Journal of Siberian Federal University. Engineering & Technologies 5 (2015 8) 594-600

УДК 621.002.3:669.2

Silumin Modification Methods with All-Round Flux COVERAL MTS1582 **Produced by FOSECO**

Tatiana A. Bogdanova^a, Nikolay N. Dovzhenko^b, Tatiana R. Gilmanshina*b, Galina A. Merkulovab, Alexander V. Cheglakova, Margarita V. Loktevab, Evgeny G. Partykob and Aleksander A. Kosovichb ^aK&K ltd. 3 Berezina, Krasnoyarsk, 660020, Russia ^bSiberian Federal University 79 Svobodny, Krasnovarsk, 660041, Russia

Received 19.05.2015, received in revised form 21.06.2015, accepted 14.07.2015

In this paper the possibility of silumin modification with all-round granular flux COVERAL MTS1582 produced by FOSECO is considered. It is shown that the using a flux allowed to grind grain of castings 2-4 times more effectively against rod-shaped ligature AlTi5B1 and to increase the stability of metal quality on density index by 2 times: the level change of mechanical properties of wheels is not fixed.

Keywords: silumin, flux, grain, mechanical properties, aluminum wheels.

DOI: 10.17516/1999-494X-2015-8-5-594-600.

[©] Siberian Federal University. All rights reserved

Corresponding author E-mail address: gtr1977@mail.ru

Способы модифицирования силуминов комплексным флюсом COVERAL MTS1582 производства FOSECO

Т.А. Богданова^а, Н.Н. Довженко⁶, Т.Р. Гильманшина⁶, Г.А. Меркулова⁶, А.В. Чеглаков^а, М.В. Локтева⁶, Е.Г. Партыко⁶, А.А. Косович⁶

Россия, 660020, Красноярск, ул. Березина, 3 ⁶Сибирский федеральный университет Россия, 660041, Красноярск, пр. Свободный, 79

В статье рассмотрена возможность модифицирования силуминов комплексным гранулированным флюсом COVERAL MTS1582 производства FOSECO. Показано, что использование данного флюса позволяет измельчать зерно отливок в 2–4 раза эффективнее по сравнению с прутковой лигатурой AlTi5B1, повышать стабильность качества металла по индексу плотности в 2 раза; изменения уровня механических свойств колес при этом не зафиксировано.

Ключевые слова: силумин, флюс, зерно, механические свойства, алюминиевые диски.

В последнее время в литейном производстве особое внимание уделяется внепечным методам обработки расплавов для повышения их качества. Особое значение внепечная обработка имеет для алюминиевых сплавов, так как благодаря проведению операций рафинирования и модифицирования можно достигнуть необходимого уровня показателей качества и гарантировать эксплуатационную надежность изделий. В настоящее время нет такого универсального способа внепечной обработки, который позволял бы осуществить дегазацию расплава, очистить его от крупных и дисперсных неметалличе-ских включений [1, 2].

Решение поставленной задачи может быть достигнуто за счет применения внепечной технологии рафинирования и модифицирования, позволяющей качественно очистить расплав и снизить эффект выгорания модификатора с сохранением его жизнеспособности в условиях литья под низким давлением в течение 2–3 ч.

Наиболее эффективными модификаторами в современной производственной практике изготовления отливок из силуминов являются стронций и титан. Однако при их использовании возникают следующие проблемы:

- высокая стоимость, так как наиболее эффективные модификаторы поставляются зарубежными фирмами;
- большой расход модификаторов, что предполагает наличие складов и четко отлаженной логистики поставок;
- нетехнологичность при обработке больших масс расплавов, например в ковше;
- необходимость четкого контроля за параметрами их введения (температура введения и время выдержки в расплаве) из-за низкой жизнеспособности модификаторов [3, 4].

Поэтому появилась необходимость оценить возможность использования комплексных модификаторов, применение которых позволяет совмещать процессы модифицирования и рафинирования.

В данной статье приведена оценка эффективности комплексного флюса COVERAL MTS1582 производства FOSECO для модифицирования структуры сплава АК12пч и рафинирования расплава от неметаллических включений и сравнить его с лигатурой AlTi5B1.

Работа выполнена на ООО «КиК» и в ИЦМиМ СФУ.

Для оценки эффективности модифицирующей способности гранулированного флюса COVERAL MTS1582 были исследованы образцы проб, для анализа которых использовали прибор Thermal-Analyse System TA 110. Для сравнения представлены результаты исследований модифицирующей способности прутковой лигатуры AlTi5B1. Полученные результаты показаны на рис. 1 и в табл. 1.

Обработка расплава флюсом COVERAL MTS1582 позволяет более эффективно уменьшить размер зерна в сравнении с прутковой лигатурой AlTi5B1. Это подтверждается меньшим изменением ликвидуса (0,7 по сравнению с 1,8 °C) и меньшим временем реакции (2,6 по сравнению с 5,7 с). Нижний прогиб графика (рис. 1) и меньшее время реакции означают, что для начала

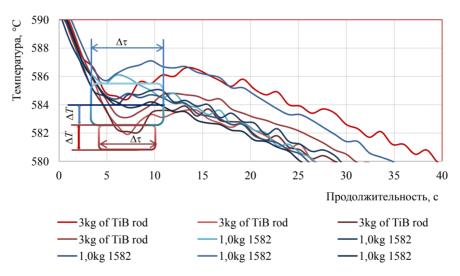
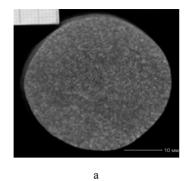



Рис. 1. Влияние вида модификатора на изменение параметров ликвидуса сплава АК12

Таблица 1. Влияние вида модификатора на изменение параметров ликвидуса сплава АК12

Вид	Площадь ликвидуса (см. рис. 1)				
модификатора	Среднее минимальное значение температуры, °C	Среднее максимальное значение температуры, °С	ΔT, °C	Δτ, c	
Пруток AlTi5B1	582,9	584,7	1,8	5,7	
Гранулированный флюс COVERAL MTS1582	584,5	585,2	0,7	2,6	

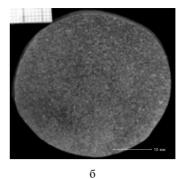


Рис. 2. Макроструктура проб ALCAN-TEST в поперечном направлении после модифицирования AlTi5B1 (а) и флюсом COVERAL MTS1582 (б)

Рис. 3. Макроструктура проб ALCAN-TEST в долевом направлении после модифицирования AlTi5B1 (а) и флюсом COVERAL MTS1582 (б)

кристаллизации проб, обработанных COVERAL MTS1582, а также для получения в них мелкозернистой структуры необходимо затратить меньше энергии.

Минимальное введение флюса COVERAL MTS1582 дает возможность не только эффективно измельчать зерно в пробах, но и рафинировать расплав без дополнительной обработки другими флюсовыми препаратами.

Полученные результаты подтверждены металлографическими исследованиями. Для этого были отобраны пробы на ALCAN-TEST (рис. 2, 3, табл. 2, 3).

Средний размер зерна определяли после травления образцов в специальном реактиве при помощи программы SIAMS©. Среднее количество зерен на 1 мм² оценивали по ГОСТ 21073.1-75.

Из представленных данных видно, что после обработки расплава AK12 гранулированным флюсом COVERAL MTS1582 количество зерен на 1 мм² составляет 2–4 шт., что в 2–4 раза меньше, чем после обработки прутком AITi5B1. Кроме того, при исследовании проб в долевом направлении установлено, что использование флюса COVERAL MTS1582 снижает размер усадочной раковины (рис. 3).

Таким образом, по результатам предварительной работы сделаны следующие выводы:

Таблица 2. Параметры макроструктуры образцов сплава AK12 в поперечном направлении, модифицированных AlTi5B1 и флюсом COVERAL MTS1582

	Вид модификатора		
Параметры макроструктуры	Пруток АІТі5В1	Гранулированный флюс COVERAL MTS1582	
Длина зерна, мм:			
минимальная	0,72	0,32	
максимальная	1,56	0,97	
средняя	1,08	0,62	
Количество зерен, шт. на 1 мм ²	1	2–4	

Таблица 3. Параметры макроструктуры проб (в долевом направлении) сплава AK12, модифицированных AITi5B1 и флюсом COVERAL MTS1582

	Вид модификатора		
Параметры макроструктуры	Пруток АІТі5В1	Гранулированный флюс COVERAL MTS1582	
Длина зерна, мм:			
минимальная	1,02	0,33	
максимальная	1,85	0,88	
средняя	1,30	0,71	
Количество зерен, шт. на 1 мм ²	1	2	

- выяснено положительное влияние комплексного флюса COVERAL MTS1582 производства FOSECO для модифицирования структуры сплава АК12 и рафинирования расплава от неметаллических включений;
- определено и рекомендовано оптимальное количество указанного модификатора.

Учитывая полученные рекомендации, провели опытно-промышленное освоение технологии модифицирования и рафинирования расплава с использованием гранулированного флюса COVERAL MTS1582.

Для этого была отобрана представительная партия колес двух моделей 17"Либерти и 16"Борелли, модифицированных по серийной технологии прутковой лигатурой AlTi5B1 и гранулированнымфлюсом COVERAL MTS1582.

Результаты исследований приведены на рис. 4, 5.

Измельчение зерна колес соответствует результатам, полученным на пробах. Количество зерен в колесах, модифицированных лигатурой AlTi5B1, составляет 1 шт. на 1 мм 2 , в колесах, модифицированных флюсом COVERAL MTS1582, -2-4 шт. на 1 мм 2 .

Изменение уровня механических свойств (рис. 6) при использовании разных технологий модифицирования находится в пределах методической ошибки измерений, что подтверждается литературными данными [1].

Оценка эффективности рафинирующей способности гранулированного модифицирующего флюса COVERAL MTS1582 показала, что составляющая алюминия в шлаке после обработ-

Рис. 4. Внешний вид автомобильных колес 17" Либерти (а) и 16" Борелли (б)

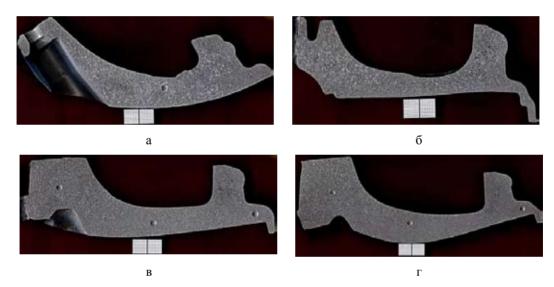


Рис. 5. Макроструктура колес, отлитых из сплава AK12, модифицированного лигатурой AlTi5B1 по серийной технологии (a, б) и флюсом COVERAL MTS1582 (в, г). Размер зерна (d), мм: $a-1,1;\ \delta-1,14;\ b-0,34;\ r-0,64$

ки флюсом COVERAL MTS1582 в количестве 0,5 кг на 1 т металла требует дополнительных затрат на извлечение алюминия и переработку шлака.

Таким образом, опытно-промышленное освоение, проведенное на ООО «КиК», подтвердило результаты исследований проб о высокой модифицирующей способности флюса COVERAL MTS1582, обеспечивающей измельчение структуры колес.

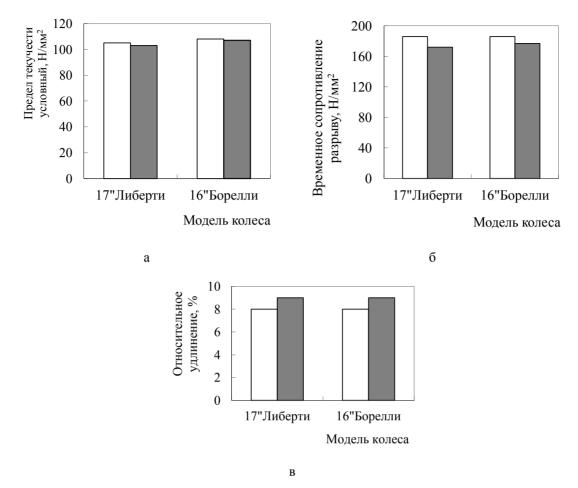


Рис. 6. Сравнение уровня механических свойств колес моделей 17"Либерти и 16"Борелли, отлитых из сплава АК12, модифицированного лигатурой AITi5B1 (☐) и флюсом COVERAL MTS1582 (☐)

Список литературы

- [1] *Белов Н.А.* Фазовый состав промышленных и перспективных алюминиевых сплавов. М.: МИСиС, 2010. 511 с.
- [2] Богданова Т.А., Довженко Н.Н., Гильманшина Т.Р. и др. // Металлургия машиностроения. 2014. N 2. С. 12-15.
 - [3] Богданова Т.А. Автореф. дис. ... канд. техн. наук. Красноярск, 2014.
- [4] *Богданова Т.А., Довженко Н.Н., Гильманшина Т.Р. и др.* // Цветные металлы 2014: Сб. докладов V Междунар. конгресса. Красноярск, 2014. С. 1067.