
Journal of Siberian Federal University. Mathematics & Physics 2016, 9(2), 158–165

УДК 517.9

A Numerical Model of the Seasonal Thawing of Permafrost
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The theoretical description of the temperature field in the soils during freezing or thawing is carried out
using solutions of Stefan’s problem. A mathematical model based on the equations of thermal conductivity
for frozen and thawed layers. We consider the areas in which there are lakes or bogs. We distinguished
the following layers in the vertical structure of the zone of permafrost: thawed soil, frozen soil, water,
ice, snow. We offer a simplified numerical algorithm for solving of one-dimensional (in the vertical
direction) heat conduction problems with moving boundaries of phase transition with the formation of
new and cancellation of existing layers. A simplified numerical algorithm for solving one-dimensional
(in the vertical direction) heat conduction problems with moving boundaries of phase transition with the
formation of new and cancellation of existing layers is offering.
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Introduction

In connection with the change in global temperature is of interest assess the response of
permafrost to climate change. We consider the areas in which there is a lake or swamp. Since
the vertical temperature gradients are usually larger than the horizontal one, so all physical
process assumes one-dimensional in the vertical direction in the description of the heat transfer.
We distinguish the following layers in the vertical direction: the snow, ice, water, thawed soil ,
frozen soil. The theoretical description of the temperature field in the water and soils during their
freezing and thawing is carried out using solutions of Stefan problem [1]. A mathematical model
based on the equations of thermal conductivity for frozen and thawed areas. At the borders
of phase transition (freezing-thawing) the conditions of equality of temperatures to the phase
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transition temperature and the Stefan condition are posed. There is an extensive literature on
the mathematical modeling of permafrost (see, Eg, [2–8]).

In this paper the numerical model of small dimension is proposed for discription vertical
temperature distribution in thawed and frozen layers taking into account the formation of new
and revocation of the existing layers ( [9]). One can allocate two types of water bodies: a)
reservoirs, which freeze to the bottom in the winter, and the ice melt throughout the depth and
the top layer of the bottom defrost in the summer ("shallow" water bodies); b) reservoirs that do
not freeze to the bottom in the winter ("deep" water). There are various options for the location
of frozen and thawed layers (Tab. 1). For "deep" waters there are three variants.
Variant 1: water layer, layer of thawed soil, layer of frozen soil, layer of thawed soil.
Variant 2: snow–ice layer, water layer, layer of thawed soil, layer of frozen soil, layer of thawed
soil.
Variant 3: water layer, ice layer, water layer, layer of thawed soil, layer of frozen soil, layer of
thawed soil.

For "shallow" water bodies seven variants are considered. When switching from one variant
to another the layers are added or deleted.

Table 1. Variants of the location for frozen and thawed layers in the swamp-lake landscapes

variant
N

water ice
(snow)

water thawed
soil

frozen
soil

thawed
soil

frozen
soil

thawed
soil

1 + + + +
2 + + + + +
3 + + + + +
4 + + +
5 + + + +
6 + + + + + +
7 + + + + + +
8 + + + + + +

Fig. 1 illustrates a vertical structure for variants 6 and 7, Fig. 2 shows a scenario of switching
from one version to another for the "shallow" reservoirs.

1. Mathematical model of dynamics of freezing and thawing
of permafrost

The vertical temperature distribution in every layer are determined by solving the heat equa-
tion, satisfying the appropriate boundary conditions:

∂Ti

∂t
= Ki

∂2Ti

∂z2
. (1)

Here Ti(t, z) is a temperature of i-th layer (hi−1 6 z 6 hi), Ki is a thermal diffusivity, t is time,
z is a vertical coordinate (downward).

– 159 –



Victor M.Belolipetskii, Svetlana N.Genova A Numerical Model of the Seasonal Thawing of Permafrost . . .

Fig. 1. Variants 6 (a) and 7 (b)

Fig. 2. The scheme of switching from one variant to another

Boundary conditions. The condition on the boundary of the atmosphere – water (z = 0)(
K

∂T

∂z

)
= − Fn

cwρw
, (2)

the condition on the boundary of the atmosphere – snow+ice (z = 0)

T = Tice. (3)

The condition at the bottom of the pond (boundary of i-th hi−1 6 z 6 hi and (i + 1)-th
hi 6 z 6 hi+1 layers, z = hi = hbt )

Ti = Ti+1,

(
λ
∂T

∂z

)
i

=

(
λ
∂T

∂z

)
i+1

. (4)
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On moving boundaries of phase transition (z = hj )

Tj = Tj+1 = Tph, ρjLj
dhj

dt
=

(
λ
∂T

∂z

)
j

−
(
λ
∂T

∂z

)
j+1

. (5)

Here ρw is water density, cw is the specific heat capacity of water, Fn is the total heat flow on
the boundary of the atmosphere–water, Tice is temperature on ice surface, z = hi is coordinate
of the boundary between i-th and (i + 1)-th layers, λ is coefficient of heat conductivity, Tph is
phase transition temperature, ρj is density of j-th layer, Lj = Lw ·Wj is volumetric latent heat

of melting environment in j-th layer, Wj =
Ωjw

Ωj
is soil humidity in j-th layer, Ωjw is the volume

of water in the soil, Ωj is the volume of the soil. The total heat flow (Fn) and temperature on
the boundary snow–ice (Tice) is defining according to the formulas, described in [10].

On the lower boundary of permafrost layer the conditions (5) are supplemented with setting

of a geothermal gradient in the layer on thawed soil G =
∂T

∂z
, (G = 0.02− 0.050 C/m [11]).

The initial conditions:
Ti(0, z) = T 0

i , δi = δ0i . (6)

Consider an arbitrary i-th layer: hi−1 6 zi 6 hi, δi = hi − hi−1, where δi is the thickness of
i-th layer. We introduce new independent variables t, ξ:

t̂ = t, ξi =
zi − hi−1

δi
, 0 6 ξi 6 1.

Since
∂

∂zi
=

1

δi

∂

∂ξi
,

∂2

∂z2i
=

1

δ2i

∂2

∂ξ2i
,

∂

∂t
=

∂

∂t
+ wi

∂

∂ξi
,

wi =
∂ξi
∂t

=
1

δi

[
(ξi − 1)

dhi−1

dt
− ξi

dhi

dt

]
, then equation (1) and boundary conditions (2)–(5)

written as
∂Ti

∂t
+ wi

∂Ti

∂ξi
=

Ki

δ2i

∂2Ti

∂ξ2i
, (7)

(
Ki

δi

∂Ti

∂ξi

)
ξi=0

= − Fn

cwρw
, Ti|ξi=0 = Tice, Ti|ξi=1 = Ti+1|ξi+1=0, (8)

(
λi

δi

∂Ti

∂ξi

)
ξi=1

=

(
λi+1

δi+1

∂Ti+1

∂ξi+1

)
ξi+1=0

, Tj |ξj=1 = Tj+1|ξj+1=0 = Tph, (9)

ρjLj
dhj

dt
=

(
λj

δj

∂Tj

∂ξj

)
ξj=1

−
(
λj+1

δj+1

∂Tj+1

∂ξj+1

)
ξj+1=0

. (10)

2. Numerical algorithm

Let us consider the solution of the formulated problems on coarse (three-point) grid for each
of layers: ξi1 = 0, ξi2 = 0.5, ξi3 = 1.

We approximate the equation (7) using the implicit difference scheme and directional differ-
ences for the convective terms [12]. Grid equations corresponding to the differential equation (7)
for i-th layer are of the form:

Ti,2 − Tn
i,2

∆t
+

w−Ti,3 − 2w0Ti,2 + w+Ti,1

2
=

Ki(Ti,1 − 2Ti,2 + Ti,3)

(0.5δni )
2

, (11)
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wi,2 = −
(
dhi

dt
+

dhi−1

dt

)
/(2δni ), w0 = |wi,2|, w− = wi,2−|wi,2|, w+ = wi,2+ |wi,2|, here ∆t is

time step, tn+1 = tn +∆t, Tn
i,k = Ti(tn, ξi,k), Ti,k = Ti(tn+1, ξi,k).

Boundary conditions (8)–(10) for the difference grid are represented as:
on the border of the atmosphere–water[

1 +
8Ki∆t

(δni )
2

]
Ti,1 −

8Ki∆t

(δni )
2
Ti,2 = Tn

i,1 +
4∆tFn

cwρw
(12)

on the border of the atmosphere– snow+ice

Ti,1 = Tice, (13)

on the water bottom z = hi

Ti,3 = Ti+1,1, (14)

λi

δi
(Ti,3 − Ti,2) =

λi+1

δi+1
(Ti+1,2 − Ti+1,1). (15)

At the borders of phase transition z = hj

Tj,3 = Tj+1,1 = Tph, (16)

ρjLj

hn+1
j − hn

j

∆t
= λj

Tj,3 − Tj,2

0.5δnj
− λj+1

Tj+1,2 − Tj+1,1

0.5δnj+1

. (17)

If δj becomes less than a predetermined small value ε (δj < ε), the corresponding layer will
be cancelled. If as a result of melting or freezing a new k-th layer is formed, the initial thickness
δk = ε and temperatures is put for this layer.

The following algorithm is used for the obtained tasks. Let is known all parameters (tem-
perature distributions in layers under study and the positions of phase transition) on n-th time
step. Then a finding the unknown parameters at time tn+1 is performed in two stages. The first
step is to define the temperature distributions in the selected layers (taking into account the
relations (11)–(16)) by solution of systems of linear algebraic equations of small dimension. In
the second phase it is clarified the position of the phase boundary by the numerical solution of
equation (17).

3. Calculations samples

Model calculations were performed for a swamp depth of 25 cm, 50 cm, 75 cm and 100 cm
by weather data 2010–2011 years for the weather station Dudinka. Year 2010 can be considered
as "cold" (about 240 days with mean daily negative temperature, the average temperature for
the period from 1 October to 30 April was −20.72oC); year 2011 is "warm" (190 days with mean
daily negative temperature and the average temperature for October to April was −15.22oC).
There were determined the depth of seasonal thawing of permafrost soils, the temperature of the
melt layer, the time intervals of the existence for layer of thawed soil. In Tabs. 2, 3 are given
the results of calculations shown the impact of the swamp depths and weather data on the main
characteristics of the permafrost.

From the freezing-thawing of soil calculation results it follows that with increasing depth of
"shallow" water it is increased the period of existence of the thawed soil layer. For sufficiently
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Table 2. The thickness of the layer of thawing frozen soil (cm)

swamp depth (cm) 25 50 75 100
2010 122.9 118.5 114.2 108.5
2011 143.2 139.38 135.04 144.6

Table 3. The count of days existence of the thawed soil layer

swamp depth (cm) 25 50 75 100
2010 212 228 243 264
2011 242 292 311 365

great depths of the lake a layer of thawed soil does not freeze completely during the year. With
further increase of the depth of the reservoir it does not freeze to the bottom ("deep" water) and
thawed layer exists throughout the year.

In Fig. 3 the calculated vertical temperature distributions are given. In Fig. 3a is given
temperature distribution for variant 7, in Fig. 3b is given for variant 2.

Fig. 3. The calculated temperature in layers for different weather data: a) for summer (variant 7),
b) for winter (variant 2). Water depth is 1 m
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The proposed numerical algorithm allows to describe the dynamics of annual freezing-thawing
permafrost in the swamp–lake district landscapes and to assess the impact of climate change.

The work is executed at partial financial support of Basic Research Program of Presidium of
RAS “Searching basic research for the development of Russian Arctic” (project 12).
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Численная модель сезонного оттаивания вечной мерзлоты
в болотно-озерных ландшафтах
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Россия

Теоретическое описание температурного поля в почвах при их промерзании или оттаивании
осуществляется с помощью решений задач Стефана. Математическая модель основывается на
уравнениях теплопроводности для мерзлых и талых слоев. Рассматриваются территории, на
которых имеются озера или болота. Выделяются следующие слои в вертикальной структуре
зоны вечной мерзлоты: талый грунт, мерзлый грунт, вода, лед, снег. Предлагается упрощен-
ный численный алгоритм решения одномерных (в вертикальном направлении) задач теплопро-
водности с подвижными границами фазового перехода с образованием новых и аннулированием
существующих слоев.

Ключевые слова: вечная мерзлота, задачи Стефана, мерзлые и талые слои, малоразмерная чис-
ленная модель.
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