
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An argumentation-based approach to generate domain-specific
explanations

Citation for published version:
Kokciyan, N, Parsons, S, Sassoon, I, Sklar, E & Modgil, S 2021, An argumentation-based approach to
generate domain-specific explanations. in Multi-Agent Systems and Agreement Technologies (EUMAS
2020). Lecture Notes in Computer Science, vol. 12520, Springer, Cham, 17th European Conference on
Multi-Agent Systems, Virtual Conference, 14/09/20. https://doi.org/10.1007/978-3-030-66412-1_20

Digital Object Identifier (DOI):
10.1007/978-3-030-66412-1_20

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Multi-Agent Systems and Agreement Technologies (EUMAS 2020)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Jul. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/386557121?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-030-66412-1_20
https://doi.org/10.1007/978-3-030-66412-1_20
https://www.research.ed.ac.uk/en/publications/136bf2d6-37b9-45f0-8df1-44c79d1240bb


An argumentation-based approach to generate
domain-specific explanations

Nadin Kökciyan1, Simon Parsons2, Isabel Sassoon3, Elizabeth Sklar2, and
Sanjay Modgil4

1 University of Edinburgh, UK nadin.kokciyan@ed.ac.uk
2 University of Lincoln, UK {sparsons,esklar}@lincoln.ac.uk
3 Brunel University, London, UK isabel.sassoon@brunel.ac.uk

4 King’s College London, UK sanjay.modgil@kcl.ac.uk

Abstract. In argumentation theory, argument schemes are constructs
to generalise common patterns of reasoning; whereas critical questions
(CQs) capture the reasons why argument schemes might not generate
arguments. Argument schemes together with CQs are widely used to in-
stantiate arguments; however when it comes to making decisions, much
less attention has been paid to the attacks among arguments. This paper
provides a high-level description of the key elements necessary for the for-
malisation of argumentation frameworks such as argument schemes and
CQs. Attack schemes are then introduced to represent attacks among
arguments, which enable the definition of domain-specific attacks. One
algorithm is articulated to operationalise the use of schemes to generate
an argumentation framework, and another algorithm to support decision
making by generating domain-specific explanations. Such algorithms can
then be used by agents to make recommendations and to provide expla-
nations for humans. The applicability of this approach is demonstrated
within the context of a medical case study.

Keywords: Computational argumentation · Explainability · Human-
agent systems.

1 Introduction

In recent years, artificial intelligence (AI) has made an increasing impact on
decisions taken in day to day life. Many AI systems involve black-box models that
make decisions on behalf of humans often without providing any explanations.
This is problematic since AI does not always make fair or correct decisions [14].
There is an increasing focus on developing techniques to help humans to make
better decisions while being assisted by AI models [20]. In situations where
there are multiple recommendations and the decision as to what action to take
depends on a human, then being able to reason with the justifications for the
recommendations becomes crucial.

Computational argumentation [26], a well-founded logic methodology with
roots in philosophy, has been applied in AI and multi-agent systems as a (struc-
tured) technique for reasoning in which conclusions are drawn from evidence



2 N. Kökciyan et al.

that supports the conclusions. Users find examining the arguments behind a
recommendation to be helpful [28]. This makes a strong case for basing decision-
support systems around argumentation to assist humans in making informed
decisions. The fact that the General Data Protection Regulation [6] requires
transparency for any automated decisions, further strengthens this case.

In existing argumentation-based approaches, an agent constructs an argu-
mentation framework based on the information in its knowledge base; and com-
putes a set of acceptable arguments. Most of the times, an acceptable argument
does not provide any additional information such as why it was deemed to be
acceptable. Furthermore, there is little information about the defeated argu-
ments [7,32]. To provide such information requires a representation for attacks
among arguments. Such a representation can give a better understanding of why
certain decisions are made by agents.

On the other hand, it is common to carry out knowledge acquisition using ar-
gument schemes (AS) and critical questions (CQs) [1,29,17]. Argument schemes
are a means to compactly represent all the arguments that may be generated
in different situations; whereas CQs are a way of capturing all the reasons why
argument schemes might not generate arguments, either as pre-conditions to the
construction of arguments, or as a way of formulating counter-arguments. De-
spite the popularity of the argument schemes and critical questions approach,
there is no consensus on a formal representation of these elements, nor on an
approach to construct an argumentation framework (AF), in the sense of [4],
and there is no clear method to use these elements to create explanations, what
we term “explainability by design”.

In this paper, we make the following contributions: (i) we propose a formal
representation of arguments through their respective argument schemes and crit-
ical questions; (ii) we introduce the notion of attack schemes to account for the
conflicts between arguments in a given domain; (iii) we propose one algorithm
to construct an argumentation framework for decision support; and another al-
gorithm to provide explanations for acceptable arguments and attacks by the
use of explanation templates. Such algorithms can help agents to reason about
(possibly conflicting) information, make a decision and explain this to humans.
The rest of the paper is as follows. Section 2 discusses related work. In Section 3,
we introduce a high-level description of AFs that support explainability; and we
propose algorithms to construct AFs and explanations automatically. Sections 4
and 5 introduce a medical scenario from the hypertension domain to show the
applicability of our approach. Section 6 concludes and details future directions.

2 Related work

Argumentation has been applied to many domains including medicine [8,10,17],
multi-agent systems [1,28,18] and legal reasoning [24,11]. We now focus on the
application of argumentation to support decision making.

Argument schemes and their associated critical questions are often mod-
elled as defeasible inference rules. Prakken et al. model legal cases as argument



An argumentation-based approach to generate domain-specific explanations 3

schemes together with their associated undercutting attacks within the ASPIC+
framework [24]. Similar to us, they model CQs as argument schemes that can be
challenged by other CQs. Atkinson et al. propose an argumentation-based ap-
proach to reason with defeasible arguments [2]. Unlike us, the above authors do
not provide a formal representation for the CQs, but they use CQs to manually
construct arguments in natural language.

Various argumentation-based approaches focus on the medical domain and
determining treatment options. Tolchinsky et al. propose an agent-based archi-
tecture, Carrel+, to help transplant physicians in deliberating over organ viabil-
ity [29]. Gordon and Walton generalise Dung’s abstract argumentation frame-
works [4] such that the arguments have weights to help one to choose among al-
ternative options [12]. Similar to us, they provide a formal model of a structured
argument. However, in addition, we model different types of attacks through at-
tack schemes and use explanation templates to explain the decisions that agents
make in a specified domain. Glasspool et al. [9] construct and evaluate pro and
con arguments on different treatment options independently. ArguEIRA [13] is
an ASPIC based clinical decision support system aimed at detecting a patient’s
anomalous reaction to a medication.

Some work combines argumentation with explanations. Kakas, Moraitis and
Spanoudakis propose an approach to take scenario-based preferences in a tabular
format, and to translate these preferences into a Gorgias argumentation theory
and code automatically [15]. Rago, Cocarascu and Toni propose an application
of Tripolar argumentation frameworks to support argumentation based explana-
tions in recommender systems [25]. The method relies on visual representations
of the argumentation frameworks, which includes supporting and attacking argu-
ments, and allows users to tweak the recommendations. Unlike our work, neither
of these approaches provides a natural language explanation. In addition, we be-
lieve that whilst arguments can encapsulate premises and claims, even in the
case where these are instantiated through the use of argument schemes, simply
putting forward extensions or collections of arguments falls short of constituting
an explanation [20]. We believe that our approach of using explanation templates
to translate the contents of an argument and attack into a structured form of
natural language is a promising step towards creating good explanations [27].

In [21], Modgil and Bench-Capon explore the idea of attacking the attacks
in AFs at the meta-level. Here, we focus on reasoning in the object-level. In
both approaches, we can include arguments that represent human preferences
and values to attack the attacks. We plan on exploring a comparison of different
approaches in future work.

3 A formal model to represent argumentation frameworks

This section contains the main contribution of this paper, which is a high-level
formal representation of an argumentation framework. This representation can:
(i) be implemented in various ways (e.g. logic-based systems, in any programming
language), (ii) enable the sharing of domain-specific knowledge across domains,



4 N. Kökciyan et al.

(iii) add explainability by design, where explanation templates are part of the
model to generate domain-specific explanations. We then articulate algorithms so
that agents can construct argumentation frameworks and generate explanations.

3.1 Formal model

We capture the semantics of an argument scheme in Definition 1. The premises
and the conclusion are sentences, which can be represented in a logical language
L. Each of these sentences includes variables, which are then instantiated with
elements of this language. We give an example of an argument scheme from the
medical domain, Argument Scheme for a Proposed Treatment (ASPT) [17], in
Table 1. ASPT represents an argument in support of each possible treatment
TR within the current treatment step S, given the patient’s treatment goal G to
be realised. In the remaining of the paper, we will use the auxiliary function
Var(AS) to refer to the set of variables used in AS.

Definition 1 (Argument Scheme). AS = 〈P, c, V 〉 denotes an argument
scheme, where P is a set of premises, c is the conclusion, and P∪{c} ⊆ L.
V is the set of variables used in the argument scheme.

Table 1: Argument Scheme for a Proposed Treatment (ASPT) [17]
ASPT=〈{p1, p2, p3}, c, {G,TR, S}〉
p1: Bringing about G is the goal.
p2: Treatment TR promotes the goal G.
p3: Treatment TR is indicated at step S.
c: Treatment TR should be offered.

An argument scheme can be associated with a set of critical questions (CQs)
which provide reasons why that argument scheme might not generate arguments.
We define CQs to themselves be argument schemes as suggested in [24,29]. We
do not consider CQs to be part of a given argument scheme since this allows
a CQ to be used by multiple argument schemes. We capture this structure in
Definition 2.

Definition 2 (ASCQ). ASCQ : AS → 2AS, is a function mapping an argu-
ment scheme to a set of argument schemes that represent the CQs of the original
argument scheme.

A knowledge base (KB) is the information store of an agent that includes
premises, rules and the relationships between schemes, as captured in Defini-
tion 3. R is the set of rules written using the elements of the logical language.
Rules and premises can be strict, in which case they admit no exceptions (we call
strict premises “axioms”). For example, factual information about a patient may
be considered to be axioms. Rules and premises can also be defeasible, in which



An argumentation-based approach to generate domain-specific explanations 5

case they allow exceptions. Thus defeasible rules and facts can be falsified based
on evidence. For example, argument schemes can be represented as defeasible
rules, as we do in this paper, so that they represent tentative inferences that can
be overturned. KB also has information about CQ relations among argument
schemes as described via the ASCQ function.

Definition 3 (Knowledge Base). KB = 〈P,R,ASCQ〉 denotes a knowledge
base; where P is the set of premises (e.g. facts), R is the set of rules and ASCQ
is the function as described in Definition 2.

Arguments are constructed by instantiating each argument scheme according
to ground terms that exist in the KB (i.e. terms that do not contain any free
variables) (Definition 4). All the variables in AS are replaced with the ground
terms to construct an argument (Definition 5). The notation [X] will be used to
denote the name of the scheme X (e.g. type of an argument).

Definition 4 (Argument Scheme Instantiation). ASi = 〈AS,G,KB〉 de-
notes an instantiation of the AS with G⊆L in the knowledge base KB, AS{vi 7→
gi} for all i = 1, .., k where k is the size of Var(AS), vi is the ith element
in Var(AS) and gi is the ith element in G. Prem(ASi) returns the set of in-
stantiated premises AS.P; Conc(ASi) returns the instantiated conclusion AS.c;
Gr(ASi) returns the set of pairs (vi,gi); and Gr(ASi)(vi) returns gi.

Definition 5 (Argument). [AS]argi = 〈Prem(ASi),Conc(ASi)〉 is an argu-
ment, which is derived from the argument scheme instantiation ASi.

Attacks among arguments are critical components of argumentation. In early
works, attacks were defined syntactically, with an attack being between a formula
and its negation. The well-known argumentation system ASPIC+ generalises this
idea with the notion of a contrary function, which defines the set of formulae that
conflict with a formula [22]. There are three forms of attacks among arguments:
(i) a fallible premise of an argument can be attacked (undermining), (ii) the con-
clusion of a defeasible rule can be attacked (rebuttal), and (iii) a defeasible rule
can be attacked as a whole (undercutting), for example denying its applicability
in a particular setting.

While modelling well-known attacks is important, we introduce attack schemes
(Definition 6) to: (i) provide flexibility to capture all the ways in which an at-
tack may arise between two arguments, and (ii) explain the existence of attacks
among arguments. This new representation allows for specific, domain depen-
dent, forms of attack, such as drug contra-indications or the guideline conflicts
of [31], as well as domain-independent attacks, such as undercuts.

Definition 6 (Attack Scheme). ATS = 〈 {p1, p2} ∪P , c, V 〉 denotes an
attack scheme with P∪{c} ⊆ L; where p1 is an argument of type X, p2 is an
argument of type Y, P is a set of premises, c is the conclusion of the form ‘p1
attacks p2’ and V = Var(X) ∪ Var(Y ). X and Y can be same type.



6 N. Kökciyan et al.

Table 2: The attack schemes Tcq and ALT

(a) An undercutting attack

Tcq=〈{p1, p2, p3}, c, Var(X) ∪ Var(Y ) 〉
p1: An argument of type X.
p2: An argument of type Y.
p3: X challenges Y (i.e. X ∈ ASCQ(Y)).
c: p1 attacks p2.

(b) Attack between ASPT Arguments

ALT=〈{p1-p5}, c, {A.TR,B.TR, S}〉
p1: A is an argument of ASPT
p2: B is an argument of ASPT
p3: A.TR is offered at step S.
p4: B.TR is offered at step S.
p5: A.TR is an alternative to B.TR.
c: A attacks B.

Table 2 shows two different attack types. In Table 2a, we provide the attack
scheme Tcq to represent an undercutting attack between two arguments, where
the argument scheme X is a critical question of Y . Note that each argument
scheme can be represented as a defeasible rule in the knowledge base. Therefore,
challenging one argument through a critical question would mean an undercut-
ting attack. Table 2b gives an example of a domain-specific attack scheme, where
an attack exists between two arguments because two treatments promoting the
same goal are alternatives to each other. Definition 7 captures the idea of an
attack, which is constructed when an attack scheme is initialised.

Definition 7 (Attack). [ATS]atti = 〈Prem(ATSi),Conc(ATSi)〉 is an attack,
which is derived from the attack scheme instantiation ATSi.

We make use of Dung’s abstract argumentation framework [4], captured in
Definition 8, to evaluate the arguments and attacks generated by the schemes
in a KB. In a Dung AF, the idea is represent arguments as nodes, and attacks
among them with arrows in a directed graph; it is abstract in the sense that the
internal structure of arguments and attacks is not defined.

Definition 8 (Dung Argumentation Framework, Dung AF). A Dung AF
is a tuple 〈A′,R′〉, where A′ is the set of arguments and R′ ⊆ A′×A′ is a relation
such that for arguments a and b, (a, b) ∈ R′ iff {a, b}⊆ A′ and a attacks b.

Having defined the notions of argument and attack in a structured way previ-
ously, we can map these concepts into a Dung AF (Definition 9). The aim of
this translation will be to compute acceptable arguments in the structured AF
that we construct. Note that Prem(x)[i] returns the ith premise of x, where x is
a scheme instantiation.

Definition 9 (Argumentation Framework, AF). An argumentation frame-
work is a tuple 〈A,R〉, where A and R are, respectively, the set of arguments
(Definition 5) and the set of attacks (Definition 7). The mapping to a Dung AF
〈A′,R′〉 is as follows: A′ = A; R′ = {(Prem(r)[0],Prem(r)[1]) | r ∈ R}.

Given a Dung AF, it is typical to evaluate it by computing the acceptable
arguments according to the chosen Dung semantics [3,4]. For example we might



An argumentation-based approach to generate domain-specific explanations 7

use the grounded or the preferred semantics. The grounded semantics is sceptical
in the sense that one can only accept arguments that cannot be rejected for
any reason; whereas one can accept mutually exclusive alternative arguments
(each set represented in different extensions) while using preferred semantics.
Under the chosen semantics, the acceptable arguments are the ones that can
be considered to hold for that AF. In this paper, we introduce the idea of an
acceptable attack in Definition 10.

Definition 10 (Acceptable attack). An attack is acceptable, if ∀r ∈ R,
Prem(r)[0] is an acceptable argument in Dung AF, R being the set of attacks.

We distinguish such attacks because we believe that they are key to understand-
ing, and explaining why a particular set of arguments is acceptable. More than
one extension may hold when evaluating an AF under the chosen semantics
such as the preferred semantics. Therefore, each extension will consist of a pair
of acceptable arguments and attacks. Definition 11 captures this.

Definition 11 (Acceptability). ACC = 〈AF,S〉 denotes the set of (Aarg, Aatt)i
where: S is the chosen semantics to evaluate AF , (Aarg, Aatt)i is the pair of ac-
ceptable arguments and attacks in the ith extension of AF .

Now that we have the sets of acceptable arguments and attacks, we can
use argument and attack schemes to give rationales behind the existence of
arguments and attacks within the argumentation framework. The basic idea is
to map the acceptable arguments and attacks into the explanation templates that
we introduced in [27]. Definition 12 captures the idea of an explanation template
for an argument scheme. An explanation template for the ASPT scheme can be
described as: e1 = 〈ASPT, “Treatment {TR} should be considered at step {S}
as it promotes the goal of {G}.”〉. The variables are shown in curly brackets
in textual representation, and the template includes all the variables (TR, S,
G) that exist in ASPT scheme. The explanation definitions below are similar for
attacks, where AS and [AS]argi are replaced by ATS and [ATS]atti respectively.

Definition 12 (Explanation template). An explanation template is a tuple
E=〈AS, t〉, where AS is an argument scheme, and t is a text in natural language
that can include variables V such that V⊆Var(AS).

We build explanations from explanation templates by instantiating them with ac-
ceptable arguments (and attacks). Each variable in the explanation text (E.t) is
replaced by a ground term found in the argument (attack) scheme instantiation,
giving us Definition 13. An explanation for an ASPT argument can be rep-
resented as: 〈e1, 〈{goal(rbp), promotes(d, rbp), indicatedAt(d, s1)}, offer(d)〉〉. In
this case, e1.t will become “Treatment d should be considered at step 1 as it
promotes the goal of reducing blood pressure.”

Definition 13 (Explanation). An explanation is a tuple 〈E, [AS]argi〉, where
E is an explanation template of the argument scheme AS, [AS]argi is an ac-
ceptable argument (Definition 11); and for each variable v ∈ E.t, E.t{v 7→
Gr(ASi)(v)}.



8 N. Kökciyan et al.

A given argument scheme might have different explanations in different con-
texts [19,32]. For example, patients and healthcare professionals may see different
explanations for the same set of acceptable arguments and attacks concerning a
medical decision. For now, however, we assume that each scheme is associated
with a single explanation template, leaving the question of handling context-
specific explanations for future work.

3.2 Mapping ASPIC+ theory into our formal model

In this section, we show how an existing argumentation theory, the well-known
ASPIC+, can be mapped into our formal model. We do this to demonstrate
the expressibility of our approach. Our formal model includes explainability fea-
tures by design, which cannot be represented in existing approaches directly.
Therefore, we only define mappings for arguments and attacks.

Proposition 1 An ASPIC+ argument can be represented as an argument con-
structed according to Definition 5.

Proof Sketch. Assume that we have a defeasible rule r, where the conjunction
of predicates implies the conclusion (p1, ..., pn ⇒ c) and r ∈ Rd, where Rd is the
set of defeasible rules in an ASPIC+ argumentation theory. In this theory, the
knowledge base K includes all the predicates pi, where i=1, .., n. Prem, Conc,
Sub, DefRules, and TopRule are functions defined in the theory; where Prem
is the set of premises and Conc is the conclusion of the argument, Sub returns all
sub-arguments, DefRules returns all the defeasible rules and TopRule returns
the last rule to construct the argument. Assume that A is an argument on the
basis of this theory such that Sub(A) = {A}, DefRules(A) = r, TopRule(A) =
r. Hence, the corresponding ASPIC+ argument is ‘A : p1, ..., pn ⇒ c’.

With our formal model, we can represent r as the argument scheme as =
〈{p1, ..., pn}, c, {}〉, the scheme instantiation as as1 = 〈as, {},KB〉; where the
knowledge base KB includes all the predicates pi and the argument scheme as.
The mapping from an ASPIC+ argument to our formal model is then straight-
forward: Prem(A) = Prem(as1), Conc(A) = Conc(as1). The ASPIC+ argument
A can then be represented as 〈{p1, ..., pn}, c〉.

Proposition 2 ASPIC+ attack types (undermining, rebuttal and undercutting)
can be represented as attack schemes according to Definition 6.

Proof Sketch. Assume that A and B are two ASPIC+ arguments. A premise in
argument A can be a contrary of the conclusion of an argument B (rebuttal), or a
premise in argument A can be a contrary of a premise in argument B (undermin-
ing). All these attack types are represented by the use of the contrary function in
ASPIC+. Proposition 1 ensures that ASPIC+ arguments can be represented as
arguments in our formal model. Table 2a shows an undercutting attack; whereas
other attack types can be represented through the use of additional predicates
in attack schemes as well. However, domain-specific attacks, such as the one in
Table 2b, can only be represented with our formal model.



An argumentation-based approach to generate domain-specific explanations 9

Algorithm 1 EvalAf (X ,S)

Input: X , the set of schemes of interest
Input: S, chosen semantics
Output: ACC, the sets of acceptable arguments and attacks

Require: KB, the knowledge base
1: A ← {}, R← {}
2: I ← instantiateSchemes(X ,KB)
3: for all i in I do
4: x← arg(i.sname,Prem(i),Conc(i))
5: A ← ExtendArg(x,A)

6: K ← instantiateAttSchemes(A,KB)
7: for all k in K do
8: at← att(k.sname,Prem(k),Conc(k))
9: R← R∪ {at}

10: AF ← computeAF(A,R)
11: ACC ← getAccepted(AF,S)
12: return ACC
13: function ExtendArg(arg,A)
14: Q← getCQs(arg.sname)
15: for all q in Q do
16: J ← instantiateScheme(q.name,KB)
17: for all j in J do
18: a← arg(j.sname,Prem(j),Conc(j))
19: A ← A∪ {a}
20: A ← ExtendArg(a,A)

21: return A

3.3 The EvalAF algorithm

Having introduced our representation, we propose the EvalAf algorithm. An
agent can employ this algorithm to: (i) generate an argumentation framework
from a knowledge base, and (ii) compute extensions under a chosen semantics.
EvalAf thus provides an operational semantics for our system of schemes and
critical questions, showing how they translate into arguments and attacks that
conform to the proposed formal model.

The EvalAf algorithm requires two inputs: the set of schemes of interest
(X ) to initialise arguments and a semantics (S) to compute the extensions in the
argumentation framework. In other words, X includes the scheme set to initialise
the construction of an AF; therefore, only relevant arguments are constructed.
The output of the algorithm is the sets of acceptable arguments and acceptable
attacks. KB is the knowledge base that includes domain-specific content such as
schemes, critical questions, facts and rules (Definition 3). The set of arguments
(A) and the set of attacks (R) are initialised as empty sets (line 1). The function
instantiateSchemes is used to instantiate the schemes in X (Definition 4) (line 2).
Each instantiation is translated into an argument x (Definition 5), and the set of
arguments is updated to include more arguments as a result of applying critical



10 N. Kökciyan et al.

questions (line 5). So far, all possible arguments are constructed regarding argu-
ment schemes; in line 6, the attack schemes are instantiated to generate attacks
among arguments. For each of these instantiations, an attack relation is formed
and added to the set of attacks (lines 8-9). The auxiliary function computeAF
generates an argumentation framework by using the sets of arguments and at-
tacks (Definition 9). At this point, the AF can be used to make a decision under
the chosen semantics S. getAccepted returns the sets of acceptable arguments
and attacks (line 11) (Definition 11).

The function ExtendArg is described between the lines 13 and 21. The
inputs are an argument arg, and the current set A. Since each argument is
constructed according to an argument scheme, the set of CQs are collected in
order to challenge the current argument arg (Definition 2)(line 14). Each CQ is
a scheme to be initialised (line 16), and an argument is generated accordingly
(line 18). The set of arguments is updated (line 19). Each new CQ argument can
be challenged by other CQs as well, hence ExtendArg is invoked recursively
(line 20). Note that at this point the order in which we ask critical questions is
not important, because KB does not change but the argumentation framework
is updated by the construction of new arguments and attacks.

It is easy to show that the algorithm is sound in the sense that it only returns
arguments that are acceptable:

Proposition 3 (Soundness) Given a set of argument schemes and a seman-
tics, the set of arguments returned by EvalAf are acceptable arguments.

Proof Sketch. getAccepted ensures the mapping into a Dung AF (Definitions 8
and 9). Existing reasoning tools, such as Aspartix [5], can be used to compute
acceptable arguments. Therefore, EvalAf returns acceptable arguments as well.

Note that EvalAf will always construct all the arguments and attacks given
an initial set of argument schemes:

Proposition 4 (Completeness/AF) EvalAf returns the complete AF when
arguments are instantiated from an argument scheme in X .

Proof Sketch. Assume that F1 is the complete Dung AF that can be con-
structed given a specific X (Definition 8); i.e, F1 will include all the possible
arguments and attacks. When an agent invokes EvalAf each argument scheme
in X will be instantiated to construct an argument (Definition 5). ExtendArg
is then invoked recursively to instantiate all the argument schemes and add the
resulting arguments to the set of arguments. Hence, all possible arguments will be
constructed. instantiateAttSchemes will initialise all possible attacks. computeAF
will then construct an AF, which can then mapped into the Dung AF, F2 (Def-
inition 9). Since there can only exist one Dung AF, F1 and F2 should be the
same. Therefore, EvalAf constructs the complete AF given a specific X .

Proposition 5 (Completeness/Acceptability) EvalAf returns all the ac-
ceptable arguments that are instantiated from an argument scheme in X . EvalAf
returns all the acceptable attacks that are instantiated from acceptable arguments.



An argumentation-based approach to generate domain-specific explanations 11

Proof Sketch. EvalAf returns all acceptable arguments in a complete AF
(follows from Propositions 3 and 4). Definition 10 ensures that there is an ac-
ceptable attack when an argument is acceptable. Hence, EvalAf returns all the
acceptable arguments and attacks in an argumentation framework.

3.4 The ExpAF algorithm

The next important step is to map acceptable arguments and attacks into expla-
nations in natural language. In this section, we propose ExpAf algorithm that
conforms to Definitions 12 and 13. The algorithm requires two inputs the set
of acceptable arguments (A′) and the set of acceptable attacks (R′). KB is the
knowledge base that includes domain-specific information as before. EvalAf
ensures that only relevant arguments and attacks will be constructed. In other
words, the agent will not try to initialise all the schemes in its KB but it will
start constructing the argumentation framework with the ones specified in X .
Hence, when an agent provides outputs of EvalAf algorithm as inputs to Ex-
pAf algorithm, it will get explanations that are relevant to the problem instance.

In line 1, the sets of explanations for arguments and attacks are initialised as
empty sets. objects keeps a set of all the inputs. For each object o, getSchemeName
returns the scheme name (line 4), getExpTemplate returns the explanation tem-
plate e (Definition 12) (line 5); and the explanation tuple exp (Definition 13) is
generated by the generateExp (line 6). The explanation tuple is added to Earg

if o is an acceptable argument; otherwise, exp is added to Eatt. The algorithm
returns the explanation sets for each object (line 11).

Proposition 6 ExpAf always returns explanations for acceptable arguments
and attacks.

Proof Sketch. The input A′ includes acceptable arguments; for each argument,
there will be an instantiated scheme. If there is an instantiated scheme, an ex-
planation template will exist; and this template will have an instance initialised
with ground terms, which will constitute an explanation (follows from Defini-
tions 4, 5, 12 and 13). ExpAf conforms to these definitions; hence, it provides an
explanation for any acceptable argument. Similar reasoning holds for attacks.

The output of ExpAf can then be used by tools to provide explanations for
acceptable arguments and/or attacks.

4 Arguments and attacks

The formal model introduced above can be used in order to describe a par-
ticular domain. We represent the hypertension domain via first-order language
predicates as in our previous work [17]. This language consists of predicates
of different arities. Variables are denoted as capital letters, the predicates are
written in italic text and the constants are in lower case. The knowledge base
(KB) includes information such as the clinical guidelines, patient information,
argument and attack schemes in terms of facts and rules.



12 N. Kökciyan et al.

Algorithm 2 ExpAf (A′,R′)

Input: A′, the set of acceptable arguments
Input: R′, the set of acceptable attacks
Output: Earg, Eatt, sets of explanations for arguments and attacks

Require: KB, the knowledge base
1: Earg ← {}, Eatt ← {}
2: objects← A′ ∪R′

3: for all o in objects do
4: sname← o.getSchemeName(KB)
5: e← getExpTemplate(sname,KB)
6: exp← generateExp(e, o)
7: if o ∈ A′ then . o is an acceptable argument
8: Earg ← Earg ∪ exp
9: else . o is an acceptable attack

10: Eatt ← Eatt ∪ exp

11: return Earg, Eatt

4.1 Guideline representation

In the domain and example that follow we refer to the NICE hypertension guide-
lines [23]. NICE5 has a set of guidelines to help healthcare professionals in di-
agnosing and treating primary hypertension. The guideline includes treatment
steps, such that a patient progresses to the next step and takes a new drug
if their blood pressure control does not improve in the previous step. It pro-
vides guidance on which of the treatments or treatment combinations should
be considered at each step. For example, c (Calcium-Channel Blocker) and d
(Thiazide-like Diuretic) are two treatment options that may be offered if the
patient facts indicate a goal of blood pressure reduction. A treatment that pro-
motes a goal , can be offered or not offered (predicates are offer and notoffer
respectively). Moreover, a treatment can be marked as offered at a specific time.
A treatment can be indicatedAt a specific step according to guidelines. greater
is used to define an ordering between different time points. A treatment that is
previously prescribed may cause a side effect.

4.2 Patient information

The choice of a treatment may depend on the facts about a patient. In the hyper-
tension domain; age, ethnic origin, the current treatment step in the treatment
process and an observation about the patient are important facts to consider
before recommending a particular treatment. Observations include information
such as if any side-effect has been reported or the desired goal (e.g. reduction in
blood pressure) has been achieved. Such information can dynamically be added
to the knowledge base. For example, in our previous work, we showed that the

5 https://www.nice.org.uk/

https://www.nice.org.uk/


An argumentation-based approach to generate domain-specific explanations 13

knowledge base can be populated with patient facts collected via wellness sen-
sors [16].

4.3 Argument schemes

We use the ASPT scheme in order to construct arguments in support of different
treatment options (Table 1). There are different reasons precluding a treatment
from being an option for a specific patient, so there are multiple critical questions
associated with ASPT–we just show one in the following. SE scheme ascertains
that no treatment will be offered if a side effect is observed (i.e. ASCQ(ASPT) =
{SE}). SE is challenged by SEF scheme in situations where the treatment is
effective so should not be excluded as an option despite the side effect (i.e.
ASCQ(SE) = {SEF}). In Table 3, the first frame shows these schemes in a
first-order language.

4.4 Attack schemes

In Section 3, we have discussed different types of attacks that could exist among
arguments, and Table 2a gives an example of an undercutting attack between
arguments. Now, we give an example of an attack scheme that is domain-
specific and describes the rationale behind an attack in terms of domain-specific
premises. Table 2b shows the attack scheme, ALT, belonging to the hypertension
domain. The ALT scheme defines an attack between two ASPT arguments when
two treatments promoting the same goal are offered at a specific step. ALT has a
similar intuition as Argument from Alternative scheme proposed by Walton [30].
The instantiation of this attack scheme will result in attacks among alternative
treatment arguments in the argumentation framework.

5 A stroke survivor: Baula

We will work through the case of Baula a 32-year-old person of African origin.
Baula suffered a stroke and has hypertension. In order to prevent secondary
stroke, Baula’s blood pressure (BP) needs to be controlled. Baula has started
using a new medication c to control blood pressure as suggested by a GP. During
a follow up visit, Baula’s BP is 130/90 (indicating the treatment is having the
desired BP lowering effect) but there is a side effect (swollen ankles). In the light
of this information, what are the treatment options to consider and why?

We now illustrate the use of EvalAf algorithm on the example. The two
inputs provided to the algorithm are ASPT and preferred, respectively. In our
running example, the goal is set to reducing blood pressure (rbp) by default.
The construction of the arguments will start by initialising ASPT according to
the information available in the knowledge base. The use of preferred semantics
will ensure that there can be multiple acceptable sets of arguments and attacks.
The human user (e.g. Baula’s GP) will make a final decision in the light of



14 N. Kökciyan et al.

Table 3: Arguments schemes and arguments used in the running example
Schemes

ASPT 〈 {goal(G), promotes(TR,G), indicatedAt(TR,S)}, offer(TR), {G,TR,S} 〉
SE 〈 {greater(T,T’), offered(TR,T’), may cause(TR,S)}, notoffer(TR),

{T,T’,TR,S} 〉
SEF 〈 {greater(T,T’), effective(TR,T’)}, offer(TR), {T,T’,TR} 〉

Arguments

[ASPT ]arg1: 〈 {goal(rbp), promotes(c,rbp), indicatedAt(c,s1)}, offer(c) 〉
[ASPT ]arg2: 〈 {goal(rbp), promotes(d,rbp), indicatedAt(d,s1)}, offer(d) 〉
[SE]arg1.1: 〈 {greater(t2,t1), offered(c,t1), caused(c,swollen-ankles,t1)}, notoffer(c) 〉
[SEF ]arg1.1.1: 〈 {greater(t2,t1), effective(c,t1)}, offer(c) 〉

the suggested possible solutions. The bottom part of Table 3 includes all the
arguments generated by the algorithm.

The arguments arg1 and arg2 are constructed as a result of the instantiation
of ASPT. The CQs for each scheme are considered in the following steps. SE
is relevant only to arg1, and given the side effects there is an attack generated
on arg1 from arg1.1. Even if Baula reports side effects, c is still effective in rbp.
Therefore, arg1.1.1 attacks arg1.1 as well. Figure 1 depicts the resulting AF; where
arguments are displayed as boxes, the solid arrows represent attacks instantiated
by Tcq, and the dashed arrows show attacks instantiated by the ALT scheme.
For simplicity, the attacks are annotated without scheme names. Each attack
has a unique label atti. att4, which conforms to the attack scheme Tcq, is instan-
tiated as: 〈 {[SEF ]arg1.1.1, [SE]arg1.1, challenges(SEF , SE)}, attacks(arg1.1.1,
arg1) 〉. att1, which conforms to the attack scheme ALT, is instantiated as: 〈
{[ASPT ]arg2, [ASPT ]arg1, alt(c, d), indicatedAt(c, s1), indicatedAt(d, s1)},
attacks(arg2, arg1) 〉. att2 and att4 are instantiated similarly.

The EvalAf algorithm returns the set of acceptable arguments and attacks
(Definition 11). Under the preferred semantics, there are two extensions: ({arg1,
arg1.1.1}, {att2, att4}) and ({arg2, arg1.1.1}, {att1, att4}).

[ASPT]arg1 [SE]arg1.1 [SEF]arg1.1.1[ASPT]arg2
att1

att2

att3 att4

Fig. 1: Argumentation framework constructed by EvalAf algorithm.

5.1 Explanations

As argument and attack schemes are associated with explanation templates (Def-
inition 12), agents can instantiate them with an algorithm like ExpAf to gener-
ate explanations in natural language (Definition 13). In Section 3, we introduced



An argumentation-based approach to generate domain-specific explanations 15

e1 as an explanation template for ASPT. In a similar way, we can describe an
explanation template for the ALT scheme as: 〈ALT, “Since {A.TR} and {B.TR}
promote the same goal at step {S}, {A.TR} is an alternative to {B.TR}; hence,
they should not be offered together.”〉.

When we consider the following extension ({arg2, arg1.1.1}, {att1, att4}),
ExpAf will generate an explanation for each acceptable argument and attack.
For example, an explanation for arg2 will be “Treatment d should be considered
at step 1 as it promotes the goal of reducing blood pressure.”; and an explanation
for att1 will be “Since d and c promote the same goal at step 1, d is an alternative
to c; hence, they should not be offered together.”, applying the explanation tem-
plates described above. The remaining explanations are generated in a similar
way by the use of explanation templates. arg1.1.1 can be explained as “Treatment
ccb can be considered as it was an effective treatment at time t1.”; and att4 can
be explained as “The scheme sef is a critical question of the scheme se”.

Given the suggested treatments and explanations, one option is to continue
the current treatment c as it is effective, another option is to offer a new treat-
ment such as d. At this point, the GP should also consider Baula’s preferences
when making a decision.

5.2 Demonstration of the proposed approach

We provide an example implementation of the proposed approach in our GitLab
repository6. Baula’s example is also provided to demonstrate the applicability
of the proposed algorithms. By running the code, one can get the textual ex-
planations for acceptable arguments and attacks as described in this paper. In
our implementation, we make use of Aspartix, an answer set programming ap-
proach to find the justified arguments of an argumentation framework [5]. In a
first-order language, we describe the knowledge base, the argument and attack
schemes, and data about Baula in terms of facts and rules. More use cases can be
described in a similar manner. We also make our Python-based implementation
public; we share an implementation of the proposed algorithms that use explana-
tion templates to generate textual explanations. Moreover, our implementation
provides means to export the generated Dung AF as a graph, which is useful in
providing a visual explanation of the constructed arguments and attacks.

Figure 2 depicts one extension as a Dung AF where the recommended action
is offering a new treatment d (thiazide). Each box represents an argument con-
structed using argument schemes, each arrow represents an attack between ar-
guments constructed using attack schemes. The acceptable arguments are high-
lighted with a green color. Note that since we are using preferred semantics in
this example, there is also another extension (i.e. another graph) supporting the
idea of using the current treatment c (ccb).

6 https://git.ecdf.ed.ac.uk/nkokciya/explainable-argumentation/

https://git.ecdf.ed.ac.uk/nkokciya/explainable-argumentation/


16 N. Kökciyan et al.

Fig. 2: One extension recommends offering a new treatment thiazide (d)

6 Discussion and conclusion

We proposed a formalism to describe arguments and attacks in a given do-
main through the use of schemes. We introduced the notion of attack schemes
to capture domain-specific conflicts between two arguments. We articulated an
algorithm that generates an AF from a set of schemes to establish the set of ac-
ceptable arguments and attacks and provided soundness and completeness proof
sketches. We also introduced another algorithm for generating explanations, and
illustrated our approach through an example. We showed that further explana-
tions can be generated by extending the acceptable set of arguments with the
acceptable attacks. Intuitively, this enables the explainability of both accepted
and defeated arguments through the instantiation of argument schemes and at-
tack schemes respectively. We shared a prototype implementation to demonstrate
how our approach works in practice. In this work, the initialisation of arguments
and attacks is performed according to the information available in the knowl-
edge base. In this paper, the description of schemes or guideline rules is static;
however, such information can be automatically learned from data.

There are two important steps to achieve explainability by design. First, we
need a formal model that captures the essential components of a decision, and we
propose the use of argument and attack schemes in this paper. Second, we need
methods to deliver explanations for end-users. In this paper, we propose a sim-
ple algorithm to generate textual explanations based on explanation templates.
However, machine learning techniques could be used to construct explanations in
a dynamic way, something which is out of the scope of this paper. In future work,
we will extend the explainability definitions to cover cases such as how an attack
affects the status of an argument in an AF. We are planning to develop user
interfaces where we will show graphs and explanations together, similar to [28].
Moreover, we will evaluate the quality of generated explanations by conducting
user studies. Finally, we will extend our theoretical results to fully explain the
translation of existing argumentation frameworks into our proposed approach.



An argumentation-based approach to generate domain-specific explanations 17

Acknowledgements

This work was supported by the UK Engineering & Physical Sciences Research
Council (EPSRC) under grant #EP/P010105/1.

References

1. Atkinson, K., Bench-Capon, T.: Practical reasoning as presumptive argumentation
using action based alternating transition systems. Artificial Intelligence 171(10-
15), 855–874 (2007)

2. Atkinson, K., Bench-Capon, T., Modgil, S.: Argumentation for decision support.
In: Database and Expert Systems Applications. pp. 822–831. Springer (2006)

3. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation se-
mantics. The Knowledge Engineering Review 26(4), 365–410 (2011)

4. Dung, P.M.: On the Acceptability of Arguments and its Fundamental Role in
Nonmonotonic Reasoning, Logic Programming and n-Person Games. Artificial In-
telligence 77(2), 321–358 (1995)

5. Egly, U., Gaggl, S., Woltran, S.: Aspartix: Implementing argumentation frame-
works using answer-set programming. Logic Programming pp. 734–738 (2008)

6. European Parliament and Council of the European Union: General Data Protection
Regulation (GDPR). https://gdpr-info.eu (2016), last accessed 12/02/2020

7. Fan, X., Toni, F.: On explanations for non-acceptable arguments. In: International
Workshop on Theory and Applications of Formal Argumentation. pp. 112–127.
Springer (2015)

8. Fox, J., Glasspool, D., Grecu, D., Modgil, S., South, M., Patkar, V.:
Argumentation-based inference and decision making–A medical perspective. IEEE
Intelligent Systems 22(6), 34–41 (2007)

9. Glasspool, D., Fox, J., Oettinger, A., Smith-Spark, J.: Argumentation in decision
support for medical care planning for patients and clinicians. In: AAAI Spring
Symposium: Argumentation for Consumers of Healthcare. pp. 58–63 (2006)

10. Glasspool, D., Oettinger, A., Smith-Spark, J., Castillo, F., Monaghan, V., Fox,
J., et al.: Supporting medical planning by mitigating cognitive load. Methods of
Information in Medicine 46(6), 636–640 (2007)

11. Gordon, T.F., Walton, D.: Legal reasoning with argumentation schemes. In: Pro-
ceedings of the 12th International Conference on Artificial Intelligence and Law.
pp. 137–146. ACM (2009)

12. Gordon, T.F., Walton, D.: Formalizing balancing arguments. In: Proceedings of
the Conference on Computational Models of Argument. pp. 327–338 (2016)

13. Grando, M.A., Moss, L., Sleeman, D., Kinsella, J.: Argumentation-logic for creating
and explaining medical hypotheses. Artificial Intelligence in Medicine 58(1), 1–13
(2013)

14. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.:
A survey of methods for explaining black box models. ACM Computing Surveys
51(5), 1–42 (2019)

15. Kakas, A.C., Moraitis, P., Spanoudakis, N.I.: Gorgias: Applying argumentation.
Argument & Computation 10(1), 55–81 (2019)

16. Kökciyan, N., Chapman, M., Balatsoukas, P., Sassoon, I., Essers, K., Ashworth,
M., Curcin, V., Modgil, S., Parsons, S., Sklar, E.: A collaborative decision support
tool for managing chronic conditions. In: MEDINFO 2019: Health and Wellbeing
e-Networks for All. vol. 264, pp. 644–648 (2019)

https://gdpr-info.eu


18 N. Kökciyan et al.

17. Kökciyan, N., Sassoon, I., Young, A., Chapman, M., Porat, T., Ashworth, M.,
Curcin, V., Modgil, S., Parsons, S., Sklar, E.: Towards an argumentation system
for supporting patients in self-managing their chronic conditions. In: AAAI Joint
Workshop on Health Intelligence (2018)

18. Kökciyan, N., Yaglikci, N., Yolum, P.: An argumentation approach for resolving
privacy disputes in online social networks. ACM Transactions on Internet Tech-
nology 17(3), 27:1–27:22 (2017)

19. Kökciyan, N., Yolum, P.: Context-based reasoning on privacy in internet of things.
In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence. pp. 4738–4744 (2017)

20. Miller, T.: Explanation in artificial intelligence: Insights from the social sciences.
Artificial Intelligence 267, 1–38 (2019)

21. Modgil, S., Bench-Capon, T.: Metalevel Argumentation. Journal of Logic and Com-
putation 21(6), 959–1003 (2011)

22. Modgil, S., Prakken, H.: A general account of argumentation with preferences.
Artificial Intelligence 195, 361–397 (2013)

23. NICE: Hypertension in adults: diagnosis and management. https://www.nice.

org.uk/guidance/cg127 (2016), last accessed 12/02/2020
24. Prakken, H., Wyner, A., Bench-Capon, T., Atkinson, K.: A formalization of ar-

gumentation schemes for legal case-based reasoning in ASPIC+. Journal of Logic
and Computation 25(5), 1141–1166 (2013)

25. Rago, A., Cocarascu, O., Toni, F.: Argumentation-based recommendations: fantas-
tic explanations and how to find them. In: Proceedings of the 27th International
Joint Conference on Artificial Intelligence. pp. 1949–1955. AAAI Press (2018)

26. Rahwan, I., Simari, G.R.: Argumentation in Artificial Intelligence. Springer (2009)
27. Sassoon, I., Kökciyan, N., Sklar, E., Parsons, S.: Explainable argumentation for

wellness consultation. In: Calvaresi, D., Najjar, A., Schumacher, M., Främling, K.
(eds.) Explainable, Transparent Autonomous Agents and Multi-Agent Systems.
pp. 186–202. Springer International Publishing (2019)

28. Sklar, E., Parsons, S., Li, Z., Salvit, J., Wall, H., Mangels, J.: Evaluation of a
trust-modulated argumentation-based interactive decision-making tool. Journal of
Autonomous and Multi-Agent Systems 30(1), 136–173 (2016)

29. Tolchinsky, P., Cortes, U., Modgil, S., Caballero, F., Lopez-Navidad, A.: Increas-
ing human-organ transplant availability: Argumentation-based agent deliberation.
IEEE Intelligent Systems 21(6), 30–37 (2006)

30. Walton, D., Reed, C., Macagno, F.: Argumentation Schemes. Cambridge University
Press (2008)

31. Zamborlini, V., da Silveira, M., Pruski, C., ten Teije, A., Geleijn, E., van der
Leeden, M., Stuiver, M., van Harmelen, F.: Analyzing interactions on combining
multiple clinical guidelines. Artificial Intelligence in Medicine 81, 78–93 (2017)

32. Zeng, Z., Fan, X., Miao, C., Leung, C., Jih, C.J., Soon, O.Y.: Context-based and
explainable decision making with argumentation. In: Proceedings of the 17th Inter-
national Conference on Autonomous Agents and MultiAgent Systems. pp. 1114–
1122 (2018)

https://www.nice.org.uk/guidance/cg127
https://www.nice.org.uk/guidance/cg127

	An argumentation-based approach to generate domain-specific explanations

