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In this paper we consider estimates for trigonometric (oscillatory) integrals with polynomial phase func-
tion of degree three. The main result of the paper is the theorem on uniform invariant estimates for
trigonometric integrals. This estimate improves results obtained in the paper by D.A. Popov [1] for the
case when the phase function is a sum of a homogeneous polynomial of third degree and a linear function,
as well as the estimates of the paper [2] for the fundamental solution to the dispersion equation of third
order.
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1. Introduction and preliminaries

Many problems of harmonic analysis, analytic number theory and mathematical physics are
related to trigonometric (oscillatory) integrals with polynomial phase. Note that the form of such
oscillatory integrals does not change under linear changes of variables, i.e. it is invariant under
linear changes of variables. V. P. Palamodov posed the problem of estimating the trigonometric
integral in terms of the coefficients of the phase function [3].

In this paper we give a solution of Palamodov’s problem when the phase function is a sum
of a homogeneous polynomial of third degree and linear terms. Such kind of integrals has been
considered in the paper [2] in relation to the fundamental solution to third order dispersion
equations. However, in that paper the estimates were obtained for the fundamental solutions for
fixed coefficients of the principal part. It is an interesting problem to investigate the behavior
of corresponding oscillatory integrals that depends on the coefficients of the polynomial, as
proposed by V. P. Palamodov. Some invariant estimates were obtained by using invariants of
classical groups in the paper [3]. However, these estimates are not optimal when discriminant of
P3 is small and the coefficients are large. In this paper we obtain optimal invariant estimates for
trigonometric integrals (see Theorem 2.1).

There is a well-known asymptotic expansion for trigonometric integrals with smooth ampli-
tude function as coefficients of the phase tend to infinity along a fixed direction, say λA, where
A ∈ S5 is a fixed point on the unit sphere centered at the origin and λ is a positive parameter.
However, the behavior of a trigonometric integral may change significantly even if the vector A

varies a little. Thus, we come to the problem of combined estimates for trigonometric integrals,
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i.e. uniform estimates for trigonometric integrals depending on both large λ and "small" param-
eters A, that has been investigated by many authors (see [4] for discussion and more references).

We obtain an estimate assuming that the amplitude belongs to some Sobolev space, so the
coefficient in the estimate depends only on the norm of the amplitude function. The main
estimate obtained in this paper agrees with the principal part of the asymptotic expansions for
trigonometric integrals with the phase whose coefficients are of the form λA for a fixed vector
A ∈ S5. Depending on the vector A, the asymptotic behavior as λ → +∞ can have the form
O(λ−1/3) (A2∞ degenerated into the Airy-type singularity), O(λ−1/2) (D∞-type singularity),
O(λ−2/3) (D±

4 -type singularity), O(λ−3/4) (A3-type singularity), O(λ−5/6) (A2-type singularity),
O(λ−1) (A1-type singularity).

In all cases our uniform estimate coincides with the principal part of the asymptotic expansion
of oscillatory integrals with phase without linear terms and with smooth amplitude functions up
to a constant. The results improve the estimates obtained in the paper [1] by D. A. Popov for
particular case when the phase function is a polynomial, also it gives bounds for the fundamental
solution to the dispersion equations in terms of its coefficients.

2. Formulations of the main results

Definition. The integral over Rn

J(P, φ) =
∫
Rn

eiP(x,a)φ(x)dx, (1)

where P : Rn × Rm → R is a smooth real-valued function and φ : Rn → C is an element
of the space of amplitude functions, is called an oscillatory integral with the phase P and the
amplitude φ. In general the integral (1) does not converge in the Lebesgue sense. But it converges
in the sense of distributions (see [5] ).

We denote by Wn
1 (Rn) the Sobolev space with the norm given by

∥φ∥Wn
1 (Rn) =

∫
Rn

 ∑
|α|6n

|Dαφ|

 dx,

where Dαφ is the derivative of φ in the sense of distributions. Also, it can be considered as the
completion of the Schwartz class of functions with respect to the norm Wn

1 (Rn).

Let P be a polynomial function of the form

P = P3 + P1,

where P3(x, y) = a0x
3 + 3a1x

2y + 3a2xy
2 + a3y

3 and P1 = c0x+ c1y.

We consider the following integral

I =

∫
R2

φ(x, y)eiP(x,y)dxdy, (2)

where φ ∈ W 2
1 (R2). Obviously, this integral converges in the usual (Lebesgue) sense.

Theorem 2.1. Suppose φ ∈ W 2
1 (R2), then there exists a positive number C such that the

following estimate holds

|I| 6
C∥φ∥W 2

1 (R2)

|D| 16
, (3)
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where D = 3a21a
2
2 + 6a0a1a2a3 − 4a0a

3
2 − 4a31a3 − a20a

2
3 is the discriminant of the polynomial

P3(x, y).

Remark 1. If c0 = c1 = 0 then theorem 4 of the paper [3] yields

|J | 6
C∥φ∥W 2

1 (R2)

N
1
6 + |M | 14 + |D|

2
3

N

,

where N = a20 + 3a21 + 3a22 + a23, M = a21 + a22 − a0a2 − a1a3.

So, when
|D| 23
N

is the dominant term then our estimate does not contain the factor N . It is

obvious that our estimates are much better when
D

N2
is small and N ≫ 1. The factor N appears

in the estimate for the Sobolev norm of a function. But this norm is not invariant under a linear
change of variables.

We use another technique based on estimates for oscillatory integrals over a triangle (with a
discontinuous amplitude). It allows us to obtain a more precise estimate (see Th. 4.1).

Remark 2. By using Popov’s [1] Theorem 4.1 one can obtain the estimate (in our notation)

|J | 6 CεN
1
3 (11+ε)D−2,

where 0 < ε 6 1 and Cε is a constant. Note that N
11
3 D−2 > ND− 2

3 , hence our estimate also
improves the bound given by Popov.

From theorem 2.1 and theorem 4 of the paper [3] we have the following

Theorem 2.2. For the integral (2) the following estimate holds

|I| 6
C∥φ∥W 2

1 (R2)

|D| 16 + |M | 14 +N
1
6

,

where N = a20 + 3a21 + 3a22 + a23, M = a21 + a22 − a0a2 − a1a3.

3. Proof of the main results

First we prove Theorem 2.1. Assuming that |D| > M (where M is a fixed sufficiently
large positive number), possibly after a rotation, we may take |a0| = max{|a0|, |a1|, |a2|, |a3|}.
The estimate (6) is trivial when |D| < M0. Note that the Schwartz class of functions is dense in
W 2

1

(
R2

)
. Hence, it is enough to prove the estimate (6) for φ from the Schwartz space. Integrating

by parts, we get

I =

∫ ∞

−∞

∫ ∞

−∞

∂2φ

∂x∂y

(∫ x

−∞

∫ y

−∞
eiP(ξ,η)dηdξ

)
dxdy. (4)

From this, the inequality

|I| 6 sup
x, y

∣∣∣∣∫ x

−∞

∫ y

−∞
eiP(ξ,η)dξdη

∣∣∣∣ ∫
R2

∣∣∣∣ ∂2φ

∂x∂y

∣∣∣∣ dxdy
follows trivially.

Now, we estimate the following integral∫ x

−∞

∫ y

−∞
eiP(ξ,η)dξdη.
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First, we change variables in the phase function. To be precise, we assume that the equation
P3(x, y) = 0 has only one real root. We can represent the principal part of the phase function as

P3(x, y) = a0(x− α1y)(x− α2y)(x− α3y),

where α1, α2, α3 are the roots of P3.

Suppose α3 is the real root of P3(x, 1) = 0, then α1 = α2. We use the following change of
variables (cf. [6], also [1]):

x =
2(α1 − α3)(α2 − α3) + (α1 + α2 − 2α3)α3

2(α1 − α3)(α2 − α3)|α1 − α2|
x1 +

α3

2(α1 − α3)(α2 − α3)
y1,

y =
α1 + α2 − 2α3

2(α1 − α3)(α2 − α3)|α1 − α2|
x1 +

1

2(α1 − α3)(α2 − α3)
y1. (5)

Then we have

P =
a0

4(α1 − α3)(α2 − α3)|α1 − α2|
x1(y

2
1 − sgn(α1 − α2)

2x2
1). (6)

Where sgn(α1 − α2)
2 = 1 if both α1, α2 are distinct real numbers and sgn(α1 − α2)

2 = −1 if
α1, α2 are non-real complex conjugate numbers.

We know that the function (6) has singularities of type D±
4 (depending on sgn(α1 − α2)

2),
when α1, α2 are complex numbers then surely α1 = α2. Note that the change of variables (5)
can be used in the case when P3(x, 1) has three real roots(compare with [1]). After the change
of variables, [x,∞) × [y,∞) transforms into a triangle. Further on, by a triangle we mean any
proper triangle, any angle in the plane, or a strip.

Now we consider the integral

JT =

∫
T

eiλ(ξ
3±ξη2+s1ξ+s2η)dξdη, (7)

where T is a triangle.

Theorem 3.1. There exists a constant C such that for any (s1, s2) ∈ R2 and |λ| > 1 the
following estimate

|JT | 6
C

λ
2
3

holds true.

Theorem 3.1 is an analog of the more general theorem by J.|,Duistermaat [7] for the case
T = R2. It is proved in the paper [9] (see also [8]).

Without loss of generality we may assume that
a0

4|(α1 − α3)(α2 − α3)(α1 − α2)|
> 1. From

Theorem 3.1 we have the following estimates∣∣∣∣∫
T

eiP(ξ,η)dξdη

∣∣∣∣ 6 C
2|α1−α3||α2−α3||α1−α2|∣∣∣ a0

4(α1−α3)(α2−α3)|α1−α2|

∣∣∣ 2
3

=
C

|a40(α1 − α3)2(α2 − α3)2(α1 − α2)2|
1
6

.

Note that D =
a40(α1 − α3)

2(α2 − α3)
2(α1 − α2)

2

27
(see [1]).
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So, for any element φ of the Schwartz space the following estimate holds

|I| 6
C∥φ∥W 2

1 (R2)

|D| 16
.

Since the set of infinitely differentiable rapidly decreasing functions is dense in W 2
1

(
R2

)
, we

obtain a required bound by passing to the limit. This completes the proof of Theorem 2.1. 2

Now we shall give some auxiliary results.
Proposition. There exists a constant C such that for the integral (1) the following estimate

|J | 6
C∥φ∥W 1

1 (R2)

|N | 16 + |M | 14

holds true.

Proof. The proof, in fact, follows from the following results of the paper [3].
Let φ belong to the Sobolev space W 2

1 (R2) and

p(x, y) = pn(x, y) + pn−1(x, y) + ...+ p1(x, y),

where pk is a homogeneous polynomial of degree k. Consider a trigonometric integral of the form

J =

∫
R2

φ(x, y)eip(x,y)dxdy. (8)

Lemma 2.4. The integral (8) is estimated as follows

|J | 6
k∥φ∥W 1

1 (R2)

|dnp| 1
n

.

Let En be the space of binary forms of degree n. The group SL(2,R) acts on it. If D is an
invariant of the group SL(2,R), its value at the form p will be denoted D(p).

The space of polynomials of degree at most n is injectively imbedded in En. Indeed, it suffices
to multiply each term by a power of a new variable such that the result is a homogeneous form
of degree n. This is an isomorphic mapping from the space of polynomials of degree at most n

into the space En. We shall denote it by Φn. Thus, for a polynomial q in one variable we can
determine the value of the invariant D of the group SL(2,R) from the formula

D̃(q) = D(Φn(q)).

Lemma 2.5 Let D be a homogeneous invariant of degree m in En−1. Then for the integral
(8) the following inequality holds

|J | 6
k∥φ∥W (R2)(∣∣∣D (

∂pn

∂x

)∣∣∣+ ∣∣∣D (
∂pn

∂y

)∣∣∣) 2
m(n+1)

.

2

Finally, the proof of Theorem 2.2 follows from Theorem 2.1 and Proposition.
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Об инвариантных оценках осциллирующих интегралов
с полиномиальной фазой

Акбар Р.Сафаров

В этой статье мы рассмотрим инвариантные оценки тригонометрических (осциллирующих)
интегралов с полиномиальной фазой. Основным результатом является теорема о равномерной
инвариантной оценке тригонометрического интеграла. Полученная оценка улучшает результа-
ты работы Д.А.Попова [1] для случая, когда фазовая функция является суммой однородного
полинома третьей степени и линейной функции, а также оценки работы [2] для фундаменталь-
ного решения дисперсионного уравнения третьей степени.

Ключевые слова: осциллирующий интеграл, фазовая функция, амплитуда, инвариант, дискрими-
нант.
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