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RANDOM MATRICES GENERATING LARGE GROWTH IN LU
FACTORIZATION WITH PIVOTING\ast 

DESMOND J. HIGHAM\dagger , NICHOLAS J. HIGHAM\ddagger , AND SRIKARA PRANESH\ddagger 

Abstract. We identify a class of random, dense, n \times n matrices for which LU factorization
with any form of pivoting produces a growth factor typically of size at least n/(4 logn) for large n.
The condition number of the matrices can be arbitrarily chosen, and large growth also happens for
the transpose. Previously, no matrices with all these properties were known. The matrices can be
generated by the MATLAB function gallery(flrandsvdfl,...), and they are formed as the product
of two random orthogonal matrices from the Haar distribution with a diagonal matrix having only
one diagonal entry different from 1, which lies between 0 and 1 (the ``one small singular value""
case). Our explanation for the large growth uses the fact that the maximum absolute value of any
element of a Haar distributed orthogonal matrix tends to be relatively small for large n. We verify
the behavior numerically and find that for partial pivoting the actual growth is significantly larger
than the lower bound and much larger than the growth observed for random matrices with elements
from the uniform [0, 1] or standard normal distributions. We show more generally that a rank-1
perturbation to an orthogonal matrix producing large growth for any form of pivoting also generates
large growth under reasonable assumptions. Finally, we demonstrate that GMRES-based iterative
refinement can provide stable solutions to Ax = b when large growth occurs in low precision LU
factors, even when standard iterative refinement cannot.

Key words. LU factorization, Gaussian elimination, large growth factor, partial pivoting,
rook pivoting, complete pivoting, random orthogonal matrix, Haar distribution, MATLAB, randsvd,
GMRES-based iterative refinement

AMS subject classification. 65F05

DOI. 10.1137/20M1338149

1. Introduction. The MATLAB code

rng(1), n = 750; kappa = 1e8; mode = 2;

A = gallery('randsvd',n,kappa,mode,[],[],1);
[L,U,P,\~,growth] = gep(A,'p'); growth \% Partial pivoting

produces the output

growth =

103.7971

The code uses the function gep from the Matrix Computation Toolbox [18] to compute
the growth factor for LU factorization with partial pivoting on a random n\times n matrix
A with n = 750. The growth factor is defined by

\rho n(A) =
maxi,j,k | a(k)ij | 
maxi,j | aij | 

,
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where a
(k)
ij (k = 1: n) are the elements at the kth stage of the factorization [19,

sect. 9.3], [39]. Growth of over 100 for a matrix of this size with partial pivoting is
very unusual. Unusually large growth is also obtained for the same matrix with rook
pivoting and complete pivoting:

?`?` [L,U,P,Q,growth] = gep(A,'r'); growth \% Rook pivoting

growth =

57.1362

?`?` [L,U,P,Q,growth] = gep(A,'c'); growth \% Complete pivoting

growth =

43.2643

(See [19, sect. 9.1], [34], [39] for details of all these pivoting strategies.) Large growth
factors are undesirable because they are a warning that numerical instability is likely
in the LU factorization, as originally shown by Wilkinson [39].

Several classes of matrices generating large growth factors for partial pivoting are
known. Wilkinson [39, p. 327], [40, p. 212] showed that the n\times n matrix of the form
illustrated for n = 4 by

An =

\left[    
1 0 0 1
 - 1 1 0 1
 - 1  - 1 1 1
 - 1  - 1  - 1 1

\right]    
gives \rho n = 2n - 1, which is the worst case for partial pivoting. Higham and Higham
[20] give examples of practically occurring n \times n matrices for which \rho (A) \gtrsim n/2 for
any pivoting strategy; they are all orthogonal matrices or well conditioned diagonal
scalings of orthogonal matrices. Wright [41] describes a class of two-point boundary
value problems for which the multiple shooting method leads to a linear system on
which partial pivoting suffers exponential growth. The matrix is block lower bidiag-
onal, except for a nonzero block in the top right-hand corner. Foster [10] shows that
a quadrature method for solving a practically occurring Volterra integral equation
gives rise to dense linear systems for which partial pivoting again gives growth factors
exponential in the dimension. In all these examples the matrices are well conditioned.

The matrix in our example has 2-norm condition number \kappa 2(A) = \sigma 1/\sigma n = 108

and a singular value decomposition (SVD) of the form

A = P\Sigma QT \in \BbbR n\times n, PTP = QTQ = I,(1.1a)

\Sigma = diag(1, . . . , 1, \sigma n), 1 \geq \sigma n \geq 0.(1.1b)

Here, n - 1 of the singular values of A are equal to 1, and the last one is less than or
equal to 1. The matrices P and Q are orthogonal matrices from the Haar distribution,
that is, they are distributed according to the Haar measure, which is the unique
measure on the orthogonal matrices that is invariant under multiplication on the left
and right by orthogonal matrices [31]. A Haar distributed random orthogonal matrix
can be obtained as the orthogonal QR factor of a matrix with elements from the
normal (0,1) distribution, provided that the factorization is normalized so that the
diagonal elements of R are nonnegative [3], [36].

Matrices of the form (1.1) are generated by a MATLAB function call of the
form gallery(flrandsvdfl,n,kappa,mode) with kappa = \sigma  - 1

n \geq 1 and mode = 2 (the
default value of mode is 3, which produces geometrically distributed singular values).
Figure 1.1 shows the results of an experiment in which we generated matrices this
way for dimensions n = 100: 100: 2500 and computed the growth factors for partial
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Fig. 1.1. Mean growth factors for matrices (1.1) with \kappa (A) = 102, 106, 1010 and for rand and
randn matrices, with 12 samples for each n. The black curve is n/(4 logn).

pivoting, rook pivoting, and complete pivoting. For each dimension, we generated
12 matrices and took the mean growth factor. The figure illustrates the results for
\kappa 2(A) = 102, 106, 1010. As above, we used the gep function, which computes the exact
growth factor (as opposed to the lower bound maxi,j | uij | /maxi,j | aij | that must be
used if we have access to the LU factors but not the intermediate quantities). We
used the Parallel Computing Toolbox [33] to speed up the computations. We see
that irrespective of the condition number, the growth factor increases with n at a
rate roughly proportional to n for all three pivoting strategies. Experiments with
other condition numbers confirm that the condition number has little effect on the
growth factor. The largest growth factor observed in this experiment was 497. By
contrast, for random matrices with elements from the uniform [0, 1] distribution (rand
in MATLAB) or the normal (0, 1) distribution (randn in MATLAB) the figure shows
that the growth factor for partial pivoting grows more slowly than linearly in n (as
previously observed in [38]). The curves for the minimum and maximum growth
factors are broadly similar to those for the means shown in Figure 1.1, and indeed
every growth factor for the matrices (1.1) lies above the black curve, whose significance
is explained in the following sections.

The significance of the matrices (1.1) is that they provide a new class of dense
matrices A for which
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\bullet A generates large growth for any pivoting strategy,
\bullet AT also generates large growth for any pivoting strategy, and
\bullet \kappa 2(A) is arbitrary and easily assigned by choosing \sigma n in (1.1).

The existing examples of large growth mentioned above are all well conditioned, some
produce large growth only for partial pivoting, and not all of them produce large
growth for AT .

A growth factor of order \alpha n for some constant \alpha < 1 with \alpha > 1/10 (say)
may not seem to be a serious problem, given that the worst-case growth for partial
pivoting is 2n - 1. But matrix dimensions in practical problems are increasing, with
dense linear systems of order 107 being solved on today's largest machines [4]. The
backward error bound for solution of a linear system Ax = b by LU factorization
is proportional to \rho nu, where u is the unit roundoff [19, Thm. 9.5], so growth of
order n can be problematic. Matters are exacerbated by the increasing use of low
precision arithmetics such as IEEE half precision (u \approx 5 \times 10 - 4) [24] and bfloat16
(u \approx 4\times 10 - 3) [25]. Low precision LU factorizations are being combined with iterative
refinement to achieve faster solution times [14], [15], [16], [23], and the new HPL-AI
benchmark uses this approach [8]. In low precision arithmetic large growth can even
cause overflow. Indeed, we spotted the large growth factor for randsvd matrices with
mode 2 because it led to overflow in LU factorization on these matrices in IEEE half
precision arithmetic, for which the largest finite number is of order 6\times 104 [15].

In the next section we prove that for large n, large growth typically occurs for
the matrices (1.1) with \kappa 2(A) = 1. This is the case of Haar distributed orthogonal
matrices. In section 3 we show that if an orthogonal matrix generates large growth for
any pivoting strategy then large growth persists after a random rank-1 perturbation,
under reasonable assumptions. We specialize the results to a rank-1 perturbation
of a Haar distributed orthogonal matrix, that is, matrices of the form (1.1) with an
arbitrary \kappa 2(A). In section 4 we provide an alternative analysis for the growth factor
of a rank-1 perturbation of an orthogonal matrix based on the Sherman--Morrison
formula. In section 5 we investigate the ability of mixed precision iterative refinement
to overcome the instability in LU factorization caused by large growth factors.

2. Orthogonal matrices from the Haar distribution. We first consider the
case where \sigma n = 1 in (1.1), so that A = PQT with P and Q orthogonal matrices
from the Haar distribution. Since the Haar distribution is invariant under left or
right multiplication by an orthogonal matrix, A is also Haar distributed, so we are
effectively taking a single sample from the Haar distribution.

We need the following result from [20].

Theorem 2.1. Let A \in \BbbR n\times n be nonsingular and set \alpha = maxi,j | aij | , \beta =
maxi,j

\bigm| \bigm| \bigl( A - 1
\bigr) 
ij

\bigm| \bigm| , and \theta = (\alpha \beta ) - 1. Then \theta \leq n, and for any permutation matri-

ces \Pi r and \Pi c such that \Pi rA\Pi c has an LU factorization, the growth factor for LU
factorization without pivoting on \Pi rA\Pi c satisfies \rho (A) \geq \theta .

Theorem 2.1 is used in [20] to show that for certain specific matrices that are
orthogonal, or are well conditioned diagonal scalings of orthogonal matrices, the in-
equality \rho n(A) \gtrsim n/2 holds for any pivoting strategy.

Donoho and Huo [9, Thm. VIII.1] show that for n\times n matrices A drawn from the
Haar distribution, Pr

\bigl( 
maxi,j | aij | > 2

\sqrt{} 
log(n)/n(1+ \epsilon )

\bigr) 
\rightarrow 0 as n\rightarrow \infty for any \epsilon > 0.

Jiang [27, Prop. 1] proves the stronger result that
\sqrt{} 
n/ log nmaxi,j | aij | converges in

probability to 2 as n\rightarrow \infty . We can say, then, that maxi,j | aij | is typically not larger

than 2
\sqrt{} 
log(n)/n for large n, which we write as maxi,j | aij | \lesssim 2

\sqrt{} 
log(n)/n for large
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Fig. 2.1. Growth factors for orthogonal matrices from the Haar distribution: maximum growth
factor (left) and mean growth factor (right) over 12 samples for each n. The black curve is
n/(4 logn).

n. Since A - 1 = AT , we can take \alpha = \beta = 2
\sqrt{} 

log(n)/n in Theorem 2.1 and conclude
that

(2.1) \rho n(A) \gtrsim 
n

4 log n

for large n for any pivoting strategy.
The lower bound in (2.1) is not as large as those for the orthogonal matrices and

well conditioned diagonal scalings of orthogonal matrices in [20], but those matrices
are nonrandom. Orthogonal matrices from the Haar distribution are the first class of
random orthogonal matrices to be shown to give large growth.

Figure 2.1 shows the results of an experiment in which we generated Haar distrib-
uted orthogonal matrices of dimensions n = 100: 100: 2500 and computed the growth
factors for partial pivoting, rook pivoting, and complete pivoting. For each dimension
we generated 12 matrices and we show the maximum and average growth factors. All
the growth factors in this experiment exceed n/(4 log n) by a factor of more than 5,
and they increase with n a little more rapidly than this approximate lower bound. As
expected, the growth factor for partial pivoting exceeds that for rook pivoting, which
in turn exceeds that for complete pivoting.

3. Rank-1 perturbations of orthogonal matrices. Matrices A of the form
(1.1) can be written as

(3.1) A = PQT + (\sigma n  - 1)pnq
T
n ,

where P and Q are orthogonal matrices from the Haar distribution and pn and qn
are the last columns of P and Q, respectively. So A is a rank-1 perturbation of
PQT , which is a Haar distributed orthogonal matrix and hence tends to give large
growth. Preservation of large growth under rank-1 perturbations is not limited to
Haar distributed orthogonal matrices or to the special form of the vectors making up
the rank-1 perturbation in (3.1), as we now show with an experiment.

We consider four different nonrandom orthogonal matrices W identified in [20]
that have a maximum element of at most (2/n)1/2 and produce growth factors of
at least n/2 for any pivoting strategy. Specifically, we take for W the MATLAB
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Table 3.1
Growth factors for LU factorization with partial pivoting for four orthogonal matrices

W = gallery('orthog',1000,j) and 20 rank-1 perturbations A = W + xyT with random x and
y sampled from the uniform (0, 1) or normal (0, 1) distributions and scaled so that \| x\| 2 = \| y\| 2 = 1.

Random uniform Random normal

j \rho n(W ) min \rho n(A) mean \rho n(A) max \rho n(A) min \rho n(A) mean \rho n(A) max \rho n(A)

1 5.24e+02 4.09e+02 4.79e+02 6.46e+02 4.70e+02 5.49e+02 6.80e+02
2 5.00e+02 3.85e+02 4.10e+02 4.55e+02 4.64e+02 4.71e+02 5.03e+02
5 5.63e+02 3.77e+02 4.96e+02 5.77e+02 4.70e+02 5.52e+02 8.81e+02
6 5.00e+02 3.68e+02 4.16e+02 4.68e+02 4.67e+02 4.74e+02 5.27e+02

matrices gallery(florthogfl,n,j) with j = 1, 2, 5, 6 and dimension n = 1000. We
use LU factorization with partial pivoting and show in Table 3.1 the growth factor
for W and the minimum, mean, and maximum growth factors for A = W +xyT with
20 vectors x and y having elements sampled from the uniform (0, 1) or normal (0, 1)
distributions and then scaled to have unit 2-norm. The results show at worst a minor
attenuation of the growth factor, with at least one perturbation giving an increased
growth factor for every matrix type. Another notable feature of this experiment is
that the largest element in magnitude of the upper triangular U factor was in the
(n, n) position in every case for both W and A.

3.1. Analysis for general orthogonal matrices. We wish to analyze how
element growth changes under a rank-1 update. We will initially derive a formula
that holds for a rank-1 update

(3.2) A = B + xyT

of a general nonsingular matrix B \in \BbbR n\times n, with x, y \in \BbbR n. We assume that B has an
LU factorization. We know that the U factor in the LU factorization of B \in \BbbR n\times n is
given explicitly by [19, sect. 9.2]1

uij =
det

\bigl( 
B(1: i, [1: i - 1, j])

\bigr) 
det(Bi - 1)

, 1 \leq i \leq j \leq n,(3.3)

where Bj = B(1: j, 1: j). Suppose A in (3.2) has the LU factorization A = \widetilde L\widetilde U . It is
easy to show that

(3.4) det(A) = det(B)(1 + yTB - 1x).

Now

A(1: i, [1: i - 1, j]) = B(1: i, [1: i - 1, j]) + x(1: i)y([1: i - 1, j])T ,

and hence, analogously to (3.4), assuming B(1: i, [1: i - 1, j]) is nonsingular,

det(A(1: i, [1: i - 1, j]) = det
\bigl( 
B(1: i, [1: i - 1, j])

\bigr) 
\times 
\bigl( 
1 + y([1: i - 1, j])TB(1: i, [1: i - 1, j]) - 1x(1: i)

\bigr) 
.

1We write A(u, v), where u and v are vectors of subscripts, to denote the submatrix formed from
the intersection of the rows indexed by u and the columns indexed by v.
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Similarly,
det(Ai - 1) = det

\bigl( 
Bi - 1

\bigr) \bigl( 
1 + y(1: i - 1)TB - 1

i - 1x(1: i - 1)
\bigr) 
,

so using (3.3) with B replaced by A we have

\widetilde uij =
det

\bigl( 
B(1: i, [1: i - 1, j])

\bigr) \bigl( 
1 + y([1: i - 1, j])TB(1: i, [1: i - 1, j]) - 1x(1: i)

\bigr) 
det

\bigl( 
Bi - 1

\bigr) \bigl( 
1 + y(1: i - 1)TB - 1

i - 1x(1: i - 1)
\bigr) .

Combining this equation with (3.3) we obtain

\widetilde uij

uij
=

1 + y([1: i - 1, j])TB(1: i, [1: i - 1, j]) - 1x(1: i)

1 + y(1: i - 1)TB - 1
i - 1x(1: i - 1)

.(3.5)

Now we specialize to the situation of interest,

(3.6) A = W + xyT , \| x\| 2 \leq 1, \| y\| 2 \leq 1,

where W is an orthogonal matrix. Since we found in our experiments at the start of
this section that the largest element of U in magnitude was always the (n, n) element,
we take i = j = n. Now (3.5) becomes, using W - 1 = WT ,

\widetilde unn

unn
=

1 + yTWTx

1 + y(1:n - 1)TW - 1
n - 1x(1:n - 1)

.(3.7)

We will argue that this ratio is likely to be of order 1, so that large growth for W
manifested in a large | unn| translates into a large | \widetilde unn| and hence large growth for A.
This is certainly not guaranteed; indeed, if y =  - WTx then the numerator is zero, but
such x, y, and W are specially correlated. Indeed, for (3.1) we have yTWTx = \sigma n - 1,
so for small \sigma n, (3.7) need not be of order 1. We will adapt our analysis for this case
in the next subsection.

To analyze the more typical behavior, we will assume that x is constructed as
follows, and likewise for y: let z1, . . . , zn be independent random variables from the
normal (0, 1) distribution, and set x = z/\| z\| 2. Then x and y are uniformly distributed
over the n-dimensional unit sphere [29]. We will assume that W is a fixed matrix and
will bound the expectations of the numerator and denominator in (3.7).

We need the following lemmas, in which

\mu n =

\biggl( 
2

\pi 
\bigl( 
n - 1

2

\bigr) \biggr) 1/2

+O(n - 3/2), \mu n < n - 1/2.

Lemma 3.1 (Kenney and Laub [29, Thm. 2.1, Lem. 6.1]). Let z \in \BbbR n be uni-
formly distributed over the n-dimensional unit sphere and let g \in \BbbR n be a constant
vector. Then \BbbE (| zT g| ) = \mu n\| g\| 2.

Lemma 3.2. Let x, y \in \BbbR n be independent vectors uniformly distributed over the
n-dimensional unit sphere and let B \in \BbbR n\times n be a constant matrix. Then

(3.8) \BbbE (| yTBx| ) \leq \mu n

n1/2
\| B\| F .

Proof. By Lemma 3.1, since x and y are independent,

\BbbE (| yTBx| ) = \BbbE x,y(| yTBx| ) = \BbbE x

\bigl( 
\BbbE y(| yTBx| )

\bigr) 
= \mu n \BbbE x (\| Bx\| 2) .
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As a special case of a result of Gudmundsson, Kenney, and Laub [13, Lem. 2.2] we
have

\BbbE (\| Bx\| 22) =
\| B\| 2F
n

.

Hence, by Jensen's inequality [2, p. 80],

\BbbE (\| Bx\| 2) \leq 
\| B\| F
n1/2

and the result follows.

First, we consider the numerator of (3.7). By Lemma 3.2, \BbbE (| yTWTx)| ) \leq \mu n <
n - 1/2. Hence the expected value of the numerator of (3.7) is of order 1.

Now we turn to the denominator of (3.7). Using Lemma 3.2, we have

\BbbE 
\bigl( 
| y(1:n - 1)TW - 1

n - 1x(1:n - 1)| 
\bigr) 
= \BbbE 

\bigl( \bigm| \bigm| yT diag(W - 1
n - 1, 0)x

\bigm| \bigm| \bigr) 
\leq \mu n

n1/2
\| W - 1

n - 1\| F .

By the CS decomposition (see Theorem A.1), Wn - 1 has n - 2 singular values 1 and one
singular value c \leq 1, and | wnn| = | c| . Hence \| W - 1

n - 1\| 2F = n - 2+c - 2 = n - 2+| wnn|  - 2.

From WT = W - 1 = U - 1L - 1 we have | wnn| = | unn|  - 1. Hence, using \mu n < n - 1/2, we
obtain

\BbbE 
\bigl( 
| y(1:n - 1)TW - 1

n - 1x(1:n - 1)| 
\bigr) 2 \leq \mu 2

n

n
(n - 2 + | unn| 2)

<
1

n
+
| unn| 2

n2

\leq 1

n
+

\rho 2n maxi,j | wij | 2

n2
.(3.9)

For the matrices in the example at the start of this section, this bound is approximately

1

n
+

(n2/4)(2/n)

n2
=

3

2n
.

For Haar distributed orthogonal matrices the upper bound (3.9) is approximately

1

n
+

(n/4 log n)2(4 log(n)/n)

n2
=

1

n
+

1

4n log n
.

In both cases, these quantities are much less than 1 for large n, so the expected value
of the denominator of (3.7) will be of order 1.

We have focused on the (n, n) element of U and argued that when x and y
are uniformly distributed on the unit sphere and | unn| = maxi,j | uij | we can expect
| \widetilde unn| to be of a similar order of magnitude to | unn| . This is what we observed in
the experiment at the start of this section, where the (n, n) element was always the

largest for both U and \widetilde U . If large growth is not reflected in the (n, n) element one
can consider a pair (i, j) in (3.5) for which | uij | is large. As long as i = n  - k
and j \geq n  - k with k small, the analysis generalizes. In particular, we can apply a
similar argument to the (n  - k) \times (n  - k) submatrices appearing in the numerator
(after suitable column permutations) and denominator of (3.5). A case in point is the
randsvd matrices, which we consider next.
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This analysis is for LU factorization without pivoting. If the pivoting strategy
produces an LU factorization \Pi 1A\Pi 2 = \widehat L\widehat U , with \Pi 1 and \Pi 2 permutation matri-
ces, then we can rewrite (3.2) as \Pi 1A\Pi 2 = \Pi 1B\Pi 2 + (\Pi 1x)(\Pi 2y)

T and apply the
analysis with A \leftarrow \Pi 1A\Pi 2, B \leftarrow \Pi 1W\Pi 2, x \leftarrow \Pi 1x, and y \leftarrow \Pi 2y. Since we are
interested in orthogonal W for which large growth is obtained for any pivot sequence,
our conclusions are unaffected.

3.2. Analysis for randsvd matrices. We now consider matrices A of the form
(1.1) with P and Q from the Haar distribution, which we recall from (3.1) can be
written as

(3.10) A = PQT + (\sigma n  - 1)pnq
T
n ,

where pn and qn are the last columns of P and Q, respectively. Since W = PQT

is Haar distributed, it typically gives a large growth factor for large n, as shown
in section 2. However, this large growth is not usually reflected in unn when \sigma n is
small. Indeed, A has just one nonunit singular value, \sigma n, and PA = LU implies
\pm \sigma n = det(A) = det(U) = u11 . . . unn; for \sigma n \ll 1, the pivoting strategy will tend to
produce a rank revealing factorization, which in this context means one with a well
conditioned leading principal (n - 1)\times (n - 1) submatrix and hence a small | unn| .

However, in the experiment with randsvd matrices reported in section 1, large
growth was always observed in the (n  - 1, n  - 1) element of U ; indeed, the ratio
| un - 1,n - 1| /maxi,j | uij | exceeded 0.5 and 0.1 in 82 percent and 98 percent of the cases,
respectively. We therefore set i = j = n - 1 in (3.5) to obtain

\widetilde un - 1,n - 1

un - 1,n - 1
=

1 + y(1:n - 1)TW - 1
n - 1x(1:n - 1)

1 + y(1:n - 2)TW - 1
n - 2x(1:n - 2)

.(3.11)

The numerator is the same as the denominator in (3.7), and the denominator has an
analogous form. Therefore in (3.10) we take x = (\sigma n  - 1)pn and y = qn. For large n,
the vectors pn and qn have components that are approximately normally distributed
random variables with mean 0 and standard deviation n - 1/2 [12], [27, Cor. 1], so
they are approximately uniformly distributed on the unit sphere. The analysis of
section 3.1 therefore gives insight into why the ratio (3.11) is typically of order 1 and
hence why A inherits a large growth factor from PQT .

Experiments show that Haar distributed orthogonal matrices maintain large
growth under a wider class of rank-1 perturbations than (3.10). Figure 3.1 plots
growth factors for partial pivoting for A = W + xyT , with W an orthogonal ma-
trix from the Haar distribution and x and y generated with elements from the uni-
form distribution on [0, 1] and then scaled so that \| x\| 2 = \| y\| 2 = 1. For each
n = 100: 100: 2500 we generated 12 random A and took the mean growth factor.
We see that the growth factors for A are very similar to those for W .

It is interesting to note that, unlike for (3.10) with small \sigma n, A = W +uvT is very
well conditioned when u and v are random unit 2-norm vectors with independent
entries from the same distribution. Indeed, Benaych-Georges and Nadakuditi [1,
sect. 3.2] show that, almost surely

\sigma 1(A)\rightarrow 1 +
\surd 
5

2
, \sigma n(A)\rightarrow  - 1 +

\surd 
5

2
as n\rightarrow \infty ,

and we know that the other n  - 2 singular values remain at 1 (because the singular
values are the square roots of the eigenvalues of ATA, which is the identity plus a
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Fig. 3.1. Mean growth factors for partial pivoting on orthogonal matrices W from the Haar
distribution and on A = W + xyT , where x and y are generated with elements from the uniform
distribution on [0, 1] and then scaled so that \| x\| 2 = \| y\| 2 = 1. The mean is over 12 matrices A and
W for each n. The black curve is n/(4 logn).

rank-2 matrix). Hence \kappa 2(A) \approx (1 +
\surd 
5)/( - 1 +

\surd 
5) \approx 2.8 for large n. In the

experiment just mentioned the values of \kappa 2(A) were all on the interval [2.49, 2.93].
We mention some further matrices that generate large growth and are related to

those we have considered. Matrices of the form (1.1a) with arithmetically distributed
singular values are found to produce large growth in [15], though these are not low
rank updates of orthogonal matrices. A referee reported experimental evidence that
matrices of the form (1.1a) whose first n  - 1 singular values are exponentially dis-
tributed on [0, 1/2] with \sigma n \ll 1/2 give large growth. We have also observed that
large growth is preserved under rank-k perturbations of Haar distributed orthogonal
matrices for k \geq 1, with the growth factor decreasing as k increases.

4. Analysis via the Sherman--Morrison formula. In section 3 we used the
explicit characterization (3.3) of U in order to study growth factors for rank-1 per-
turbations xyT of orthogonal matrices, focusing on the case where \| x\| 2 \leq 1 and
\| y\| 2 \leq 1. In this section we look at rank-1 perturbations of orthogonal matrices
from a different perspective, applying the Sherman--Morrison formula and then mak-
ing use of the indirect bound from Theorem 2.1. We will show that growth of order
n/(4 log(n)) typically arises for large n for any rank-1 perturbation xyT of a Haar
distributed orthogonal matrix whenever the vectors x and y have 1-norm bounded by
1 and have elements of roughly uniform magnitude. We need the following general
result.

Theorem 4.1. Let

(4.1) A = W + txyT ,

where W \in \BbbR n\times n is orthogonal, t \in [0, 1], and x, y \in \BbbR n satisfy \| x\| 1 \leq 1 and
\| y\| 1 \leq 1. Let

\alpha w = max
i,j
| wij | ,

and suppose that \alpha w < 1. Then A is nonsingular and, for any pivoting strategy
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producing an LU factorization for A, the growth factor satisfies

(4.2) \rho n(A) \geq 1 - t\alpha w

\alpha w (\alpha w + t\| x\| \infty \| y\| \infty )
.

Proof. Since W is orthogonal, the Sherman--Morrison formula [17] gives

(4.3) A - 1 = WT  - tWTxyTWT

1 + tyTWTx
.

Using the H\"older inequality (| fT g| \leq \| f\| \infty \| g\| 1), we have

max
k
| WTx| k \leq \alpha w, max

k
| Wy| k \leq \alpha w.

Also, | yTWTx| \leq \alpha w < 1, which confirms that the denominator in (4.3) is nonzero
and hence that A is nonsingular, and indeed\bigm| \bigm| \bigm| \bigm| tWTxyTWT

1 + tyTWTx

\bigm| \bigm| \bigm| \bigm| 
ij

\leq t\alpha 2
w

1 - t\alpha w
.

Hence, in (4.3),

max
i,j
| A - 1| ij \leq \alpha w +

t\alpha 2
w

1 - t\alpha w
=

\alpha w

1 - t\alpha w
.

Using this bound in Theorem 2.1, along with maxi,j | aij | \leq \alpha w + t\| x\| \infty \| y\| \infty , we
arrive at (4.2).

In the case where W is an orthogonal matrix from the Haar distribution, we have
\alpha w \lesssim 2

\sqrt{} 
log(n)/n for large n, as noted in section 2. In this case, Theorem 4.1 gives

(4.4) \rho (A) \gtrsim 
1

4 log(n)/n+ 2t
\sqrt{} 

log(n)/n\| x\| \infty \| y\| \infty 
.

So if

(4.5) t\| x\| \infty \| y\| \infty = o(
\sqrt{} 

log(n)/n)

we obtain

(4.6) \rho n(A) \gtrsim 
n

4 log n
,

which matches the bound (2.1) for the unperturbed case. Under the constraints
\| x\| 1 \leq 1 and \| y\| 1 \leq 1, the additional requirement (4.5) will hold for any 0 \leq t \leq 1
when the vectors x and y have elements of roughly equal magnitude, because then
\| x\| \infty \approx \| y\| \infty \approx 1/n.

Now we consider two particular random choices of x and y.
If vectors u and v are constructed by drawing elements independently from the

uniform [0,1] distribution then each element has mean 1/2, so \| u\| 1 \approx n/2, and
likewise for v. Let x = u/\| u\| 1, y = v/\| v\| 1, and t = 1. Then \| x\| 1 = \| y\| 1 = 1
and \| x\| \infty \approx \| y\| \infty \approx 2/n, so (4.5) is satisfied and hence (4.6) holds.

Now let x = u/\| u\| 1 and y = v/\| v\| 1, where u and v are columns of Haar distrib-
uted orthogonal matrices. For large n, the vectors u and v have components that are
approximately independent normally distributed random variables with mean 0 and
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standard deviation n - 1/2 [27, Cor. 1], [28, Thm. 3]. Since the mean of the absolute
value of a standard normal random variable is (2/\pi )1/2 [30, eq. (3)], the 1-norms of
u and v have means approximately (2/\pi )1/2n. Moreover, the \infty -norm of a random
vector z \in \BbbR n with independent standard normal components has mean and variance
bounded above by terms of order

\surd 
log n and log n, respectively [7, Appendix A]; an

application of the Chebyshev inequality [2, p. 80] then allows us to bound \| z\| \infty by
order

\surd 
n log n with high probability. Identifying u and v with z/

\surd 
n, we find that

x and y both have \infty -norms bounded above by order log n/n with high probability
whence, with t = 1, (4.5) and (4.6) follow.

Theorem 4.1 also shows that existing growth factor bounds obtained for orthogo-
nal matrices, such as those in [20], are essentially unchanged under appropriate rank-1
perturbations.

We note that Theorem 4.1 constrains the 1-norms of x and y. Since the 1-norm is
generally larger than the 2-norm, this Sherman--Morrison-based analysis complements
rather than replaces that in section 3.

5. Curing instability with mixed precision iterative refinement. When
an LU factorization of A suffers large growth and we use the factorization to solve
Ax = b, the solution usually (but not always [20]) has a correspondingly large back-
ward error. Suppose A is one of the types of matrix identified in this paper that has
an LU factorization with a large growth factor; how can we obtain a backward stable
solution to Ax = b using this factorization? The natural answer is to apply iterative
refinement. Indeed, it has been known since the 1970s that iterative refinement can
cure instability in LU factorization [26], [35].

A recent usage of iterative refinement is with the LU factorization computed at a
lower precision than the working precision, with residuals possibly computed in extra
precision, and with the refinement equation solved either by substitution using the
LU factors (denoted LU-IR) or by GMRES using the LU factors as preconditioners
(known as GMRES-IR). GMRES-IR was proposed by Carson and Higham in [5], [6],
and the analysis therein (notably [6, Thm. 4.1]) implies that it can tolerate instability
in the factorization provided that the convergence of GMRES is not hindered by a
lower quality preconditioner. Element growth is likely to reduce the quality of the
preconditioner, so it is of interest to test experimentally the effect of a large growth
factor on the convergence of GMRES.

We present an experiment in which we used mode 2 gallery(flrandsvdfl) matri-
ces (that is, matrices of the form (1.1)) of varying dimensions, and \kappa 2(A) = 102 and
\kappa 2(A) = 107. The iterative refinement algorithms that we use are characterized by a
triple of precisions (p1, p2, p3), where p1 is the precision at which the LU factorization
is computed, p2 is the working precision, and p3 is the precision at which the residual
is computed. We consider three precision combinations (H, S, D), (H, D, D), and (S,
D, D), where H, S, and D denote half precision (u \approx 4.88 \times 10 - 4), single precision
(u \approx 5.96 \times 10 - 8), and double precision (u \approx 1.11 \times 10 - 16), respectively. Half pre-
cision computations are performed using the chop function2 of Higham and Pranesh
[22]. The right-hand side vector is generated using randn. Iterative refinement is
terminated when

\| b - A\widehat x\| \infty 
\| b\| \infty + \| A\| \infty \| \widehat x\| \infty \leq nu,

where the left-hand side is the relative backward error, and u is the unit roundoff

2https://github.com/higham/chop
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Table 5.1
Total number of iterative refinement steps in standard iterative refinement (LU-IR) and in

GMRES-IR for different precision combinations for \kappa 2(A) = 102. Numbers in parentheses denote
the total number of GMRES iterations.

(H, S, D) (H, D, D) (S, D, D)

n LU-IR GMRES-IR LU-IR GMRES-IR LU-IR GMRES-IR

500 1 2 (2) 5 3 (6) 2 2 (2)
750 1 1 (1) 5 3 (6) 2 2 (2)
1000 1 1 (1) 6 3 (6) 2 2 (2)
1250 1 2 (2) 6 3 (6) 2 2 (2)
1500 1 1 (1) 5 3 (6) 2 2 (2)
1750 1 1 (2) 5 3 (6) 2 2 (2)
2000 1 1 (1) 6 3 (6) 2 2 (2)
2250 1 1 (2) 6 3 (7) 2 2 (2)
2500 1 1 (2) 6 2 (6) 2 2 (2)

Table 5.2
Growth factors for partial pivoting and condition number of left preconditioned matrix for

\kappa 2(A) = 102.

\kappa \infty (\widehat U - 1\widehat L - 1A)

n \rho n (H, S, D) (H, D, D) (S, D, D)

500 44.61 6.44e+00 6.44e+00 1.00
750 92.63 8.43e+00 8.43e+00 1.00
1000 221.61 1.59e+01 1.59e+01 1.00
1250 125.77 2.13e+01 2.13e+01 1.00
1500 167.26 2.09e+01 2.09e+01 1.00
1750 349.38 3.31e+01 3.31e+01 1.00
2000 170.52 3.91e+01 3.91e+01 1.01
2250 256.11 5.41e+01 5.41e+01 1.01
2500 248.20 6.45e+01 6.45e+01 1.01

of the working precision. The inner GMRES iterations are terminated based on
a backward error criterion for the preconditioned system with tolerances 10 - 2 and
10 - 4 for working precisions of single and double, respectively, and a maximum of 20
iterative refinement steps are performed. In practice, we hope for convergence in a
handful of iterative refinement steps, but we allow more in order to explore the speed
of convergence for different problems and the two methods.

Table 5.1 shows the convergence for \kappa 2(A) = 102 and Table 5.2 shows the growth
factors and condition numbers. Tables 5.3 and 5.4 give the corresponding information
for \kappa 2(A) = 107. We need \kappa \infty (A)u sufficiently less than 1 to guarantee convergence

of LU-IR and \kappa \infty (\widehat U - 1\widehat L - 1A)u sufficiently less than 1 to guarantee convergence of
GMRES-IR [6].

Both LU-IR and GMRES-IR successfully solve the problems with \kappa 2(A) = 102.
For \kappa 2(A) = 107, LU-IR fails to converge in several instances, whereas GMRES-IR
always converges within three iterative refinement steps, even though the condition
guaranteeing convergence is not satisfied for (H, S, D). This behavior is consistent
with the theory [6]. The important finding is that the inner GMRES solves converge
in a modest number iterations, which shows that the large growth does not inhibit the
ability of the computed low precision LU factors to act as effective preconditioners
for GMRES.

We note that the convergence of the refinement could be enhanced by improving
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Table 5.3
Total number of iterative refinement steps in standard iterative refinement (LU-IR) and in

GMRES-IR for different precision combinations for \kappa 2(A) = 107. Numbers in parentheses denote
the total number of GMRES iterations. ``--"" denotes that iterative refinement failed to converge.

(H, S, D) (H, D, D) (S, D, D)

n LU-IR GMRES-IR LU-IR GMRES-IR LU-IR GMRES-IR

500 -- 2 (3) -- 3 (10) 12 3 (5)
750 4 1 (2) -- 3 (10) -- 3 (5)
1000 6 3 (7) 17 3 (13) -- 2 (4)
1250 16 2 (3) -- 4 (16) 16 3 (5)
1500 2 1 (2) 19 3 (12) 12 3 (5)
1750 2 1 (2) -- 3 (12) 19 3 (5)
2000 2 1 (2) 18 3 (12) 19 3 (5)
2250 3 1 (2) -- 2 (8) -- 3 (5)
2500 -- 3 (9) -- 3 (13) -- 2 (4)

Table 5.4
Growth factors for partial pivoting and condition number of left preconditioned matrix for

\kappa 2(A) = 107.

\kappa \infty (\widehat U - 1\widehat L - 1A)

n \rho n (H, S, D) (H, D, D) (S, D, D)

500 53.29 3.31e+10 3.30e+10 2.32e+03
750 103.80 3.60e+10 3.62e+10 3.33e+03
1000 90.27 8.96e+10 9.07e+10 4.84e+03
1250 102.03 1.58e+11 1.57e+11 1.72e+04
1500 178.48 1.24e+11 1.23e+11 1.51e+04
1750 186.22 2.10e+11 2.11e+11 3.31e+04
2000 321.61 2.49e+11 2.50e+11 1.48e+04
2250 349.27 3.85e+11 3.84e+11 3.28e+04
2500 188.25 3.95e+11 3.97e+11 1.34e+05

the preconditioner using a correction term based on an inexpensive estimate of the
error in the factorization, as proposed by Higham and Mary [21].

6. Conclusions. The matrices (1.1) tend to produce growth factors in LU fac-
torization of order n/ log n for any pivoting strategy. Although these matrices are
readily generated by the MATLAB randsvd function (albeit not with the default
value of the mode parameter), this property appears to have gone unnoticed. The
large growth stems from two properties. First, a random orthogonal matrix from
the Haar distribution has relatively small elements with high probability for large n,
which implies that the growth factor must be large for any pivoting strategy by a
result from [20]. Second, if W is an orthogonal matrix that gives large growth for any
pivoting strategy then a rank-1 perturbation of norm at most 1 to W tends to preserve
large growth. We have given two explanations for this second property, one based on
a determinantal formula for the elements of U and the other based on the Sherman--
Morrison formula. The rank-1 perturbation allows the matrix to be given any 2-norm
condition number, resulting in the class (1.1) of matrices with large growth and an
arbitrary condition number.

With matrix dimensions in practical problems growing ever larger, and low pre-
cision arithmetic becoming increasingly prevalent, growth of order n/ log n in LU
factorization can render the solution to a linear system unstable. Fortunately, iter-
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ative refinement is able to cure the instability, and we found that the performance
of GMRES-IR, which uses the low precision computed LU factors as preconditioners
for a GMRES-based solution to the correction equations, is unaffected by the lower
quality computed LU factors.

Appendix A. The CS decomposition. We state here the CS decomposition
with square diagonal blocks. For more details (including the most general form of the
CS decomposition) see, e.g., Golub and Van Loan [11, p. 85], Paige and Wei [32], or
Stewart and Sun [37, sect. 5.1].

Theorem A.1. Let W \in \BbbR n\times n be orthogonal, and let k \leq n/2. There exist
orthogonal matrices U1, V1 \in \BbbR (n - k)\times (n - k) and U2, V2 \in \BbbR k\times k such that

\biggl[ n - k k

n - k W11 W12

k W21 W22

\biggr] 
=

\biggl[ 
V1 0
0 U2

\biggr] \left[   In - 2k 0 0
0 C S

0 S  - C

\right]   \biggl[ 
U1 0
0 V2

\biggr] T
,

where C = diag(c1, . . . , ck) and S = diag(s1, . . . , sk) with ci \geq 0, si \geq 0, and c2i +s2i =
1 for all i.
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