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Abstract. We present an empirical evaluation of machine learning al-
gorithms in cross-domain few-shot learning based on a fixed pre-trained
feature extractor. Experiments were performed in five target domains
(CropDisease, EuroSAT, Food101, ISIC and ChestX) and using two fea-
ture extractors: a ResNet10 model trained on a subset of ImageNet
known as miniImageNet and a ResNet152 model trained on the ILSVRC
2012 subset of ImageNet. Commonly used machine learning algorithms
including logistic regression, support vector machines, random forests,
nearest neighbour classification, näıve Bayes, and linear and quadratic
discriminant analysis were evaluated on the extracted feature vectors. We
also evaluated classification accuracy when subjecting the feature vectors
to normalisation using p-norms. Algorithms originally developed for the
classification of gene expression data—the nearest shrunken centroid al-
gorithm and LDA ensembles obtained with random projections—were
also included in the experiments, in addition to a cosine similarity clas-
sifier that has recently proved popular in few-shot learning. The results
enable us to identify algorithms, normalisation methods and pre-trained
feature extractors that perform well in cross-domain few-shot learning.
We show that the cosine similarity classifier and `2-regularised 1-vs-rest
logistic regression are generally the best-performing algorithms. We also
show that algorithms such as LDA yield consistently higher accuracy
when applied to `2-normalised feature vectors. In addition, all classi-
fiers generally perform better when extracting feature vectors using the
ResNet152 model instead of the ResNet10 model.

Keywords: Cross-Domain Few-Shot Learning, Pre-trained Feature Extractors,
Normalisation, Transfer Learning

1 Introduction

Convolutional neural networks have greatly changed the way in which supervised
learning is used to solve image classification problems. However, they come with
one major drawback: a very large volume of annotated images is generally re-
quired to train a network with good accuracy. In many situations it is not feasible
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to gather datasets of sufficient size to train such models, be it due to cost or other
resource limitations. In these cases, so-called few-shot learning methods can be
applied. Few-shot learning (FSL) refers to the task of learning in a target do-
main from a very limited number of annotated instances [23]. A key component
in practical few-shot learning is prior knowledge gained from a source domain
that is in some way related to the target domain. The knowledge gleaned from
the source domain can be utilised to compensate for the scarcity of available in-
stances in the target domain, enabling the algorithm to construct a model that
can make more accurate predictions than a model trained solely on the target
domain. In this sense, few-shot learning generally can be seen as an instance of
transfer learning [17].

Modern studies on FSL primarily tackle the case where there is little shift be-
tween the source and target domains [20, 23]. A common experimental protocol
is to take a single dataset and allocate some classes as the source domain, and
the remaining classes as the target domain. In contrast, cross-domain few-shot
learning (CDFSL) refers to few-shot learning problems where the instances of
the source domain and those of the target domain are obtained from strictly
different origins (and are not, e.g., instances from the same dataset that be-
long to different sets of classes) [10]. CDFSL is important because it aims to
achieve efficient learning in one field with knowledge from another. This is in
line with one of the original pursuits of few-shot learning—giving machine learn-
ing human-like sample efficiency in the sense that humans can learn to perform
new tasks reasonably well with only a few examples. Perhaps even more im-
portantly, real-world problems that require CDFSL are far more common than
those that require learning of new classes in the same domain.

Many existing approaches to FSL involve training a “shallow” (e.g., linear)
classifier on features extracted by a convolutional network. These methods typ-
ically make use of meta-learning techniques based on episodic training [23] to
obtain a feature extractor that can produce domain-general features. A com-
mon strategy is to propose new classification rules, such as the nearest centroid
classifiers used by prototypical networks [20] or the linear support vector ma-
chines (SVMs) used by MetaOptNet [14], and plug them into an episodic training
framework. However, interestingly, Guo et al. [10] show that in the CDFSL set-
ting, simple transfer learning performed by pre-training a feature extractor in
the source domain and building a linear classifier on the extracted features in the
target domain significantly outperforms meta-learning approaches designed for
the standard FSL setting. This finding is based on a new benchmark for CDFSL
that makes use of miniImageNet (a subset of the ILSVRC 2012 dataset [7]) as
the source domain and various other problems as the target domains.

Our paper aims to provide a comprehensive analysis of how different “shal-
low” classifiers perform when applied to features extracted using a pre-trained
network in a CDFSL problem.3 We make use of the experimental framework
developed by Guo et al. [10] to facilitate a further comparison with transfer

3 Our code and data are available at https://zenodo.org/record/4047034/files/

CDFSL_reproducibility.zip?download=1

https://zenodo.org/record/4047034/files/CDFSL_reproducibility.zip?download=1
https://zenodo.org/record/4047034/files/CDFSL_reproducibility.zip?download=1
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learning approaches. We also investigate the impact of various normalisation
procedures and extend the experimental setting to a larger feature extraction
network trained on the full ILSVRC 2012 dataset. Because the number of train-
ing instances is very small in relation to the size of the feature vectors, classifiers
that were originally designed for analysing data produced in genomics experi-
ments are also included in our comparison.

The main findings of our experiments are that (i) generalisations of linear
discriminant analysis are effective for few-shot learning problems, (ii) feature
vector normalisation is a useful pre-processing tool, and (iii) logistic regression
performs as well as the cosine similarity classifier proposed by Chen et al. [5]—a
method competitive with state-of-the-art few-shot learning approaches.

2 Learning Methods and Normalisation Schemes

Multi-class classification is the task of constructing a classifier, f : X → YT ,
that maps from an input space, X , to an output space, YT , consisting of n class
values, using a training set ZT ⊂ X × YT sampled from the target domain of
interest. An n-way k-shot classification problem, the standard setting in few-shot
learning, has exactly k instances for each of the n classes. Cross-domain few-shot
learning problems are most commonly solved by first training a feature extractor
on an auxiliary set of data, ZS ⊂ X × YS , from a related source domain. Two
defining characteristics are (i) the source and target label sets are different (i.e.,
YT 6= YS); and (ii) input data for the source and target domains are sampled
according to different distributions (i.e., pS(X) 6= pT (X), where X is a random
variable taking values in X ). Crucially, there are no restrictions on the size of
ZS , the auxiliary set of training data. The framework employed by all recent
few-shot learning approaches is to use ZS to train a feature extractor, g, that
maps from X to some intermediate representation in another vector space, I.
Then ZT , the smaller training set in the target domain, is used to construct a
classifier, h, that maps from I to YT . Finally, f is obtained via their composition,
f = h ◦ g. In our paper, g is assumed to be a convolutional neural network that
has been pre-trained on a source domain classification problem.

In the benchmark proposed by Guo et al. [10], ImageNet is utilised as the
source domain, and the target domains are CropDisease [16], EuroSAT [11],
ISIC [22] and ChestX [24]. We adopt this benchmark for our experiments, and in-
clude another dataset, Food101 [3], which acts as an additional highly-specialised
classification task that can be used as a target domain.

2.1 Robust Learning Algorithms

One of the defining characteristics of few-shot learning is that one must train a
classifier on a small number of instances (typically in the region of 10–100) but
each instance may have hundreds or thousands of dimensions. Other machine
learning application domains, such as genomics and natural language processing
problems dealing with bag-of-words representations, also exhibit similar issues.
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As such, we include a number of learning algorithms specifically designed for
this scenario, but motivated by different applications. The full list of methods
we consider for training the classifier h comprises the following algorithms:

– Logistic regression (LR) [13], using multinomial or 1-vs-rest classification
– Linear discriminant analysis (LDA) [15]
– Random projection LDA ensemble [8]
– Linear SVM [18], using pairwise or 1-vs-rest classification
– Näıve Bayes [25]
– k-nearest neighbours (kNN) [1]
– Random forests [4]
– Nearest shrunken centroid [21]
– Cosine similarity [5]

2.2 Normalisation Methods

We also consider the impact of normalising feature vectors for machine learning.
For a vector, ~x, containing values x1, x2, . . . , xn, normalisation is defined as

normp(~x) =
~x

(
∑n
k=1 |xk|p)

1
p

, (1)

where p indicates the `p norm used in the normalisation process. Applying norm1

corresponds to dividing each element in the vector by the sum of its absolute
values, norm2 divides by the Euclidean norm, and norm∞ divides by the maxi-
mum absolute value in the vector. After normalisation, the resulting vector will
have length one in whatever norm was applied in this process. Crucially, this
form of scaling differs significantly from multiplying all instances in the training
dataset by a single number, as is done when dividing by the variance during
standardisation: the value used to scale the features is instance dependent.

3 Theoretical Analysis of Normalised Linear Classifiers

In this section, we consider the impact on Rademacher-based generalisation
bounds [2] from normalising feature vectors when using a linear model, and
provide a theoretical explanation on the benefit of normalisation in CDFSL. A
standard Rademacher-based generalisation bound takes the form of

R(h) ≤ 1

m

m∑
i=1

`(h(~xi), yi) + 2R̂(H) +O

(
1√
m

)
, (2)

where ` is a 1-Lipschitz loss function, R is the risk (i.e., expected loss), H is a
hypothesis class, h ∈ H is a single hypothesis, and m is the size of the training
set. The complexity of the hypothesis class can be characterised via empirical
Rademacher complexity [2],

R̂(H) = E~σ

[
sup
h∈H

m∑
i=1

σih(~xi)

]
,
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where ~σ is a vector of Rademacher distributed random variables. A commonly
known [19] upper bound for the empirical Rademacher complexity of a linear
function class,

H = {~x 7→ ~x · ~w : ‖~w‖ ≤ B},

is given by

R̂(H) =
XB√
m
,

where B is the upper bound for the Euclidean norm of the weight vector ~w and
X is the smallest number for which ‖~xi‖2 ≤ X,∀i ∈ {1, . . . ,m}. One can see
immediately from this bound that any preprocessing step that reduces the Eu-
clidean norm of feature vectors reduces the capacity for a fixed linear hypothesis
class to overfit the training data. However, this does not take into account how
a preprocessing step might affect the loss on the training dataset—the other
quantity that is used to bound the expected loss in Equation 2.

Denote by S the training set {(~xi, yi)}mi=1. We shall assume that X = 1.
Note that this is not a very limiting assumption, as all feature vectors in the
training set can be scaled by some value, c = 1

maxi ‖~xi‖2
, to make this true,

and then B can be scaled by 1
c to ensure R̂(H) remains the same. Now we let

Z = {(~zi, yi) |~zi = norm2(~xi)}mi=1 be a normalised version of the training set.
Trivially, we have that ‖~xi‖2 ≤ ‖~zi‖2, with equality occurring only if ‖~xi‖2 = 1.

For simplicity, let us consider the case where ` is the hinge loss,

`(~x, y) = [1− y~x · ~w]+.

We can see that for a single instance

`(~xi, yi) ≥ [1− |yi~xi · ~w|]+
≥ [1− ‖~xi‖2 · ‖~w‖2]+

≥ [1− ‖~zi‖2 · ‖~w‖2]+,

where the first inequality is due to decreasing monotonicity, the second is from
the Cauchy-Schwarz inequality, and the last is because ‖~xi‖2 ≤ ‖~zi‖2. This
demonstrates that the potential for ~zi to have a larger magnitude than ~xi can
lead to a lower loss when normalisation is used. Because the hinge loss is an
upper bound for the zero–one loss, this may also improve classification accuracy.

4 Empirical Comparison

Two pre-trained networks are used for extracting features from images: a ResNet10
model trained on miniImageNet using the code provided by Guo et al. [10], and
the ResNet152 model trained on the 2012 ILSVRC subset of ImageNet that is
available through Keras [6]. Both models receive as input 224×224 pixel RGB im-
ages. The smaller network (ResNet10) produces 512-dimensional feature vectors,
whereas the larger network produces feature vectors with 2,048 components.
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Table 1. 5-shot experimental results with the ResNet10 feature extractor

CropDisease EuroSAT Food101 ISIC ChestX

Näıve Bayes 82.92±0.75 73.24±0.75 42.19±0.75 37.23±0.6 22.04±0.38
kNN 78.86±0.74 57.85±0.78 44.51±0.73 37.68±0.6 23.97±0.39
Random Forest 83.00±0.66 73.40±0.68 48.27±0.70 43.00±0.54 24.26±0.43
LDA 89.09±0.56 75.52±0.65 56.85±0.77 43.97±0.59 25.40±0.41
QDA 88.30±0.58 77.86±0.61 57.58±0.77 44.70±0.57 25.27±0.41
Pairwise SVM 88.55±0.59 76.14±0.67 57.28±0.76 44.08±0.58 25.30±0.41
1-vs-rest SVM 89.03±0.58 75.60±0.69 57.80±0.77 42.17±0.59 25.29±0.41
1-vs-rest LR `2 89.66±0.56 78.82±0.61 60.19±0.78 45.76±0.58 25.85±0.42
1-vs-rest LR `1 66.51±0.88 46.52±0.81 40.38±0.68 27.70±0.48 21.35±0.37
Multinomial LR 88.64±0.58 77.68±0.63 57.50±0.77 45.42±0.59 25.41±0.42
LDA ensemble 89.05±0.56 75.68±0.64 56.76±0.77 44.17±0.59 25.36±0.43
Shrunken centroid 87.46±0.62 75.23±0.67 56.36±0.77 42.17±0.59 25.00±0.44
Cosine similarity 89.71±0.55 79.56±0.6 59.44±0.78 46.6±0.59 25.86±0.42

Fig. 1. Critical difference diagram of the algorithms with the ResNet10 feature extrac-
tor

For each target domain dataset, a large number of 5-way k-shot learning
problems are generated: 600 different few-shot learning problems per target do-
main dataset for each value of k ∈ {5, 20, 50}. Each of these problems contains
15 test instances per class, regardless of the number of training instances. After
features are extracted for each image using either of the feature extractors, the
shallow learners are trained using the WEKA software (Version 3.9.5) [9].

4.1 Performance of Classifiers for Few-Shot Learning

The first experiments aim to determine which of the classifiers we consider are
most useful for few-shot learning problems. For these experiments, all classifiers
are applied to each of the target domains, using un-normalised feature vectors
extracted by both networks. In this subsection, only 5-shot problems are con-
sidered. The results for ResNet10 features are given in Table 1, and the results
corresponding to ResNet152 features are provided in Table 2. Figures 1 and 2
demonstrate statistical significance of the performance differences between clas-
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Table 2. 5-shot experimental results with the ResNet152 feature extractor

CropDisease EuroSAT Food101 ISIC ChestX

Näıve Bayes 92.71±0.51 82.90±0.51 69.99±0.87 37.31±0.52 23.04±0.39
kNN 81.67±0.72 64.68±0.72 57.05±0.88 34.04±0.53 23.29±0.37
Random Forest 89.75±0.57 79.48±0.56 64.45±0.78 38.64±0.53 23.80±0.40
LDA 93.74±0.46 86.74±0.49 77.90±0.71 42.18±0.56 24.89±0.41
QDA 93.29±0.48 86.72±0.50 78.05±0.72 40.77±0.55 25.29±0.42
Pairwise SVM 93.50±0.47 86.70±0.50 78.02±0.72 42.04±0.57 25.29±0.43
1-vs-rest SVM 93.63±0.47 86.93±0.49 78.53±0.70 42.08±0.57 25.02±0.43
1-vs-rest logistic `2 93.79±0.46 87.62±0.47 79.42±0.69 43.28±0.56 25.30±0.42
1-vs-rest logistic `1 88.53±0.60 81.18±0.56 72.18±0.77 39.49±0.57 24.32±0.41
Multinomial logistic 93.59±0.47 87.22±0.48 78.74±0.70 42.52±0.56 25.27±0.44
LDA ensemble 93.72±0.47 86.7±0.49 77.93±0.71 42.32±0.56 24.97±0.41
Shrunken centroid 92.26±0.52 85.65±0.5 76.97±0.74 40.70±0.56 24.92±0.43
Cosine similarity 93.77±0.47 87.67±0.47 79.34±0.69 42.98±0.56 25.22±0.42

Fig. 2. Critical difference diagram of the algorithms with the ResNet152 feature ex-
tractor

sifiers, aggregated across all datasets, as determined by the Wilcoxon-Holm test
(procedure described in [12], on page 22).

The first observation is that `1-regularised 1-vs-rest LR, näıve Bayes, kNN,
and random forests are significantly outperformed by the other approaches. The
poor performance of `1-regularised LR, compared to other linear models, is
mostly due to the difficulty in finding a suitable regularisation value that leads
to consistently good performance. Note that grid search was not used to tune the
hyperparameters because it yielded lower accuracy than using the algorithms’
default hyperparameters in WEKA. The most likely reason is that the train-
ing and test folds in this set-up are very small, inducing high variance in the
accuracy estimates obtained using cross-validation.

The second observation is that variants of LDA perform competitively with
other linear models, which suggests that developing new generalisations of LDA
specifically for few-shot learning could be a fruitful direction for future research.
Another finding is that `2-regularised LR and the cosine similarity classifier—a
method that is known to be competitive with the state-of-the-art [5]—perform
similarly. Considering `2-regularised LR is perhaps the oldest and most estab-
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lished way to perform transfer learning in a deep learning context, this raises
the question of whether any significant progress has been made by introducing
variants of this basic approach to formulating linear classifiers.

The accuracy of all of the algorithms decreases as the domain shift increases,
consistent with the findings of Guo et al. [10]. In particular, among the four
datasets of the original CDFSL benchmark, CropDisease results in the highest
accuracy for all of the algorithms, followed by EuroSAT, ISIC and ChestX in
this exact order, with all of the algorithms performing only slightly better than
random guessing on ChestX (i.e., 20%). For all of the algorithms, the accuracy
on Food101 is shown to be consistently between EuroSAT and ISIC. It can
therefore be speculated that the domain shift from ImageNet to Food101 is
greater than the domain shift from ImageNet to EuroSAT and smaller than that
from ImageNet to ISIC.

The more sophisticated ResNet152 feature extractor, trained on the more
comprehensive version of ImageNet, grants a very substantial performance boost
to all of the classifiers over the ResNet10 model on the three datasets that are rel-
atively similar to ImageNet, i.e., CropDisease, EuroSAT and Food101. However,
the ResNet152 model yields a performance decrease on the two datasets that
are relatively different from ImageNet, i.e., ISIC and ChestX. More discussion
on the relation between feature extractors and task domains will be provided in
Section 4.3.

4.2 Feature Normalisation

We now consider the effect of normalising the feature vectors in 5-shot learning.
Table 3 shows the accuracy of the algorithms on Food101-ResNet152 feature vec-
tors normalised in various ways, with the best result for each learning algorithm
shown in bold.

1-vs-rest logistic regression with `1 regularisation, with its default regulari-
sation hyperparameter value (i.e., cost = 1 in the LIBLINEAR implementation
used in WEKA), is observed to achieve low accuracy with `p normalised data,
ranging from 20% to 57.83%. When given a large value of the regularisation
parameter (e.g., cost = 1010), thus enabling closer fit to the training data, its
accuracy improves, achieving 77.4% with `1 normalised data. Unfortunately, such
a large value decreases the classifier’s performance with un-normalised feature
vectors to 66.57%.

It should be noted that the normalisation method is irrelevant to the cosine
similarity classifier, because the direction of each feature vector is used for clas-
sification and all of the feature vectors are `2-normalised in the classifier. This
means that the cosine similarity classifier produces the same result regardless of
whether the feature vectors are normalised, or the value of p in `p normalisation.

Table 3 shows that LDA with `2 normalisation achieves very competitive
performance on the Food101-ResNet152 feature vectors. Further experiments
show that LDA gains a performance increase from `2 normalisation as opposed
to no normalisation on all of the datasets. This is shown in Table 4. It can
be argued that certain normalisation methods can give certain algorithms a
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Table 3. Accuracy of the algorithms on `p-normalised Food101-ResNet152 feature
vectors

None `1 `2 `3 `∞

Näıve Bayes 69.99±0.87 70.54±0.87 70.81±0.85 70.32±0.86 67.91±0.87
kNN 57.05±0.88 64.06±0.85 62.80±0.85 59.10±0.88 51.98±0.85
Random Forest 64.45±0.78 65.19±0.78 64.74±0.80 64.27±0.81 63.36±0.77
LDA 77.90±0.71 77.76±0.70 79.06±0.69 78.74±0.71 74.57±0.76
QDA 78.05±0.72 77.70±0.71 78.95±0.71 78.53±0.71 75.27±0.75
Pairwise SVM 78.02±0.72 74.00±0.77 74.76±0.79 78.84±0.72 74.63±0.77
1-vs-rest SVM 78.53±0.70 70.33±0.87 77.00±0.74 79.00±0.71 76.16±0.74
1-vs-rest LR `2 79.42±0.69 77.68±0.71 79.36±0.69 79.89±0.68 79.57±0.69
1-vs-rest LR `1 72.18±0.77 20.00±0.00 20.17±0.14 34.94±0.86 57.83±0.91
Multinomial LR 78.74±0.70 72.91±0.70 78.68±0.71 78.74±0.71 75.83±0.74
LDA ensemble 77.93±0.71 77.58±0.69 78.85±0.69 78.54±0.70 74.75±0.75
Shrunken centroid 76.97±0.74 77.46±0.75 78.32±0.73 77.83±0.74 73.59±0.81
Cosine similarity 79.34±0.69 79.35±0.69 79.34±0.69 79.34±0.69 79.35±0.69

Table 4. Comparison between no normalisation and `2 normalisation for LDA on all
of the datasets

CropDisease EuroSAT Food101 ISIC ChestX

None 93.74±0.46 86.74±0.49 77.9±0.71 42.18±0.56 24.89±0.41
`2 normalisation 93.95±0.45 87.30±0.48 79.06±0.69 42.48±0.56 25.11±0.40

consistent increase in CDFSL performance, and thus a competitive edge. One
such example is LDA with `2 normalisation.

4.3 Few-Shot Fine-Grained Classification

Particularly accurate results are obtained on the CropDisease data in the ex-
periments presented above, but it is noteworthy that in fact, this is a dataset
of both plant species and different plant diseases. Table 5 shows the relation be-
tween the classification accuracy and the number of plant species present in the
training and test data in each of the 600 runs performed for the 5-way 5-shot
experiment, using 1-vs-rest logistic regression with `2 regularisation on the un-
normalised CropDisease-ResNet152 feature vectors. In each of the 600 iterations
of the experiment, i.e., a classification task with 5 classes, the presence of more
plant species indicates that less disease classification is involved: an iteration
with five plant species virtually becomes a pure plant classification task. The
table shows that the accuracy is positively correlated with the number of plant
species in an iteration.

Thus, to investigate the effect of the two feature extractors on purely the task
of fine-grained classification of plant diseases, we propose use of the TomatoDis-
ease dataset, a subset of CropDisease that contains all of its instances pertaining
to tomato diseases. TomatoDisease does not involve different plant species and
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Table 5. Classification accuracy increases as the number of selected plant classes
increases in the 5-way 5-shot CropDisease data. Summarised from the 600 iterations of
1-vs-rest logistic regression with `2 regularisation on the un-normalised CropDisease-
ResNet152 feature vectors.

mean min median max

2 species and 3 in-species diseases (8 iter) 83.50 76.00 81.33 96.00
3 species and 2 in-species diseases (89 iter) 88.13 60.00 89.33 100.0
4 species and 1 in-species disease (274 iter) 93.41 76.00 94.67 100.0
5 species and 0 in-species disease (229 iter) 96.43 85.33 97.33 100.0

Table 6. TomatoDisease leads to lower classification accuracy than CropDisease for
all of the algorithms.

Accuracy
ResNet10 ResNet152

CropDisease TomatoDisease CropDisease TomatoDisease

Näıve Bayes 82.92±0.75 57.87±0.79 92.71±0.51 68.35±0.66
kNN 78.86±0.74 59.04±0.66 81.67±0.72 56.12±0.70
Random Forest 83.00±0.66 62.10±0.65 89.75±0.57 64.63±0.62
LDA 89.09±0.56 71.54±0.63 93.74±0.46 74.69±0.63
QDA 88.30±0.58 70.95±0.62 93.29±0.48 73.32±0.62
Pairwise SVM 88.55±0.59 71.10±0.64 93.50±0.47 73.95±0.62
1-vs-rest SVM 89.03±0.58 71.07±0.61 93.63±0.47 74.32±0.63
1-vs-rest LR `2 89.66±0.56 71.31±0.63 93.79±0.46 74.60±0.63
1-vs-rest LR `1 66.51±0.88 47.89±0.70 88.53±0.60 65.96±0.65
Multinomial LR 88.64±0.58 70.61±0.62 93.59±0.47 73.70±0.62
LDA ensemble 89.05±0.56 71.51±0.62 93.72±0.47 74.58±0.63
Shrunken centroid 87.46±0.62 68.31±0.68 92.26±0.52 71.36±0.65
Cosine similarity 89.71±0.55 71.36±0.62 93.77±0.47 74.17±0.61

focuses solely on tomato diseases, making this a much more challenging problem.
Table 6 shows the accuracy of the classifiers is lower on TomatoDisease when
compared with the original CropDisease.

All of the instances and classes in TomatoDisease are from the original
CropDisease dataset, and yet the robust classifiers exhibit significantly worse
performance on TomatoDisease than CropDisease when using a feature extrac-
tor trained on ImageNet. Thus, it can be argued that domain shift between
datasets is not only related to the superficial differences in instance properties
(such as image colours, perspectives and objects in them) but also the nature of
the tasks represented by the datasets in question. When two tasks are similar in
format but different in nature, it can still be hard, even for a sophisticated and
well-trained AI system, to perform adequately in one task by relying mainly on
its empirical knowledge of the other task.
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5 Conclusion

In this paper, we evaluated and compared different robust learning algorithms,
normalisation methods and pre-trained feature extractors in the context of cross-
domain few-shot learning. We demonstrated that the combination of a good
robust classifier, an effective feature extractor, and a suitable normalisation
method, can provide a significant performance increase in CDFSL problems.
We showed that, in the various CDFSL experiments we performed, the cosine
similarity classifier and 1-vs-rest logistic regression with `2 regularisation are
consistent top-performers amongst the algorithms we evaluated, which indicates
that the old and established `2-regularised logistic regression is a viable alterna-
tive to the competitive cosine similarity classifier in CDFSL. It was also shown
that algorithms used in the gene expression domain, namely the random projec-
tion ensemble of LDA classifier and the nearest shrunken centroid classifier, are
applicable in CDFSL scenarios. We additionally demonstrated that certain com-
binations of classifiers and normalisation methods perform consistently better in
CDFSL tasks than their counterparts without normalisation; one such example
is LDA with `2-normalised feature vectors. Finally, more sophisticated and bet-
ter trained feature extractors are shown to increase the classification accuracy
considerably for target domains that are similar to the source domain in proper-
ties and concept, while this positive effect is weakened or virtually non-existent
for target domains that are drastically different from the source domain.

Research questions that can be derived from our paper include:

1. Can the top-performing robust classifiers in CDFSL be utilised to improve
semi-supervised learning approaches?

2. How to methodically structure and train feature extractors to achieve an
optimal transfer between source domains and target domains?

3. How to systematically quantify domain shift?
4. How to assemble datasets from accessible data to have minimal domain shift

to known real-world problems?
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