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Abstract

Background: Despite heritability estimates of 40–70 % for obesity, less than 2 % of
its variation is explained by Body Mass Index (BMI) associated loci that have been
identified so far. Epistasis, or gene-gene interactions are a plausible source to explain
portions of the missing heritability of BMI.

Methods: Using genotypic data from 18,686 individuals across five study cohorts –
ARIC, CARDIA, FHS, CHS, MESA – we filtered SNPs (Single Nucleotide Polymorphisms)
using two parallel approaches. SNPs were filtered either on the strength of their
main effects of association with BMI, or on the number of knowledge sources
supporting a specific SNP-SNP interaction in the context of BMI. Filtered SNPs were
specifically analyzed for interactions that are highly associated with BMI using QMDR
(Quantitative Multifactor Dimensionality Reduction). QMDR is a nonparametric,
genetic model-free method that detects non-linear interactions associated with a
quantitative trait.

Results: We identified seven novel, epistatic models with a Bonferroni corrected
p-value of association < 0.1. Prior experimental evidence helps explain the plausible
biological interactions highlighted within our results and their relationship with
obesity. We identified interactions between genes involved in mitochondrial
dysfunction (POLG2), cholesterol metabolism (SOAT2), lipid metabolism (CYP11B2), cell
adhesion (EZR), cell proliferation (MAP2K5), and insulin resistance (IGF1R). Moreover,
we found an 8.8 % increase in the variance in BMI explained by these seven SNP-
SNP interactions, beyond what is explained by the main effects of an index FTO SNP
and the SNPs within these interactions. We also replicated one of these interactions
and 58 proxy SNP-SNP models representing it in an independent dataset from the
eMERGE study.

Conclusion: This study highlights a novel approach for discovering gene-gene
interactions by combining methods such as QMDR with traditional statistics.

Keywords: Obesity, Epistasis, Gene-gene interaction, Multifactor dimensionality
reduction, GWAS
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Background
Obesity is a major risk factor for various diseases such as - heart disease, type 2

diabetes and even certain types of cancer [1, 2]. Approximately, one-third of the adult

population in the U.S. is categorized to be obese [3]. Globally, obesity has the potential

to affect 1.12 billion individuals by 2030 [4]. In the U.S. alone, the economic burden

associated with obesity has been estimated to be around $147 billion/year in healthcare

costs and loss of productivity of affected individuals [5]. Moreover, obesity no longer

affects only industrialized nations, but it is also making its mark in developing nations,

especially among children [3, 6].

Although the current epidemic proportions of obesity can be largely attributed to our

lifestyle and food choices, there is also a strong genetic component of obesity. Twin

and adoption studies have provided heritability estimates of 40–70 % for obesity [7, 8].

Such studies have also found that obesity tends to cluster within families, and that

monozygotic twins show greater concordance in Body Mass Index (BMI) and adiposity

metrics versus dizygotic twins. Technological advancements in genomics and highly

characterized genome-wide reference maps in major populations allow researchers to

query a million or more genetic variants by designing genome-wide association studies

(GWAS), [9–11] and so far, researchers have identified BMI-related signals in 32 loci that

are associated with the trait at a genome-wide level [1]. However, these primary associa-

tions have been able to explain only about 2 % of the variation observed in BMI [1].

The limited success of GWAS has often been attributed to the linear framework

employed by these studies. Although, single locus analysis strategies have had success in

certain diseases such as age-related macular degeneration and breast cancer [12–15],

many complex diseases are likely the result of interactions between genetic loci – epistasis

[9, 11, 16]. The ubiquitous nature of epistasis has been discussed previously, and it has

highlighted the importance of designing our studies to embrace the genomic and environ-

mental context of Single Nucleotide Polymorphisms (SNPs), by specifically searching for

non-linear interactions between genetic loci [17, 18].

In this study we aimed to identify interactions between SNPs that are associated with

BMI using data from 18,686 individuals across five highly characterized National Heart,

Lung and Blood Institute (NHLBI) study cohorts. Individuals were genotyped using the

gene-centric ITMAT-Broad-CARe (IBC) array containing approximately 50,000 SNPs.

Methods
Participants

Figure 1 illustrates the overall study design. Genotype and phenotype information were

initially combined for a total of 18,686 individuals of European descent from the follow-

ing studies: Atherosclerosis Risk in Communities (ARIC) [19]; Coronary Artery Risk

Development in Young Adults (CARDIA) [20]; Cardiovascular Health Study (CHS)

[21]; Framingham Heart Study (FHS) [22]; and Multi-Ethnic Study of Atherosclerosis

(MESA) [23] (Additional file 1: Table S1).

Genotyping and quality control

Genotyping was performed using the gene-centric ITMAT-Broad-CARe (IBC) array.

This array was designed specifically to test over 2,000 loci implicated in various
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cardiovascular, metabolic and inflammatory phenotypes [24]. The array contains 47,451

SNPs. Samples with a call rate less than 90 % were excluded. Additionally, SNPs with a

call rate less than 95 %, with an exact test of Hardy-Weinberg equilibrium p-value

greater than 1.00E–07 or a minor allele frequency (MAF) < 0.05 were also excluded.

SNPs were further tested for linkage disequilibrium (LD) – a SNP was removed from

each pair of SNPs that had an LD (r2) ≥ 0.6. This reduced our dataset to 17,268 individ-

uals and 28,453 SNPs. Non-founder individuals were also removed from the study

population. To check for relatedness between individuals, markers were used for an

Identity-by-descent (IBD) analysis using PLINK [25]. For pairs of individuals with a

pi-hat (π̂) value greater than 0.3, one individual was removed. Complete phenotype

data was also required for inclusion of an individual in the analysis. This resulted

in a final dataset of 15,737 individuals and 28,453 SNPs. To decrease both the

computation time and the multiple testing burden two filtering strategies were

employed [26]. These are described in more detail below.

Marker selection

Main effect filter

As an additional filtering step, SNPs were tested for their independent association with

the continuous BMI outcome using linear regression. Upon visual inspection of the

distribution of P-values, a cut-off value of P < 0.016 was chosen, as there was a distinct

separation between SNPs exhibiting a stronger main effect and the rest of the SNPs at

this cut-off. This resulted in a final list of 498 markers for further analysis [27].

Fig. 1 Schematic design of the QMDR (Quantitative Multifactor Dimensionality Reduction) analysis for
identifying SNP-SNP interaction models associated with BMI. Genotyping was performed using the IBC
(ITMAT-Broad-CARe) array. The workflow also includes the initial quality control procedures, subsequent
association analyses, and covariate adjustment steps performed
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Biofilter

As a parallel filtering procedure, SNPs were also analyzed using Biofilter [28]. Biofilter

is a knowledge-based approach that enables the analysis of multi-SNP interactions in a

large dataset. The software identifies multi-SNP models that exhibit marginal effects on

a phenotype, but are also biologically plausible. It combines information from multiple

public knowledge sources such as Gene Ontology (GO), Kyoto Encyclopedia of Genes

and Genomes (KEGG), Database of Interacting Proteins (DIP) and the Protein Families

Database (Pfam) [29]. These sources provide information regarding pairs of genes that

may be putative sources of epistasis and relate genes to one another through their

mutual participation in biological processes, signaling pathways, protein-protein inter-

actions as well as via the structural similarity between protein motifs. Biofilter

measures the strength of the knowledge-based support for a given multi-SNP

model with an implication index. The implication index is the sum of the number

of supporting data sources for each of the genes in a given gene-gene relationship.

For our analysis, models with an implication index of five or greater were retained, result-

ing in a list of 1815 markers (22,644 SNP-SNP models). The selected implication index

cut-off was slightly more stringent than those used in previous studies [30].

Statistical analyses

Covariate adjustment

Baseline BMI values were regressed on age, age2, sex, the first three principal components

of race computed using EIGENSTRAT software [31] and the index SNP rs11642841 in

the FTO region. SNPs in the FTO locus are some of the strongest genetic associations

identified for obesity risk [32]. Hence, adjustments were made for a SNP in the FTO locus

to increase our ability to identify SNP-SNP models that were not primarily driven by the

strong main effect of this gene. The residual BMIs from this regression model were then

used as the continuous outcome variable in the QMDR analysis.

Association analysis – QMDR

SNPs obtained from the two parallel filtering procedures described above, were tested

for association with the continuous BMI outcome using Quantitative Multifactor

Dimensionality Reduction (QMDR) [33]. QMDR is an extension of the two-class MDR

algorithm that can detect and characterize epistatic SNP-SNP interactions in the con-

text of a quantitative trait [34].

The original MDR algorithm was designed as a data reduction approach to identify

multi-locus genotype combinations that are associated with high or low risk of disease

[34]. Within a given dataset of m SNPs, k SNPs can be selected to examine a k-order

interaction. MDR then constructs a contingency table for these k SNPs, and calculates

case–control ratios for each of the possible multi-locus genotypes. Next, the case–con-

trol ratio for each multi-locus genotype is compared to the global case–control ratio

for the whole dataset. Accordingly, a genotype is considered high-risk if its case–control

ratio exceeds the global case–control ratio. Alternatively, it is considered to be low-risk.

However, when QMDR constructs a similar contingency table for k SNPs, it

compares the mean value of the phenotype to the overall mean of the phenotypic trait

within the dataset. Hence, a genotype combination is considered high-level if its mean
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value is larger than the overall mean of the phenotypic trait within the dataset. Other-

wise, it is considered low-level. Next, QMDR combines the ‘high-level’ and ‘low-level’

genotypes into respective groups, and compares the phenotypic outcomes between

these two groups using a T-test.

QMDR also uses a 10-fold cross-validation procedure similar to the original MDR

algorithm. The dataset is divided into 10 portions – 9 portions are used as a training

dataset, and the remaining portion is used as a testing dataset. Next, the training t-statistic

is calculated for each k-way interaction in the training dataset. The k-way model with the

best training score is then used to predict the case–control status in the testing dataset.

Ultimately, the best k-order interaction model is chosen based upon the training t-statistic

and the highest testing t-statistic is used to select the best overall model for the dataset.

In the current analyses, we utilized QMDR to specifically test filtered SNPs for all pos-

sible two-way (SNP-SNP) interaction models that are associated with the continuous BMI

outcome based on their training T-statistic scores. Amongst these models, we selected the

100 best overall SNP-SNP models based on their respective testing T-statistic scores.

Permutation testing to assess statistical significance

Permutation procedures were performed to determine a cut-off threshold for an

α = 0.05 significance level. A 1,000 permutations were performed, and in each

permuted dataset the 100 best two-way SNP models were selected based on their

T-statistic training and testing values. The null distribution of the 100 best SNP

models and T-statistic values obtained from all permutations was utilized to cal-

culate P-values for SNP-SNP models. P-values were also corrected for multiple

testing using standard Bonferroni corrections.

Assessing the non-additive nature of identified pairwise interactions

A 1,000 permuted datasets were created using the explicit test of epistasis, by shuffling

genotypic data for each SNP [35]. However, genotype frequencies were maintained so

that independent main effects were preserved while non-linear interactions were

randomized. Linear regression was used to model the identified statistically significant

SNP-SNP interactions in relation to BMI within the original and permuted datasets. In-

teractions between SNPs were coded as Cartesian products within the regression

model. The nine possible two-locus genotypes were coded from 0–8 (Additional file 2:

Figure S1). The null distribution was created using the F-statistic values for the regres-

sion models from the 1000 permuted datasets. This was used to calculate the ‘explicit

epistasis’ P-value associated with the original pairwise interactions that were identified.

Assessing the added variance in BMI explained by identified pairwise interactions

Linear regression models were used to assess the added variance of the quantitative

BMI trait explained by the statistically significant SNP-SNP interactions identified in

our analyses. The reduced regression model was built by including the main effect of

the index SNP rs11642841 in the FTO region, and the main effects of all SNPs within

our identified interactions. The full regression model included the identified pairwise

interactions in addition to the terms from the reduced model. Adjusted R2 values were
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used to assess the variance explained by both models. Additionally, a likelihood ratio

test was used to compare both models.

Biological evidence for identified pairwise interactions

To identify known biological evidence supporting the statistically significant pairwise

interactions, we mapped each SNP to a corresponding gene using information from

dbSNP (build 139) and SCANdb (http://www.scandb.org). We also searched for

evidence of functional relationships between interacting genes using the Integrated

Multi-Species Prediction (IMP) web server [36]. IMP integrates information from a

large number of sources including experimentally verified data from gene expression

studies, IntAct, MINT, MIPS, and BioGRID databases in order to provide a predictive

probability that two genes work together within a given biological process.

Replication analyses

SNP-SNP models that reached a Bonferroni-corrected P-value < 0.1 were selected for

replication in the eMERGE I-660 dataset [37]. This dataset was imputed using data

from the 1000 Genomes Project. Detailed information regarding the replication dataset

is presented in Additional file 3: Table S2. SNPs that are in high LD with the SNPs

within these interactions were identified using SNAP [38]. These SNPs were then used

to generate a list of ‘proxy’ SNP-SNP models that represented the original interaction

models. Both the original and proxy SNP-SNP models were tested for replication in the

independent dataset. The same QMDR analysis procedure described earlier was used

to specifically test for these models in the eMERGE dataset. Additional file 4: Table S3

shows the number of LD expanded models that were generated and tested for each of

the original SNP-SNP interactions.

Results
Main effect filter

Using the set of SNPs that emerged from the main effect filter, QMDR analysis

identified seven novel SNP-SNP interaction models that were associated with BMI

(Bonferroni corrected P-value <0.1) (Table 1). These SNP-SNP models also reflect

strong epistatic relationships. P-values associated with the non-additive nature of

these interactions are also presented in Table 1. We also queried the biological and

functional context of these interactions using IMP. However, since both FLJ30838

and C7orf10 are of unknown function, we gained most insight regarding interac-

tions 3, 5 and 6 (Table 1). ASTL and CYP11B2 were found to interact via two

genes – MEP1B and CYP2C9 (Fig. 2a). A functional partner of EZR was found to

interact with MAP2K5 through other participants in the MAPK signaling pathway

(Fig. 2b). Lastly, a member of the IGF1R protein complex was found to interact

with CAV3 (Fig. 2c).

Biofilter

Using the set of SNPs that emerged from the Biofilter procedure, QMDR analysis did

not identify any significant SNP-SNP interaction models that were associated with

BMI.
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Table 1 Results for QMDR association analysis for continuous BMI outcome

Rank Model SNP1 Chr:bp Gene1 SNP2 Chr:bp Gene2 Permuted P-Value Bonferroni corrected P-value Explicit epistasis P-value

1 rs17171686,rs1427463 rs17171686 7:40335451 C7orf10 rs1427463 17:59923044 POLG2 <0.00011 0.01 <0.001

2 rs12617233,rs1427463 rs12617233 2:58893502 FLJ30838 rs1427463 17:59923044 POLG2 <0.00012 0.01 0.012

3 rs749457,rs1799998 rs749457 2:96159671 ASTL rs1799998 8:143996602 CYP11B2 <0.00026 0.03 <0.001

4 rs12617233,rs12210959 rs12617233 2:58893502 FLJ30838 rs12210959 6:6121143 F13A1 <0.00038 0.04 0.003

5 rs3102976,rs997295 rs3102976 6:159110007 EZR rs997295 15:65803397 MAP2K5 <0.00046 0.05 <0.001

6 rs2268484,rs8038415 rs2268484 3:8748950 CAV3 rs8038415 15:97316957 IGF1R <0.00046 0.05 0.009

7 rs12617233,rs822682 rs12617233 2:58893502 FLJ30838 rs822682 12:51798711 SOAT2 <0.00061 0.06 0.018

Seven signals reached a Bonferroni corrected P-value < 0.1. SNPs have been mapped to their corresponding genes using dbSNP (build 139) and SCANdb. SNP1 and SNP2 indicate the individual SNPs within a given
SNP-SNP interaction model identified by QMDR. Chromosomal location of SNPs is noted in the following format - Chromosome: Base pair. P-values were calculated from a distribution built from 1000 permutations.
P-values were also corrected using the Bonferroni method. Explicit epistasis P-values were calculated from a distribution built from 1000 permutations using the ‘explicit test of epistasis’
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Added variance in BMI explained

The reduced regression model including the main effect of the FTO index SNP and

main effects of all SNPs within our identified interactions, had an adjusted R2 value of

0.008207. The full regression model including the main effects in the reduced

model and the statistically significant SNP-SNP interactions identified, had an ad-

justed R2 value of 0.008932. Comparison of the two models showed a statistically

significant increase in the variance explained (Likelihood ratio test P-value = 0.01).

Replication analyses

After the use of an identical QMDR analysis procedure, we replicated the main effect

filtered SNP-SNP interaction between rs749457 in ASTL and rs1799998 in CYP11B2. We

also replicated 58 proxy SNP-SNP models representing this interaction in the eMERGE

dataset at a permutation P-value threshold of 0.05 (Additional file 5: Table S4).

Discussion
In this study, we analyzed the genetic and phenotypic information for a total of 15,737

individuals combined from five cohorts. SNPs were either filtered based on the strength

of their independent effects or on the number of independent sources of biological

knowledge supporting them. Filtered SNPs were then specifically tested for SNP-SNP

interactions.

Historically, GWA studies have employed a linear modeling framework that tests single

SNPs one at a time, for its association with a given phenotype. Hirschhorn et al. have

shown that positive results from studies employing such an approach typically cannot be

replicated across independent studies [39]. This has highlighted the need for embracing

the complexity of a genotype-phenotype relationship by focusing on gene-gene interac-

tions [40]. However, detecting gene-gene interactions in a GWAS presents a considerable

Fig. 2 Functional relationship networks generated from Integrated Multi-Species Prediction (IMP) from
identified SNP- SNP interactions that are highly associated with BMI. Identified SNPs were mapped to
their respective genes. Gene pairs were used to query IMP to make functional connections between
them. IMP is a web-based tool that mines empirical data to provide a predictive probability that two
genes have a functional relationship. Nodes in the network represent genes. Query genes are represented
with larger nodes. Edges between nodes represent a functional relationship between two genes. Shown
are interactions between (a) rs749457 in ASTL and rs1799998 in CYP11B2 (b) rs3102976 in EZR and
rs997295 in MAP2K5 (c) rs2268484 in CAV3 and rs8038415 in IGF1R
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computational and statistical challenge. Moore and Ritchie describe the need for design-

ing new computational methods for detecting high-order non-linear interactions since

traditional approaches such as logistic regression have limited power when modeling such

interactions in high-dimensional data [41, 42]. They also stress upon the importance of

filtering methods for the selection of SNPs to be included in an analysis. The exhaustive

search of all possible combinations of thousands of SNPs is computationally very expensive.

Our approach addresses both of these challenges. QMDR is a non-parametric method that

does not assume any genetic model. Most importantly, QMDR greatly reduces the degrees

of freedom required for modeling interactions. We also address the SNP-selection problem

by applying two parallel filtering approaches, thereby effectively reducing our search space

for detecting meaningful interactions.

We identified seven novel interactions that are highly associated with BMI. These

seven interactions were also explicitly tested for the presence of epistasis. All the identi-

fied interactions exhibited an epistatic component. Moreover, we evaluated the increase

in explained phenotypic variance by the identified SNP-SNP interactions. The index

FTO SNP rs11642841 is in strong LD (r2 > 0.8) with the FTO SNP rs1558902 previously

identified by Speliotes et al. to explain the largest proportion of the variance in BMI

[1]. We found an 8.8 % increase in the variance in BMI explained by our identified

SNP-SNP interactions, beyond what is explained by the main effects of the index FTO

SNP and the SNPs within our interactions.

We found a significant association between rs749457 in ASTL and rs1799998 in

CYP11B2 related to BMI. This SNP-SNP interaction and 58 LD expanded models

representing it were replicated in the eMERGE dataset. The variant rs1799998 has been

associated with insulin resistance, diabetes, and metabolic syndrome in humans, but it

has not been shown to have an independent association with BMI [43–45]. Little is

known regarding the function of ASTL in humans, a specific protease that uses metals

in catalytic processes [46]; however, there is moderate support connecting ASTL to a

functional partner of CYP11B2 (Fig. 2a). ASTL shares a strong sequence similarity and

a common genetic ancestor with MEP1A. Both MEP1A and MEP1B are subunits of

meprins and MEP1B shares a transcription factor binding site with and is part of the

same gene expression signature as CYP2C9. Both CYP2C9 and CYP11B2 are function-

ally related by their roles in lipid metabolism [36]. CYP11B2 is specifically involved in

mineralocorticoid biosynthesis [47, 48]. Incidentally, the mineralocorticoid receptor has

been shown to play an important role in the positive control of adipogenesis and thus,

in the development of obesity [49].

In two interactions, rs1427463 in POLG2 interacts with rs17171686 in C7orf10 and

rs12617233 in FLJ30838 respectively. Although, little is known regarding the functions

of C7orf10 and FLJ3083, POLG2’s function may provide some insight into this

interaction. POLG2 is largely involved in metabolic pathways and the transcriptional

activation of mitochondrial biogenesis [47, 48]. An increase in mitochondrial biogenesis

has been shown to prevent the development of obesity in mice [50]. Conversely, mice

with reduced expression of genes involved in mitochondrial respiration eventually de-

velop obesity [51]. Consequently, the involvement of mitochondrial dynamics in obesity

has gained a lot of support [52].

The SNP rs12617233 in FLJ30838 also interacts with the SNPs rs12210959 in F13A1,

and rs822682 in SOAT2 respectively. F13A1 encodes for the A subunit of the
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coagulation factor XIII and is involved in fibrin clot formation [53]. Several SNPs on this

gene were found to be highly associated with BMI in a study utilizing gene expression

data from monozygotic twins to deeply interrogate GWAS data [54]. Interestingly, the

SNP identified in our study is independent of the F13A1 signals identified by Naukkarinen

et al. While several studies in obese individuals and rodent models of obesity have also

reported increased levels of coagulation factors [55, 56], the exact mechanism of action is

unknown. SOAT2 is a major regulator of cholesterol metabolism and absorption in the

small intestine and liver of mice on a high-cholesterol and high-fat diet [57] and impaired

cholesterol absorption has been linked to high BMI and obesity [58, 59] through a yet

unknown mechanism.

We also observed an interaction between rs997295 in MAP2K5 and rs3102976 in

EZR related to BMI. MAP2K5 is a part of the MAPK signaling pathway involved in

growth factor stimulated cell proliferation. EZR, or ezrin, encodes a cytoplasmic per-

ipheral membrane protein that links the plasma membrane and the actin cytoskeleton.

Consequently, ezrin plays an important role in cell adhesion, migration, organization,

and regulation of the actin cytoskeleton. Prior experimental evidence supports the

physical and functional connection between these two genes (Fig. 2b) [36]. One can

imagine the strong need for regulating the actin cytoskeleton during dynamic processes

such as adipogenesis.

Lastly, we observed an interaction between rs2268484 in CAV3 and rs8038415 in

IGF1R related to BMI. CAV3 encodes for a muscle-specific form of the caveolin family

of proteins. Researchers have found that CAV3-knockout mice develop insulin resist-

ance in their skeletal muscles [60] and that adenovirus-mediated gene transfer of CAV3

increases glycogen synthesis in the liver as well as improves insulin signaling in diabetic

obese mice [61]. IGF1R codes for the receptor of insulin-like growth factor 1, IGF1.

IGF1 regulates pancreatic β-cell mass and thus plays a crucial role in insulin signaling.

Hence, impaired IGF1 signaling may alter insulin secretion by β-cells and negatively

impact the hypothalamus – a region of the brain associated with food intake – ultim-

ately causing weight gain [62]. Interestingly, a member of the IGF1R protein complex

assembly (RAS1) is known to interact with a functional partner of CAV3 in a number

of processes such as signal transduction, endocytosis and focal adhesion (Fig. 2c) [36].

Four of the seven interactions that we identified include SNPs that have previously been

identified as independent signals associated with BMI [27]. These SNPs are – rs12617233

in FLJ30838 and rs997295 in MAP2K5 – within interactions 2, 4, 5 and 7 (Table 1).

FLJ30838 is a long intergenic non-coding RNA (lincRNA) of unknown function. It was

found to interact with rs1427463 in POLG2, rs12210959 in F13A1, and rs822682 in

SOAT2. Incidentally, none of these other SNPs have been implicated in obesity before.

The rs1427463 variant has been associated with height previously in an African ancestry

population, which obviously factors into BMI calculations [63].

The use of the IBC array in this study highlights the strengths of this custom array in

detecting potentially disease-causing loci that are also supported by a substantial

amount of biological evidence. However, while the array has dense coverage in gene-

centric regions, it only includes 2000 loci. This limitation of the array was highlighted

by the inability of BioFilter to identify any statistically significant SNP-SNP models. The

use of methods such as BioFilter may be more suited for larger GWAS datasets includ-

ing more loci.
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This study identifies gene-gene interactions that are potentially associated with obesity.

Prior experimental evidence suggests the plausible biological relevance of several of the

identified loci. However, we also identified a few loci of unknown function. Unfortunately,

the inferences that can be drawn from our results are limited by a functional annotation

bias – well-studied genes are assigned many annotations while understudied genes often

lack annotations. One could speculate that the genes involved in these interactions are

multi-functional, thereby connecting various biological processes and pathways. Future

work focusing on network-based analyses can help elucidate the additional heritability of

BMI that is explained at the biological pathway level. Ultimately, further biological valida-

tions will be necessary to determine whether the identified interactions influence the

development of obesity. Finally, additional studies are required to better understand gene-

environment interactions, to get a more complete understanding of the complex genetic

architecture of obesity.

Conclusions
Main effects analyses have explained little of the genetic heritability of obesity. The use of

methods such as QMDR in conjunction with traditional statistical analyses can unravel

this complex network by identifying gene-gene interactions that play key roles in the

etiology of obesity. Our QMDR analysis of genotypic data from 5 study cohorts identified

novel interactions between genetic variants that are highly associated with BMI. Future

studies are necessary to verify the observed associations.
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