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Abstract
Neural sequence-to-sequence (S2S) modelling encodes a

single, unified representation for each input sequence. When
used for text-to-speech synthesis (TTS), such representations
must embed ambiguities between English spelling and pronun-
ciation. For example, in pothole and there the character se-
quence th sounds different. This can be problematic when pre-
dicting pronunciation directly from letters. We posit pronuncia-
tion becomes easier to predict when letters are grouped into sub-
word units like morphemes (e.g. a boundary lies between t and
h in pothole but not there). Moreover, morphological bound-
aries can reduce the total number of, and increase the counts
of, seen unit subsequences. Accordingly, we test here the ef-
fect of augmenting input sequences of letters with morphologi-
cal boundaries. We find morphological boundaries substantially
lower the Word and Phone Error Rates (WER and PER) for a
Bi-LSTM performing G2P on one hand, and also increase the
naturalness scores of Tacotrons performing TTS in a MUSHRA
listening test on the other. The improvements to TTS quality
are such that grapheme input augmented with morphological
boundaries outperforms phone input without boundaries. Since
morphological segmentation may be predicted with high accu-
racy, we highlight this simple pre-processing step has important
potential for S2S modelling in TTS.
Index Terms: Speech Synthesis, Sequence-to-Sequence, Mor-
phology, Pronunciation

1. Introduction
The English spelling system is notoriously confusing. Take the
word coathanger. It contains the digraphs th and ng which have
different pronunciations in words like there or range. The de-
fault solution in text-to-speech (TTS) for such issues is a com-
plex pipeline of processing known collectively as the front-end.

The front-end’s main function is to predict the phone se-
quence corresponding to input text. At the minimum, it typ-
ically exploits a lexicon containing phonetic transcriptions.
These provide phone sequences for in-vocabulary words, and
training data for a grapheme-to-phoneme (G2P) model that pre-
dicts pronunciations for out-of-vocabulary (OOV) words. Ex-
ample TTS lexica include CMUdict [1], Unisyn [2] and Com-
bilex [3].

A comprehensive front-end will also expand abbreviations
(e.g. AAPL or AMZN), and disambiguate non-standard words
(like numbers) and homographs. Examples of comprehensive
front-end packages for TTS include Festival [4], Mary [5] and
Sparrowhawk [6].

Front-ends were originally developed to work hand-in-hand
with monotonic acoustic models when acoustics for each seg-
ment were only predicted frame by frame, from left to right.
In this approach, text with ambiguous pronunciation needed
phones as an intermediate representation. This was because the
pronunciation of any character could not be dependent on char-
acters at a long distance down in a sequence.

Yet sequence-to-sequence (S2S) modelling has enabled
acoustic prediction directly from text in end-to-end (E2E) TTS
(e.g. Tacotron [7]) which is now often considered state-of-the-
art in acoustic modelling [8]. By encoding the entirety of each
input sequence at once, acoustics for any single character are
predicted according to that character’s wider environment. This
means the complexity in English spelling is learnt as an im-
plicit letter-to-sound model. In other words, phonetic input is
no longer necessary for acoustic modelling in languages with
an unclear mapping between letters and sounds. In addition,
E2E TTS development is simple thanks to a single, monolithic
model that jointly performs pronunciation, acoustic and dura-
tion modelling. As this approach gains traction in the TTS field
(c.f. the ESPnet-TTS project [9]), the continuing role of any
separate front-end processing is naturally brought in question.
Given its cost in time and money to develop, what value does it
bring, and how can it be simplified and optimised for S2S TTS?

Mulitple reports have in fact been emerging in the literature
showing that S2S TTS incorporating linguistic features can give
superior performance. Indeed, state-of-the-art quality has only
so far been achieved for English with phonetic input [10]. Syn-
tactic features improved intonation in [11]. Using clockwork
RNNs to hierarchically represent multiple levels of linguistic
features (syllabic, phonetic and lexical) with a variational auto-
encoder also improved intonation in [12]. Language modelling
features were found to speed-up convergence during training in
[13]. We do not refer to these systems as E2E since the addi-
tional features require intervention to produce.

We posit that further benefits to S2S TTS may be gained
from using morphology, which has the advantage of being
relatively easy to derive, as supplementary information. At
its simplest, morphology can delineate meaningful sub-word
units. For instance, hanger is composed of the root hang and
bound morpheme er. These may attach to the root coat to
derive coathanger. Morpheme boundaries can thus in princi-
ple help resolve some of the pronunciation confusion arising
from English spelling: the implications of the sequence th in
{coat}{hang}>er> are clearer than in coathanger.

Even more significantly, morphological information has the
potential to increase the utility of the available training data. In
the field of neural machine translation it has been demonstrated
that breaking down text input into morphemes both lessens the
total translatable vocabulary and increases the frequency of each
(now shorter) vocabulary item, which ultimately boosts overall
performance [14]. For instance, the count of coat is increased
when the compound coathanger is split. We argue breaking
down character sequences into shorter, common subsequences
in this way is likely to bring analogous benefits for TTS model
training. To demonstrate how morpheme boundaries reduce the
total number of recurring character subsequences, and also in-
crease their frequencies, in Figure 1 we compare the words and
morphemes present in the LJ speech dataset [15]. Note how
the morphemes (derived from Unisyn) occur with higher counts
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Figure 1: Total counts of most frequent units: words and mor-
phemes in the training data for our TTS systems. Splitting into
morphemes reduces the vocabulary and increases the counts of
seen units.

than the original words, as shown by the area where the mor-
pheme (dotted) line is above the words (blue) line. As the V
column in Table 1 shows, across the entire dataset the vocabu-
lary is more than halved thanks to morphological boundaries.

Morphological information comes included with high qual-
ity lexica such as Unisyn, but a practical TTS system using
morphology would of course have to handle OOVs too. Au-
tomatic morphological decomposition could be employed for
these, and indeed it has been shown a model can predict the
location and identity of morpheme boundaries with reasonably
high accuracy (e.g. [16]). Though this is an important future
consideration, we focus at this stage on assessing the potential
benefit of morphological features for S2S TTS generally, as-
suming they are freely available. We thus restrict experiments
to in-vocabulary words to achieve our aims here.

In addition to evaluating how the inclusion of morpheme
boundaries affects speech synthesised by a full S2S TTS model,
we also investigate them in this paper in the context of S2S G2P
models. Since G2P models typically have simpler architectures
and fewer trainable parameters, they serve as less compute-
heavy proxies to understand how a full S2S TTS model may
deal with pronunciations. As such, we effectively consider the
G2P models as performing a similar pronunciation modelling
task, though predicting explicit phone strings rather than the “la-
tent” pronunciations in S2S TTS, which are only inferrable from
the synthesised audio. As well as lower computational cost,
they also offer the benefit of a definite discrete output represen-
tation that can be easily scored against a target phone string, so
providing convenient additional insight.

In summary, our aim is to demonstrate the benefits of mor-
phological features for S2S-based G2P and TTS. In the rest of
this paper, we first demonstrate that morphological features im-
prove S2S G2P performance by lowering Word and Phone Error
Rates (WER and PER). We then present results from an eval-
uation using an open-source Tacotron model trained multiple
times with and without morphological features. We assess the
performance of these S2S TTS models in a MUSHRA listening
test, and show that including morpheme boundaries can indeed
improve naturalness scores.

Input Base Unit Format V
G Graphemes p o t h o l e s 13981

GM Graphemes { p o t } { h o l e } >s > 5202
P Phones p o t h ou l z 12631

PM Phones { p o t } {h ou l } >z > 5606
Table 1: Description of the various types of input fed to
Tacotron. V is the total vocabulary size, i.e. number of unique
units (words or morphs), comprised of graphemes or phones.

2. Experimental Setup
2.1. Morphology

Though it does not feature in many lexicons (e.g. CMUdict),
morphological composition is indicated for all words contained
in both Unisyn and Combilex. Unisyn provides surface-level
morphemes where entries are interspersed directly with bound-
aries. For instance, the word unanswered has prefix <un–, root
{answer}, and suffix –ed>. The entry with both letters and
morphemes appears as <un<{answer}>ed> in Unisyn nota-
tion. Unisyn is freely downloadable for academic purposes
and also contains phones, syllable boundaries, lexical stress
markers and POS tags. Its morphology is very simple to pre-
dict. While this enables a relatively easy application to out-of-
vocabulary (OOV) words, a more detailed and fine-grained no-
tation could potentially add further benefit. For instance, canon-
ical morphology [17] modifies each detected unit to one of a
standardised set. Take acquirability: its surface representation
in Unisyn is <a{cquir}>abil >ity >, but canonical segments
would be more consistent:<{acquire}>able>ity >, and thus
increase the frequency even more of the morphemes curve in
Figure 1. At this stage, we are not analysing how to optimise
morphological representations for S2S TTS, but are rather just
exploring the viability of using morphology in S2S-TTS mod-
els at all. For convenience in this paper, we therefore simply use
the morphology provided in Unisyn as-is. Further information
on the approach taken to morphology in Unisyn is provided in
[18].

2.2. G2P Models

We first evaluated the effect of morphological boundaries to
augment input to a neural S2S G2P model. We used the base-
form lexicon of Unisyn, designed to be accent-independent,
which contains 160,000 entries split into a ratio of 75:20:5 for
the training, validation and test sets. Prior to training our mod-
els, We created two partitions of the data for random and dis-
joint test sets. For the random test set, we randomly selected
20% and 5% of Unisyn entries to be included in the val and
test sets respectively. For the disjoint test set, entries were
grouped according to the primary root morpheme of the words,
and the validation and test sets were selected such that they
contained distinct sets of root morphemes. For example, the
root {hiccough} may have been in the training set with associ-
ated entries such as {hiccough}>ed>and {hiccough}>ing>,
but {cough} is a separate root morpheme and could there-
fore be put instead in the test set with derivations such as
{cough}>ed>and {cough}>ing>. Note, the sets were made
entirely disjoint in terms of root morphemes from one another·
In this way, we test the G2P model’s ability to generalise to un-
seen root morphemes, as often happens in real applications of
G2P. No further pre-processing steps were taken, such as re-
moving homographs, apostrophes or words with fewer than 4



letters.
Although the transformer network may have been shown

to perform with the lowest WER when using CMUdict [19],
for computing ease we trained BiLSTMs, another neural S2S
model competitive in terms of WER [20]. We use the Open-
NMT package built on Pytorch [21], using 3 bi-directional en-
coder and decoder layers with 500 units each, a learning rate of
0.001, and Luong’s global attention [22] with dropout of 0.1.
The networks were trained with mini-batches of 64 and opti-
mised with ADAM. For the results reported here, the BiLSTM
converged after 50,000 training steps.

2.3. TTS Systems

We trained TTS models on a subset of the Linda-Johnson
speech corpus1. This is a standard dataset in E2E TTS which
contains utterances taken from 7 non-fiction books. While it
would be interesting to test the effect of morphological features
on dialects and languages with more extensive morphological
processes than English, S2S TTS models require a compara-
tively large amount of paired audio and text data, and this was
only most conveniently available to us for English.

Out of the total 13,100 utterances in LJ speech (24 hours),
we used 9871 utterances with IV items only, totalling approx-
imately 18 hours of speech. We left out utterances contain-
ing OOVs to ensure consistent and correct morphological com-
position was available for each word in every utterance. Al-
though predicting morphological features for OOVs is straight-
forward and relatively accurate, this would have added unnec-
essary complication for our purposes here.

We used a Tacotron model implemented by the Github user
Fatchord2. Tacotron uses a pre-net and CBHG module to en-
code a series of one-hot input characters from a sequence into
a single representation. Unlike previous DNN-based systems,
an attention mechanism aligns input text to audio directly, and
thus enables grapheme-based input. We used Location Sensi-
tive Attention (LSA) to reduce instability in output speech as
recommended in [23].

Each Tacotron was trained for 350k training steps. As [24]
noted, neural S2S TTS models occasionally fail to stabilise, as
differing random seeds influence the ability to learn effective
alignments between text and speech. Some Tacotrons were un-
stable after training, therefore we trained each system with 3
different seeds and, after informal listening, selected the best
performing for the MUSHRA.

This implementation uses a WaveRNN vocoder based on
[25]. It was trained using Tacotron’s predicted outputs up to
800k steps and synthesised samples in batch-mode. We used a
sampling rate of 16kHz.

2.4. MUSHRA Design

To measure the effect of including morphology in neural S2S
TTS, we conducted a MUSHRA listening test. We synthesised
from 4 systems and used a natural utterance as a hidden refer-
ence. We randomly selected 20 utterances from LJ that con-
tained OOVs and added the OOVs with correct morphology to
the test text input.

Example input to the 4 systems is shown in Table 1.
The baseline is the grapheme-based (G) system, with base
graphemes (letters) only. Importantly, the LJ corpus is nor-
malised to expand out numbers and monetary amounts, but

1Available from: https://keithito.com/LJ-Speech-Dataset/
2Available from: https://github.com/fatchord/WaveRNN

Random Disjoint
WER PER WER PER

G2P G 9.9 2.3 32.6 5.9
G2P GM 7.9 1.9 23.4 3.9

Table 2: G2P error (%) with (GM) and without (G) morphemes

acronyms are left unchanged. The graphemes enhanced with
morphology (GM) contain the letters interspersed with morpho-
logical boundaries.

In previous work [10], we found phone input significantly
improved the quality of Ophelia3 a different S2S architecture,
based on DCTTS [26]. Here, we also measure the effect of
morphemes when using phone-based input. In this way, we
can measure the improvements of morphology relative to both
phones and graphemes. We used Festival as a front-end for the
phone-based systems and to enhance input sequences with mor-
phological boundaries.

We held a closely-controlled listening test. We used the
BeaqleJS platform 4 to implement a MUSHRA listening test
[27] which randomised the systems in a latin-square design.
It also ensured every sample was listened to before listen-
ers could proceed. The tests were conducted in purpose-built
sound-insulated booths, and playback volume was kept consis-
tent across all tests. We employed 30 native speakers with no
known hearing impairments, who were paid £7 to listen to and
score 20 utterances from each of the 4 systems over a 45 minute
period.

We aggregated the scores across all users and calculated a
mean score for each system. We used the student t-test to mea-
sure the significance of the aggregated mean of each system,
using the Holm-Bonferroni method for error correction. All
significance tests were conducted using the statsmodels python
module.

3. Results
3.1. G2P Error Rate Comparison

The G2P results are presented in Table 2. The WER for the ran-
dom test set appears remarkably low. This is because there is a
high amount of root morpheme cross-over between the training
and test sets. Around 80% of Unisyn entries are derived from
words with pre-existing root morphemes. Yet still the WER
was improved by 2%. Moreover, the WER improved by 9.2%
on the disjoint set containing unseen roots. These results clearly
show morphology can improve G2P performance substantially,
though not exactly how. Establishing that will be the focus of
our next future work.

3.2. MUSHRA Results for TTS Comparison

The average and spread of scores for each system in the
MUSHRA is shown in Figure 2. Importantly, the MUSHRA is
designed to demonstrate comparative results between systems.
As such the score for any one systems should be interpreted rel-
ative to another, not as an absolute in itself. The hidden refer-
ence for this experiment was natural speech, and all our models
exhibit unnatural intonation patterns due to a process of F0 av-
eraging (see [28] and [12]). The overall quality of our speech
samples is reasonably high though – we encourage readers to

3Available from https://github.com/oliverwatts/ophelia
4Available from: https://github.com/ZackHodari/beaqlejs



G input GM input G Pronunciation (Incorrect) GM Pronunciation (Correct)
coathanger {coat}{hang}>er> [k@"DeInÃ@] ["koUthæN@ô]

pothole {pot}{hole} ["pAD@l] ["pAthoUl]
goatherd {goat}{herd} ["gA:D@d] ["goUth3ôd]
loophole {loop}{hole} [lu:"f@Ul] ["luphoUl]
upheld {up}{held} [2"fEld] [2p"hEld]

cowherd {cow}{herd} ["kaU@ôd] ["kaUh3ôd]
gigabytes <giga<{byte}>s> [gI"ga:bIts] ["gIg@baIts]
wobbliest {wobble}>y>>est> ["wAblist] ["wAbliIst]
optimisers {optim==ise}>er>>s > ["AptImIz@z] ["AptImaIz@ôz]

synchronizable {syn==chron==ize}>able> [sI"traIz@bl] [siNkr@"naIz@bl]
Table 3: Improvements in TTS pronunciation by adding morphology: systems G and GM. Listen to speech samples online. The IPA is
used to broadly transcribe synthetic speech samples in an American accent.
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Figure 2: Range of scores from MUSHRA listening test of each
system with phones or grapheme-based input with or without
morphology

listen to samples on our web page5.

Supplementing both grapheme- and phone-based input with
simple boundaries leads to improvements. The differences in
mean between systems G and GM are significant with a p-value
<0.05. These results show augmenting input with morpheme
boundaries also substantially improves neural S2S TTS quality.

Listening to sample output, we find including morphology
leads to clearer and more fluent sounding intonation phrases.
The system GM also disambiguates pronunciation over certain
letter clusters that system G pronounces incorrectly. To demon-
strate this, we synthesised words that were typically error-prone
for neural S2S G2P and TTS models in [29]. Table 4 shows
how adding morphology improves pronunciation of such words
as coathanger, upheld, and wobbliest.

System P system outperformed system G, repeating our
previous findings from [10] with a different Tacotron imple-
mentation and vocoder. This is because phones map pronun-
ciations directly unlike letters, leading to fewer ambiguities at
training and test time. In this respect, it is also remarkable that
system GM outperformed system P, which suggests knowledge
of word formation from morphology contributes more to TTS
quality than using phones.

5Listen at: http://homepages.inf.ed.ac.uk/s1649890/morph/

Word GM (Incorrect) PM (Correct)
untypable ["2ntIp@bl] [2n"taIp@bl]

pyjama ["pæÃ@m@] [p@"Ãæm@]
flaubert ["flA:b@t] [fl@U"ber]
karate [k@"reIt] [k@"rA:ti]

eduardo [e"dOrdu] [e"dwA:rd@U]
macao [meI"keU] [m@"kaU]
crimea ["kraImi] [kraI"mi:@]

labyrinth ["leIb@ôInT] ["læb@rInT]
ASCII [@"si:] ["æski]

Table 4: Improvements in TTS pronunciation from using
phones: systems GM and PM

3.3. How useful are phones?

Our results indicate system GM performed almost equally to
system PM. The MUSHRA evaluates systems generally, and
improvements in phrasing due to morphological boundaries
lead to similar sounding systems. This suggests simple mor-
phological boundaries could replace the expensive-to-maintain
pipeline of generating accurate phone sequences for a training
transcript. Moreover in [16], a Bi-LSTM with grapheme input
predicted morphological boundaries with an accuracy of 91.1%
for Uniysn and 93.8% for Combilex. Similar results were found
in other languages in [30]. We intend to evaluate the difference
between using predicted and oracle morphological boundaries
as input to neural S2S TTS systems in future work.

However, we note it is still the case at test time or in de-
ployment that specific cases of letter-to-sound (LTS) ambigui-
ties might require disambiguation via phones. This is particu-
larly true with rare LTS relations, as in foreign names. Table
4 shows some examples where the GM system produced an in-
correct pronunciation.

4. Conclusions
We measured effects of morphological features on S2S mod-
els used in TTS. By improving the productivity of training data
and resolving ambiguous letter-to-sound relations we achieved
substantial gains in G2P and TTS. We found morphological
features significantly increased naturalness scores of grapheme-
based systems to the level of phone-based systems. When ac-
cess to phonetic transcriptions is limited, morphological labels
still provide much of the benefit on sum. But they do not correct
all specific pronunciation errors.
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