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Flow of incompressible medium under varying gradient of pressure is considered. It is assumed that
medium exhibits nonlinear elastic and creep behavior. The theory of large strains based on transport
equations for the tensors of reversible and irreversible deformations is used for problem formulation.

Analytical and numerical methods are applied to solve the problem.
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Introduction

Model problems with simplified geometry and kinematics has a great value for developing
theories of mechanical behavior of materials. Analytical solutions of such problems allow one to
perform qualitative analysis of investigated process and to verify numerical solutions. Anti-plane
deformation problem is one of the simplest model problems. This problem was solved for linear
elastic medium, nonlinear elastic medium and elastoplastic medium. One should mention the set
of papers [1-5] published by V.D.Bondar in which anti-plane deformation problem is solved in
the frameworks of finite strain elasticity and elastoplasticity.

In this paper anti-plane deformation problem is solved in the context of theory of large
elastoplastic deformations. This theory is based on non-equilibrium thermodynamics formalism.
It assumes that irreversible and reversible deformations are defined by differential transport
equations.

We consider flow of incompressible medium within cylindrical tube due to pressure gradient.
No-slip boundary condition is set on the walls of the tube. The points of the medium are restricted
to move only along lines parallel to the element of the cylinder. We suppose that medium deforms
both reversibly and irreversibly. In addition, irreversible deformation accumulation is due to
creeping of medium. Present work is the continuation of the research [6,7] in which similar
problem statement was used. The main distinction of works [6,7] is that irreversible deformation
of medium is due to plastic flow.
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1. Mathematical model

Kinematics of continuum is described by spatial (Euler) coordinates. For simplicity all equa-
tions are given in Cartesian coordinate system. We use the Almansi finite strain tensor:

1
dij = 5 (wij + Ui = Un,itik;) - (1)
Here u; are the components of displacement vector.
Let us consider reversible and irreversible strains along with temperature and entropy as
state variables. We denote the components of reversible and irreversible strains as e;; and p;,

respectively. In accordance with [8,9| differential transport equations are written as

De;; 1
DZ] =E&ij — Yij — 3 ((gix — ik + Zik) €xj — €ik (Exj — Vrj + 2kj)) 5
2
Dpy (2)
Dt Yij — PikVkj — YikPkj>
where
1
rig = wij + zij(eig, €55), wij = 5 (Vig —vja)s €5 = 5 (Vi +v5),
Zij = —Zj; = A1 (B2 (&kekj — eikskj) + B (5ikekmemj — eikekmsmj) + (3)

+EikEkmCmnen; — eikekm5m7ze7zj) ,
1

1
3E§’+7E3, B=2—Fj,

A=8—-8F, +3E} — Ey— 3

By =ej;, Ez=eijeji, E3=eijejpen.

D d 0
Here Di is the objective derivative operator, T is the total derivative operator, En is the

partial derivative operator, r;; are the components of rotation tensor, w;; are the components
of the vorticity tensor, ¢;; are the components of strain rate tensor, v; are the components of
velocity vector, z;; is nonlinear term of the vorticity tensor, E; are the invariants of reversible
deformations tensor.

If we assume that there is no nonlinear term in the vorticity tensor, then objective derivative

J introduced above coincides with the Jaumann derivative.

The separation of the total strain into reversible and irreversible strains follows from (2) and
has the form

1
dij = eij + pij — §€ikekj — €ikPkj — Pik€kj + €ikPkmCmy- 4)
Stresses in the medium are determined by relations that are similar to the Murnaghan rela-

tions known from the theory of nonlinear elasticity:

ow
0ij = —P10ij + 5 (0 — exs) , pij # 0. ()
€ik
Here 0;; are the components of the Euler-Cauchy stress tensor, P; is the additional hydrostatic

pressure and W is the elastic potential.
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When there are no irreversible strains in the medium (p;; = 0) relation (5) coincides with the
Murnaghan relations.

We take the Helmholtz free energy as the thermodynamic potential in the relation (5). If we
assume that the free energy distribution density does not depend on irreversible deformations
then W = pg#. In this case elastic potential for isotropic incompressible medium can be written
as Taylor series expansion in respect to free state. For simplicity we keep terms up to the third
order:

W =W(Ji,J2) = (@ —p) Ji + ads + BJF — E1Jo = (T,
(6)
Ju=sjj, Jo=sijsji, Sij = e€ij = 5CikChj-
Here u, a, B, &, ¢ are elastic moduli and p is the share modulus.
Upon substituting elastic potential expansion into (5), we obtain relations between stresses

and reversible deformations:

0ij = ag0i5 + 2a1€4; + aseirer; — 4a3€;s€5t€s5 + A3€i5€51€41CLj,
ag = —Py — 2u + 201, — (b — p) I, — 3¢ I3,
ay = p+ (b+p) L+ (u—b) I + 3¢12, (7)
ay =3+ (5p — 3b) Iy + (b— p) I, — 3CTZ,
az = p+ (p—">) 1.
Let us assume that irreversible deformation accumulation is due to creeping of medium and

it occurs during the whole process.
The source of irreversible strains 7;; in transport equations (2) has the form

Yij = €fj = 6V(E). (8)

80'1']'

Let us write the dissipative potential in (8) according to the Norton creep power law [10]:

V() = BS"(01,09,03), %= \/;’ ((01 —0)? 4 (02— 0)? + (03 — 0)2), o= %Gkk, (9)

Here o; are the principal values of the Euler-Cauchy stress tensor and B, n are the creep
parameters of medium which can be determined experimentally.

One should note that any creep law which is suitable for specific problem can be used in the
relation (8) instead of the Norton law.

2. Problem statement

For convenience we use cylindrical coordinate system r, ¢, z. Assume that an incompressible
medium fills a cylindrical tube of radius R. Deformation of medium is due to time-dependent

pressure gradient:
0P,
] (10)

Initially the medium is undeformed and pressure gradient is equal to zero.
No-slip conditions are set on the tube walls:

d,_p=1,_p=0. (11)
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Let us assume that the unknown displacement and velocity vectors have one nonzero compo-
nent (u, and v,, respectively). Taking into account axial symmetry, we have

u=uy(r,t), v=uv.(rt). (12)
In this case nonzero components of Almansi strain tensor are
1 /0u\? 10u
dr'r‘ =5\ a5 5 drz = dzr = 34a. 13
2 (8r) 2 0r (13)

According to assumed continuum kinematics, we have following relations for nonzero compo-
nents of strain rate tensor, vorticity tensor and rotation tensor
1 6’0 1 6'U 267"2(]- - ezz)
S Wer = —Wrz = 5573 =——".
2(“)7“ 2(“)7“ err+ezz_2
In accordance with constraints (12) the operator of total derivative in cylindrical coordinate
system has the form

Ery = Egr = Try = —Tzr = (14>

dnij _ 8nij T Bnij

dt ot © 0z
The introduced kinematic constraint on medium motion imposes limitations on the form of elastic

potential (6) [11] . It turns out that some coefficients in Taylor expansion (6) are not independent
and, taking into account (12), the elastic potential has the form

W =W(J1,J2) = —2pJ1 — pJa + bJF + (b — p)Jy J2 — CJ3. (16)

(15)

Let us substitute relation (16) into (5). Then we take into account only first order terms
in diagonal components of reversible deformation tensor and first and second order terms in
non-diagonal components of irreversible deformation tensor. As a result of transformations we
obtain the following relations for stresses in the medium:

orr = — (P1 +20) + 2b (€r + €22 + €pp) + 206 + Mefz,
Opp = —(P1 +2p) + 2b(err + €2z + €4pp) + 214, — Q;w%Z,
02 = — (Pr+2) +2b (e + €2 + €4p) + 2pe, + pez,,

Ory = 2/1467‘,2-

(17)

Equilibrium equations in cylindrical coordinate system with axial symmetry without body

forces have the form
0o 0oy n Orr — Oy

— O’
or 0z r (18)

90r> | 002 | Oz _ 0
or 0z r '
Taking into consideration relations (12-15), we write transport equations for components of

irreversible deformations tensor. We also assume that components of reversible and irreversible
deformations are independent of axial coordinate and thus their total derivative is the partial

derivative:
_ Oprr

Yrr (1 - 2prr) - 81& + 2prz (’77"2 + Tzr) 3
Op=-
Vzz (1 - QPZZ) = ot + 2prz ('Vrz + Trz) ’
o (19)
Yoo (1= 2ppy) = 8?0’

Opr=
Yrz (1_p7’r—pzz) = ot

+ Trz (prr - pzz) + DPrz ('sz + ’yrr) .
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Transport equations for components of reversible deformations tensor take the form

de
—Yrr = a;r + 2720602,
de
Yzz = 8;2 + 27 €rz,
(20)
degy
'thp = 8t 9
1 dp 1
_577"2 (2+ Err — ezz) = a;z + 7z (67“7"_ ezz) - 557&2 (2+ Err— 6zz) + érz (722 - 'Yrr) .
Source of irreversible deformations in the transport equations is
Yrr = BnE""% (20, — Opp — 022),
VYzz = ann—2 (20zz —Opp — Urr) ;
Yoo = Bny"? (2040 — 0 —022), (21)

Yrz = 6Bn2n720—'rz,

5 = 1/ (0rr = 0p0)? + (v — 022) + (022 — 0)? + 602

Combining the above relation with equations (17), we can express rates of irreversible defor-
mations in terms of reversible deformations:

Yy = BnuE’“2 (4err — 2€pp — 26, + Sefz) ,

Yz = BnuX" 2 (4ezz —2e,p — 26p, + 3efz) ,

Yoo = Bnu¥"? (deg, — 2€,, — 2., — 6el.)
Yz = 12Bnu¥" ?e,.,.

3. Solution

Stresses and strains in the medium are defined by the following unknown functions: u(r,t),
v(r,t), Pi(r,z,t), err(rt), e:x(rt), epp(r,t), ers(r,t), Drr(r,t), D2z(r,t), Pop(r,t), Dra(r,t),
orr(1,2,1), 022(1,2,1), 0pp(r,2,t), ors(r,t). To find unknown functions we have to solve sys-
tem of partial differential equations (19), (20) and (22) with boundary conditions (11).

Taking into account that functions e,.(r,t), €..(r,t), epp(r,t), er.(r,t) are independent of

axial coordinate, the derivative % in the second equilibrium equation has the form:

00, 3 0P (r, z,t)

= . 23
0z 0z (23)
Medium motion in the tube is due to pressure gradient
OP(r,z,t
20 ey, wio) =0, (24)
z
Upon intergrating the above relation, we obtain
Pl(T',Z,t) = _¢(t)z+g(r7 t) (25)

Since stress o,., is independent of axial coordinate, the second equilibrium equation can be

written as
0oy, O

or r

= —(t). (26)
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General solution of this equation has the form

t t
ora(ryt) = — 2B, al), (27)
2 T
Stress o, must be finite at 7 = 0, so ¢;(t) = 0 and then we have
t
opy(r,t) = —%)r. (28)
Taking into account (17), we obtain
t
ery(r,t) = z/jl(,u)r' (29)

Further solution of system (19,20) is carried out with the use of finite difference method.
Taking into consideration (17), the first equilibrium equation has the form

a arr 822 a 8rr arz
g+2b(e 4 ez e“’“")+2ue + 2ue ¢ +$(2err—2ew+36m):0. (30)

or or or or or " or

To find function g(r,t) we need boundary condition

g(,r’ t)|r:R = gO(t)a (31>

where go(t) is the given function of control pressure at the wall of the tube (r = R) in the
cross-section z = 0. We assume that go(t) = 0.

Finally we have system of equations (19,20,30) with boundary conditions (11,31). The
unknown functions are u, €y, €:2,€4p, Drry Dzzy Pogs Prz, §- Lo construct finite difference ap-
proximation of the obtained system of equations we use central difference for the space derivative
and explicit scheme in time. Dimensionless coordinates are used in computations:

. T t o L Oij
r=—=, T= 734/ —> 0Oij = —, 32
R R 0o J L ( )

where p is the medium density.
Material parameters have the following values:

b BnR n—1
—g3, M VPO _ g5 (33)
K VHE

4. Results

The graph of pressure gradient 1(7) is shown in Fig. 1. We assume that deformation process
consists of three stages. Firstly pressure gradient increases monotonicaly to the point in time
71. Then it stays constant to the point in time 75. After that it decreases monotonicaly and at
the point in time 73 it becomes zero. The points in time have the following dimensionless values:
T1:2, 7'2:6,7'3:8.

Distributions of reversible deformations e,,., e,, and irreversible deformations p,,., p., at time
points 7y, 79, 73 are shown in Figs. 2 and 3. Time distributions of reversible deformations e, €.,
and irreversible deformations p,.., p,, at r = R are presented in Figs. 4 and 5. Distribution of
stresses at the points in time 71,79, 73 is shown in Fig. 6. Components of deformations ey, Do
are close to zero so they are not presented in figures.
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Fig. 1. Pressure gradient
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Fig. 2. Distribution of reversible deformations

Reversible and irreversible deformations have roughly the same order of magnitude for chosen
duration of the process. It is clear that components of reversible deformations e,,. and e,, have
almost equal magnitude and differ only in sign. As can be seen from given graphs the first
and second stages of the process are characterized by accumulation of reversible and irreversible
deformations. An elastic medium springback is clearly noticeable on third stage.

It should be noted that the medium remains in the reversible deformation state even after
pressure gradient becomes equal to zero (7 > 73).
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Fig. 3. Distribution of irreversible deformations
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Fig. 4. Reversible deformations at r = R

Additionally a series of computations for modified problem are performed. In modified prob-
lem we take into account also second order terms in diagonal components of reversible deforma-
tion tensor and third and forth order terms in non-diagonal components of reversible deformations
tensor. The results of computations show that this refinement of the model has no considerable
effect on qualitative characteristics of distribution of stresses and deformations in the medium.
Numerical values differ by no more than 10 % from numerical values obtained in solving the
original problem.
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Fig. 5. Irreversible deformations at r = R
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Fig. 6. Distribution of normal stresses

The obtained results can be applied to investigation of drawing processes in manufacturing.
In future study we plan to extend the presented mathematical model and take into account
plastic flow.
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AnTHILIOCKas oceCuUMMeETpPpUIHaA ,Z[eCl)OpMaI_[I/ISI
HeCo2KnMaeMOoOro TeJia B YCJIOBUAX IIOJI3ydYeCTHUu

Cepreit H. ®upcos
Anekcanap H. ITpokyauna

Pac

CMAMPUBAEMCA MEUEHUE HECHCUMAEMOT cPedvl 8 YuAuHIPpUYecKol mpybe nod deticmeuem U3MeHA0-

wezoca nepenada dasaenusn. Mamepuaa npoasasem nesuHnelnve ynpyaue u saskue ceoticmea. Mamema-

MUYECKAA MOJEAL CIPOUMNCS C UCTLOADIOBAHUEM MEOPUY 6oALWUL dehopmayuti, ochosarHoll Ha dugdde-

DEHUUAALHVOL YPABHEHUAT NEPEHOCA 0N 00PAMUMBET U Heobpamumbr dedpopmayut. Pewenue uwemes

C NOMOULBIO AHAAUMUYECKUL U HYUCAEHHDBLT MEMO0008.

Karoueswie caosa: boavwue dehopmayu, Yynpyzocms, NOAZYLECTb, Ynpyzoe nocaedeticmesue.
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