
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Optimising Network Architectures for Provable Adversarial
Robustness

Citation for published version:
Gouk, H & Hospedales, TM 2020, Optimising Network Architectures for Provable Adversarial Robustness.
in 2020 Sensor Signal Processing for Defence Conference (SSPD). Institute of Electrical and Electronics
Engineers (IEEE), pp. 1-5, 9th International Conference of the Sensor Signal Processing for Defence ,
Virtual Conference, United Kingdom, 15/09/20. https://doi.org/10.1109/SSPD47486.2020.9272169

Digital Object Identifier (DOI):
10.1109/SSPD47486.2020.9272169

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2020 Sensor Signal Processing for Defence Conference (SSPD)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Jul. 2021

https://doi.org/10.1109/SSPD47486.2020.9272169
https://doi.org/10.1109/SSPD47486.2020.9272169
https://www.research.ed.ac.uk/en/publications/68da2666-18d4-46da-ba9f-c06d987b731b


Optimising Network Architectures for Provable
Adversarial Robustness

Henry Gouk
School of Informatics

University of Edinburgh
Edinburgh, United Kingdom

hgouk@inf.ed.ac.uk

Timothy M. Hospedales
School of Informatics

University of Edinburgh
Edinburgh, United Kingdom

thospedales@ed.ac.uk

Abstract—Existing Lipschitz-based provable defences to adver-
sarial examples only cover the `2 threat model. We introduce the
first bound that makes use of Lipschitz continuity to provide a
more general guarantee for threat models based on any `p norm.
Additionally, a new strategy is proposed for designing network ar-
chitectures that exhibit superior provable adversarial robustness
over conventional convolutional neural networks. Experiments
are conducted to validate our theoretical contributions, show that
the assumptions made during the design of our novel architecture
hold in practice, and quantify the empirical robustness of several
Lipschitz-based adversarial defence methods.

Index Terms—Artificial Neural Network, Computer Vision

I. INTRODUCTION & RELATED WORK

The robustness of deep neural networks to adversarial
attack [1] is an increasingly topical issue as deep models
are becoming more widely deployed in practice. This paper
focuses on the problem of ensuring that once a deep network
trained for image classification has been deployed, one can
be confident that an adversary has only a limited ability to
maliciously impact model predictions when they tamper with
the system inputs. Such malicious inputs, so-called adversarial
examples, appear to humans as normal images, but in reality
they have undergone imperceptible modifications that cause a
model to make an incorrect prediction. The majority of research
into adversarial examples is still based on empirical results that
have been shown to be somewhat fragile [2], [3]. In contrast,
we look to the more recent trends in provable adversarial
robustness, where it one is able to compute a certificate for
each prediction made by the model, ensuring that it is robust
to some pre-specified family of attacks, known as the threat
model [4], [5].

There are several papers in the literature on deep learning
that address adversarial robustness through the use of Lipschitz
continuity, but they focus solely on perturbations with bounded
Euclidean norm. Tsuzuku et al. [4] present an efficient method
for determining whether an example could have been tampered
with at test time or, conversely, certify that a prediction has not
been influenced by an adversarial attack. They compare the
prediction margin normalised by the Lipschitz constant of the
network to the magnitude of the largest perturbation allowed
by the threat model, allowing them to determine whether
the input could be an adversarial example. Farnia et al. [6]

show how the adversarial risk can be bounded in terms of
the training loss by adapting the bound of [7] to consider
perturbations to the margin, using a similar technique to [4].
The analysis in this paper takes a similar high-level strategy—
making use of margins and Lipschitz constants—but we extend
this theory to threat models based on arbitrary p-norms, and
provide a simpler proof than previous methods [4]. Huster
et al. [8] demonstrate that current methods for regularising
Lipschitz constants of networks have deficiencies when used
for improving adversarial robustness. Specifically, it is shown
that existing approaches for regularising the Lipschitz constant
may be too restrictive because the bound on the Lipschitz
constant is too loose, resulting in over-regularisation. We take
an orthogonal approach: we provide theoretical and practical
contributions that are compatible with arbitrary bounds on the
Lipschitz constant.

Existing work that aims to provide theory-backed guarantees
for adversarial robustness has resulted in several techniques
able to certify whether a prediction for a particular example
is immune to adversarial attack under a threat model based
on `p-norm perturbation size. [9] propose a method that can
only be applied to networks composed of fully connected
layers with rectified linear units activation functions, and no
batch normalisation. [10] present an approach based on solving
an optimisation problem. While the robustness estimates they
give are considerably tighter than many other certification
methods, they scale very poorly to networks with large input
images or feature maps. In contrast to these methods, our
approach bounds the expected adversarial generalisation error,
has virtually no test-time computational overhead, and can
be applied to arbitrary feed-forward architectures. Bounding
the expected generalisation error enables us to give guarantees
about the level of robustness a model will have once it has been
deployed. Existing approaches to provable robustness do not
come with such guarantees, and can only provide certification
for individual instances.

We begin by extending existing theory addressing the rela-
tionship between Lipschitz continuity and provable adversarial
robustness. Using insights from the resulting bounds, it is
shown how one can adjust network architectures in such a
way that Lipschitz-based regularisation methods are more
effective. Experimental results show that, while having little



difference in clean performance compared to existing Lipschitz-
based defences, our approach improves the level of provable
robustness significantly.

II. GENERALISATION UNDER ATTACK

Methods for estimating the generalisation performance of
learned models typically assume examples, (~x, y), observed at
both training and testing time are independently drawn from
the same distribution, D. Such methods estimate or bound the
expected risk,

R`(f) = E(~x,y)∼D[`(f(~x), y)], (1)

of a classifier, f , with respect to some loss function, `. The
standard technique for estimating the expected risk in deep
learning is to use an empirical approximation measured on a set
of held-out data. In the adversarial setting one must consider
the expected risk when under the influence of an attacker that
can add perturbations to feature vectors at test time,

R̃`p,t(f) = E(~x,y)∼D

[
max

~ε:‖~ε‖p≤t
`(f(~x+ ~ε), y)

]
, (2)

which is known as the adversarial risk [5]. In contrast to the
expected risk, R̃`p,t(f) cannot be reliably approximated from
data when f is nonlinear, as one must find the globally optimal
setting of ~ε for each data point in the held-out set.

For a hypothesis, f , that produces a vector of real-valued
scores, each associated with a possible class, we define the
margin function as

mf (~x, y) = fy(~x)−max
j 6=y

fj(~x), (3)

where fi(~x) is the ith component of the output of f(~x). Typical
loss functions for measuring the performance of a model via
composition with the margin function include the zero–one loss
and the hinge. These compositions result in the classification
error rate and the multi-class hinge loss variant proposed
by [11], respectively.

Proposition 1. If f is k-Lipschitz with respect to the p-norm
and ` : R→ R+ is a monotonically decreasing loss function,
then

max
~ε:‖~ε‖p≤t

`(mf (~x+ ~ε, y)) ≤ `(mf (~x, y)− 21/qkt), (4)

where q is defined such that ‖ · ‖q is the dual norm of ‖ · ‖p.

Proof. The main idea behind the proof is to show that the
Lipschitz constant of the network controls how much the margin
can be influenced by an adversarial perturbation. Note that
one can express the margin function given in Equation 3 as
mf (~x, y) = mI(f(~x), y), where I is the identity function. The
Lipschitz constant of mI with respect to its first argument
when using the p-norm is max~x ‖∇~xmI(~x, y)‖q [12, p. 133].
The gradient of mI is a vector with all elements set to zero,
except for those corresponding to the largest and second largest
components of ~x. These components of the gradient take the
values of 1 and −1, respectively. Plugging these values into the

definition of vector p-norms, one arrives at a Lipschitz constant
of 21/q . From the composition property of Lipschitz functions,
we can say that mf is (21/qk)-Lipschitz with respect to ~x. The
Lipschitz property of mf can be used to bound the worst-case
change in the output the margin function for a bounded change
in the input, yielding

`( min
~ε:‖~ε‖<t

mf (~x+ ~ε, y)) ≤ `(mf (~x, y)− 21/qkt). (5)

From the decreasing monotonicity of `, we have that

max
~ε:‖~ε‖<t

`(mf (~x+ ~ε, y)) = `( min
~ε:‖~ε‖<t

mf (~x+ ~ε, y)), (6)

which concludes the proof.

This proposition bounds the worst-case change in loss for
a single image in terms of prediction confidence, Lipschitz
constant of the network, and the maximum allowable attack
strength.

The relationship given in Proposition 1 is a more general
form of the bound derived by [4], who consider only the
Euclidean norm.

Proposition 1 can be extended to provide a non-trivial bound
on the expected adversarial risk through the use of a held-out
dataset and a simple application of McDiarmid’s inequality.

Proposition 2. If f is k-Lipschitz w.r.t. the p-norm, ` :
R→ [0, B) is a monotonically decreasing loss function, and
{(~xi, yi) ∼ D}ni=1 is independent of f (i.e., held-out data), the
following holds with probability at least 1− δ:

R̃`p,t(f) ≤
1

n

n∑
i=1

`(mf (~xi, yi)− 21/qkt) +B

√
ln(2/δ)
2n

(7)

where q is defined such that ‖ · ‖q is the dual norm of ‖ · ‖p.

Proof. Constructing a mean over loss terms,

L =
1

n

n∑
i=1

`(mf (~xi, yi)− 21/qkt), (8)

results in a sequence where each term is bounded by B
n ,

allowing McDiarmid’s inequality to probabilistically bound
the deviation from its expected,

P(|L− E[L]| > γ) ≤ 2exp

(
−2nγ2

B2

)
. (9)

Setting δ equal to the right-hand side of Inequality 9 and
solving for γ yields

γ = B

√
ln(2/δ)
2n

. (10)

Thus, we can say with confidence 1− δ that

E[L] ≤ L+B

√
ln(2/δ)
2n

. (11)

Applying Proposition 1 to each term of the summation, L,
concludes the proof.



Proposition 2 extends the result of Proposition 1 from the
loss on a single instance to the expected risk.

In practice, this means that a practitioner can bound the
worst-case adversarial performance of their model based on its
(non-adversarial) validation-set performance and its Lipschitz
constant, both of which can be measured efficiently. As we show
later, this can lead to non-vacuous bounds on error rate, which
in turn could allow a user to deploy a model with provable
confidence about its performance under adversarial attack—
without the hassle and computational expense of instance-wise
certification at run-time [9], [10].

III. ARCHITECTURES FOR PROVABLE ROBUSTNESS

The analysis in Section II motivates a high-level strategy
for improving the adversarial robustness of neural networks:
maximise the prediction margin while minimising the Lipschitz
constant of the model. Several papers have proposed different
methods for regularising the Lipschitz constant of a network,
with various motivations, including improving robustness to
adversarial exmaples [4], [13] and improving generalisation
performance in the non-adversarial case [14].

We propose a strategy for modifying network architectures
to make them more amenable to Lipschitz-based regularisers:
splitting a single multi-class classification network into a
collection of one-versus-all (OVA) classifiers that each produce
a real-valued score. Unlike the conventional OVA method,
where each component classifier is trained in isolation, the
networks used in our approach are still trained jointly using
a softmax composed with the cross entropy loss function.
There are two requirements for this OVA scheme to have a
benefit: each of the simpler binary classification subproblems
must be solvable by a network with a smaller Lipschitz
constant, and the Lipschitz constant of the multi-classifier
system must grow slowly with the number of classes. [14]
show that the Lipschitz constant is related to model capacity,
so the subnetwork associated with each class should be able to
achieve high accuracy with a smaller Lipschitz constant than a
conventional multi-class classification network. For the second
requirement, consider the vector-valued function,

f(~x) = [f1(~x), f2(~x), ..., fC(~x)], (12)

where C is the number of classes, and fi is ki-Lipschitz. We
have from the Lipschitz property of each fi that

‖f(~x)− f(~x+ ~v)‖p ≤ ‖[k1‖~v‖p, k2‖~v‖p, ..., kC‖~v‖p]‖p
(13)

= ‖~v‖p‖[k1, k2, ..., kC ]‖p, (14)

from which we can deduce that the Lipschitz constant of the
one-versus-all classifier is the `p norm of the vector of Lipschitz
constants corresponding to each binary classifier. In the case
of the ∞-norm, the largest Lipschitz constant associated with
a single binary classifier dictates the Lipschitz constant of the
entire OVA classifier. From this, we can conclude that the
second requirement is satisfied.

A. Lipschitz Regularization Training

We investigate two approaches to controlling the Lipschitz
constant of neural networks. The first approach we use is to
add the bound on the Lipschitz constant as a regularisation
term to the objective function, resulting in

1

n

n∑
i=1

`(f(~xi), yi) +

d∏
l=1

‖Wl‖p, (15)

where d is the number of layers in the network and ‖ · ‖p is
the operator norm induced by the vector p-norm. In the case
where p is two, the operator norm is the largest singular value
of the matrix (i.e., the spectral norm). For p = ∞, it is the
maximum absolute row sum norm [14],

‖W‖∞ = max
i

∑
j

|Wi,j |. (16)

IV. EXPERIMENTS

This section presents the results of numerical experiments
that demonstrate the tightness of the bounds presented in
Section II and provides evidence that the architecture proposed
in Section III is inherently easier to optimise for provable
robustness than conventional network architectures. The models
used in these experiments were implemented using Keras 1, and
the adversarial attacks were performed using the CleverHans
toolkit 2.

A. Tightness of the Bound

The bound given in Proposition 2 provides a way to
estimate the worst-case performance of a model when under
the influence of an adversary. In order to validate this bound
empirically, we train linear support vector machines with
different levels of `2 regularisation on the MNIST dataset of
hand-written digits. In the case of linear SVMs, the optimisation
problem solved by iterative gradient-based attacks, such as the
projected gradient descent method of [5], are convex and can
therefore be solved globally. This means the the empirical
adversarial risk can be computed exactly. Plots indicating the
tightness of the bound for linear SVMs are given in Figure 1.
These were generated by training models on the first 50,000
instances of the training set, using the other 10,000 training
instances as the held-out data required for computing the bound,
and using the PGD attack when evaluating the network on
the test data. These plots confirm that the bound proposed in
Proposition 2 is non-vacuous and has the potential to be useful
in practice.

B. Provable Robustness

We first experiment on MNIST to determining whether our
proposed OVA networks achieve better provable robustness
than conventional convolutional neural networks. To control for
the potentially confounding factor of model capacity, a series
of networks with different widths are trained. We define the
width of a conventional convolutional network as the number of

1https://github.com/keras-team/keras
2https://github.com/tensorflow/cleverhans
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Fig. 1. Plots demonstrating the relationship between the provable upper bound on adversarial risk, and the actual misclassification rate on the test set under
adversarial attack. Linear SVM recognition on MNIST with `2 (top row) and `∞ (bottom row) threat models and regularization strength λ.

feature maps produced by the first convolutional layer. For OVA
networks, the width is the number of feature maps produced
by the first layer in a single binary classifier, multiplied by the
number of binary classifiers. For both network types, the chosen
architectures contain two convolutional layers, the second of
which has twice the number of feature maps as the first. Each
convolutional layer contains 5× 5 kernels, rectified linear unit
activation functions, and is followed by a 2× 2 max pooling
layer. After the convolutional layers are two fully connected
layers: one with 128 hidden units, and another with either
10 units (for conventional networks), or one unit (for OVA
networks).

Figure 2 shows how the number of model parameters impacts
the provable adversarial robustness for threat models based
on the `2 and `∞ norms. The models in these plots are
regularised using the Lipschitz penalty method proposed in
Section III. These figures show that: (1) Regularised OVA
networks exhibit superior provable robustness compared to
regularized conventional CNNs at comparable model sizes, (2)
The magnitude of this margin becomes more pronounced as
model size increases, (3) All methods have low error rate for
unperturbed examples (left plots).

To investigate how well OVANets scale to larger networks
and more challenging datasets, additional experiments are run
on the CIFAR-10 dataset, using VGG-style networks [15]
as the base architecture. The baseline CNN uses the VGG11
architecture, and each subnetwork of the OVANet architecture is
a VGG11 network with half the number of feature maps in each
layer. Table I provides probabilistic (95% confidence) bounds
on the worst-case adversarial error rate using Proposition 2.
Table II shows the corresponding provable robustness results
for SVHN benchmark. From the results we can see that: (1)

TABLE I
BOUNDS ON THE ERROR RATE FOR VGG MODELS TRAINED ON CIFAR-10.

THE BOUNDS WERE COMPUTED WITH PROPOSITION 2 AT THE 95%
CONFIDENCE LEVEL AND THE `2 THREAT MODEL.

Perturbation Size (`2)
Model λ Clean 1/255 2/255 3/255 4/255

VGG11-CNN

0 14.50 100.00 100.00 100.00 100.00
0.0001 14.22 47.61 79.22 95.87 100.00
0.0005 16.00 29.00 42.74 56.49 69.84
0.001 17.64 26.80 35.60 44.75 53.66

VGG11-OVA

0 17.18 100.00 100.00 100.00 100.00
0.0001 15.58 44.54 73.49 93.11 99.99
0.0005 15.86 27.68 39.01 51.85 63.68
0.001 17.09 25.00 32.54 40.35 48.53

Lipschitz penalty training improves the adversarial error rate
for both vanilla VGG11 and VGG11-OVANet (performance
improves with λ); (2) VGG11-OVANet generally has superior
provable robustness compared to vanilla VGG11 for correspond-
ing regularisation strength, especially for strong attacks. (3)
Meanwhile, regularized OVANet achieves comparable results
to a regularized CNN in terms of clean data performance.

V. CONCLUSIONS

This paper presents a p-norm-agnostic theoretical analysis of
provable adversarial robustness via Lipschitz regularisation. A
new architecture, the OVA network, is proposed, motivated by
insights of how Lipschitz constants can be bounded for different
architecture design choices. It is shown that OVA networks
achieve similar empirical performance to conventional neural
networks but, as network size increases, OVA networks are
able to achieve significantly better certifiable robustness. This
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Fig. 2. Comparison of provable adversarial risk for conventional CNN versus OVANet trained with Lipschitz penalty regularization over a range of model
sizes. The `2 (top row) and `∞ (bottom row) Lipschitz constants are used for regularisation and computing the bound. OVANet shows superior provable
robustness, especially at larger model sizes.

TABLE II
BOUNDS ON THE ERROR RATE FOR VGG MODELS TRAINED ON SVHN.

THE BOUNDS WERE COMPUTED WITH PROPOSITION 2 AT THE 95%
CONFIDENCE LEVEL AND THE `2 THREAT MODEL.

Perturbation Size (`2)
Model λ Clean 1/255 2/255 3/255 4/255

VGG11-CNN

0 7.29 100.00 100.00 100.00 100.00
0.0001 7.15 13.16 21.86 33.59 47.10
0.0005 8.46 11.38 14.84 19.33 24.49

0.001 9.41 11.76 14.95 17.76 21.48

VGG11-OVA

0 7.69 100.00 100.00 100.00 100.00
0.0001 7.45 12.10 19.19 28.38 39.17
0.0005 8.25 10.64 13.02 16.11 19.82

0.001 9.02 10.92 12.86 15.05 17.81

is a useful result for practitioners, who can use a Lipschitz
regulariser and our bound in order to train models with a
certifiable level of robustness against adversarial attack.
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