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Qualitative Multi-Objective Reachability for
Ordered Branching MDPs?

Kousha Etessami1 and Emanuel Martinov1

School of Informatics, University of Edinburgh, UK
kousha@inf.ed.ac.uk , eo.martinov@gmail.com

Abstract. We study qualitative multi-objective reachability problems
for Ordered Branching Markov Decision Processes (OBMDPs), or equiv-
alently context-free MDPs, building on prior results for single-target
reachability on Branching Markov Decision Processes (BMDPs).
We provide two separate algorithms for “almost-sure” and “limit-sure”
multi-target reachability for OBMDPs. Specifically, given an OBMDP,A,
given a starting non-terminal, and given a set of target non-terminals K
of size k = |K|, our first algorithm decides whether the supremum prob-
ability, of generating a tree that contains every target non-terminal in
set K, is 1. Our second algorithm decides whether there is a strategy for
the player to almost-surely (with probability 1) generate a tree that con-
tains every target non-terminal in set K. The two separate algorithms are
needed: we give examples showing that indeed “almost-sure” 6= “limit-
sure” for multi-target reachability in OBMDPs. Both algorithms run in
time 2O(k) · |A|O(1), where |A| is the bit encoding length of A. Hence
they run in P-time when k is fixed, and are fixed-parameter tractable
with respect to k. Moreover, we show that the qualitative almost-sure
(and limit-sure) multi-target reachability decision problem is in general
NP-hard, when k is not fixed.

Keywords: markov decision processes · branching processes · stochas-
tic context-free grammars · multi-objective · reachability · almost-sure ·
limit-sure

1 Introduction

Ordered Branching Markov Decision Processes (OBMDPs) can be viewed as con-
trolled/probabilistic context-free grammars, but without any terminal symbols,
and where moreover the non-terminals are partitioned into two sets: controlled
non-terminals and probabilistic non-terminals. Each non-terminal, N , has an
associated set of grammar rules of the form N → γ, where γ is a (possibly
empty) sequence of non-terminals. Each probabilistic non-terminal is equipped
with a given probability distribution on its associated grammar rules. For each
controlled non-terminal, M , there is an associated non-empty set of available
actions, AM , which is in one-to-one correspondence with the grammar rules of

? A full version [11] of this paper is available at arXiv:2008.10591 .



2 K. Etessami and E. Martinov

M . So, for each action, a ∈ AM , there is an associated grammar rule M
a→ γ.

Given an OBMDP, given a “start” non-terminal, and given a “strategy” for the
controller, these together determine a probabilistic process that generates a (pos-
sibly infinite) random ordered tree. The tree is formed via the usual parse tree
expansion of grammar rules, proceeding generation by generation, in a top-down
manner. Starting with a root node labeled by the “start” non-terminal, the or-
dered tree is generated based on the controller’s (possibly randomized) choice of
action at each node of the tree that is labeled by a controlled non-terminal, and
based on the probabilistic choice of a grammar rule at nodes that are labeled by
a probabilistic non-terminal.

We assume that a general strategy for the controller can operate as follows:
at each node v of the ordered tree, labeled by a controlled non-terminal, the con-
troller (player) can choose its action (or its probability distribution on actions)
at v based on the entire “ancestor history” of v, meaning based on the entire
sequence of labeled nodes and actions leading from the root node to v, as well as
based on the ordered position of each of its ancestors (including v itself) among
its siblings in the tree.

Ordered Branching Processes (OBPs) are OBMDPs without any controlled
non-terminals. Both OBPs and OBMDPs are very similar to classic multi-type
branching processes (BPs), and to Branching MDP (BMDPs), respectively. The
only difference is that for OB(MD)Ps the generated tree is ordered. In particular,
the rules for an OBMDP have an ordered sequence of non-terminals on their right
hand side, whereas there is no such ordering in BPs or BMDPs: each rule for a
given type associates an unordered multi-set of “offsprings” of various types to
that given type. Branching processes and stochastic context-free grammars have
well-known applications in many fields, including in natural language processing,
biology/bioinformatics (e.g., [17], population genetics [16], RNA modeling [6],
and cancer tumor growth modelling [1, 20]), and physics (e.g., nuclear chain
reactions). Generalizing these models to MDPs is natural, and can allow us to
study, and to optimize algorithmically, settings where such random processes
can partially be controlled.

The single-target reachability objective for OBMDPs amounts to optimizing
(maximizing or minimizing) the probability that, starting at a given start (root)
non-terminal, the generated tree contains some given target non-terminal. This
objective has already been thoroughly studied for BMDPs, as well as for (con-
current) stochastic game generalizations of BMDPs ([9, 10]). Moreover, it turns
out that there is really no difference at all between BMDPs and OBMDPs when
it comes to the single-target reachability objective: all the algorithmic results
from [9, 10] carry over, mutatis mutantis, for OBMDPs, and for their stochastic
game generalizations.

A natural generalization of single-target reachability is multi-objective reach-
ability, where the goal is to optimize each of the respective probabilities that the
generated tree contains each of several different target non-terminals. (Of course,
there may be trade-offs between these different objectives.)
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Our main concern in this paper is qualitative multi-objective reachability
problems, where the aim is to determine whether there is a strategy that guar-
antees that each of the given set of target non-terminals is almost-surely (re-
spectively, limit-surely) contained in the generated tree, i.e., with probability
1 (respectively, with probability arbitrarily close to 1). In fact, we show that
the almost-sure and limit-sure problems do not coincide. That is, there are OB-
MDPs for which there is no single strategy that achieves probability exactly 1 for
reaching all targets, but where nevertheless, for every ε > 0, there is a strategy
that guarantees a probability ≥ 1− ε, of reaching all targets.

By contrast, for both BMDPs and OBMDPs, for single-target reachability,
the qualitative almost-sure and limit-sure questions do coincide ([9]).1

We give two separate algorithms for almost-sure and limit-sure multi-objective
reachability. For the almost-sure problem, we are given an OBMDP, a start non-
terminal, and a set of target non-terminals, and we must decide whether there
exists a strategy using which the process generates, with probability 1, a tree
that contains all the given target non-terminals. If the answer is “yes”, the al-
gorithm can also construct a (randomized) witness strategy that achieves this.2

The algorithm for the limit-sure problem decides whether the supremum proba-
bility of generating a tree that contains all given target non-terminals is 1. If the
answer is “yes”, the algorithm can also construct, given any ε > 0, a randomized
non-static strategy that guarantees probability ≥ 1−ε. The limit-sure algorithm
is only slightly more involved.

Both algorithms run in time 2O(k) ·|A|O(1), where |A| is the total bit encoding
length of the given OBMDP, A, and k = |K| is the size of the given set K
of target non-terminals. Hence they run in polynomial time when k is fixed,
and are fixed-parameter tractable with respect to k. Moreover, we show that
the qualitative almost-sure (and limit-sure) multi-target reachability decision
problem is in general NP-hard, when k is not fixed.

We leave open the decidability of arbitrary boolean combinations of qualita-
tive reachability and non-reachability queries over different target non-terminals.
(See the full version for an elaboration on such questions, and algorithms for

1 The notion of general “strategy” employed for BMDPs in [9] is somewhat different
than what we define in this paper for OBMDPs: it allows the controller to not only
base its choice at a tree node on the ancestor chain of that node, but on the entire
tree up to that “generation”. This is needed for BMDPs because there is no ordering
available on “siblings” in the tree generated by a BMDP. However, a careful look
shows that the results of [9] imply that, for OBMDPs, for single-target reachability,
almost-sure and limit-sure reachability also coincide under the notion of “strategy”
we have defined in this paper, where choices are based only on the “ancestor history”
(with ordering information) of each node in the ordered tree. In particular the key
”queen/workers” strategy employed for almost-sure (=limit-sure) reachability in [9]
can be mimicked using the ordering with respect to siblings that is available in
ancestor histories of OBMDPs.

2 This strategy is, however, necessarily not “static”, meaning it must actually use the
ancestor history: the action distribution cannot be defined solely based on which
non-terminal is being expanded.
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some special cases.) Furthermore, we leave open all (both decision and approxi-
mation) quantitative multi-objective reachability questions, including when the
goal is to approximate the tradeoff pareto curve of optimal probabilities for dif-
ferent reachability objectives. These are intriguing questions for future research.

Related work. As already mentioned, the single-target reachability problem
for OBMDPs (and its stochastic game generalization) is equivalent to the same
problem for BMDPs, and was studied in detail in [9, 10], even in the quantita-
tive sense. The same holds for another fundamental objective, namely termina-
tion/extinction, i.e., where the objective is to optimize the probability that the
generated tree is finite. The extinction objective for BMDPs, and the closely
related model of 1-exit recursive MDPs, was thoroughly studied in [14, 13, 8],
including both qualitative and quantitative algorithmic questions.

Algorithms for checking other properties of BPs and BMDPs have also been
investigated before, some of which generalize termination and reachability. In
particular, model checking of BPs with properties given by a deterministic parity
tree automaton was studied in [3], and in [18] for properties represented by a
subclass of alternating parity tree automata. More recently, [19] investigated
the determinacy and the complexity of decision problems for ordered branching
simple (turn-based) stochastic games with respect to properties defined by finite
tree automata defining regular languages on infinite trees. They showed that
(unlike the case with reachability) already for some basic regular properties these
games are not even determined, meaning they do not have a value. Moreover,
they show that for what amounts to OBMDPs with a regular tree objective it
is undecidable to compare the optimal probability to a threshold value. Their
results do not have implications for (neither quantitative nor qualitative) multi-
objective reachability.

Multi-objective reachability and model checking (with respect to omega-
regular properties) has been studied for finite-state MDPs in [12], both with
respect to qualitative and quantitative problems. In particular, it was shown
in [12] that for multi-objective reachability in finite-state MDPs, memoryless
(but randomized) strategies are sufficient, that both qualitative and quantita-
tive multi-objective reachability queries can be decided in P-time, and the Pareto
curve for them can be approximated within a desired error ε > 0 in P-time in
the size of the MDP and 1/ε.

Due to space limits, most proofs are omitted (see the full version [11]).

2 Definitions and Background

Rather than providing the most general possible definition of OBMDPs, where
rules can have an arbitrarily long string of non-terminals on their right hand side
(RHS), to simplify matters, we assume OBMDPs are already in a “simple normal
form”. This is entirely without loss of generality for our purposes: any OBMDP
can be converted efficiently to an “equivalent”3 one in normal form. This is

3 Equivalent w.r.t. all (multi-objective) reachability objectives we consider.
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directly analogous to standard normal form results for context-free grammars,
and to similar prior results established for BMDPs [9].

Definition 1. An Ordered Branching Markov Decision Process (OBMDP), A,
(in simple normal form (SNF)) is represented by a tuple A = (V,Σ, Γ,R), where
V = {T1, . . . , Tn} is a finite set of non-terminals, and Σ is a finite non-empty
action alphabet. The set of non-terminals V is partitioned into three possible
kinds: “controlled” (M-Form) non-terminals, “linear (probabilistic)” (L-Form)
non-terminals, and “quadratic (branching)” (Q-Form) non-terminals. For each
controlled non-terminal Ti, Γ

i ⊆ Σ is a non-empty set of actions available for
Ti. R defines, for each non-terminal Ti ∈ V , a set of (probabilistic/controlled)
rules R(Ti).

Specifically, the set of rules R(Ti) associated with non-terminal Ti ∈ V , has
the following structure, depending on what form (kind) of non-terminal Ti is:

– L-Form: Ti is a “linear” or “probabilistic” non-terminal, the player has no

choice of actions, and the associated rules for Ti are given by: Ti
pi,0−−→ ∅,

Ti
pi,1−−→ T1, . . . , Ti

pi,n−−→ Tn, where for all 0 ≤ j ≤ n, pi,j ≥ 0 denotes the
probability of each rule, and

∑n
j=0 pi,j = 1.

– Q-Form: Ti is a “quadratic” (or “branching”) non-terminal, with a single

associated rule (and no associated actions), of the form Ti
1−→ Tj Tj′ .

– M-Form: Ti a “controlled” non-terminal, with a non-empty set of associated
actions Γ i = {a1, . . . , ami} ⊆ Σ, and the associated rules have the form

Ti
a1−→ Tj1 , . . . , Ti

ami−−→ Tjmi .
4

We denote by |A| the total bit encoding length of the OBMDP, where we
assume the given rule probabilities are rational numbers represented as usual
(with numerator and denominator in binary). If |Γ i| = 1 for all controlled non-
terminals Ti ∈ V (meaning the controller has no choices), then the model is an
Ordered Branching Process (OBP).

A derivation for an OBMDP, starting at some start non-terminal Tstart ∈ V ,
is a (possibly infinite) labeled ordered tree, X = (B, s), defined as follows. The
set of nodes B ⊆ {l, r, u}∗ of the tree, X, is a prefix-closed subset of {l, r, u}∗.5 So
each node in B is a string over {l, r, u}, and if w = w′a ∈ B, where a ∈ {l, r, u},
then w′ ∈ B. As usual, when w ∈ B and w′ = wa ∈ B, for some a ∈ {l, r, u},
we call w the parent of w′, and we call w′ a child of w in the tree. A leaf of B
is a node w ∈ B that has no children in B. Let LB ⊆ B denote the set of all
leaves in B. The root node is the empty string ε (note that B is prefix-closed,
so ε ∈ B). The function s : B → V ∪ {∅} assigns either a non-terminal or the
empty symbol as a label to each node of the tree, and must satisfy the following
conditions: Firstly, s(ε) = Tstart, in other words the root must be labeled by the
start non-terminal; Inductively, if for any non-leaf node w ∈ B \ LB we have
s(w) = Ti, for some Ti ∈ V , then:

4 We assume, without loss of generality, that for 0 ≤ t < t′ ≤ mi, Tjt 6= Tjt′ .
5 Here ‘l’, ‘r’, and ‘u’, stand for ‘left’, ‘right’, and ‘unique’ child, respectively.



6 K. Etessami and E. Martinov

– if Ti is a Q-form (branching) non-terminal, whose associated unique rule is

Ti
1−→ Tj Tj′ , then w must have exactly two children in B, namely wl ∈ B

and wr ∈ B, and moreover we must have s(wl) = Tj and s(wr) = Tj′ .
– if Ti is a L-form (linear/probabilistic) non-terminal, then w must have ex-

actly one child in B, namely wu, and it must be the case that either s(wu) =

Tj , where there exists some rule Ti
pi,j−−→ Tj with a positive probability

pi,j > 0, or else s(wu) = ∅, where there exists a rule Ti
pi,0−−→ ∅, with

an empty right hand side, and a positive probability pi,0 > 0.
– if Ti is a M-form (controlled) non-terminal, then w must have exactly one

child in B, namely wu, and it must be the case that s(wu) = Tjt , where

there exists some rule Ti
at−→ Tjt , associated with some action at ∈ Γ i,

having non-terminal Ti as its left hand side.

A derivation X = (B, s) is finite if the set B is finite. A derivation X ′ =
(B′, s′) is called a subderivation of a derivation X = (B, s), if B′ ⊆ B and
s′ = s|B′ (i.e., s′ is the function s, restricted to the domain B′). We use X ′ � X
to denote the fact that X ′ is a subderivation of X.

A complete derivation, or a play, X = (B, s), is by definition a derivation
in which for all leaves w ∈ LB , s(w) = ∅. For a play X = (B, s), and a node
w ∈ B, we define the subplay of X rooted at w, to be the play Xw = (Bw, sw),
where Bw = {w′ ∈ {l, r, u}∗ | ww′ ∈ B} and sw : Bw → V ∪ {∅} is given by,
sw(w′) := s(ww′) for all w′ ∈ Bw.6 Consider any derivation X = (B, s), and
any node w = w1 . . . wm ∈ B, where wk ∈ {l, r, u} for all k ∈ [m]. We define
the ancestor history of w to be a sequence hw ∈ V ({l, r, u} × V )∗, given by
hw := s(ε)(w1, s(w1))(w2, s(w1w2))(w3, s(w1w2w3)) . . . (wm, s(w1w2 . . . wm)). In
other words, the ancestor history hw of node w specifies the sequence of moves
that determine each ancestor of w (starting at ε and including w itself), and also
specifies the sequence of non-terminals that label each of ancestor of w.

For an OBMDP, A, a sequence h ∈ V ({l, r, u}×V )∗ is called a valid ancestor
history if there is some derivation X = (B′, s′) of A, and node w ∈ B′ such that
h = hw. We define the current non-terminal of such a valid ancestor history h
to be s′(w). In other words, it is the non-terminal that labels the last node of
the ancestor history h. Let current(h) denote the current non-terminal of h.
Let HA ⊆ V ({l, r, u} × V )∗ denote the set of all valid ancestor histories of A. A
valid ancestor history h ∈ HA is said to belong to the controller, if current(h) is
a M-form (controlled) non-terminal. Let HC

A denote the set of all valid ancestor
histories of the OBMDP, A, that belong to the controller.

For an OBMDP, A, a strategy for the controller is a function, σ : HC
A → ∆(Σ)

from the set of valid ancestor histories belonging to the controller, to probability
distributions on actions, such that moreover for any h ∈ HC

A , if current(h) = Ti,
then σ(h) ∈ ∆(Γ i). (In other words, the probability distribution must have

6 To avoid confusion, note that subderivation and subplay have very different mean-
ings. Saying derivation X is a “subderivation” of X ′, means that in a sense X is a
“prefix” of X ′, as an ordered tree. Saying play X is a subplay of play X ′, means X
is a “suffix” of X ′, more specifically X is a subtree rooted at a specific node of X ′.
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support only on the actions available at the current non-terminal.) Note that
the strategy can choose different distributions on actions at different occurrences
of the same non-terminal in the derivation tree, even when these occurrences
happen to be “siblings” in the tree.

Let Ψ be the set of all strategies. We say σ ∈ Ψ is deterministic if for all h ∈
HC
A , σ(h) puts probability 1 on a single action. We say σ ∈ Ψ is static if for each

M-form (controlled) non-terminal Ti, there is some distribution δi ∈ ∆(Γ i), such
that for any h ∈ HC

A with current(h) = Ti, σ(h) = δi. In other words, a static
strategy σ plays exactly the same distribution on actions at every occurrence of
each non-terminal Ti, regardless of the ancestor history.

For an OBMDP, A, fixing a start non-terminal Ti, and fixing a strategy σ for
the controller, determines a stochastic process that generates a random play, as
follows. The process generates a sequence of finite derivations, X0, X1, X2, X3,
. . ., one for each “generation”, such that for all t ∈ N, Xt � Xt+1. X0 = (B0, s0)
is the initial derivation, at generation 0, and consists of a single (root) node
B0 = {ε}, labeled by the start non-terminal, s0(ε) = Ti. Inductively, for all
t ∈ N the derivation Xt+1 = (Bt+1, st+1) is obtained from Xt = (Bt, st) as
follows. For each leaf w ∈ LBt :

– if st(w) = Ti is a Q-form (branching) non-terminal, whose associated unique

rule is Ti
1−→ Tj Tj′ , then w must have exactly two children in Bt+1, namely

wl ∈ Bt+1 and wr ∈ Bt+1, and moreover we must have st+1(wl) = Tj and
st+1(wr) = Tj′ .

– if st(w) = Ti is a L-form (probabilistic) non-terminal, then w has exactly

one child in Bt+1, namely wu, and for each rule Ti
pi,j−−→ Tj with pi,j > 0,

the probability that st+1(wu) = Tj is pi,j , and likewise when Ti
pi,0−−→ ∅, is a

rule with pi,0 > 0, then st+1(wu) = ∅ with probability pi,0.
– if st(w) = Ti is a M-form (controlled) non-terminal, then w has exactly one

child in Bt+1, namely wu, and for each action az ∈ Γ i, with probability

σ(hw)(az), st+1(wu) = Tjz , where Ti
az−→ Tjz is the rule associated with az.

There are no other nodes inBt+1. In particular, if st(w) = ∅, then in Bt+1 the
node w has no children. This defines a stochastic process, X0, X1, X2, . . ., where
Xt � Xt+1, for all t ∈ N, and such that there is a unique play, X = limt→∞Xt,
such that Xt � X for all t ∈ N. In this sense, the random process defines a
probability space of plays.

For our purposes, an objective is specified by a property (i.e., a measurable
set), F , of plays, whose probability the player wishes to optimize (maximize or
minimize). For a property F and a strategy σ ∈ Ψ , let PrσTi [F ] denote the prob-
ability that starting at non-terminal Ti, under strategy σ, the generated play is
in the set F . Let Pr∗Ti [F ] := supσ∈Ψ Pr

σ
Ti

[F ]. For a non-terminal Tq, q ∈ [n],
let Reach(Tq) denote the set of plays that contain Tq as a label of some node.

Let Reach{(Tq) denote the complement event, i.e., the set of plays that do not
contain Tq. A rather general form of quantitative multi-objective reachability de-
cision problems that one might wish to consider is whether there exists a strategy
σ′ ∈ Ψ such that a boolean combination of statements of the form Prσ

′

Ti
[Fj ]4jpj



8 K. Etessami and E. Martinov

holds, where 4j ∈ {<,≤,=,≥, >}, and where Fj is itself a boolean combina-
tion (using union and intersection) of (non-)reachability objectives of the form
Reach(Tjk) and ReachC(Tjk).

Our primary focus is on the following two qualitative multi-objective reach-
ability problems. Given an OBMDP, A with non-terminals V = {T1, . . . , Tn},
given a start non-terminal Ti, and given set K ⊆ [n] of targets, we wish to decide:

– (almost-sure): does there exist σ ∈ Ψ such that
∧
q∈K Pr

σ
Ti

[Reach(Tq)] = 1?

(Equivalently, does there exist σ ∈ Ψ s.t. PrσTi [
⋂
q∈K Reach(Tq)] = 1?7)

– (limit-sure): Is there, for every ε > 0, a σε ∈ Ψ , s.t.
∧
q∈K Pr

σε
Ti

[Reach(Tq)] ≥
1− ε? (Equivalently, is Pr∗Ti [

⋂
q∈K Reach(Tq)] = 1?7)

As mentioned, when |K| = 1, the almost-sure and limit-sure questions are equiv-
alent ([9]). The following example shows this is not so when |K| ≥ 2:

Example 1 Consider the OBMDP with non-terminals {M,A,R1, R2}, and with
target non-terminals {R1, R2}. M is the only “controlled” non-terminal, and the
rules are8:

M
a−→M A A

1/2−−→ R1

M
b−→ R2 A

1/2−−→ ∅

The supremum probability, Pr∗M [Reach(R1)∩Reach(R2)], starting with non-
terminal M , of reaching both targets is 1. To see this, for any ε > 0, let the
strategy keep choosing deterministically the action a until l := dlog2( 1

ε )e copies of
non-terminal A have been created. Then in the (unique) copy of non-terminal M
in generation l the strategy switches deterministically to action b. The probability
of reaching target R2 is 1. The probability of reaching R1 is 1 − 2−l ≥ 1 − ε.
Hence Pr∗M [Reach(R1) ∩Reach(R2)] = 1.

However, @σ ∈ Ψ : PrσM [Reach(R1) ∩ Reach(R2)] = 1. To see this, note
that if the strategy ever puts positive probability on action b in any “round”,
then with positive probability target R1 will not be reached in the play. So, to
reach target R1 with probability 1, the strategy must deterministically choose
action a forever, from every occurrence of non-terminal M . But if it does this the
probability of reaching targetR2 would be 0. �

We now observe (proof in the full version) that qualitative multi-objective
reachability problems over an unbounded target set K are in general NP-hard.

Proposition 1.

(1.) The following two problems are both NP-hard: given an OBMDP, a set K ⊆
[n] of target non-terminals, and a start non-terminal Ti ∈ V , decide whether
(i) ∃σ ∈ Ψ : PrσTi [

⋂
q∈K Reach(Tq)] = 1, & (ii) Pr∗Ti [

⋂
q∈K Reach(Tq)] = 1.

7 The fact that these statements are equivalent is easy to prove; see the full version.
8 Technically, as given, this OBMDP in not in simple normal form; but this can easily

be rectified by using an auxiliary branching non-terminal, Q, adding the rule Q
1−→

M A and changing the rule M
a−→M A to M

a−→ Q.
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(2.) The following problem is coNP-hard: given an OBP (i.e., an OBMDP with
no controlled non-terminals, and hence with only one trivial strategy σ), a
set K ⊆ [n] of target non-terminals, and a start non-terminal Ti ∈ V , decide
whether PrσTi [

⋂
q∈K Reach(Tq)] = 0.

The proof is a reduction from 3-SAT for (1.), and from its complement for (2.).
We shall hereafter often use the notation Ti → Tj (respectively, Ti 6→ Tj), to

denote that for non-terminal Ti there exists (respectively, there does not exist)

either an associated (controlled) rule Ti
a−→ Tj , where a ∈ Γ i, or an associated

probabilistic rule Ti
pi,j−−→ Tj with positive probability pi,j > 0. Similarly let

Ti → ∅ (respectively, Ti 6→ ∅), denote that the rule Ti
pi,0−−→ ∅ has positive

probability pi,0 > 0 (respectively, has probability pi,0 = 0).

Definition 2. The dependency graph of an OBMDP, A, is a directed graph
that has a node Ti for each non-terminal Ti, and contains an edge (Ti, Tj) if and

only if: either Ti → Tj or there is a rule Ti
1−→ Tj Tr or a rule Ti

1−→ Tr Tj in A.

For an OBMDP, A, with non-terminals set V , we let G = (U,E), with U = V ,
denote the dependency graph of A, and we use G[C] to denote the subgraph of
G induced by the subset C ⊆ U of nodes (non-terminals).

Definition 3. For a directed graph G = (U,E), given a partition of its ver-
tices U = (U1, UP ), an end-component is a set of vertices C ⊆ U such that
G[C]: (1) is strongly connected; (2) for all u ∈ UP ∩ C and all (u, u′) ∈ E,
u′ ∈ C; (3) and if C = {u} (i.e., |C| = 1), then (u, u) ∈ E. A maximal
end-component (MEC) is an end-component not contained in any larger end-
component. A MEC-decomposition is a partition of the graph into MECs and
nodes that do not belong to any MEC.

MECs are disjoint and the unique MEC-decomposition of such a directed
graph G (with a given partition of its nodes) can be computed in P-time ([5]).9

More recent work provides more efficient algorithms for computing a MEC-
decomposition ([2]). For an OBMDP dependency graph G = (U,E), U = V , the
partition of U we use is: UP := {Ti ∈ U | Ti is of L-form} and U1 := {Ti ∈ U | Ti
is of M-form or Q-form}. We will also be using the notion of a strongly connected
component (SCC) of a dependency graph, which can be defined as a MEC where
condition (2) from Definition 3 above is not required. As is well-known, an SCC-
decomposition of a digraph can be computed in linear time.

3 Algorithm for deciding Pr∗Ti
[
⋂
q∈K Reach(Tq)]

?
= 1

We first note that there is a (relatively easy) algorithm to compute, for every
subset of the target non-terminals K ′ ⊆ K, the sets ZK′ := {Ti ∈ V | ∀σ ∈
9 In [5], maximal end-components are referred to as closed components.
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Ψ : PrσTi [
⋂
q∈K′ Reach(Tq)] = 0} and Z̄K′ := V − ZK′ . This can be computed,

in time via a suitable “attractor set” construction and dynamic programming,
using as an initialization step an algorithm from [9, Proposition 4.1] for the
single-target case. (See the full version for the algorithm and proof.)

Proposition 2. Given an OBMDP, A, and a set K ⊆ [n] of k = |K| target non-
terminals, there is an algorithm that computes, for every subset of target non-
terminals K ′ ⊆ K, the set ZK′ := {Ti ∈ V | ∀σ ∈ Ψ : PrσTi [

⋂
q∈K′ Reach(Tq)] =

0}. The algorithm runs in time 4k · |A|O(1). The algorithm can also be augmented
to compute a deterministic (non-static) strategy σ′K′ and a rational value bK′ >

0, such that for all Ti 6∈ ZK′ , Pr
σ′
K′
Ti

[
⋂
q∈K′ Reach(Tq)] ≥ bK′ > 0.

We now present the algorithm for deciding limit-sure multi-target reachability,
i.e., whether Pr∗Ti [

⋂
q∈K Reach(Tq)]

.
= supσ∈Ψ Pr

σ
Ti

[
⋂
q∈K Reach(Tq)] = 1.

First, as a preprocessing step, for each subset of target non-terminalsK ′ ⊆ K,
we compute the set ZK′ := {Ti ∈ V | ∀σ ∈ Ψ : PrσTi [

⋂
q∈K′ Reach(Tq)] = 0},

using the algorithm from Proposition 2. For every q ∈ K, let ASq denote the
set of non-terminals Tj (including Tq itself) such that Pr∗Tj [Reach(Tq)] = 1.

The set ASq can be computed in P-time ([9, Theorem 9.3]), for each target
non-terminal Tq, q ∈ K. Moreover, it was proved in [9, Theorem 9.4] that for
(O)BMDPs the single-target almost-sure and limit-sure reachability problems
coincide. So, for every q ∈ K, there exists a strategy τq such that ∀ Tj ∈ ASq :
Pr

τq
Tj

[Reach(Tq)] = 1. Let K ′−i denote the set K ′ − {i}.

Theorem 1. The algorithm in Figure 1 computes, given an OBMDP, A, and
a set K ⊆ [n] of k = |K| target non-terminals, for each subset K ′ ⊆ K, the set
of non-terminals FK′ := {Ti ∈ V | Pr∗Ti [

⋂
q∈K′ Reach(Tq)] = 1}. The algorithm

runs in time 4k · |A|O(1). Moreover, for each K ′ ⊆ K, given ε > 0, the algorithm
can also be augmented to compute a randomized non-static strategy σεK′ such

that Pr
σε
K′
Ti

[
⋂
q∈K′ Reach(Tq)] ≥ 1− ε for all non-terminals Ti ∈ FK′ .

We omit the proof and instead provide some brief intuition for why the algo-
rithm works. (The full proof also describes how the algorithm can be augmented
to output, when given ε > 0 as input, the witness strategy σεK′ .) For any subset
K ′ ⊆ K of target non-terminals, the set DK′ contains the non-terminals starting
from which, by induction using ”smaller” target sets, it immediately follows that
limit-sure multi-target reachability of K ′ holds. For instance, DK′ contains any

controlled (M-form) non-terminal Ti, i ∈ K ′, with a rule Ti
aj→ Tj such that the

remaining targets K ′−{i} can be limit-surely reached starting from Tj . The set
SK′ accumulates the non-terminals Ti ∈ X = V − (DK′ ∪ ZK′) such that there
is a value g > 0 such that for any σ ∈ Ψ : PrσTi [

⋂
q∈K′ Reach(Tq)] ≤ 1 − g.

In other words, SK′ will accumulate those non-terminals starting from which
limit-sure reachability definitely does not hold. The loop in step II.5. is an at-
tractor set construction that adds non-terminals Ti to set SK′ based on prior
membership in SK′ of non-terminals appearing on the right-hand side of rules
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I. Let F{q} := ASq, for each q ∈ K. F∅ := V .
II. For l = 2 . . . k:

For every subset of target non-terminals K′ ⊆ K of size |K′| = l:
1. DK′ := {Ti ∈ V − ZK′ | one of the following holds:

- Ti is of L-form where i ∈ K′, Ti 6→ ∅ and ∀Tj ∈ V : if Ti → Tj , then
Tj ∈ FK′−i .

- Ti is of M-form where i ∈ K′ and ∃a∗ ∈ Γ i : Ti
a∗−→ Tj , Tj ∈ FK′−i .

- Ti is of Q-form (Ti
1−→ Tj Tr) where i ∈ K′ and ∃KL ⊆ K′−i : Tj ∈

FKL ∧ Tr ∈ FK′−i−KL .

- Ti is of Q-form (Ti
1−→ Tj Tr) where ∃KL ⊂ K′ (KL 6= ∅) : Tj ∈ FKL∧Tr ∈

FK′−KL .}
2. Repeat until no change has occurred to DK′ :

(a) add Ti 6∈ DK′ to DK′ , if of L-form, Ti 6→ ∅ and ∀Tj ∈ V : if Ti → Tj , then
Tj ∈ DK′ .

(b) add Ti 6∈ DK′ to DK′ , if of M-form and ∃a∗ ∈ Γ i : Ti
a∗−→ Tj , Tj ∈ DK′ .

(c) add Ti 6∈ DK′ to DK′ , if of Q-form (Ti
1−→ Tj Tr) and Tj ∈ DK′∨Tr ∈ DK′ .

3. Let X := V − (DK′ ∪ ZK′).
4. Initialize SK′ := {Ti ∈ X | either i ∈ K′, or Ti is of L-form and Ti → ∅∨Ti →

Tj , Tj ∈ ZK′} ∪
⋃
∅⊂K′′⊂K′(X ∩ SK′′).

5. Repeat until no change has occurred to SK′ :
(a) add Ti ∈ X − SK′ to SK′ , if of L-form and Ti → Tj , Tj ∈ SK′ ∪ ZK′ .
(b) add Ti ∈ X − SK′ to SK′ , if of M-form and ∀a ∈ Γ i : Ti

a−→ Tj , Tj ∈
SK′ ∪ ZK′ .

(c) add Ti ∈ X−SK′ to SK′ , if of Q-form (Ti
1−→ Tj Tr) and Tj ∈ SK′ ∪ZK′ ∧

Tr ∈ SK′ ∪ ZK′ .
6. C ← MEC decomposition of G[X − SK′ ].
7. For every q ∈ K′, let Hq := {Ti ∈ X − SK′ | Ti is of Q-form (Ti

1−→ Tj Tr) and
((Tj ∈ X − SK′ ∧ Tr ∈ Z̄{q}) ∨ (Tj ∈ Z̄{q} ∧ Tr ∈ X − SK′))}.

8. Let FK′ :=
⋃
{C ∈ C | PC = K′ ∨ (PC 6= ∅ ∧ PC 6= K′ ∧ ∃Ti ∈ C, ∃a ∈ Γ i :

Ti
a−→ Tj , Tj ∈ FK′−PC )}, where PC = {q ∈ K′ | C ∩Hq 6= ∅}.

9. Repeat until no change has occurred to FK′ :
(a) add Ti ∈ X−(SK′∪FK′) to FK′ , if of L-form and Ti → Tj , Tj ∈ FK′∪DK′ .
(b) add Ti ∈ X − (SK′ ∪ FK′) to FK′ , if of M-form and ∃a∗ ∈ Γ i : Ti

a∗−→
Tj , Tj ∈ FK′ .

(c) add Ti ∈ X − (SK′ ∪ FK′) to FK′ , if of Q-form (Ti
1−→ Tj Tr) and Tj ∈

FK′ ∨ Tr ∈ FK′ .
10. If X 6= SK′ ∪ FK′ , let SK′ := X − FK′ and go to step 5.
11. Else, i.e., if X = SK′ ∪ FK′ , let FK′ := FK′ ∪DK′ .

III. Output FK .

Fig. 1. Algorithm for limit-sure multi-target reachability. The output is the set FK =
{Ti ∈ V | Pr∗Ti [

⋂
q∈K Reach(Tq)] = 1}.
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for non-terminal Ti. Step II.6. then builds a MEC-decomposition of the depen-
dency graph G[X−SK′ ] induced by the remaining non-terminals in set X−SK′ ;
step II.8. identifies those MECs, C, where starting at a non-terminal in C the
following is observed: the branching (Q-Form) non-terminals in C spawn two
children each, at least one of which belongs to C, and other spawned children
of the branching non-terminals in C can collectively reach a non-empty subset
PC of (or in the best case, all of) the target set K ′ with a positive probability
(bounded away from zero); the player can choose to delay arbitrarily long the
moment to select an action that “exits” C and, thus, can choose to reach the
targets in set PC with probability arbitrarily close to 1; and once the player
chooses to “exit” C, it does so in a non-terminal that can limit-surely reach the
rest of the targets in set K ′ − PC . Step II.9. accumulates in the set FK′ the set
of non-terminals that can almost-surely reach the set DK′ or one of the MECs
computed in step II.8. A key assertion is this: if in step II.11. we find all non-
terminals from the set X are already either in set SK′ or in set FK′ , then we are
done: FK′ ∪DK′ must constitute the set of all non-terminals starting in which
the player can force limit-sure reachability of all targets in set K ′ in the same
play; otherwise, all non-terminals in set X − (FK′ ∪ SK′) can be added to set
SK′ , meaning that starting at any of these non-terminals, limit-sure reachability
of all target non-terminals in set K ′ cannot be achieved. This latter assertion is
not obvious, but it is true (see the proof in the full version).

4 Algorithm for deciding whether ∃σ ∈ Ψ :
PrσTi

[
⋂
q∈K Reach(Tq)] = 1

We now present the algorithm (Figure 2) for deciding almost-sure multi-target
reachability for a given OBMDP, A, i.e., given a set K ⊆ [n] of k = |K| target
non-terminals and a starting non-terminal Ti, deciding whether there is a strat-
egy for the player under which the probability of generating a play that contains
all target non-terminals from set K is 1. Again, as in the limit-sure algorithm,
for each subset of target non-terminals K ′ ⊆ K, as a preprocessing step we com-
pute the set ZK′ := {Ti ∈ V | ∀σ ∈ Ψ : PrσTi [

⋂
q∈K′ Reach(Tq)] = 0}. And for

every q ∈ K, we compute (in P-time) the set ASq of non-terminals Tj (including
target Tq itself) such that there is a strategy τ with PrτTj [Reach(Tq)] = 1.

Theorem 2. The algorithm in Figure 2 computes, given an OBMDP, A, and
a set K ⊆ [n] of k = |K| target non-terminals, for each subset K ′ ⊆ K, the set
of non-terminals FK′ := {Ti ∈ V | ∃σ ∈ Ψ : PrσTi [

⋂
q∈K′ Reach(Tq)] = 1}. The

algorithm runs in time 4k · |A|O(1). Moreover, for each K ′ ⊆ K, the algorithm
can also be augmented to compute a randomized non-static strategy σ∗K′ such

that Pr
σ∗
K′
Ti

[
⋂
q∈K′ Reach(Tq)] = 1 for all non-terminals Ti ∈ FK′ .

We again omit the proof and instead provide a brief sketch of why the algo-
rithm works. (The full proof also describes how the algorithm can be augmented
to output the witness strategy σ∗K′ .) Both the sketch and the algorithm itself
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I. Let F{q} := ASq, for each q ∈ K. F∅ := V .
II. For l = 2 . . . k:

For every subset of target non-terminals K′ ⊆ K of size |K′| = l:
1. DK′ := {Ti ∈ V − ZK′ | one of the following holds:

- Ti is of L-form where i ∈ K′, Ti 6→ ∅ and ∀Tj ∈ V : if Ti → Tj , then
Tj ∈ FK′−i .

- Ti is of M-form where i ∈ K′ and ∃a∗ ∈ Γ i : Ti
a∗−→ Tj , Tj ∈ FK′−i .

- Ti is of Q-form (Ti
1−→ Tj Tr) where i ∈ K′ and ∃KL ⊆ K′−i : Tj ∈

FKL ∧ Tr ∈ FK′−i−KL .

- Ti is of Q-form (Ti
1−→ Tj Tr) where ∃KL ⊂ K′ (KL 6= ∅) : Tj ∈ FKL∧Tr ∈

FK′−KL .}
2. Repeat until no change has occurred to DK′ :

(a) add Ti 6∈ DK′ to DK′ , if of L-form, Ti 6→ ∅ and ∀Tj ∈ V : if Ti → Tj , then
Tj ∈ DK′ .

(b) add Ti 6∈ DK′ to DK′ , if of M-form and ∃a∗ ∈ Γ i : Ti
a∗−→ Tj , Tj ∈ DK′ .

(c) add Ti 6∈ DK′ to DK′ , if of Q-form (Ti
1−→ Tj Tr) and Tj ∈ DK′∨Tr ∈ DK′ .

3. Let X := V − (DK′ ∪ ZK′).
4. Initialize SK′ := {Ti ∈ X | either i ∈ K′, or Ti is of L-form and Ti → ∅∨Ti →

Tj , Tj ∈ ZK′} ∪
⋃
∅⊂K′′⊂K′(X ∩ SK′′).

5. Repeat until no change has occurred to SK′ :
(a) add Ti ∈ X − SK′ to SK′ , if of L-form and Ti → Tj , Tj ∈ SK′ ∪ ZK′ .
(b) add Ti ∈ X − SK′ to SK′ , if of M-form and ∀a ∈ Γ i : Ti

a−→ Tj , Tj ∈
SK′ ∪ ZK′ .

(c) add Ti ∈ X−SK′ to SK′ , if of Q-form (Ti
1−→ Tj Tr) and Tj ∈ SK′ ∪ZK′ ∧

Tr ∈ SK′ ∪ ZK′ .
6. C ← SCC decomposition of G[X − SK′ ].
7. For every q ∈ K′, let Hq := {Ti ∈ X − SK′ | Ti is of Q-form (Ti

1−→ Tj Tr) and
((Tj ∈ X − SK′ ∧ Tr ∈ Z̄{q}) ∨ (Tj ∈ Z̄{q} ∧ Tr ∈ X − SK′))}.

8. Let FK′ :=
⋃
{∪q∈K′(Hq ∩ C) | C ∈ C s.t. ∀q′ ∈ K′ : Hq′ ∩ C 6= ∅}.

9. Repeat until no change has occurred to FK′ :
(a) add Ti ∈ X−(SK′∪FK′) to FK′ , if of L-form and Ti → Tj , Tj ∈ FK′∪DK′ .
(b) add Ti ∈ X − (SK′ ∪ FK′) to FK′ , if of M-form and ∃a∗ ∈ Γ i : Ti

a∗−→
Tj , Tj ∈ FK′ .

(c) add Ti ∈ X − (SK′ ∪ FK′) to FK′ , if of Q-form (Ti
1−→ Tj Tr) and Tj ∈

FK′ ∨ Tr ∈ FK′ .
10. If X 6= SK′ ∪ FK′ , let SK′ := X − FK′ and go to step 5.
11. Else, i.e., if X = SK′ ∪ FK′ , let FK′ := FK′ ∪DK′ .

III. Output FK .

Fig. 2. Algorithm for almost-sure multi-target reachability. The output is the set FK =
{Ti ∈ V | ∃σ ∈ Ψ : PrσTi [

⋂
q∈K Reach(Tq)] = 1}.
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are very similar to that of the limit-sure case, but differ in some crucial details.
Not only do the two algorithms differ in steps II.6. and II.8., but moreover the
interpretation of various sets being accumulated in the two algorithms changes
(in order to correspond to the appropriate meaning in the context of almost-sure
reachability). For any subset K ′ ⊆ K of target non-terminals, the set DK′ con-
tains the non-terminals starting from which, by induction using “smaller” target
sets, it immediately follows that almost-sure multi-target reachability is satis-
fied. The set SK′ accumulates the non-terminals Ti ∈ X = V −(DK′ ∪ZK′) such
that ∀σ ∈ Ψ : PrσTi [

⋂
q∈K′ Reach(Tq)] < 1. In other words, SK′ will accumulate

those non-terminals starting from which almost-sure reachability definitely does
not hold. The loop in step II.5. is again an attractor set construction that adds
non-terminals Ti to set SK′ based on prior membership in SK′ of non-terminals
appearing on the right-hand side of rules for non-terminal Ti. Step II.6. then
builds a SCC-decomposition of the dependency graph G[X − SK′ ] induced by
the remaining non-terminals in set X − SK′ ; step II.8. identifies those branch-
ing (Q-form) non-terminals that belong to SCCs, C, where the following is true
for each such C: the Q-form non-terminals in C (that have been identified in
step II.8.) spawn two children each, at least one of which belongs to C, and the
other spawned children of these same branching non-terminals can collectively
reach all the targets in set K ′ with a positive probability (bounded away from
zero).10 Step II.9. accumulates in the set FK′ the set of non-terminals that can
almost-surely reach the set DK′ or the Q-form non-terminals computed in step
II.8. A key assertion is this: if in step II.11. we find all non-terminals from the
set X are already either in set SK′ or in set FK′ , then we are done: FK′ ∪DK′

must constitute the set of all non-terminals starting in which the player can
force almost-sure reachability of all targets in set K ′ in the play11; otherwise,
all non-terminals in set X − (FK′ ∪ SK′) can be added to set SK′ , meaning
that starting at any of these non-terminals, almost-sure reachability of all target
non-terminals in set K ′ cannot be achieved. The reason why this last assertion
holds is again not obvious, but it is true (see the proof in the full version).

10 Note that this differs crucially from the situation in the limit-sure algorithm, where
the other spawned children of these branching nodes in C were only able to reach a
non-empty subset PC of K′ with a positive probability (bounded away from zero),
not necessarily the entire set K′.

11 A helpful observation here is this: in the limit-sure algorithm we were identifying
MECs, where the choice of when to “exit” the MEC is entirely controlled by the
player. In the almost-sure algorithm we instead identify SCCs. Even though there
may also be purely probabilistic (i.e., not controlled) opportunities of “exiting” such
a “good” SCC, C (specifically, an SCC C that is identified and used in step II.8.),
due to the way the set FK′ = X − SK′ is constructed (and due to properties of its
associated witness strategy σ∗K′ , which is described in the full proof), we can show
that even when C is “exited” we still stay inside the set FK′ , and eventually hit a
SCC, C′, which can only be “exited” probabilistically to DK′ , and where, moreover,
for each target in K′ there is a branching (Q-Form) node in the SCC, C′, whose
“extra” child can hit that target with positive probability (bounded away from zero).
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