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In this paper a mathematical model describing small oscillations of a heterogeneous medium is considered.

The medium consists of a partially perforated elastic material and a slightly viscous compressible fluid

filling the pores. For the given model the corresponding homogenized problem is constructed by using the

two-scale convergence method. The boundary conditions connecting equations of the homogenized model

on the boundary between the continuous elastic material and the porous elastic material with fluid are

found.
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In 1989, Nguetseng [1] introduced the notion of two-scale convergence, which provides a

new approach in the homogenization theory. The method of two-scale convergence was further

developed by Allaire [2] and generalized by other authors (see, e.g., [3–6]). As it turns out,

this method is especially useful for studying homogenization problems whose solutions do not

have a limit in the classical sense (for example, in the L2-norm). In applications, such problems

describe some physical processes in heterogeneous media, for example, a diffusion process in

highly heterogeneous media [2] or a joint motion of an elastic skeleton and a slightly viscous

fluid [7]. Recently, the method of two-scale convergence is widely applied in the homogenization of

various mathematical problems that arise in mechanics of heterogeneous media (see, e.g., [8–14]).

In this paper, we consider a mathematical problem that describes small oscillations of a het-

erogeneous medium consisting of a partially perforated elastic material and a slightly viscous

compressible fluid filling the pores. We assume that the elastic material is inhomogeneous with

ε-periodic microstructure, and the structure of the perforation in the porous part of the elastic

material is also ε-periodic. The mathematical problem under consideration involves the linear

elasticity system describing the motion of the elastic material, and the Stokes system describ-

ing the motion of the fluid. Finally, the problem is complemented by homogeneous boundary

and initial conditions. Using the method of two-scale convergence and the Laplace transforms,

we construct the corresponding homogenized problem and find the boundary conditions which

connect equations of the homogenized problem on the boundary between the continuous elas-

tic material and the porous elastic material with fluid. In addition, using the notion of strong

two-scale convergence, we establish some corrector-type results under suitable smoothness as-

sumptions on the solution of the homogenized problem and on the external force. When an
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elastic part of the heterogeneous medium is completely perforated, the corresponding homoge-

nization problem was analyzed in [7, 9, 12] and [15]. Namely, the first research of this problem

was carried out in [15], and later the homogenized model was mathematically rigorously justified

in [7] by using the method of two-scale convergence. In [9] and [12], this homogenized problem

was derived in the form that is known from the classical physical papers such as [16] and [17].

1. Statement of the problem

Let Ω be a bounded domain in R
3 with smooth boundary ∂Ω, and let Y = (0, 1)3 be the

unit cube in R
3. We suppose that Ω = Ω0 ∪ Ω1 ∪ S and Y = Y h ∪ Y s ∪ Γ, where Ω0, Ω1, Y

h,

and Y s are open connected sets in R
3, S is the smooth surface that separates Ω0 and Ω1, and

Γ is the smooth surface that separates Y h and Y s. In addition, we denote by Y h
per (respectively,

Y s
per) the Y -periodic repetition of the set Y h ∪ (∂Y h ∩ ∂Y ) (respectively, Y s ∪ (∂Y s ∩ ∂Y )) and

suppose that both sets Y h
per and Y s

per are connected in R
3.

For a sufficiently small ε > 0 we divide the domain Ω into two subdomains Ωh
ε and Ωs

ε as

follows:

Ωs
ε = Ω1 ∩ εY

s
per, Ωh

ε = Ω0 ∪ Ωh
1ε ∪ (∂Ωh

1ε ∩ S), Ωh
1ε = Ω1 ∩ εY

h
per.

We suppose that the set Ωh
ε is occupied by an elastic material, whereas the set Ωs

ε is occupied

by a slightly viscous compressible fluid. In the sequel, the sets Ωh
ε and Ωs

ε are called the elastic

and the fluid parts of Ω, respectively.

Now we are going to state the mathematical problem describing the joint motion of elastic

and fluid parts of Ω. Let us assume that uε(x, t) is the displacement vector, ekh(uε) are the com-

ponents of the strain tensor, ekh(uε) = (∂uε
k/∂xh + ∂uε

h/∂xk) /2 , and f(x, t) ∈ H2(0, T ;L2(Ω)3)

is a given force. The equations of motion in the elastic part Ωh
ε are given by

ρε
0

∂2uε
i

∂t2
=
∂σε

ij

∂xj

+ fi(x, t) in Ωh
ε × (0, T ), (1)

where ρε
0(x) is the density of the elastic material,

ρε
0(x) = ρ0(ε

−1x), ρ0(y) ∈ L∞

per(Y ), 1 6 ρ0(y) 6 ρ1 (ρ1 = const > 1),

(“per” denotes Y -periodicity), σε
ij are the components of the stress tensor, σε

ij = aε
ijkh(x)ekh(uε),

and aε
ijkh(x) = aijkh(ε−1x) are the elasticity coefficients such that aijkh(y) ∈ L∞

per(Y ) and

aijkh(y) = ajikh(y) = akhij(y) = aijhk(y), 1 6 i, j, k, h 6 3,

aijkh(y)ξijξkh > c0ξijξij , c0 > 0, ∀ξij ∈ R, ξij = ξji.

Here and throughout this paper, we use the convention that repeated indices imply summation

from 1 to 3.

The equations of motion in the fluid part Ωs
ε are given by

ρs ∂
2uε

i

∂t2
=
∂σε

ij

∂xj

+ fi(x, t) in Ωs
ε× (0, T ), (2)

where ρs is the fluid density, ρs = const > 0, and

σε
ij = −δijp

ε + ε2(ηδijδkh + 2µδikδjh)ekh

(

∂uε

∂t

)

, pε(x, t) = −γ div uε(x, t).
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Here pε(x, t) is the fluid pressure, δij is the Kronecker symbol, γ = c2ρs, c is the speed of

sound in the fluid, c = const > 0, and ε2η and ε2µ are the viscosity coefficients of the fluid

satisfying the following conditions: µ > 0 and η/µ > −(2/3)α with 0 < α < 1 [15].

Besides, at the interface Sε = ∂Ωh
ε ∩ ∂Ωs

ε we have the continuity of the displacement and of

the normal stress:

[uε]Sε
= 0, [σε

ijnj ]Sε
= 0, (3)

where [·]Sε
denotes the jump across the boundary Sε, and nj , j = 1, 2, 3, are the components of

the unit normal to Sε.

Finally, the problem is supplemented by homogeneous initial and boundary conditions

uε(x, 0) =
∂uε

∂t
(x, 0) = 0, x ∈ Ω; uε(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ). (4)

The variational formulation of problem (1)–(4) is the following: find a function uε(t) with

values in H1
0 (Ω)3 such that

∫

Ω

ρε ∂
2uε

i

∂t2
vidx+ ε2bε

(

∂uε

∂t
, v

)

+ cε(uε, v) =

∫

Ω

fividx ∀v ∈ H1
0 (Ω)3, (5)

uε(0) =
∂uε

∂t
(0) = 0, (6)

where ρε(x) = ρε
0(x) for x ∈ Ωh

ε , ρε(x) = ρs for x ∈ Ωs
ε, and

bε(u, v) =

∫

Ωs
ε

(η div u div v + 2µeij(u)eij(v))dx,

cε(u, v) =

∫

Ωs
ε

γ div u div vdx+

∫

Ωh
ε

aε
ijkhekh(u)eij(v)dx.

In the same way as in [15], where the whole elastic part of Ω was supposed to be porous, one

can show that for any ε > 0 there exists a unique solution of problem (5), (6).

Let us extend the vector function f(x, t) by zero for t < 0 and t > T . Next, we convert the

evolutionary problem (1)–(4) into the stationary one by using the Laplace transform g(t) → gλ

in time. Then the variational formulation (5), (6) becomes: for a fixed λ with Reλ > λ0 > 0,

find a function uε
λ(x) ∈ H1

0 (Ω)3 such that

λ2

∫

Ω

ρε(uε
λ)ividx+ λε2bε(uε

λ, v) + cε(uε
λ, v) =

∫

Ω

(fλ)ividx ∀v ∈ H1
0 (Ω)3. (7)

2. Two-scale convergence

We begin this section with two basic definitions related to the theory of two-scale convergence

(see [2, 5]).

Let uε(x) be a bounded sequence in L2(Ω).

Definition 1. A sequence uε(x) weakly two-scale converges to a function u(x, y) ∈ L2(Ω×Y, dx×

dy) = L2(Ω × Y ), uε(x)
2
⇀ u(x, y), if

lim
ε→0

∫

Ω

uε(x)ϕ(x)ψ(ε−1x)dx =

∫

Ω

∫

Y

u(x, y)ϕ(x)ψ(y)dxdy (8)

for any functions ϕ(x) ∈ C∞

0 (Ω) and ψ(y) ∈ C∞

per(Y ).
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It should be noted that the class of test functions used in the above definition can be enlarged.

For example, one can takes in (8) test functions ϕ(x) ∈ C(Ω) and ψ(y) ∈ L2
per(Y ) or ϕ(x) ∈ L2(Ω)

and ψ(y) ∈ Cper(Y ) (see [2, 5]).

Definition 2. A sequence uε(x) ∈ L2(Ω) strongly two-scale converges to a function u(x, y) ∈

L2(Ω × Y ), uε(x)
2
→ u(x, y), if

lim
ε→0

∫

Ω

uε(x)vε(x)dx =

∫

Ω

∫

Y

u(x, y)v(x, y)dxdy whenever vε(x)
2
⇀ v(x, y).

Let us briefly recall the main properties of two-scale convergence, the proofs of which can be

found in [2, 4] and [5].

(i) If uε(x) is a bounded sequence in L2(Ω), then there exists a function u(x, y) ∈ L2(Ω × Y )

such that, up to a subsequence, uε(x)
2
⇀ u(x, y).

(ii) If uε(x)
2
⇀ u(x, y), then

uε(x) ⇀

∫

Y

u(x, y)dy in L2(Ω), lim inf
ε→0

||uε(x)||L2(Ω) > ||u(x, y)||L2(Ω×Y ).

(iii) If a(y) ∈ L∞

per(Y ) and uε(x)
2
⇀ u(x, y), then a(ε−1x)uε(x)

2
⇀ a(y)u(x, y).

(iv) If uε(x)
2
⇀ u(x, y) and limε→0 ||u

ε(x)||L2(Ω) = ||u(x, y)||L2(Ω×Y ), then uε(x)
2
→ u(x, y).

(v) If uε(x)
2
→ u(x, y) and u(x, y) ∈ C(Ω, L2

per(Y )), then

lim
ε→0

||uε(x) − u(x, ε−1x)||L2(Ω) = 0.

(vi) Let uε(x) be a bounded sequence in H1(Ω). Then there exist functions u(x) ∈ H1(Ω)

and u1(x, y) ∈ L2(Ω,H1
per(Y )/R) such that, up to a subsequence, uε(x)

2
⇀ u(x) and

∇uε(x)
2
⇀ ∇u(x) + ∇yu1(x, y). Moreover, u(x) ∈ H1

0 (Ω) if uε(x) ∈ H1
0 (Ω).

(vii) Let uε(x) be a sequence in H1(Ω1) such that

||uε||L2(Ω1) 6 C, ||∇uε||L2(Ωh
1ε)3 6 C, ε||∇uε||L2(Ωs

ε)3 6 C,

where C is a positive constant which does not depend on ε. Then there exist functions

u(x) ∈ H1(Ω1), u1(x, y) ∈ L2(Ω1,H
1
per(Y

h)/R), and w(x, y) ∈ L2(Ω1,H
1
per(Y )) with

w(x, y) = 0 for y ∈ Y h, such that, up to a subsequence,

uε(x)
2
⇀ u(x) + w(x, y), χ(Ωh

1ε)∇u
ε(x)

2
⇀ χ(Y h)(∇u(x) + ∇yu1(x, y)).

εχ(Ωs
ε)∇u

ε(x)
2
⇀ χ(Y s)∇yw(x, y),

where χ(D) denotes the characteristic function of the set D. Moreover, u(x) ∈ H1
0 (Ω) if

uε(x) ∈ H1
0 (Ω).
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Now, using the above properties of two-scale convergence, we are going to study the asymp-

totic behavior of the solution uε
λ of problem (7) when ε goes to 0.

Firstly, choosing in (7) v = uε
λ, we obtain

cε(uε
λ, u

ε
λ) 6 C, ε2bε(uε

λ, u
ε
λ) 6 C.

Hereinafter, C denotes various positive constants independent of ε.

By using the same arguments as in [7], we deduce that the solution uε
λ of problem (7) satisfies

the a priory estimates

||uε
λ||L2(Ω)3 6 C, ε||∇(uε

λ)i||L2(Ωs
ε)3 6 C, ||∇(uε

λ)i||L2(Ωh
ε )3 6 C, ||div uε

λ||L2(Ω1) 6 C. (9)

For notational convenience we denote by ∇uε
λ the 3 × 3 matrix with coefficients ∂(uε

λ)i/∂xj .

In order to proceed we need the following crucial lemma.

Lemma 1. Let uε
λ be a solution of problem (7). Then, up to a subsequence,

uε
λ(x)

2
⇀ uλ(x) for x ∈ Ω0, uε

λ(x)
2
⇀ uλ(x) + wλ(x, y) for x ∈ Ω1, (10)

∇uε
λ(x)

2
⇀ ∇uλ(x) + ∇yu

0
λ(x, y) for x ∈ Ω0, (11)

χ(Ωh
1ε)∇u

ε
λ(x)

2
⇀ χ(Y h)(∇uλ(x) + ∇yu

1
λ(x, y)) for x ∈ Ω1, (12)

εχ(Ωs
ε)∇u

ε
λ(x)

2
⇀ χ(Y s)∇ywλ(x, y) for x ∈ Ω1, (13)

where

uλ ∈ H1
0 (Ω)3, u0

λ ∈ L2(Ω0,H
1
per(Y )3/R3), u1

λ ∈ L2(Ω1,H
1
per(Y

h)3/R3),

wλ ∈ L2(Ω1,H
1
per(Y )3), wλ = 0 for y ∈ Y h, divy wλ = 0 for y ∈ Y s.

Proof. Using the above estimates and properties (vi) and (vii) of two-scale convergence, we have,
up to a subsequence,

uε
λ(x)

2
⇀ v0

λ(x) for x ∈ Ω0, uε
λ(x)

2
⇀ v1

λ(x) + wλ(x, y) for x ∈ Ω1, (14)

where v0
λ ∈ H1(Ω0)

3, v1
λ ∈ H1(Ω1)

3, and wλ ∈ L2(Ω1,H
1
per(Y )3) with wλ = 0 for y ∈ Y h.

Besides, in virtue of property (vii), we also derive relation (13). Furthermore, relation (13) and
the last estimate in (9) yield divy wλ = 0 for y ∈ Y s.

To prove that v0
λ|S = v1

λ|S , we extend the perforation from Ω1 to Ω0 by setting Ωε = Ω∩εY h
per.

Then, up to a subsequence,

χ(Ωε)u
ε
λ(x) ⇀ |Y h|uλ(x) in L2(Ω)3

(see [18]), where uλ ∈ H1
0 (Ω)3. On the other hand, from (14) we obtain

χ(Ωε ∩ Ω0)u
ε
λ(x) ⇀ |Y h|v0

λ(x) in L2(Ω0)
3, χ(Ωh

1ε)u
ε
λ(x) ⇀ |Y h|v1

λ(x) in L2(Ω1)
3.

It is easy to see that uλ(x) = v0
λ(x) if x ∈ Ω0 and uλ(x) = v1

λ(x) if x ∈ Ω1, therefore v0
λ|S = v1

λ|S .
Finally, relations (11) and (12) immediately follow from property (vi) of two-scale convergence.
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3. Limiting behavior of the pressure

In this section we study the limit behavior of the fluid pressure pε
λ(x). Namely, we state and

prove the following lemma.

Lemma 2. Let uε
λ be a solution of problem (7), and let pε

λ = −γ div uε
λ in Ωs

ε. Then, up to a

subsequence,

χ(Ωs
ε)p

ε
λ(x)

2
⇀ χ(Y s)pλ(x), pλ(x) ∈ L2(Ω1). (15)

Moreover,

∫

Y h

divy u
1
λ(x, y)dy = |Y s|div uλ(x) +

|Y s|

γ
pλ(x) + div

∫

Y s

wλ(x, y)dy. (16)

Proof. From (9) it follows that the sequence χ(Ωs
ε)p

ε
λ is bounded in L2(Ω1). Therefore, up to a

subsequence, we can assume χ(Ωs
ε)p

ε
λ(x)

2
⇀ pλ(x, y) for x ∈ Ω1.

Now we take a test vector function of the form v(x) = εϕ(x)b(ε−1x), where ϕ(x) ∈ C∞

0 (Ω1),
b(y) ∈ H1

per(Y )3, supp b(y) ⊂ Y s. Passing to the two-scale limit in the integral identity (7) as
ε→ 0, we have

∫

Ω1

∫

Y s

pλ(x, y)ϕ(x) divy b(y)dxdy = 0

or, since ϕ(x) is arbitrary,
∫

Y s

pλ(x, y) divy b(y)dy = 0,

which implies pλ(x, y) = pλ(x) for y ∈ Y s. Relation (15) follows now from property (iii) of
two-scale convergence.

To prove equality (16), we use Lemma 1 and get

div uε
λ ⇀ div uλ(x) + div

∫

Y s

wλ(x, y)dy in L2(Ω1), (17)

χ(Ωh
1ε) div uε

λ ⇀ |Y h|div uλ(x) +

∫

Y h

divy u
1
λ(x, y)dy in L2(Ω1).

On the other hand, we already have proved that

χ(Ωs
ε) div uε

λ ⇀ −
|Y s|

γ
pλ(x) in L2(Ω1).

Thus,

div uε
λ ⇀ |Y h|div uλ(x) −

|Y s|

γ
pλ(x) +

∫

Y h

divy u
1
λ(x, y)dy in L2(Ω1).

Comparing the last relation with (17) yields the desired equality (16).

4. The cell Stokes problem

Now we choose in (7) a test vector function of the form v(x) = ξ(x)b(ε−1x), where ξ(x) ∈

C∞

0 (Ω1) and b(y) ∈ H1
per(Y )3 with supp b(y) ⊂ Y s and divy b(y) = 0. Passing in (7) to the limit

as ε→ 0, using Lemma 1, and taking into account that ξ(x) is arbitrary, we obtain

∫

Y s

(

λ2ρswλ(x, y) − λµ∆yywλ(x, y) − gλ(x)
)

b(y)dy = 0, (18)
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where we denote gλ(x) = fλ(x) − λ2ρsuλ(x) − ∇pλ(x). Since the orthogonal of divergence-

free functions is exactly the gradients, from (18) it follows that there exists a function Φλ ∈

L2(Ω1,H
1
per(Y

s)) such that

λ2ρswλ(x, y) − λµ∆yywλ(x, y) − gλ(x) = ∇yΦλ(x, y), x ∈ Ω1, y ∈ Y s. (19)

Now, as in [12], we look for a vector function wλ(x, y) in the form

wλ(x, y) = Mr
λ(x)Nr

λ(y), x ∈ Ω1, y ∈ Y s, (20)

where Mr
λ ∈ L2(Ω1) and Nr

λ ∈ H1
per(Y )3, r = 1, 2, 3, are to be specified. To do this, we substitute

(20) into (19) and get

Mr
λ(x)

(

λ2ρsNr
λ(y) − λµ∆yyN

r
λ(y)

)

− gλ(x) = ∇yΦλ(x, y). (21)

Now we set

Mr
λ(x) = (gλ)r(x), r = 1, 2, 3; Φλ(x, y) = −(gλ)r(x)W

r
λ(y).

Then from (21) it follows that

(gλ)r(x)
(

∇yW
r
λ(y) + λ2ρsNr

λ(y) − λµ∆yyN
r
λ(y)

)

= (gλ)r(x)e
r,

where er is the unit vector of the yr-axis. Finally, we define the pair {Nr
λ(y),W r

λ(y)} as the

solution of the following Stokes problem:

∇yW
r
λ + λ2ρsNr

λ − λµ∆yyN
r
λ = er, divy N

r
λ = 0 in Y s, Nr

λ = 0 on Γ. (22)

Let us summarize the results of this section in the following lemma.

Lemma 3. Let wλ(x, y) be as in Lemma 1. Then

wλ(x, y) =

(

(fλ)r(x) − λ2ρs(uλ)r(x) −
∂pλ

∂xr

(x)

)

Nr
λ(y), (23)

where Nr
λ(y), r = 1, 2, 3, are the solutions of the cell Stokes problems (22).

5. Homogenized tensors

Lemma 4. Let uε
λ be a solution of problem (7). Then

aε
ijkhekh(uε

λ) ⇀ bijkhekh(uλ) in L2(Ω0), (24)

χ(Ωh
1ε)a

ε
ijkhekh(uε

λ) ⇀ qijkhekh(uλ) + βijpλ in L2(Ω1), (25)

where

bijkh =

∫

Y

(

aijkh + aijlme
y
lm(V kh)

)

dy, qijkh =

∫

Y h

(

aijkh − aijlme
y
lm(Qkh)

)

dy,

βij = −

∫

Y h

divy Q
ij(y)dy.

(26)

Here V kh(y) ∈ H1
per(Y )3/R3 and Qkh(y) ∈ H1

per(Y
h)3/R3 are the solutions of the following cell

problems:
∂

∂yj

(

aijkh + aijlme
y
lm(V kh)

)

= 0 in Y, (27)

– 362 –



Alexey S. Shamaev, Vladlena V. Shumilova Homogenization of Acoustic Equations for a Partially ...











∂

∂yj

(

aijkh − aijlme
y
lm(Qkh)

)

= 0 in Y h,

(

aijkh − aijlme
y
lm(Qkh)

)

νj = 0 on Γ,

(28)

where νj, j = 1, 2, 3, are the components of the unit normal to the boundary Γ.

Proof. Using the properties of two-scale convergence, we have

aε
ijkhekh(uε

λ) ⇀

∫

Y

aijkh(y)(ekh(uλ) + ey
kh(u0

λ))dy in L2(Ω0), (29)

χ(Ωh
1ε)a

ε
ijkhekh(uε

λ) ⇀

∫

Y h

aijkh(y)(ekh(uλ) + ey
kh(u1

λ))dy in L2(Ω1). (30)

To prove (24), we take in (7) a test vector function v(x) = εϕ(x)b(ε−1x), where ϕ(x) ∈
C∞

0 (Ω0), b(y) ∈ C∞

per(Y )3. Passing to the limit as ε→ 0 and using Lemma 1, we obtain

∫

Y

aijkh

(

ekh(uλ) + ey
kh(u0

λ)
)

ey
ij(b)dy = 0. (31)

We look for a solution of (31) in the form

u0
λ(x, y) = V kh(y)

∂(uλ)k

∂xh

(x), x ∈ Ω0, y ∈ Y, (32)

where V kh(y) ∈ H1
per(Y )3/R3. Substituting (32) into (31) yields

∫

Y

(

aijkh + aijlme
y
lm(V kh)

)

ey
ij(b)dy = 0. (33)

An integration by parts shows that (33) is a variational formulation associated to (27). Further-
more, we have

∫

Y

aijkh

(

ekh(uλ) + ey
kh(u0

λ)
)

dy = bijkhekh(uλ).

Comparing the last equality with (29), we derive (24).
It remains to prove (25). For this purpose we choose in (7) a test vector function v(x) =

εϕ(x)b(ε−1x), where ϕ(x) ∈ C∞

0 (Ω1), b(y) ∈ C∞

per(Y )3. Passing to the limit as ε → 0 and using
Lemmas 1 and 2, we get

∫

Y h

aijkh

(

ekh(uλ) + ey
kh(u1

λ)
)

ey
ij(b)dy − pλ

∫

Y s

divy bdy = 0. (34)

We look for a solution of (34) in the form

u1
λ(x, y) = −Qkh(y)

∂(uλ)k

∂xh

(x) − pλ(x)Q(y), x ∈ Ω1, y ∈ Y h, (35)

where Qkh(y), Q(y) ∈ H1
per(Y

h)3/R3. Substituting (35) into (34), we obtain two integral iden-
tities:

∫

Y h

(

aijkh − aijlme
y
lm(Qkh)

)

ey
ij(b)dy = 0, (36)

∫

Y h

aijkhe
y
kh(Q)ey

ij(b)dy −

∫

Y h

divy bdy = 0. (37)
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An integration by parts shows that (36) is a variational formulation associated to (28), while
(37) is a variational formulation of the following cell problem:

∂

∂yj

(aijkhe
y
kh(Q)) = 0 in Y h; aijkhe

y
kh(Q)νj = νi on Γ. (38)

For further needs, we extend Qkh(y) and Q(y) from Y h to the entire periodicity cell Y in
such a way that the extended vector functions Q̃kh(y) and Q̃(y) belong to H1

per(Y )3 and

||Q̃kh||H1
per(Y )3 6 C||Qkh||H1

per(Y h)3 , ||Q̃||H1
per(Y )3 6 C||Q||H1

per(Y h)3 .

Setting b = Q̃ in (36) and b = Q̃kh in (37) yields

∫

Y h

aijkhe
y
kh(Q)dy =

∫

Y h

divy Q
ijdy = −βij .

Thus, in view of (26) we have

∫

Y h

aijkh

(

ekh(uλ) + ey
kh(u1

λ)
)

dy = qijkhekh(uλ) + βijpλ.

Finally, comparing the last equality with (30), we obtain (25).

It should be noted that the homogenized coefficients bijkh and qijkh are real and they possess

the classical properties of symmetry and ellipticity (see [7] and [19]).

To conclude this section, we substitute representation (35) into equality (16). Then

(

Π

γ
+ β

)

pλ + divw0
λ + αkhekh(uλ) = 0, x ∈ Ω1, (39)

where Π = |Y s| is the porosity, αij = Πδij − βij ,

β =

∫

Y h

divy Q(y)dy, w0
λ(x) =

∫

Y s

wλ(x, y)dy.

Note that the vector function w0
λ satisfies the boundary condition w0

λ · ζ = 0 on ∂Ω1, where

ζ is the unit normal to ∂Ω1. Indeed, using (10), we can easily deduce that

lim
ε→0

∫

Ω

div uε
λdx =

∫

Ω

div uλdx+

∫

Ω1

divw0
λdx

and the desired boundary condition follows immediately by integration by parts.

6. Homogenized problem

Now we choose in (7) a test vector function v ∈ H1
0 (Ω)3, which does not depend on ε. Then

passing in (7) to the limit as ε→ 0 and using Lemmas 1, 2, and 4, we obtain

λ2ρ̃0

∫

Ω0

(uλ)ividx+ λ2

∫

Ω1

(ρ̃1

(

uλ)i + ρs(w0
λ)i

)

vidx− Π

∫

Ω1

pλ div vdx+

+

∫

Ω0

bijkhekh(uλ)eij(v)dx+

∫

Ω1

(qijkhekh(uλ) + βijpλ) eij(v)dx =

∫

Ω

(fλ)ividx,
(40)
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where

ρ̃0 =

∫

Y

ρ0(y)dy, ρ̃1 = Πρs + ρh
0 , ρh

0 =

∫

Y h

ρ0(y)dy.

Integrating by parts in (40) and using the results of Sections 4 and 5, we conclude that the

differential form of the homogenized problem corresponding to problem (7) is

λ2ρ̃0(uλ)i =
∂σλ

ij

∂xj

+ (fλ)i in Ω0, (41)

λ2ρ̃1(uλ)i + λ2ρs(w0
λ)i =

∂σλ
ij

∂xj

+ (fλ)i in Ω1, (42)

(
Π

γ
+ β)pλ + divw0

λ + αkhekh(uλ) = 0 in Ω1, (43)

w0
λ =

(

(fλ)r − λ2ρs(uλ)r −
∂pλ

∂xr

)
∫

Y s

Nr
λdy, (44)

w0
λ · ζ = 0 on ∂Ω1, uλ = 0 on ∂Ω, [uλ]S = 0, [σλ

ijnj ]S = 0, (45)

where nj are the components of the unit normal to S, σλ
ij = bijkhekh(uλ) in Ω0 and σλ

ij =

qijkhekh(uλ) − αijpλ in Ω1.

Using the general theory of elliptic problems (see, e.g., [20]), one can prove that there exists

a unique solution of problem (41)–(45).

Now our aim is to derive the non-stationary homogenized problem in the original variables x

and t. For this purpose, we apply the inverse Laplace transform to (23) and obtain

w(x, y, t) =

(

fr(x, t) − ρs ∂
2ur

∂t2
(x, t) −

∂p

∂xr

(x, t)

)

∗Nr(y, t), (46)

where the symbol ∗ denotes the convolution in t,

g1(t) ∗ g2(t) =

∫ t

0

g1(t− s)g2(s)ds.

Now we set

Lr(y, t) =
∂Nr

∂t
(y, t), Dr(t) =

∫

Y s

Lr(y, t)dy, r = 1, 2, 3.

Since L̂r = λN̂r, it is easy to see that Lr(y, t) is a solution of the Stokes problem







ρs ∂L
r

∂t
− µ∆yyL

r + ∇yW
r = 0, divy L

r = 0 in Y s× (0, T ),

Lr(y, 0) = (ρs)−1er, y ∈ Y s; Lr(y, t) = 0, y ∈ Γ, t ∈ (0, T ).

Further, we can rewrite (46) as

w(x, y, t) =

(

fr(x, t) − ρs ∂
2ur

∂t2
(x, t) −

∂p

∂xr

(x, t)

)

∗

∫ t

0

Lr(y, τ)dτ, (47)

and so

w0(x, t) =

(

fr(x, t) − ρs ∂
2ur

∂t2
(x, t) −

∂p

∂xr

(x, t)

)

∗

∫ t

0

Dr(τ)dτ.
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It is easy to check that

∂2w0

∂t2
=

(

fr − ρs ∂
2ur

∂t2
−

∂p

∂xr

)

∗
∂Dr

∂t
+Dr(0)

(

fr − ρs ∂
2ur

∂t2
−

∂p

∂xr

)

.

Finally, we apply the inverse Laplace transform to system (41)–(43). As a result, we deduce

that the homogenized problem corresponding to the original problem (1)–(4) takes the form

ρ̃0
∂2ui

∂t2
=

∂

∂xj

(

bijkh

∂uk

∂xh

)

+ fi(x, t) in Ω0× (0, T ), (48)

ρ̃1
∂2ui

∂t2
+ ρs

(

fr − ρs ∂
2ur

∂t2
−

∂p

∂xr

)

∗
∂Dr

i

∂t
+ ρsDr

i (0)

(

fr − ρs ∂
2ur

∂t2
−

∂p

∂xr

)

=

=
∂

∂xj

(

qijkh

∂uk

∂xh

− αijp

)

+ fi(x, t) in Ω1× (0, T ),
(49)

(
Π

γ
+ β)p+ divx

(

fr − ρs ∂
2ur

∂t2
−

∂p

∂xr

)

∗

∫ t

0

Dr(τ)dτ + αijeij(u) = 0 in Ω1× (0, T ), (50)

((

fr − ρs ∂
2ur

∂t2
−

∂p

∂xr

)

∗

∫ t

0

Dr
j (τ)dτ

)

ζj = 0 on ∂Ω1, [u]S = 0, [σijnj ]S = 0, (51)

u(x, 0) =
∂u

∂t
(x, 0) = 0, x ∈ Ω; u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ), (52)

where σij = bijkhekh(u) in Ω0 and σij = qijkhekh(u) − αijp in Ω1.

Remark that system (48) describes the propagation of acoustic waves in the homogeneous

elastic material contained in Ω0, while system (49), (50) corresponds to the Biot model [17] and

describes the propagation of acoustic waves in the heterogeneous medium contained in Ω1.

Finally, we analyze the boundary conditions, which connect equations of the homogenized

problem on the boundary S between the continuous elastic material and the porous elastic

material with fluid. From Section 5 it follows that these conditions depend on the following

constants: bijkh, qijkh, Π, and βij , where bijkh are the homogenized elasticity coefficients for the

continuous elastic material, qijkh are the homogenized elasticity coefficients for the porous elastic

material without fluid, Π is the porosity of the elastic material in Ω1, and βij are the coefficients,

which characterize the compressibility of the porous elastic material.

7. Strong two-scale convergence

Our next goal is to prove the strong two-scale convergence in (10) under the additional

smoothness assumptions on the solution of the homogenized problem (41)–(45) and on the ex-

ternal force f . Namely, in this section we suppose that fλ(x) ∈ C1(Ω), uλ(x) ∈ C3(Ω) and

pλ(x) ∈ C2(Ω1).

Theorem 1. Let uε
λ be a solution of problem (7), and let pε

λ = −γ div uε
λ in Ωs

ε. Then

lim
ε→0

∫

Ωh
ε

|uε
λ(x) − uλ(x)|2dx = 0, lim

ε→0

∫

Ωs
ε

|pε
λ(x) − pλ(x)|2dx = 0, (53)

lim
ε→0

∫

Ωs
ε

|uε
λ(x) − uλ(x) − wλ(x, ε−1x)|2dx = 0, (54)
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lim
ε→0

∫

Ω0

∣

∣e
(

uε
λ(x) − uλ(x) − εu0

λ(x, ε−1x)
)∣

∣

2
dx = 0, (55)

lim
ε→0

∫

Ωh
1ε

∣

∣e
(

uε
λ(x) − uλ(x) − εu1

λ(x, ε−1x)
)∣

∣

2
dx = 0, (56)

lim
ε→0

∫

Ωs
ε

ε2
∣

∣e
(

uε
λ(x) − wλ(x, ε−1x)

)∣

∣

2
dx = 0. (57)

Here the triple {uλ(x), pλ(x), w0
λ(x)} with w0

λ(x) =

∫

Y s

wλ(x, y)dy is the solution of the ho-

mogenized problem (41)–(45), and u0
λ(x, y), u1

λ(x, y), wλ(x, y) are given by (32), (35), (23),
respectively.

Proof. In the integral identity (7), we take a test vector function v = uε
λ and pass to the limit

as ε→ 0. Then

lim
ε→0

(

λ2

∫

Ω

ρε|uε
λ|

2dx+ 2λµε2
∫

Ωs
ε

|eij(u
ε
λ)|2dx+ γ

∫

Ωs
ε

(div uε
λ)2dx

)

+

+ lim
ε→0

∫

Ωh
ε

aε
ijkhekh(uε

λ)eij(u
ε
λ)dx =

∫

Ω0

uλ · fλdx+

∫

Ω1

(uλ + w0
λ) · fλdx.

(58)

Let us introduce the vector function

ψ1ε
λ (x) = εu0

λ(x, ε−1x) + b1ε
λ (x) for x ∈ Ω0; ψ1ε

λ (x) = 0 for x /∈ Ω0,

where b1ε
λ is a boundary layer function in a neighborhood of ∂Ω0, such that ψ1ε

λ ∈ H1
0 (Ω0)

3 and
||b1ε

λ ||H1(Ω0)3 → 0 as ε→ 0 (see [18]).

Denote by z1
λ(x, y) the right-hand side of (35), where Qkh(y) and Q(y) are replaced by Q̃kh(y)

and Q̃(y), respectively. It is easy to check that

∫

Y s

divy z
1
λdy = −

∫

Y h

divy u
1
λdy.

Then, in view of (16), we obtain that z1 satisfies the equality

∫

Y s

(

div uλ + divx wλ + divy z
1
λ

)

dy = −
Π

γ
pλ. (59)

Let us now introduce the vector function

ψ2ε
λ (x) = wλ(x, ε−1x) + εz1

λ(x, ε−1x) + b2ε
λ (x) + b3ε

λ (x) for x ∈ Ω1,

ψ2ε
λ (x) = 0 for x /∈ Ω1,

where b2ε
λ and b3ε

λ are boundary layer functions in a neighborhood of ∂Ω1 (see [18]) such that
ψ2ε

λ ∈ H1
0 (Ω1)

3 and

||b2ε||H1(Ω1)3 → 0, ||b3ε||L2(Ω1)3 → 0, ε||∇b3ε
i ||L2(Ω1)3 → 0, supp b3ε ⊂ Ωs

ε.

Now we denote ψε
λ(x) = uλ(x) + ψ1ε

λ (x) + ψ2ε
λ (x). By construction, the vector function ψε

λ

belongs to H1
0 (Ω)3. Setting v = ψε

λ in (7) and then passing to the two-scale limit as ε → 0, we
obtain

6
∑

n=1

In =

∫

Ω0

uλ · fλdx+

∫

Ω1

(uλ + w0
λ) · fλdx, (60)
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where

I1 = λ2ρ̃0

∫

Ω0

|uλ|
2dx, I2 = λ2ρh

0

∫

Ω1

|uλ|
2dx+ λ2ρs

∫

Ω1

∫

Y s

|uλ + wλ|
2dxdy,

I3 =

∫

Ω0

∫

Y

aijkh(y)(ekh(uλ) + ey
kh(u0

λ))(eij(uλ) + ey
ij(u

0
λ))dxdy,

I4 =

∫

Ω1

∫

Y h

aijkh(y)(ekh(uλ) + ey
kh(u1

λ))(eij(uλ) + ey
ij(u

1
λ))dxdy,

I5 = λµ

∫

Ω1

∫

Y

|∇ywλ|
2dxdy, I6 =

Π

γ

∫

Ω1

p2
λdx (according to (59)).

By the property of lower semicontinuity (ii), the left-hand side of (58) is greater than or equal
to the left-hand side of (60). Since the right-hand sides of (58) and (60) coincide, we have

λ2 lim
ε→0

∫

Ω0

ρε|uε
λ|

2dx = I1, λ2 lim
ε→0

∫

Ω1

ρε|uε
λ|

2dx = I2,

lim
ε→0

∫

Ω0

aε
ijkhekh(uε

λ)eij(u
ε
λ)dx = I3, lim

ε→0

∫

Ωh
1ε

aε
ijkhekh(uε

λ)eij(u
ε
λ)dx = I4,

2λµ lim
ε→0

∫

Ωs
ε

ε2|eij(u
ε
λ)|2dx = I5, γ lim

ε→0

∫

Ωs
ε

(div uε
λ)2dx = I6.

Now, using properties (iii)–(v) of two-scale convergence leads to (53) and (54). Moreover, we
have

e(uε
λ(x))

2
→ e(uλ(x)) + ey(u0

λ(x, y)), x ∈ Ω0, (61)

χ(Ωh
1ε)e(u

ε
λ(x))

2
→ χ(Y h)

(

e(uλ(x)) + ey(u1
λ(x, y))

)

, x ∈ Ω1, (62)

εχ(Ωs
ε)e(u

ε
λ(x))

2
→ χ(Y s)ey(wλ(x, y)), x ∈ Ω1. (63)

Under the above smoothness assumptions, (55)–(57) follow immediately from (61)–(63). This
completes the proof of Theorem 1.

Finally, applying the inverse Laplace transform to (53)–(57), we deduce the following result.

Theorem 2. Let uε(x, t) be a solution of problem (1)–(4). Then

lim
ε→0

∫

Ωh
ε

|uε(x, t) − u(x, t)|2dx = 0, lim
ε→0

∫

Ωs
ε

|pε(x, t) − p(x, t)|2dx = 0,

lim
ε→0

∫

Ωs
ε

|uε(x, t) − u(x, t) − w(x, ε−1x, t)|2dx = 0,

lim
ε→0

∫

Ω0

∣

∣e
(

uε(x, t) − u(x, t) − εu0(x, ε−1x, t)
)∣

∣

2
dx = 0,

lim
ε→0

∫

Ωh
1ε

∣

∣e
(

uε(x, t) − u(x, t) − εu1(x, ε−1x, t)
)∣

∣

2
= 0,

lim
ε→0

∫

Ωs
ε

ε2
∣

∣e
(

uε(x, t) − w(x, ε−1x, t)
)∣

∣

2
dx = 0.

Here the pair {u(x, t), p(x, t)} is the solution of the homogenized problem (48)–(52), w(x, y, t) is

given by (47), and

u0(x, y, t) = V kh(y)
∂uk

∂xh

(x, t), u1(x, y, t) = −Qkh(y)
∂uk

∂xh

(x, t) − p(x, t)Q(y),

where the vector functions V kh(y), Qkh(y), and Q(y) are the solutions of the cell problems (27),
(28), and (38), respectively.
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Усреднение уравнений акустики для частично
перфорированного упругого материала
со слабовязкой жидкостью

Алексей С. Шамаев

Владлена В. Шумилова

Рассмотрена математическая модель, описывающая малые колебания гетерогенной среды, состо-

ящей из частично перфорированного упругого материала и слабовязкой сжимаемой жидкости,

заполняющей поры. Для данной модели с помощью метода двухмасштабной сходимости постро-

ена соответствующая усредненная модель и найдены граничные условия, связывающие уравнения

усредненной модели на границе между сплошным упругим материалом и пористым упругим ма-

териалом с жидкостью.

Ключевые слова: усреднение, двухмасштабная сходимость, гетерогенная среда.

– 370 –


