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Flow of incompressible medium under varying gradient of pressure is considered. It is assumed that
medium exhibits nonlinear elastic and creep behavior. The theory of large strains based on transport
equations for the tensors of reversible and irreversible deformations is used for problem formulation.
Analytical and numerical methods are applied to solve the problem.
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Introduction

Model problems with simplified geometry and kinematics has a great value for developing
theories of mechanical behavior of materials. Analytical solutions of such problems allow one to
perform qualitative analysis of investigated process and to verify numerical solutions. Anti-plane
deformation problem is one of the simplest model problems. This problem was solved for linear
elastic medium, nonlinear elastic medium and elastoplastic medium. One should mention the set
of papers [1–5] published by V. D. Bondar in which anti-plane deformation problem is solved in
the frameworks of finite strain elasticity and elastoplasticity.

In this paper anti-plane deformation problem is solved in the context of theory of large
elastoplastic deformations. This theory is based on non-equilibrium thermodynamics formalism.
It assumes that irreversible and reversible deformations are defined by differential transport
equations.

We consider flow of incompressible medium within cylindrical tube due to pressure gradient.
No-slip boundary condition is set on the walls of the tube. The points of the medium are restricted
to move only along lines parallel to the element of the cylinder. We suppose that medium deforms
both reversibly and irreversibly. In addition, irreversible deformation accumulation is due to
creeping of medium. Present work is the continuation of the research [6, 7] in which similar
problem statement was used. The main distinction of works [6,7] is that irreversible deformation
of medium is due to plastic flow.
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1. Mathematical model

Kinematics of continuum is described by spatial (Euler) coordinates. For simplicity all equa-
tions are given in Cartesian coordinate system. We use the Almansi finite strain tensor:

dij =
1

2
(ui,j + uj,i − uk,iuk,j) . (1)

Here ui are the components of displacement vector.
Let us consider reversible and irreversible strains along with temperature and entropy as

state variables. We denote the components of reversible and irreversible strains as eij and pij ,
respectively. In accordance with [8, 9] differential transport equations are written as

Deij
Dt

= εij − γij −
1

2
((εik − γik + zik) ekj − eik (εkj − γkj + zkj)) ,

Dpij
Dt

= γij − pikγkj − γikpkj ,

(2)

where
Dnij

Dt
=
dnij
dt

− riknkj + nikrkj ,
dnij

dt
=
∂nij

∂t
+ nij,jvj ,

rij = wij + zij(eij , εij), wij =
1

2
(vi,j − vj,i) , εij =

1

2
(vi,j + vj,i) ,

zij = −zji = A−1
(
B2 (εikekj − eikεkj) +B (εikekmemj − eikekmεmj)+

+eikεkmemnenj − eikekmεmnenj) ,

A = 8− 8E1 + 3E2
1 − E2 −

1

3
E3

1 +
1

3
E3, B = 2− E1,

E1 = ejj , E2 = eijeji, E3 = eijejkeki.

(3)

Here
D

Dt
is the objective derivative operator,

d

dt
is the total derivative operator,

∂

∂t
is the

partial derivative operator, rij are the components of rotation tensor, wij are the components
of the vorticity tensor, εij are the components of strain rate tensor, vi are the components of
velocity vector, zij is nonlinear term of the vorticity tensor, Ei are the invariants of reversible
deformations tensor.

If we assume that there is no nonlinear term in the vorticity tensor, then objective derivative
Dnij

Dt
introduced above coincides with the Jaumann derivative.

The separation of the total strain into reversible and irreversible strains follows from (2) and
has the form

dij = eij + pij −
1

2
eikekj − eikpkj − pikekj + eikpkmemj . (4)

Stresses in the medium are determined by relations that are similar to the Murnaghan rela-
tions known from the theory of nonlinear elasticity:

σij = −P1δij +
∂W

∂eik
(δkj − ekj) , pij ̸= 0. (5)

Here σij are the components of the Euler-Cauchy stress tensor, P1 is the additional hydrostatic
pressure and W is the elastic potential.
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When there are no irreversible strains in the medium (pij ≡ 0) relation (5) coincides with the
Murnaghan relations.

We take the Helmholtz free energy as the thermodynamic potential in the relation (5). If we
assume that the free energy distribution density does not depend on irreversible deformations
then W = ρ0ψ. In this case elastic potential for isotropic incompressible medium can be written
as Taylor series expansion in respect to free state. For simplicity we keep terms up to the third
order:

W =W (J1, J2) = (α− µ)J1 + αJ2 + βJ2
1 − ξJ1J2 − ζJ3

1 ,

J1 = sjj , J2 = sijsji, sij = eij −
1

2
eikekj .

(6)

Here µ, α, β, ξ, ζ are elastic moduli and µ is the share modulus.
Upon substituting elastic potential expansion into (5), we obtain relations between stresses

and reversible deformations:

σij = a0δij + 2a1eij + a2eikekj − 4a3eisestetj + a3eisestetkekj ,

a0 = −P1 − 2µ+ 2bI1 − (b− µ) I2 − 3ζI21 ,

a1 = µ+ (b+ µ) I1 + (µ− b) I2 + 3ζI21 ,

a2 = 3µ+ (5µ− 3b) I1 + (b− µ) I2 − 3ζI21 ,

a3 = µ+ (µ− b) I1.

(7)

Let us assume that irreversible deformation accumulation is due to creeping of medium and
it occurs during the whole process.

The source of irreversible strains γij in transport equations (2) has the form

γij = εvij =
∂V (Σ)

∂σij
. (8)

Let us write the dissipative potential in (8) according to the Norton creep power law [10]:

V (Σ) = BΣn(σ1, σ2, σ3), Σ =

√
3

2

(
(σ1 − σ)

2
+ (σ2 − σ)

2
+ (σ3 − σ)

2
)
, σ =

1

3
σkk. (9)

Here σi are the principal values of the Euler-Cauchy stress tensor and B, n are the creep
parameters of medium which can be determined experimentally.

One should note that any creep law which is suitable for specific problem can be used in the
relation (8) instead of the Norton law.

2. Problem statement

For convenience we use cylindrical coordinate system r, φ, z. Assume that an incompressible
medium fills a cylindrical tube of radius R. Deformation of medium is due to time-dependent
pressure gradient:

∂P1

∂z
= −ψ(t). (10)

Initially the medium is undeformed and pressure gradient is equal to zero.
No-slip conditions are set on the tube walls:

u⃗|r=R = v⃗|r=R = 0⃗. (11)
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Let us assume that the unknown displacement and velocity vectors have one nonzero compo-
nent (uz and vz, respectively). Taking into account axial symmetry, we have

u = uz(r, t), v = vz(r, t). (12)

In this case nonzero components of Almansi strain tensor are

drr = −1

2

(
∂u

∂r

)2

, drz = dzr =
1

2

∂u

∂r
. (13)

According to assumed continuum kinematics, we have following relations for nonzero compo-
nents of strain rate tensor, vorticity tensor and rotation tensor

εrz = εzr =
1

2

∂v

∂r
; wzr = −wrz =

1

2

∂v

∂r
; rrz = −rzr =

2εrz(1− ezz)

err + ezz − 2
. (14)

In accordance with constraints (12) the operator of total derivative in cylindrical coordinate
system has the form

dnij

dt
=
∂nij

∂t
+ vz

∂nij

∂z
. (15)

The introduced kinematic constraint on medium motion imposes limitations on the form of elastic
potential (6) [11] . It turns out that some coefficients in Taylor expansion (6) are not independent
and, taking into account (12), the elastic potential has the form

W =W (J1, J2) = −2µJ1 − µJ2 + bJ2
1 + (b− µ)J1J2 − ζJ3

1 . (16)

Let us substitute relation (16) into (5). Then we take into account only first order terms
in diagonal components of reversible deformation tensor and first and second order terms in
non-diagonal components of irreversible deformation tensor. As a result of transformations we
obtain the following relations for stresses in the medium:

σrr = − (P1 + 2µ) + 2b (err + ezz + eφφ) + 2µerr + µe2rz,

σφφ = − (P1 + 2µ) + 2b (err + ezz + eφφ) + 2µeφφ − 2µe2rz,

σzz = − (P1 + 2µ) + 2b (err + ezz + eφφ) + 2µezz + µe2rz,

σrz = 2µerz.

(17)

Equilibrium equations in cylindrical coordinate system with axial symmetry without body
forces have the form

∂σrr
∂r

+
∂σrz
∂z

+
σrr − σφφ

r
= 0,

∂σrz
∂r

+
∂σzz
∂z

+
σrz
r

= 0.

(18)

Taking into consideration relations (12–15), we write transport equations for components of
irreversible deformations tensor. We also assume that components of reversible and irreversible
deformations are independent of axial coordinate and thus their total derivative is the partial
derivative:

γrr (1− 2prr) =
∂prr
∂t

+ 2prz (γrz + rzr) ,

γzz (1− 2pzz) =
∂pzz
∂t

+ 2prz (γrz + rrz) ,

γφφ (1− 2pφφ) =
∂pφφ

∂t
,

γrz (1− prr − pzz) =
∂prz
∂t

+ rrz (prr − pzz) + prz (γzz + γrr) .

(19)
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Transport equations for components of reversible deformations tensor take the form

−γrr =
∂err
∂t

+ 2rzrerz,

−γzz =
∂ezz
∂t

+ 2rrzerz,

−γφφ =
∂eφφ

∂t
,

−1

2
γrz (2+ err− ezz) =

∂prz
∂t

+ rrz (err− ezz)−
1

2
εrz (2+ err− ezz) + erz (γzz− γrr) .

(20)

Source of irreversible deformations in the transport equations is

γrr = BnΣn−2 (2σrr − σφφ − σzz) ,

γzz = BnΣn−2 (2σzz − σφφ − σrr) ,

γφφ = BnΣn−2 (2σφφ − σrr − σzz) ,

γrz = 6BnΣn−2σrz,

Σ =
√
(σrr − σφφ)2 + (σrr − σzz)2 + (σzz − σφφ)2 + 6σ2

rz.

(21)

Combining the above relation with equations (17), we can express rates of irreversible defor-
mations in terms of reversible deformations:

γrr = BnµΣn−2
(
4err − 2eφφ − 2ezz + 3e2rz

)
,

γzz = BnµΣn−2
(
4ezz − 2eφφ − 2err + 3e2rz

)
,

γφφ = BnµΣn−2
(
4eφφ − 2err − 2ezz − 6e2rz

)
,

γrz = 12BnµΣn−2erz.

(22)

3. Solution

Stresses and strains in the medium are defined by the following unknown functions: u(r, t),
v(r, t), P1(r, z, t), err(r, t), ezz(r, t), eφφ(r, t), erz(r, t), prr(r, t), pzz(r, t), pφφ(r, t), prz(r, t),
σrr(r, z, t), σzz(r, z, t), σφφ(r, z, t), σrz(r, t). To find unknown functions we have to solve sys-
tem of partial differential equations (19), (20) and (22) with boundary conditions (11).

Taking into account that functions err(r, t), ezz(r, t), eφφ(r, t), erz(r, t) are independent of

axial coordinate, the derivative
∂σzz
∂z

in the second equilibrium equation has the form:

∂σzz
∂z

= −∂P1(r, z, t)

∂z
. (23)

Medium motion in the tube is due to pressure gradient

∂P1(r, z, t)

∂z
= −ψ(t), ψ(0) = 0. (24)

Upon intergrating the above relation, we obtain

P1(r, z, t) = −ψ(t)z + g(r, t). (25)

Since stress σrz is independent of axial coordinate, the second equilibrium equation can be
written as

∂σrz
∂r

+
σrz
r

= −ψ(t). (26)
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General solution of this equation has the form

σrz(r, t) = −ψ(t)
2
r +

c1(t)

r
. (27)

Stress σrz must be finite at r = 0, so c1(t) = 0 and then we have

σrz(r, t) = −ψ(t)
2
r. (28)

Taking into account (17), we obtain

erz(r, t) = −ψ(t)
4µ

r. (29)

Further solution of system (19, 20) is carried out with the use of finite difference method.
Taking into consideration (17), the first equilibrium equation has the form

∂g

∂r
+ 2b

(
∂err
∂r

+
∂ezz
∂r

+
∂eφφ

∂r

)
+ 2µ

∂err
∂r

+ 2µerz
∂erz
∂r

+
µ

r
(2err − 2eφφ + 3erz) = 0. (30)

To find function g(r, t) we need boundary condition

g(r, t)|r=R = g0(t), (31)

where g0(t) is the given function of control pressure at the wall of the tube (r = R) in the
cross-section z = 0. We assume that g0(t) = 0.

Finally we have system of equations (19, 20, 30) with boundary conditions (11, 31). The
unknown functions are u, err, ezz,eφφ, prr, pzz, pφφ, prz, g. To construct finite difference ap-
proximation of the obtained system of equations we use central difference for the space derivative
and explicit scheme in time. Dimensionless coordinates are used in computations:

r̃ =
r

R
, τ =

t

R

√
µ

ρ0
, σ̃ij =

σij
µ
, (32)

where ρ is the medium density.
Material parameters have the following values:

b

µ
= 4, n = 3,

BnRµn−1√ρ0√
µ

= 3.5 . (33)

4. Results

The graph of pressure gradient ψ(τ) is shown in Fig. 1. We assume that deformation process
consists of three stages. Firstly pressure gradient increases monotonicaly to the point in time
τ1. Then it stays constant to the point in time τ2. After that it decreases monotonicaly and at
the point in time τ3 it becomes zero. The points in time have the following dimensionless values:
τ1 = 2, τ2 = 6, τ3 = 8.

Distributions of reversible deformations err, ezz and irreversible deformations prr, pzz at time
points τ1, τ2, τ3 are shown in Figs. 2 and 3. Time distributions of reversible deformations err, ezz
and irreversible deformations prr, pzz at r = R are presented in Figs. 4 and 5. Distribution of
stresses at the points in time τ1, τ2, τ3 is shown in Fig. 6. Components of deformations eϕϕ, pϕϕ
are close to zero so they are not presented in figures.
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Fig. 1. Pressure gradient

Fig. 2. Distribution of reversible deformations

Reversible and irreversible deformations have roughly the same order of magnitude for chosen
duration of the process. It is clear that components of reversible deformations err and ezz have
almost equal magnitude and differ only in sign. As can be seen from given graphs the first
and second stages of the process are characterized by accumulation of reversible and irreversible
deformations. An elastic medium springback is clearly noticeable on third stage.

It should be noted that the medium remains in the reversible deformation state even after
pressure gradient becomes equal to zero (τ > τ3).
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Fig. 3. Distribution of irreversible deformations

Fig. 4. Reversible deformations at r = R

Additionally a series of computations for modified problem are performed. In modified prob-
lem we take into account also second order terms in diagonal components of reversible deforma-
tion tensor and third and forth order terms in non-diagonal components of reversible deformations
tensor. The results of computations show that this refinement of the model has no considerable
effect on qualitative characteristics of distribution of stresses and deformations in the medium.
Numerical values differ by no more than 10 % from numerical values obtained in solving the
original problem.
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Fig. 5. Irreversible deformations at r = R

Fig. 6. Distribution of normal stresses

The obtained results can be applied to investigation of drawing processes in manufacturing.
In future study we plan to extend the presented mathematical model and take into account
plastic flow.
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Антиплоская осесимметричная деформация
несжимаемого тела в условиях ползучести

Сергей Н. Фирсов
Александр Н.Прокудин

Рассматривается течение несжимаемой среды в цилиндрической трубе под действием изменяю-
щегося перепада давления. Материал проявляет нелинейные упругие и вязкие свойства. Матема-
тическая модель строится с использованием теории больших деформаций, основанной на диффе-
ренциальных уравнениях переноса для обратимых и необратимых деформаций. Решение ищется
с помощью аналитических и численных методов.

Ключевые слова: большие деформации, упругость, ползучесть, упругое последействие.
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