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Abstract 

Shadow prices of undesirable outputs assess the opportunity costs of emissions reduction and provide a 

comprehensive measuring indicator for the overall environmental regulation stringency. Shadow prices of 

industrial air pollutant emissions in China for 2006–2016 have been estimated by different nonparametric 

models, and their determinants, as well as the emissions controlling effects of environmental regulations, 

have been further investigated in this study. Our empirical results reveal that the conventional polluting 

technology model is consistent with the two sub-technologies model, and that shadow prices estimated by 

different models differed in absolute values but shared the same growth trends and regional characteristics. 

Decomposition results according to the logarithmic mean divisia index (LMDI) method indicate that 

variations in the shadow prices were due to the combined forces of the energy saving and end-of-pipe 

controlling effects in the analyzed periods. Moreover, we found that China’s environmental regulations 

with regional disparities in recent years (2006–2016) have effectively reduced industrial air pollutant 

emissions at an increasing rate, and that the environmental taxes imposed in 2018 still followed the 

existing regional unbalances of environmental regulation stringency.  

Keywords: Shadow prices; Industrial air pollutant emissions; Decomposition effects; Environmental tax. 

JEL classification: H23; Q52; Q53; Q58 



 

3 

1. Introduction 

Since its economic reform and opening up in 1978, China has achieved remarkable successes in its 

economy and society. However, rapid industrialization and urbanization have led to ecological destruction 

and environmental degradation. As the world’s second-largest economy and largest carbon emitter, China 

has been faced with major environmental problems including air pollution, water pollution, waste disposal, 

land desertification, soil erosion, droughts and floods, biological destruction, persistent organic pollution 

of soil, and destruction of biodiversity. Especially, air pollution and the resulting smog weather have 

aroused heated discussions in China in recent years.  

During the past 11th and 12th five-year Plans (2006–2010 and 2011–2015, respectively) and the 

ongoing 13th Five-Year Plan (2016–2020), the Chinese central government has set a series of national 

total pollutant control targets and decomposed the tasks to each local government. Among these targets, air 

pollutants, including sulfur dioxide (SO2) and oxynitride (NOx), have been listed as total control indicators 

that need to be reduced by 8–10% during each five-year Plan. In addition to these total control targets, 

more diversified environmental regulations have been implemented. On the one hand, it has continued to 

strengthen traditional administrative control of environmental pollution through the development of an 

accountability system and establishment of the Central Environmental Protection Supervision Group. 

Meanwhile, it has actively introduced market-oriented environmental regulation mechanisms such as 

constructing a green financial system, launching pilot carbon emissions trading, and changing sewage 

charges into an environmental tax. 

Considering the increasingly stringent environmental regulations in China, a number of researches 

have employed diversified indicators to measure environmental regulation stringency and investigated its 

effectiveness from different perspectives (Wang and Shen, 2016; Liu et al., 2017; Liao and Shi, 2018; 

Wang and Watanabe, 2019). It is noteworthy that some researchers have introduced a shadow price 

approach, which reflects the multidimensionality of environmental policy (Althammer and Hille, 2016; 

Hille, 2018). Although less research has studied the effectiveness of China’s environmental regulation 

stringency based on a shadow price approach, numerous studies have calculated the shadow prices of CO2 

emissions in China (Wei et al., 2013; Du and Mao, 2015), which are conducive to the evaluation of carbon 

emissions regulation stringency in China. Nevertheless, there has been relatively little research considering 

the shadow prices of China’s industrial air pollutant emissions.  
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This study aimed to estimate the shadow prices of China’s industrial air pollutant emissions in recent 

years (2006–2016) by considering some new discussions and progressions. Our results can be applied in 

future research to be a more advantageous proxy for China’s air pollution regulation stringency. Moreover, 

we quantify the impacts of different emission reduction channels on the changes in the estimated shadow 

prices and test the emission reduction effectiveness of the environmental policy in China in the analyzed 

periods.  

The major contributions of this study are as follows: First, the conventional polluting technology is 

shown to be consistent with a more recent proposed model using two sub-technologies, and shadow prices 

estimated by different models differed in absolute values but had basically the same growth trends and 

regional characteristics in China for 2006–2016. Second, shadow prices of undesirable outputs are first 

decomposed into the energy saving and end-of-pipe controlling effects according to the logarithmic mean 

divisia index (LMDI) decomposition method. Third, using the estimated shadow prices as the overall 

environmental regulation stringency in each province, it is confirmed that the mix of environmental policy 

has been effective at reducing industrial air pollution by an increasing rate.  

The remainder of this paper is organized as follows. Section 2 reviews the related literature. Section 3 

describes the methodology. Section 4 presents the data and empirical results, and Section 5 concludes this 

paper. 

2. Literature review 

Shadow prices of pollutant emissions may be interpreted as the opportunity costs of reducing an 

additional unit of pollutant emissions in terms of economic output loss (Zhou, et al., 2014) and are usually 

referred to as marginal abatement costs (Pittman, 1981; Hailu and Veeman, 2000; Lee, 2005). Numerous 

researches (e.g., Molinos-Senante and Guzmán, 2018; Lee and Wang, 2019) have applied the theoretical 

model of Färe et al. (1993) to study the shadow prices of undesirable outputs (e.g., CO2, SO2). Färe et al. 

(1993) stated that the shadow prices of undesirable outputs reflect the impact of regulations faced by a firm 

and can be used to assess the effectiveness of existing regulations. In addition, shadow prices can provide 

valuable reference information for policy development and analysis, such as for environmental/carbon tax 

or pollutants/carbon emissions trading (Zhou et al., 2014; Zhou et al., 2015). Various efficiency models 

have been used to estimate shadow prices of undesirable outputs at the firm, provincial, regional, sectoral, 

and worldwide levels (Lee et al., 2014; Du et al., 2015; Boussemart et al., 2017; Zhang and Jiang, 2019). 
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Based on the duality theory, there are two general approaches to estimating the shadow prices of 

pollutant emissions: parametric and nonparametric. A parametric method needs a predefined function form 

to parameterize the Shephard or directional distance function, which is commonly in either the trans-log or 

quadratic form. For example, Lee and Zhang (2012) selected the trans-log function to compute the shadow 

prices of CO2 emissions from China’s manufacturing industries, while Molinos-Senante et al. (2015) 

assumed the quadratic form to estimate the shadow prices of CO2 emissions from Spanish wastewater 

treatment. Besides, the generalized Leontief (GL) cost function has been used in some studies for 

quantifying shadow prices of polluting inputs (van Soest et al., 2006; Althammer and Hille, 2016). In 

contrast, a nonparametric method does not require a predefined function form, which avoids the risk of a 

mistaken function form. The data envelopment analysis (DEA) technique proposed by Charnes et al. (1978) 

has been popularly used for evaluations of productivity performance (Huang et al., 2017; Rath, 2018). 

Further, the shadow prices of pollutant emissions can be derived from the dual values of the primary linear 

program used to measure the environmental performance (Zhou et al., 2014). Numerous DEA technologies 

can be used with the nonparametric method. Zhou et al. (2008) discussed different environmental DEA 

technologies, and Leleu (2013) proposed a hybrid model to shadow pricing undesirable outputs in 

nonparametric analysis. In general, DEA technologies can be divided into radial and non-radial efficiency 

models. The former can only measure the degree of expansion or reduction of desirable or undesirable 

outputs with equal proportions, while the latter allows different expansive or shrinking proportions. Lee et 

al. (2002) and Boussemart et al. (2017) applied the radial efficiency model to derive the shadow prices of 

pollutant emissions. Chen and Xiang (2019) adopted the non-radial efficiency model to analyze the 

shadow prices of CO2 emissions from coal-fired power plants in Shanghai, China. 

As a kind of non-radial efficiency model, the slacks-based measure (SBM) deals with slacks of input 

excess and output shortfall simultaneously; this has the advantage of capturing the overall inefficiency 

(Wei et al., 2012). Since the traditional SBM was developed by Tone (2001), some researchers have 

extended it to incorporate undesirable outputs in various ways. For example, Zhou et al. (2006) combined 

the Shephard input distance function and traditional SBM to construct an extended SBM for modeling the 

environmental performance. An et al. (2019) improved the traditional SBM by considering the pollution 

from upstream cities as undesirable inputs for downstream cities. Choi et al. (2012) and Wei et al. (2012) 

added the slack of undesirable output excess to the traditional SBM and derived dual values to estimate the 
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shadow prices of CO2 emissions in China. 

Although many studies have examined the shadow prices of undesirable outputs and shadow pricing 

technologies, new discussion and progress has continued in recent years. One discussion has been on 

choosing the distance function for estimating the shadow prices. Many studies have pointed out that 

different estimation methods lead to different empirical outcomes (Zhang et al., 2014; Zhou et al., 2014, 

2015); however, no consistent results have been achieved. Lee et al. (2014) reconciled the engineering and 

economic perspectives to construct a distance function, while Lee and Zhou (2015) considered a 

literature-based method and individual-SP method to determine the directional vector. Another discussion 

has been on improving upon the polluting technology approach proposed by Färe et al. (1993, 2005), 

which was the core basis for estimating the shadow prices of undesirable outputs. Many researchers have 

maintained that the construction of the polluting technology should follow the material balance principle 

(MBP) (Coelli et al., 2007; Rødseth, 2017; Wang et al., 2018). Others have divided the traditional 

polluting technology into two sub-technologies that follow the MBP (Rødseth, 2013; Shen et al., 2018). 

These new discussions and progress should be fully considered in studies on the shadow prices of 

undesirable outputs. 

3. Methodology 

3.1 By-production models and shadow prices of pollutant emissions 

Färe et al. (1993) incorporated a pollutant into the traditional output set and used the duality theory to 

derive the shadow prices of pollutant emissions. In contrast, a more recent approach has been to model 

polluting technology with two sub-technologies (Murty et al., 2012; Shen et al., 2018). In this study, 

however, the approach used by Färe et al. (1993) was found to be supported by the two sub-technologies, 

and the shadow prices of pollutant emissions can be estimated with either the approach used by Färe et al. 

(1993) or the approach based on two sub-technologies. Both approaches are called the “by-production 

model” in this study. 

The by-production model with two sub-technologies is given below. The first sub-technology, 1T , is a 

conventional production process that maximizes the desirable outputs of given inputs, while the second 

sub-technology, 2T , is an inevitable consequence of pollution resulting from the use of polluting inputs. 

The two sub-technologies are not independent but rather interact with each other through emissions 
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abatement. The by-production technology, T , is defined as: 
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where nx  represents clean inputs, px  represents dirty inputs, y  represents desirable outputs, ay  

represents abatement outputs, and b  represents pollutant emissions.  F   and  B   are assumed to 

be continuous differentiable functions. 

The shadow prices of pollutant emissions can be estimated according to the following profit 

maximization problem: 
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where y , nx
 , px

 , and b  represent the price vectors of the desirable outputs, clean inputs, dirty 

inputs, and undesirable outputs (i.e., pollutant emissions), respectively. 

With the method of Lagrange multipliers, the model in Eq. (2) can be transformed to the following 

Lagrange function: 

   

   

 

max. , , , , , b

, , , , , b

, , , , b,

n p

n p

n p

n p n p a p a

y bx x

n p n p a p a

y bx x

n p n p a

y bx x

L y x x b F x x y y B x y

y x x b F x x y y B x y

y x x b D x x y y

     


    



     

     

 
      

 

    

    (3) 

where      , , , , b, , , , , , bn p a n p a p aD x x y y F x x y y B x y





   and 





 .   is the ratio of 

Lagrange multipliers of the conventional production function and the polluting function. Based on the 

model in Eq. (3), the two sub-technologies  , , , 0n p aF x x y y   and  , , b 0p aB x y   can be 

reduced to the combined technology  , , , , b, 0n p aD x x y y   . Therefore, the approach of Färe et al. 
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(1993) can be supported by the two sub-technologies because  , , , , b, 0n p aD x x y y    can be 

converted to     , , , , b , 0n p a aD x x y y y   . 

To solve the Lagrange function, the first-order conditions (FOCs) are applied: 
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Therefore, the shadow prices of pollutant emissions can be derived from either the combined 

production function  , , , b 0n pD x x y   or the two sub-functions  , , , 0n p aF x x y y   and 

 , , b 0p aB x y  . This shadow price can also be written as: 

b

y

B F D D

b y b y

 

 

    
  

    
             (5) 

3.2 Data envelopment analysis (DEA) models corresponding to the by-production models 

Considering the constant returns to scale (CRS), the conventional by-production model is given by: 

 
1 1 1 1
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n n n n

n p n n p p

F i i i i i i i i

i i i i
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    , where   is a 

non-negative intensity vector.1 

Accordingly, the by-production model with two sub-technologies under the CRS assumption of Murty 

et al. (2012) and Shen et al. (2018) is defined as: 

                                                             
1 The assumption of strong disposability of undesirable outputs ensures the non-negativity of shadow prices of undesirable 

outputs. 
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where   and   are different non-negative intensity vectors. Because the SBM model has the 

advantage of capturing the overall inefficiency, the improved SBM model with undesirable outputs was 

employed to model the by-production technologies FT  and MST  in this study. In addition, the 

directional distance function introduced by Chambers et al. (1996) was used for comparison. 

According to Choi et al. (2012) and Wei et al. (2012), the dual linear program of the improved SBM 

model with undesirable outputs based on FT  is given by: 
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Based on the work of Shen et al. (2018), a newly improved SBM model based on MST  was 

constructed in this study. Its corresponding dual linear program is given as: 

 

max.

. . 0, 1,2, , n

0, 1,2, , n

1
1/

1
1/

1
1/ y

1

n p p

n p

p

n

p

n p p

n p p

n p p

y o o o b o ox x x

n p

y i i ix x

p

b i ix

n

ox

p

ox

n p p

y o o o b o ox x x
y o

n p

y o o o b o ox x x
b

y x x b x

s t y x x i

b x i

x
m

x
m

y x x b x

s

y x x b x

    

  

 





    


    


   

    

    

   

   

    


    
  1/ b

p

o
s

        (7) 

For comparison, the dual linear programs constructed with the directional distance function introduced 
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by Chambers et al. (1996) and based on FT  and MST  are respectively given below: 
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          (9) 

In the linear programs of Eqs. (6)–(9), oy , 
n

ox , 
p

ox , and ob  represent the estimated 

decision-making unit (DUM)’s desirable output, clean input, dirty input, and undesirable output, 

respectively. In addition, m  represents the number of clean and dirty inputs, s  represents the number 

of desirable and undesirable outputs, and px
  represents the price vector of dirty inputs in 2T . In the 

following section, the above four linear programs are designated as models 1, 2, 3, and 4, respectively.  

3.3 Decomposing the shadow prices of pollutant emissions with LMDI 

Some research has employed econometric regressions to analyze shadow prices’ determinants such as 

firm scale, ownership, age, technology, coal consumption, and urbanization (Wei et al., 2013; Du et al., 

2015). Unlike the above determinants, the present study investigated some more direct influencing factors 

with the help of an index decomposition method.  

It is concluded from the by-production model with two sub-technologies in Eq. (1) that, there are two 

channels to reduce industrial air pollutant emissions: consuming less dirty inputs or reducing the 

end-of-pipe emissions. The former can be measured by the marginal productivity of dirty input (
p

y

x




), 

and affects shadow prices by the increased marginal productivity of energy2 (i.e., the shadow price of 

                                                             
2 In this paper, the dirty input is energy. 
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energy). The latter can be measured by the marginal emissions of polluting input (
p

b

x




), and affects 

shadow prices by the terminal emissions reduction capacity. Correspondingly, this study decomposed the 

changes of shadow prices of industrial air pollutant emissions into energy saving and end-of-pipe 

controlling effects. 

The improvement in productivity technology and reduction in pollution-intensive industries are helpful 

for a positive change in the energy saving effect. On the other hand, converting more inputs into pollution 

control, the progress of mitigation technology and the development of clean energy alternatives would lead 

to an increase in the end-of-pipe controlling effect.  

The relationship among the shadow price, energy saving effect, and end-of-pipe controlling effect is 

expressed in Eq. (10). 

p p
p p

b x x

p p

y by

D D D x D x y b

b y D y D b x x

 

 

       
   
       

                     (10) 

It is concluded from Eq. (10) that the higher marginal productivity and the lower marginal emissions of 

polluting input, the higher marginal abatement costs for industrial air pollutant emissions. In a broader 

sense, technology, firm size, and coal consumption affect the shadow prices either by increasing the 

marginal productivity of energy or by decreasing the marginal emissions of energy consumption.  

As the LMDI method has the advantage of producing zero residuals after decomposition (Ang, 2015), 

it can be used to identify the energy saving and end-of-pipe controlling effects. Specifically, the 

decomposition equations are given below: 
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                 (11) 

where sp  is the variation of the shadow prices of air pollutant emissions, .se  is the energy saving 

effect on the variation of the shadow prices, and .ce  is the end-of-pipe controlling effect on the 

variation of the shadow prices. The 
tsp  and 

1tsp 
 denote the shadow prices of air pollutant emissions 
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in t  and 1t   years, respectively; . te s  and 1. te s   denote the marginal productivity of energy (
p

y

x




) 

in t  and 1t   years, respectively; and . te c  and 1. te c   denote the inverse of the marginal emissions 

of polluting input (
p

b

x




)3 in t  and 1t   years, respectively. 

The values of the energy saving and end-of-pipe controlling effects reflect the trade-off between the 

two channels to meet emission targets. Under the same stringency of environmental regulations, market 

participants would choose the channel with lower marginal costs to reduce air pollutant emissions. All the 

variations ( sp , .se , and .ce ) may be positive and negative. Positive sp  values show that 

shadow prices have increased based on the last year, while a negative value represents a decline based on 

the last year. When .se  or .ce  are positive, it means that the energy saving effect or the end-of-pipe 

controlling effect have increased based on the last year, and promotes the positive growth of shadow prices. 

Otherwise, if .se  or .ce  are negative, it means that the energy saving effect or the end-of-pipe 

controlling effect have decreased based on the last year and pulled down the growth of the shadow prices. 

In addition, if sp  takes a positive value, one of the effects has to be positive at least, and the positive 

one dominates the variation of the shadow prices. For the same reason, if sp  takes a negative value, at 

least one of the effects has to be negative, and the negative one dominates the variation of the shadow 

prices. 

It is common to study the relationships among energy consumption, economic development, capital, 

etc. For example, Narayan et al. (2010) examined the mutual long-run elasticities of energy consumption 

and gross domestic product (GDP). Smyth et al. (2011) studied the substitution between energy and other 

inputs in the Chinese steel sector. Liu et al. (2017) analyzed the effect of New-type Urbanization on energy 

Consumption in China. Nevertheless, this is the first study to research on the impact of energy saving on 

the increase in the marginal abatement cost.  

3.4 Regression model for testing the effectiveness of environmental regulation stringency 

As shadow prices of undesirable outputs can be used to measure environmental policy stringency (Färe 

                                                             
3 When we take the inverse of the marginal emissions of polluting input, the positive value of .ce  means that the 

end-of-pipe controlling effect pushes the increase in shadow prices of industrial air pollutant emissions. 
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et al., 1993; Althammer and Hille, 2016; Hille and Shahbaz, 2019), a regression model has been set to 

investigate the causal link between shadow prices and emissions reduction, which is specified as follows: 

2 2

, 0 1 , 1 2 , 1 3 , 4 , ,ln ln ln lnind lni t i t i t i t i t i temi sp sp ind                          (12) 

The term ,i temi  denotes industrial air pollutant emissions in province i  for year t ; , 1i tsp   denotes 

the shadow prices of undesirable outputs estimated by model 1 in province i  for year 1t  , and 

represents the one-period lagged policy stringency, and its quadratic term is also considered (Hille and 

Shahbaz, 2019); ,i tind  denotes industrial added value in province i  for year t , and the Environmental 

Kuznets Curve (Churchill et al., 2018; Lau et al., 2019) is considered by incorporating the quadratic term 

of ,i tind . The natural logarithm (ln) form is used to conduct elasticity analysis. A balanced panel data of 

Chinese 30 provinces from 2006‒2016 was employed and each type of polluting emissions (i.e., industrial 

SO2, NOx, and smoke dust emissions) and their shadow prices were taken to carry out robust checks. 

4. Empirical results 

4.1 Dataset 

An empirical study was performed to estimate the shadow prices of air pollutant emissions of China’s 

industries at the province level4 in 2006–20165. The paper considers two clean inputs (i.e., industrial 

capital and labor), a single dirty input (i.e., industrial energy consumption), a single desirable output (i.e., 

industrial added value), and a single integrated industrial air pollutant (simply adding the industrial SO2, 

NOx, and smoke dust emissions). Table 1 describes the statistics for all the raw data used in this study. 

Figure 1 illustrates the trends of the total emissions and emissions intensity of industrial air pollutant in 

China from 2006 to 2016. In general, the total emissions of industrial air pollutant showed a decreasing 

trend, especially for 2014–2016, even though there were some temporary increases between 2009 and 

2011. Meanwhile, the emission intensity declined from more than 5.54 tons per million yuan (CNY) in 

2006 to less than 0.1 ton per million CNY in 2016, just with a slight rise in 2011. Overall, it can be 

concluded that China has achieved a win-win situation between industrial economic growth and emission 

reduction in the past decade or so.  

                                                             
4 China has 31 provinces, municipalities, and autonomous regions; however, Tibet was not included because of the lack of 

data. The remaining 30 provinces, municipalities, and autonomous regions are referred to as provinces here for simplicity.  
5 Due to the unavailability of data in 2017 and 2018, this study only extended over the sample period to the year 2016. 
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[Insert Table 1] 

[Insert Figure 1] 

4.2 Shadow prices of industrial air pollutant emissions in China for 2006–2016 

Based on the linear programs of Eqs. (6)–(9) as well as Eq. (5), the average shadow prices of the 

industrial air pollutant emissions from China’s 30 provinces in 2006–2016 are estimated with the four 

models. Figure 2 presents the average shadow prices estimated by models 1–4. In general, the dual linear 

programs based on the directional distance function (models 3 and 4) yield shadow prices about three 

times higher than those estimated by the SBM models (models 1 and 2), while the dual linear programs 

based on MST  (models 2 and 4) offer slightly higher shadow prices than those based on FT  (models 1 

and 3). Although the models estimate different shadow prices in terms of the absolute values, the growth 

trends over time are basically the same. The shadow prices of industrial air pollutant emissions in China 

grew from 0.0694–0.2115 million CNY per ton in 2006 to 0.4226–1.6415 million CNY per ton in 2016. It 

then can be concluded that the marginal abatement costs of industrial air pollutants in China increased 

largely in the study periods.  

[Insert Figure 2] 

Robustness checks were carried out for each polluting emissions individually by employing model 1. It 

is shown in Fig. A.1 (Appendix A) that shadow prices of each polluting emissions increased steeply during 

2014–2016, which is in accordance with Fig. 2. Although the shadow prices of industrial NOx and smoke 

dust emissions changed intricately around 2010–2014, the average and the integrated shadow prices of 

industrial SO2, NOx, and smoke dust emissions6 shared nearly the same growth trends according to Fig. 

A.2 (Appendix A). As this paper aimed to explore the overall shadow prices of industrial air pollutant 

emissions, and it was difficult to distinguish which one is more important, we focused only on the 

integrated shadow prices in this study. 

4.3 Regional shadow prices of industrial air pollutant emissions for 2006–2016 

In 2005, the Development Research Center of China’s State Council proposed dividing China into 

eight comprehensive economic zones: the Northeast, Northern Coast, Eastern Coast, Southern Coast, 

                                                             
6 The average shadow prices of industrial air pollutant emissions were calculated by first estimating the shadow prices for 

each industrial pollutant (SO2, NOx, and smoke dust) emission individually and then calculating the mean values. The 

integrated values were calculated by first adding the industrial SO2, NOx, and smoke dust emissions to a single integrated 

indicator and then estimating its shadow prices. 
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Middle Yellow River, Middle Yangtze River, Great Southwest, and Great Northwest. Table 2 briefly 

introduces the eight different zones. The division was based on the comprehensive socioeconomic 

development of each zone, which is more specific than dividing China into eastern, central, and western 

regions. In general, the three coastal zones are more advanced than the other zones in terms of industrial 

development, social development, and population size. Besides, the Great Northwest and Great Southwest 

lag behind the others in terms of economic development, and the remaining zones face greater pressure 

from industrial transformation. 

 [Insert Table 2] 

The Chinese government issued the Plan for Air Pollution Prevention in Key Regions during the 12th 

Five-Year Plan. This was China’s first comprehensive air pollution prevention and control planning and 

marked a gradual shift from a focus on total pollutant control to a goal-oriented focus to improve 

environmental quality. Approximately 19 provinces in China have been covered by this plan, which are 

listed in Table 2. In addition, additional related policies were issued in the following years. For example, 

the Air Pollution Prevention and Control Action Plan including phased goals for fine particulate matter 

(PM2.5) was issued in 2013 (Cai et al., 2016). Table 3 presents the shadow prices of industrial air pollutant 

emissions estimated by models 1–4 for each comprehensive economic zone in 2006, 2011, and 2016. The 

shadow prices in each zone increased regardless of the model that was adopted, although the absolute 

values of the shadow prices differed. For the sake of clarity, Fig. 3 shows the shadow prices estimated by 

model 1 (SBM model based on FT ) in each zone for 2006–2016 as an example. In general, the shadow 

prices were higher in the three coastal zones (Northern Coast, Eastern Coast, and Southern Coast) and 

lower in the Great Northwest and Middle Yellow River.  

[Insert Table 3] 

[Insert Figure 3] 

Shadow prices of industrial air pollutant emissions in each zone grew stably and increased rapidly 

since 2012. For instance, the shadow price in the Northern Coast increased by 73.53% in 2015 and by 

58.61% in 2016, while that in the Eastern Coast grew by 48.83% in 2016. Moreover, the disparities in the 

shadow prices among the eight different zones were relatively small prior to 2012 and subsequently 

became larger. 

Increases in the shadow prices of industrial air pollutant emissions in each zone represent the growth of 
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marginal abatement cost for industrial air pollutant with the increasingly stringent environmental 

regulations in China. Moreover, the disparities in shadow prices among the different zones indicate that 

China carried out different regional pollution control strategies. Generally, economically developed 

regions (mainly concentrated in the Northern Coast, Eastern Coast, and Southern Coast) had relatively 

heavy emission reduction tasks, while less developed regions (mainly in the Great Northwest) had 

relatively light tasks. 

As models 1–4 produced generally the same growth trends and regional characteristics for shadow 

prices of industrial air pollutant emissions, the following sections (sections 4.4 and 4.5) simply take the 

empirical results produced by model 1 to conduct further analysis. 

4.4 Decomposing the shadow prices of industrial air pollutant emissions for 2006–2016 

Based on model 1 and Eq. (11), Figs. 4 and 5 present the energy saving and end-of-pipe controlling 

effects on the year-on-year changes of shadow prices in China and in each zone. 

 [Insert Figures 4 & 5] 

According to Fig. 4, except for individual years, both the energy saving and end-of-pipe controlling 

effects have taken positive values, which drove the growth of shadow prices in China during 2006–2016. 

Generally, it is difficult to determine the dominating effect in the analyzed periods; nevertheless, we find 

that the end-of-pipe controlling effect surpassed the energy saving effect during the years of 2015 and 

2016. 

According to Fig. 5, it was found that both the energy saving and end-of-pipe controlling effects 

fluctuated more frequently prior to 2013 compared to the more recent three years, which resulted in 

relatively slow increases in the shadow prices in China during that time. On the other hand, shadow prices 

of industrial air pollutant emissions in each region experienced large increases in the last year or two under 

the combined actions of the two effects. Specifically, the Northern Coast and Eastern Coast experienced a 

rapid increase in the shadow prices for 2015–2016, which was mainly caused by the end-of-pipe 

controlling effect, while the rapid increase in the Southern Coast during the same period was from the 

energy saving effect. The Northeast had a superior energy saving effect for the three consecutive years 

from 2013, but a larger end-of-pipe controlling effect in 2016. The Middle Yellow River, Middle Yangtze 

River, Great Southwest, and Great Northwest had similar situations where the energy saving effect was 

dominant in 2015 and the end-of-pipe controlling effect greatly increased in 2016. 
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4.5 Emissions reduction effectiveness of environmental regulation for 2006–2016 

Although the shadow prices of industrial air pollutant emissions have grown largely in recent years, 

this shows only growing marginal abatement costs and indicates increasing environmental regulation 

stringency. Have the increasing environmental regulation stringency been effective at controlling 

pollution? 

The results of the panel data regression by controlling provincial and time effects are summarized in 

Table 4 according to Eq. (12). It is shown that the Environmental Kuznets curve is supported, especially 

for the industrial NOx emissions, and that environmental regulation stringency reduced industrial air 

pollutant emissions significantly and at an increasing rate in China during the study periods. Besides, the 

time effects of years 2008 and 2009 were negative and significant for the integrated emission and SO2 

emissions, indicating that growth rates of emissions, especially industrial SO2 emissions, in China 

contracted under the shock of the 2008 world financial crisis.  

 [Insert Table 4] 

China has not yet established a national pollutant emissions trading market; however, it has imposed an 

environmental tax on air, water, and solid waste pollution since 2018. Comparing the newly set tax levels 

on air pollution with the shadow prices in 2016 estimated in this study, it was found that the two indicators 

are positively correlated (correlation coefficients are 0.6563, 0.7157, 0.6245, and 0.6978 according to 

model 1, model 2, model 3, and model 4). This indicates that the environmental taxes imposed in 2018 still 

followed the existing regional unbalances of environmental regulation stringency: economically developed 

regions tend to have higher shadow prices and have set higher tax standards, while less developed regions 

have lower shadow prices and have set relatively lower tax standards (more evidence is provided in Table 

B.2). However, the lowest shadow price estimated among the four models remains higher than the 

corresponding provincial environmental tax standard in 2018 (See Table B.2). Given that environmental 

tax is only one policy instrument and shadow prices of undesirable outputs capture the whole policy mix, it 

is reasonable that the estimated shadow prices are positively correlated with tax standards but are 

considerably larger. The effectiveness of the overall environmental policy cannot automatically infer the 

emission reduction effect of environmental taxes. Additional evidence is required to compare the 

abatement effects between command-and-controlled and market incentive policies in China in future 

research. 
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5. Concluding remarks 

China has put forward a comprehensive package of regulations for air pollution prevention and control 

in recent years, and shadow prices of undesirable outputs (such as pollutant emissions) provide a 

comprehensive measurement indicator for the whole related regulation stringency. Generally, this study 

provides some robust estimations for the shadow prices of industrial air pollutant emissions in China 

during 2006–2016 and provides further analysis on the estimated shadow prices from their determinants 

and the effectiveness of emission reduction.  

Specifically, based on the duality theory, this study demonstrates that the by-production model 

proposed by Färe et al. (1993) for polluting technology is consistent with the two sub-technologies model. 

Moreover, the use of different models did not change the conclusion that the shadow prices of industrial air 

pollutant emissions have grown rapidly in each of the eight comprehensive economic zones of China in 

recent years, and that shadow prices are higher in the Northern Coast, Eastern Coast, and Southern Coast 

than in other regions. The decomposition results of the LMDI method further demonstrated that neither 

effect had been dominant in the increases in shadow prices during 2006–2016, and both have given greater 

positive forces to push the shadow prices higher during the years of 2015 and 2016. The regression 

analysis confirmed that China’s comprehensive environmental regulations with regional disparities in 

recent years have not only raised the marginal abatement costs but also effectively reduced the growth 

rates of industrial air pollutant emissions at an increasing rate. 

Finally, we need to point out that although the shadow prices estimated in this study could be used as a 

comprehensive indicator to measure the overall stringency of environmental regulations related to 

industrial air pollutant emissions, they are not suitable as direct references for the environmental tax levels 

or prices of tradable emission permits in each province. The DEA method has the advantage of not 

requiring a predefined function form, however the DEA estimators are sensitive to the outline and the 

selected directional distance function. As a result, the absolute values of the estimated shadow prices are 

sensitive to the estimation methods (the four different models in this study), and they are not empirically 

well-founded references for the environmental tax levels or prices of tradable emission permits. We 

recommend focusing on the relative values or growth rates of the estimated shadow prices when measuring 

the overall environmental regulation stringency, as different models provide robust results in terms of 
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relative values among each decision-making unit.  
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Appendix A. 

  

Fig. A.1. Shadow prices of industrial SO2, NOx, and smoke dust emissions in China for 2006–2016 

estimated by model 1. 
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Fig. A.2. Comparison between the average and integrated shadow prices of industrial air pollutant 

emissions in China for 2006–2016 estimated by model 1. 

Note: The average shadow prices of industrial air pollutant emissions were calculated by first estimating 

the shadow prices for each industrial pollutant (SO2, NOx, and smoke dust) emission individually and then 

calculating the mean values. The integrated values were calculated by first adding the industrial SO2, NOx, 

and smoke dust emissions to a single integrated indicator and then estimating its shadow prices. 
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Appendix B. 

Table B.1 

Descriptive statistics for shadow prices of industrial air pollutant emissions in China for 2006–2016 

estimated by models 1, 2, 3, and 4. 

Model Unit Mean Max Min Std dev. 

Model 1 Million CNY/ton 0.1678 3.7664 0.0028 0.2790 

Model 2 Million CNY/ton 0.2192 5.2501 0.0022 0.3872 

Model 3 Million CNY/ton 0.4182 11.2991 0.0028 0.8006 

Model 4 Million CNY/ton 0.6205 11.2991 0.0429 0.8783 
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Table B.2 

Shadow prices and environmental tax standards in China’s 30 provinces for 2016. 

 

 

Province 

Shadow prices of industrial air pollutant 

emissions (million CNY/ton) in 2016 

Environmental 

tax standards 

(million 

CNY/ton) 

Shadow 

prices/environmental 

tax standard 

 Model 1 Model 2 Model 3 Model 4 

Liaoning 0.17 0.18 0.52 0.52 0.0126 13.65 

Jilin 0.19 0.44 0.25 1.25 0.0126 15.24 

Heilongjiang 0.17 0.18 0.51 0.51 0.0126 13.55 

Beijing 3.77 5.25 11.30 11.30 0.1263 29.82 

Tianjin 0.61 1.47 0.90 3.57 0.1053 5.77 

Hebei 0.20 0.23 0.67 0.67 0.1011 2.02 

Shandong 0.39 0.38 1.20 1.20 0.0126 31.06 

Shanghai 0.86 1.65 1.92 4.34 0.0800 10.79 

Jiangsu 0.66 0.55 1.92 1.99 0.0505 13.01 

Zhejiang 0.51 0.78 1.92 2.77 0.0147 34.83 

Fujian 0.23 0.06 0.39 2.10 0.0126 18.34 

Guangdong 1.08 1.15 1.92 3.24 0.0189 57.02 

Hainan 0.23 0.27 0.69 0.69 0.0253 9.11 

Shaanxi 0.28 0.40 0.81 1.10 0.0126 21.89 

Shanxi 0.10 0.10 0.29 0.29 0.0189 5.12 

Henan 0.51 0.42 1.61 1.61 0.0505 10.07 

Inner Mongolia 0.07 0.12 0.13 0.52 0.0253 2.93 

Hubei 0.19 0.62 0.19 1.86 0.0295 6.43 

Hunan 0.23 0.42 0.19 1.51 0.0253 9.08 

Jiangxi 0.27 0.26 0.94 0.94 0.0126 21.49 

Anhui 0.30 0.37 1.24 1.24 0.0126 23.48 

Yunnan 0.15 0.16 0.45 0.45 0.0295 5.06 
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Guizhou 0.15 0.16 0.45 0.45 0.0253 5.90 

Chongqing 0.37 0.50 1.48 1.48 0.0368 9.92 

Sichuan 0.37 0.45 1.24 1.24 0.0411 9.08 

Guangxi 0.21 0.41 0.27 1.17 0.0189 10.91 

Gansu 0.12 0.13 0.37 0.37 0.0126 9.66 

Qinghai 0.12 0.13 0.37 0.37 0.0126 9.82 

Ningxia 0.07 0.08 0.22 0.22 0.0126 5.72 

Sinkiang 0.09 0.10 0.27 0.27 0.0126 7.02 

Note: The ratio of the shadow price to the environmental tax standard is calculated based on model 1. 
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Captions of figures 

Fig. 1. Total emissions and emission intensity of industrial air pollutant in China for 2006–2016. 

Fig. 2. Estimated shadow prices of industrial air pollutant emissions in China for 2006–2016 with different 

models. 

Fig. 3. Estimated shadow prices of industrial air pollutant emissions in China’s eight comprehensive 

economic zones for 2006–2016 with model 1.  

Fig. 4. Estimated decomposition effects in China for 2006–2016 with model 1. 

Fig. 5. Estimated decomposition effects in each comprehensive economic zone of China for 2006–2016 

with model 1. 
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Fig. 1 Total emissions and emission intensity of industrial air pollutant in China for 2006–2016. 
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Fig. 2 Estimated shadow prices of industrial air pollutant emissions in China for 2006–2016 with 

different models.  

Notes: Model 1 is the SBM based on T
F , model 2 is the SBM based on T

MS , model 3 is based on the 

directional distance function with T
F , and model 4 is based on the directional distance function with T

MS . 
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Fig. 3 Estimated shadow prices of industrial air pollutant emissions in China’s eight comprehensive 

economic zones for 2006–2016 with model 1.  
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Fig. 4. Estimated decomposition effects in China for 2006–2016 with model 1. 
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Fig. 5. Estimated decomposition effects in each comprehensive economic zone of China for 2006–2016 

with model 1. 

 

 

 


