)

APPENDIX B
LYAPUNOV STABILITY ANALYSIS

In order to match (19) and (20), we can choose the ideal gain
matrices K∗

xk, K∗
rk, K∗

fk, and K∗
nk according to the following

forms:

A+
K∑

k=1

BkK
∗T
xk = A∗,

K∑
k=1

BkK
∗T
rk = B∗,

−
K∑

k=1

BkK
∗T
nk = B∗, B∗K∗T

fk = Bk. (26)

According to the error dynamics in (21), we consider the
following Lyapunov function candidate:

V
(
e, K̃

)
= eTPe+

K∑
k=1

tr
(
K̃

T

xkΓ
−1
xkK̃xk

)

+

K∑
k=1

tr
(
K̃

T

rkΓ
−1
rk K̃rk

)
+

K∑
k=1

tr
(
K̃

T

nkΓ
−1
nkK̃nk

)

+
K∑

k=1

tr
(
W̃

T

φkΓ
−1
φkW̃ φk

)
+

K∑
k=1

tr
(
K̃

T

fkΓ
−1
fkK̃fk

)
.

(27)

By using the adaptive law (22), the derivative of Lyapunov
function3 decreases along the tracking error dynamics as

V̇
(
e, K̃xk, K̃rk, K̃nk, K̃fk, W̃ φk

)
= −eTQe � 0. (28)

Therefore, given a bounded reference input, we can conclude
that the system can achieve asymptotic tracking by using Bar-
balat’s Lemma.
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