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In this paper a mathematical model describing small oscillations of a heterogeneous medium is considered.
The medium consists of a partially perforated elastic material and a slightly viscous compressible fluid
filling the pores. For the given model the corresponding homogenized problem is constructed by using the
two-scale convergence method. The boundary conditions connecting equations of the homogenized model
on the boundary between the continuous elastic material and the porous elastic material with fluid are
found.
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In 1989, Nguetseng [1] introduced the notion of two-scale convergence, which provides a
new approach in the homogenization theory. The method of two-scale convergence was further
developed by Allaire [2] and generalized by other authors (see, e.g., [3-6]). As it turns out,
this method is especially useful for studying homogenization problems whose solutions do not
have a limit in the classical sense (for example, in the L?-norm). In applications, such problems
describe some physical processes in heterogeneous media, for example, a diffusion process in
highly heterogeneous media [2] or a joint motion of an elastic skeleton and a slightly viscous
fluid [7]. Recently, the method of two-scale convergence is widely applied in the homogenization of
various mathematical problems that arise in mechanics of heterogeneous media (see, e.g., [8-14]).

In this paper, we consider a mathematical problem that describes small oscillations of a het-
erogeneous medium consisting of a partially perforated elastic material and a slightly viscous
compressible fluid filling the pores. We assume that the elastic material is inhomogeneous with
e-periodic microstructure, and the structure of the perforation in the porous part of the elastic
material is also e-periodic. The mathematical problem under consideration involves the linear
elasticity system describing the motion of the elastic material, and the Stokes system describ-
ing the motion of the fluid. Finally, the problem is complemented by homogeneous boundary
and initial conditions. Using the method of two-scale convergence and the Laplace transforms,
we construct the corresponding homogenized problem and find the boundary conditions which
connect equations of the homogenized problem on the boundary between the continuous elas-
tic material and the porous elastic material with fluid. In addition, using the notion of strong
two-scale convergence, we establish some corrector-type results under suitable smoothness as-
sumptions on the solution of the homogenized problem and on the external force. When an
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elastic part of the heterogeneous medium is completely perforated, the corresponding homoge-
nization problem was analyzed in [7,9,12] and [15]. Namely, the first research of this problem
was carried out in [15], and later the homogenized model was mathematically rigorously justified
in [7] by using the method of two-scale convergence. In [9] and [12], this homogenized problem
was derived in the form that is known from the classical physical papers such as [16] and [17].

1. Statement of the problem

Let Q be a bounded domain in R? with smooth boundary 9, and let Y = (0,1)3 be the
unit cube in R3. We suppose that @ = QoUQ; US and Y = Y*UY?* UT, where Q, Q1, V",
and Y® are open connected sets in R3, S is the smooth surface that separates Qy and €2, and
I" is the smooth surface that separates Y and Y*. In addition, we denote by Y . (respectively,

per

Y2,) the Y-periodic repetition of the set Y U (9Y" N3Y) (respectively, Y* U (9Y* N JY)) and

er
sippose that both sets Yp}ér and Y3, are connected in R?.
For a sufficiently small ¢ > 0 we divide the domain €2 into two subdomains Q” and Qf as
follows:
Q=0neYy,, Q=QuUQLuU@2L.NnS), Q. =0 neY)

per:*

We suppose that the set Q" is occupied by an elastic material, whereas the set 2 is occupied
by a slightly viscous compressible fluid. In the sequel, the sets Q" and Q¢ are called the elastic
and the fluid parts of €2, respectively.

Now we are going to state the mathematical problem describing the joint motion of elastic
and fluid parts of . Let us assume that u®(z,t) is the displacement vector, exp(u®) are the com-
ponents of the strain tensor, ey (u®) = (Ous /Oxy, + Ous, /Oxy) /2, and f(x,t) € H*(0,T; L?(2)3)
is a given force. The equations of motion in the elastic part Q" are given by

L0%ui  Oop

iy . h
Po ot2 - Bx]- +fl($,t) m QEX (O’T)7 (1)

where p§(z) is the density of the elastic material,

po(x) = po(e'x), poly) € L2, (Y), 1< po(y) <p1 (p1 = const > 1),

(“per” denotes Y-periodicity), o; are the components of the stress tensor, oF; = a1, (%)exn (u®),

and ag;p, (T) = aijin (e7'z) are the elasticity coefficients such that a;rn(y) € L2, (Y) and

aijen(y) = ajien(y) = arni;(y) = agjnr(y), 1<14,5,kh <3,

@ijih (Y)&ii€kn = co&ijij,  co >0, V& €R, & =&
Here and throughout this paper, we use the convention that repeated indices imply summation
from 1 to 3.
The equations of motion in the fluid part 27 are given by
J0%us  0dof

52 = 0331; + fi(z,t) in Q2x (0,7), (2)

where p® is the fluid density, p® = const > 0, and

ou® ..
05; = =0ip° + €2 (00i;0kn + 2p0ikdjn)ern <8t> . pi(x,t) = —ydives(z, ).
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Here p®(x,t) is the fluid pressure, d;; is the Kronecker symbol, v = c2p®, c is the speed of
sound in the fluid, ¢ = const > 0, and £2n and 2y are the viscosity coefficients of the fluid
satisfying the following conditions: > 0 and n/u > —(2/3)a with 0 < o < 1 [15].

Besides, at the interface S. = 9QF N Q2 we have the continuity of the displacement and of
the normal stress:

[u]s. =0, [o5njls. =0, (3)
where [-]s. denotes the jump across the boundary S, and n;, j =1,2,3, are the components of
the unit normal to S;.

Finally, the problem is supplemented by homogeneous initial and boundary conditions

€ aua €
u®(x,0) = ﬁ(x,O) =0,2€Q; u(x,t)=0, x€9Q, te(0,T). (4)

The variational formulation of problem (1)—(4) is the following: find a function uw®(t) with

values in H}(Q)? such that

56211‘;: 21e du® €(n,E _ 1 3
/Qp indx—ksb (8t,v>—|—c(u,v)—/ﬂfwidx Vv € Hy(Q2)°, (5)
R ou®
u(0) = —-(0) =0, (6)

ot
where pf(x) = p§(z) for z € Qb p°(z) = p* for z € QF, and

b (u,v) = / (ndivudivo + 2ue;;(u)e;; (v))de,
Q

¢ (u,v) = /Q

In the same way as in [15], where the whole elastic part of 2 was supposed to be porous, one
can show that for any e > 0 there exists a unique solution of problem (5), (6).

Let us extend the vector function f(z,t) by zero for t < 0 and ¢t > T. Next, we convert the
evolutionary problem (1)—(4) into the stationary one by using the Laplace transform g(t) — gx
in time. Then the variational formulation (5), (6) becomes: for a fixed A\ with ReX > g > 0,
find a function u§(z) € H}(Q)? such that

v divudivedz + /Qh a;jknern(u)ei;(v)de.

s
€

)\2/ 0° (u5)svidr + Ae?b° (u, v) + ¢ (u, v) = /(fA)ividx Yo € Hy ()3 (7)
Q Q

2. Two-scale convergence

We begin this section with two basic definitions related to the theory of two-scale convergence
(see [2,5]).
Let u®(x) be a bounded sequence in L?((2).

Definition 1. A sequence u®(z) weakly two-scale converges to a function u(x,y) € L*(QxY,dz x

dy) = L?2(Q x Y), u¢(z) EN u(z,y), if

lim [ w(2)p(@)(e z)dz = / /Y u(z, y) () () dady (s)

e—0 Jo

for any functions p(z) € C§°(Q2) and ¥(y) € Coe.(Y).
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It should be noted that the class of test functions used in the above definition can be enlarged.
For example, one can takes in (8) test functions ¢(z) € C(€) and ¢ (y) € L2,.(Y) or (x) € L*(Q)
and ¥(y) € Cper(Y) (see [2,5]).

Definition 2. A sequence u®(z) € L?(Q) strongly two-scale converges to a function u(z,y) €
I2(QxY), u(2) = u(,y), if

lim us(x)ve(m)dx://u(m,y)v(m,y)dxdy whenever ve(x)iv(x,y).
Q aJy

e—0

Let us briefly recall the main properties of two-scale convergence, the proofs of which can be
found in [2,4] and [5].

(i) If u®(z) is a bounded sequence in L?(Q), then there exists a function u(z,y) € L*(Q x Y)

such that, up to a subsequence, u®(x) 2 u(zx,y).

(ii) If u®(z) LN u(z,y), then

“E($)4/1/“($ay)dy in LQ(Q): hIEIL%lfHUE(x)HLQ(Q)>||u($vy)||L2(QxY)-

(iii) If a(y) € Lye,(Y) and u®(x) A u(x,y), then a(e " 1z)u(z) N a(y)u(z,y).
(iv) If u®(x) A u(z,y) and lim. o |[u®(2)||L2(0) = [|u(z,y)||L2(@xy), then u®(z) 2 u(z,y).
(v) If u®(x) 2 u(z,y) and u(z,y) € C(Q, L2,,.(Y)), then

per

lim ||u® (z) — u(z, e 2)|L2() = 0.

(vi) Let u®(x) be a bounded sequence in H'(£2). Then there exist functions u(z) € H(Q)
and u;(z,y) € L*(Q,H..,.(Y)/R) such that, up to a subsequence, u®(z) EN u(z) and

per

Vus(z) 2 Vu(z) + Vyus (z,y). Moreover, u(z) € H}(Q) if uf(z) € HL(Q).
(vii) Let u®(z) be a sequence in H'(€);) such that
[[ufllL2(0,) < C, HVU€||L2(Q’;E)3 <O, gl|Vufl|p2s)s < C,

where C' is a positive constant which does not depend on e. Then there exist functions
u(z) € HY (M), ui(z,y) € L2(,HL,.(Y")/R), and w(z,y) € L*(4,H},,.(Y)) with
w(zx,y) =0 for y € Y, such that, up to a subsequence,

u (@) 2 u(w) +wley), x(Q) Ve (@) 2 (V") (Vu@) + Vo (@,y)).

ex(Q2)Vur (z) 2 X (V) Vyuw(z,y),

where (D) denotes the characteristic function of the set D. Moreover, u(x) € Hg () if
u®(z) € HY(Q).
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Now, using the above properties of two-scale convergence, we are going to study the asymp-
totic behavior of the solution u§ of problem (7) when & goes to 0.
Firstly, choosing in (7) v = u5, we obtain

(5, uf) <O, €7 (uf, u5) < C.

Hereinafter, C' denotes various positive constants independent of ¢.
By using the same arguments as in [7], we deduce that the solution u5 of problem (7) satisfies
the a priory estimates

luillzz s < €, ellV(uR)ill2e <O (IV(uR)ill2eys < O [l divey]lrz ) < G (9)

For notational convenience we denote by Vu§ the 3 x 3 matrix with coefficients 9(u5);/0z;.
In order to proceed we need the following crucial lemma.

Lemma 1. Let u§ be a solution of problem (7). Then, up to a subsequence,

us () 2un(x) for x €y, ui(x) > ur(x)+wa(z,y) for x e, (10)
Vs () 2 Vua(z) + Vyud(z,y) for € Q, (11)
X(QL) VU5 (@) 2 x(Y")(Vua(2) + Vyul (z,9)) for @€, (12)
ex(Q)Vus (@) 2 X(Y*)Vywa(z,y) for z €, (13)

where
ur € HUQ)®, ol € L2(Qo, L\ (V)P /RP), ) € L2, HY, (Y1) /R9),

wy € L2(Ql,H;er(Y)3), wy =0 for y € Yh, divywy =0 for y € Y*.

Proof. Using the above estimates and properties (vi) and (vii) of two-scale convergence, we have,
up to a subsequence,

u5 () A W) (z) for = € Qo, u§(x) N v (z) +wx(z,y) for x € Qy, (14)
where v} € H'(Q)?, vi € H'(2)?, and wy € L3y, HL,.(Y)%) with wy = 0 for y € Y.
Besides, in virtue of property (vii), we also derive relation (13). Furthermore, relation (13) and
the last estimate in (9) yield div, wy =0 for y € Y.

To prove that v?\ ls = v}\ |s, we extend the perforation from ; to g by setting Q. = Qﬂerher.
Then, up to a subsequence,

Q)5 () = [YPlun(2) in LA(Q)?
(see [18]), where uy € H(£2)3. On the other hand, from (14) we obtain
X0 N Q)5 () = [YPo8(2) in IA(Q0)?, ()5 () = [YHob(z) in L2(@)%,
It is easy to see that uy(z) = v (z) if z € Qo and uy(z) = v} (2) if z € Q4, therefore v{|s = vi|s.

Finally, relations (11) and (12) immediately follow from property (vi) of two-scale convergence.
O
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3. Limiting behavior of the pressure

In this section we study the limit behavior of the fluid pressure p5(z). Namely, we state and
prove the following lemma.

Lemma 2. Let u5 be a solution of problem (7), and let p5 = —ydivu5 in Q. Then, up to a
subsequence,
S 2 S
X(Q)p5 (@) = x(Y*)paz),  paz) € L (). (15)
Moreover,

°l

Y
div, u (z,y)dy = |Y*| divuy(z) + | S

pa(x) + div/ ) wy(z,y)dy. (16)

Yh

Proof. From (9) it follows that the sequence x(€%)p5 is bounded in L?(€2;). Therefore, up to a

subsequence, we can assume x(Q2)p5(z) EN pa(z,y) for € Q.

Now we take a test vector function of the form v(z) = ep(z)b(e~'z), where p(z) € C§° (1),
b(y) € H,,,.(Y)?, supp b(y) C Y*. Passing to the two-scale limit in the integral identity (7) as
€ — 0, we have

/Q /pr(x,y)go(x) divy b(y)dzdy =0

or, since () is arbitrary,
/ pa(z,y) divy b(y)dy = 0,
Ys

which implies py(z,y) = pa(x) for y € Y*. Relation (15) follows now from property (iii) of
two-scale convergence.
To prove equality (16), we use Lemma 1 and get

s

div u§ 4divu,\(x)—i-div/ wy(z,y)dy in L*(), (17)

x(Q) divu§ — |Yh|divuA(ac)+/ div, u} (z,y)dy in L*(Q).
Yh

On the other hand, we already have proved that

°|

x(Q)divu§ — — pa(x) in LQ(Ql).

Thus,

°|

Y
p,\(;v)—i—/ div, u) (z,y)dy in L*(Q).
v yh

divus — [Y"| divuy(z) — |

Comparing the last relation with (17) yields the desired equality (16). O

4. The cell Stokes problem

Now we choose in (7) a test vector function of the form v(z) = £(z)b(e~'x), where £(z) €
Cs°(Q4) and b(y) € H,,.(Y)? with supp b(y) C Y* and div, b(y) = 0. Passing in (7) to the limit

per
as € — 0, using Lemma 1, and taking into account that £(z) is arbitrary, we obtain

/ (Wprwa(@,y) = AuAyywa(@,y) — ga(7)) b(y)dy =0, (18)
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where we denote gy(z) = fa(z) — A2p°ux(x) — Vpa(z). Since the orthogonal of divergence-
free functions is exactly the gradients, from (18) it follows that there exists a function ®) €
L*(Qy, H),,.(Y*)) such that

AQPSwA(Ivy) - AﬂAyywA(xvy) - gA(-T) = qu)k(xay)v HS le RS Y®. (19)
Now, as in [12], we look for a vector function w)y(z,y) in the form
wr(z,y) = My (z)Nx(y), v €, yeY?, (20)

where M} € L?(2;) and N} € H;QT(Y)?’, r =1,2,3, are to be specified. To do this, we substitute
(20) into (19) and get

M (x) (Np°NX(y) = Auddyy N3 (y)) — ga(@) = Vy@r(.y). (21)
Now we set
M{(z) = (gx)r(2), r=1,2,3; ®a(z,9) = —(92)r(2)WX(y)-
Then from (21) it follows that
(9x)r (@) (VWX (y) + A2p*Ni(y) — Mdyy Ni(y)) = (92)r(2)e”,

where e” is the unit vector of the y,-axis. Finally, we define the pair {N{(y), W{(y)} as the
solution of the following Stokes problem:

VWi + XNp°NY — A,y Ny =e", div, Ny =0 in Y*, Ny =0 on I. (22)
Let us summarize the results of this section in the following lemma.

Lemma 3. Let wy(z,y) be as in Lemma 1. Then

) = (()r(0) = 2200 (0) = 5200 ) N5 0. (23)

where N{(y), r =1,2,3, are the solutions of the cell Stokes problems (22).

5. Homogenized tensors
Lemma 4. Let u5 be a solution of problem (7). Then
afnern(us) = bijrnern(uy) in L*(Qp), (24)

X a5 nern(us) = gijrnern(ur) + Bipa in L*(Q1), (25)

where

bijkh = / (aijkh + aijlme?m(th)) dy, Qijkh = / (aijk:h - aijlme?m(Qkh)) dy,
Y oIy (26)
Bij = —/ divy, QY (y)dy.
Yh
Here VM'(y) € H}.(Y)?/R? and Q*"(y) € H},.(Y")?/R? are the solutions of the following cell
problems:

P (al-jkh + aijlme?m(vkh)) =0 in Y, (27)
Yj
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9 Y (kh , h

a9; (az]kh @ijime], (Q )) n , (28)
(aijkn — aijimel, (@) v; =0 on T,

where vj, j = 1,2,3, are the components of the unit normal to the boundary I

Proof. Using the properties of two-scale convergence, we have

0 anenn () — /Y aisin () (exn(us) + el (uQ))dy i L2(), (20)

X(QF)anern (uy) = /Yh aijrn(y)(exn(ux) + epy, (u)))dy in L?(Q). (30)

To prove (24), we take in (7) a test vector function v(z) = ep(z)b(e1x), where ¢(z) €
C§° (), b(y) € C.(Y)3. Passing to the limit as ¢ — 0 and using Lemma 1, we obtain

per

/ aijin (exn(un) + el (ul)) ef;(b)dy = 0. (31)
Y
We look for a solution of (31) in the form

O(u)k
31‘h

ul(z,) = VF'(y) (), z€Q, yey, (32)

where V¥'(y) € H,, (Y)3/R3. Substituting (32) into (31) yields

per
/ (aijrn + aijlme}’m(th)) ef;(b)dy = 0. (33)
Y

An integration by parts shows that (33) is a variational formulation associated to (27). Further-
more, we have

/ aijin (exn(un) + el (u)) dy = bijrnern(uy).
Y
Comparing the last equality with (29), we derive (24).
It remains to prove (25). For this purpose we choose in (7) a test vector function v(x) =

ep(x)b(e'x), where () € C5°(), b(y) € Cp2.(Y)?. Passing to the limit as ¢ — 0 and using
Lemmas 1 and 2, we get

/ Gijkh (ern(un) + ezh(u}\)) er;(b)dy — p,\/ div, bdy = 0. (34)
y ys

We look for a solution of (34) in the form

) = Q" @)~ pr )@, @, ye V", 35)

where Q*"(y), Q(y) € H,,,(Y")?/R?. Substituting (35) into (34), we obtain two integral iden-
tities:

/ (aijin — agimef,, (Q) ey (b)dy = 0, (36)

Y

/h aijrneg, (Q)ef; (b)dy — div, bdy = 0. (37)
Y
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An integration by parts shows that (36) is a variational formulation associated to (28), while
(37) is a variational formulation of the following cell problem:

0 .
3 (aijrnel, (@) =0 in Y™ ayunel, (Q)v; =v; on T. (38)
j

For further needs, we extend Q*"(y) and Q(y) from Yh~ to the entire periodicity cell Y in
such a way that the extended vector functions Q*"(y) and Q(y) belong to H}!,,.(Y)? and

per

1@ ., vy < CNQ ™ s vmyer 1@y, vye < ClIQll i, vig-

per per per per

Setting b = Q in (36) and b = Q*" in (37) yields

/ aijkneyy, (Q)dy = / div, Qdy = —B;;.
Yh Yh
Thus, in view of (26) we have

/ Qijkh (ekh(UA) + 6%;1(?&)) dy = gijenern(ur) + Bijpa.
Yh

Finally, comparing the last equality with (30), we obtain (25). O

It should be noted that the homogenized coeflicients b;;x, and g;jx, are real and they possess
the classical properties of symmetry and ellipticity (see [7] and [19]).
To conclude this section, we substitute representation (35) into equality (16). Then

11
(’Y + ﬁ) P+ divwg + akhekh(u)\) =0, =€, (39)
where II = |Y*| is the porosity, a;; = I16;; — G5,

5= [ v, Qs u§e) = [ sy

s

Note that the vector function w§ satisfies the boundary condition w - ¢ = 0 on 94, where
¢ is the unit normal to 9€;. Indeed, using (10), we can easily deduce that

lim divuidm:/divuAdm—&—/ divwldx
e—0/q Q o

and the desired boundary condition follows immediately by integration by parts.

6. Homogenized problem

Now we choose in (7) a test vector function v € H} ()3, which does not depend on e. Then
passing in (7) to the limit as ¢ — 0 and using Lemmas 1, 2, and 4, we obtain

)\250/ (uy)ividx + A2 / (/1 (uA)Z + ps(wg)i) vidr — H/ py divodz+
Qo Q1 Q1 (40)

+/ bijknern(ur)e;;(v)dr + (Qijkhekh(u/\)+ﬁijp/\)€ij(v)d$:/(f)\)ividxv
2 o 0
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where
po = / po(y)dy, pr=Tp" +pfy, plf = /} po(y)dy.
Y yn

Integrating by parts in (40) and using the results of Sections 4 and 5, we conclude that the
differential form of the homogenized problem corresponding to problem (7) is

9 803}- .
A po(unr)i = 9. T (fr)i in Qo, (41)
€T

2~ 2 s/, 0 80% :

Apr(un)i + X% (wX)i = 5=+ (fa)i i, (42)
b

II .0 .

(; + B)px + divw; + agregn(un) =0 in Q, (43)
0 _ 2 s Opx r

wy = (f)\)r - A 14 (UJA)T - 833 ve N)\dya (44)
w)-¢C=0on 90, uy=0 on I, [uy]s=0, [Jg\jnj]s =0, (45)
where n; are the components of the unit normal to 5, a;\j = bijrnern(uy) in Qo and O'i)‘j =

Gijkhern(ux) — agipy in Q.

Using the general theory of elliptic problems (see, e.g., [20]), one can prove that there exists
a unique solution of problem (41)—(45).

Now our aim is to derive the non-stationary homogenized problem in the original variables x
and t. For this purpose, we apply the inverse Laplace transform to (23) and obtain

s 0%u, Op
w(x7yat): (fr('rat)_p ot2 (‘T7t)_ or

(x,t)) * N"(y,t), (46)

where the symbol * denotes the convolution in ¢,

g1(t) * g2(t) = /0 g1(t — 5)ga(s)ds.

Now we set

T

ot

et =20, o= / L'y O)dy, r—1,2,3.

Since L" = ANT", it is easy to see that L"(y,t) is a solution of the Stokes problem
oL

P ot
L"(y,0) = (p*)"te", yeY?® L'(y,t)=0, yeT, te(0,T).

— Ay L” + VW =0, div, L" =0 in Y*x (0,T),

Further, we can rewrite (46) as

w(m,y,t) = (fT(xvt) _ps 12 (:L',t) - o, ((E,t)) *-/0 Lr(va)dTv (47)

and so
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It is easy to check that

0?w° 0%u,  Op oD" - s
ot2 _<T_ 2 _awr)* ot +D(O)(.fr—p

R B dp
ot? 0z, )’

Finally, we apply the inverse Laplace transform to system (41)—(43). As a result, we deduce
that the homogenized problem corresponding to the original problem (1)—(4) takes the form

0w 9 Oy
P~ B,

bijkh) + fi(z,t) in Qg x (0,7, (48)
6l‘h

_ Py s0%u,  Op oDy . .
Prgz +P (fr—p B2 —8%)* 5 TP Di0) (fr—p

s 0%u, B dp
ot2? oz,

49)
_ 9 Ouyg, . (

— aixj (qwkhaxh — Oész> +f1(17,t) mn le (O7T)’

II d%u, P ‘

(; + B)p + div, <f’r — 0151; _ 35 ) */O D"(7)dr + ajjeij(u) =0 in Q1% (0,7), (50)

0%u, 0 -
((fr —p‘S 3t2 — afr) */O D;(T)dT) Cj =0 on an, [’u]s = 0, [Uijnj]s = O, (51)

u(z,0) = %(w,O) =0, 2€9Q; u(z,t)=0, z€9Q, te(0,7), (52)

where 045 = bijkhekh(u) in QQ and 045 = qijkhekh(u) — Q5P in Ql.

Remark that system (48) describes the propagation of acoustic waves in the homogeneous
elastic material contained in 2y, while system (49), (50) corresponds to the Biot model [17] and
describes the propagation of acoustic waves in the heterogeneous medium contained in ;.

Finally, we analyze the boundary conditions, which connect equations of the homogenized
problem on the boundary S between the continuous elastic material and the porous elastic
material with fluid. From Section 5 it follows that these conditions depend on the following
constants: bijkn, Gijkh, 11, and B;;, where ;i are the homogenized elasticity coeflicients for the
continuous elastic material, ¢;;xn are the homogenized elasticity coeflicients for the porous elastic
material without fluid, II is the porosity of the elastic material in Q;, and 3;; are the coeflicients,
which characterize the compressibility of the porous elastic material.

7. Strong two-scale convergence

Our next goal is to prove the strong two-scale convergence in (10) under the additional
smoothness assumptions on the solution of the homogenized problem (41)—(45) and on the ex-
ternal force f. Namely, in this section we suppose that fi(x) € C1(Q), ux(z) € C3(Q) and
pa(z) € C*( ).

Theorem 1. Let u§ be a solution of problem (7), and let p5 = —ydivus in Q. Then
lim [uS (z) — ur(2)|?de =0, lim 1p5.(x) — palx)]2dx = 0, (53)
e—0 Qh e—0 Qs
liH(l) [u5, () — ux(2) — wx(z, e x)|*dr = 0, (54)
e—0 Jos
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liH(l) le (u§ (@) — ua(z) — eud (z,e7 ') ’2 dx =0, (55)
e—0 Jq,
lim le (u§(z) — un(z) — eu) (z,e ') |2 dz =0, (56)
e—0 Q}ILE
lir% g2 ‘e (usi (@) — wr(z, e x)) ‘2 dz = 0. (57)
g— Qg

Here the triple {uy(x),px(z),wd ()} with wl(z) = /YU)A(SE,ZJ)CQI is the solution of the ho-

mogenized problem (41)—(45), and ul(z,y), ul(z,y), wr(z,y) are given by (32), (35), (23),
respectively.

Proof. In the integral identity (7), we take a test vector function v = u5 and pass to the limit
as € — 0. Then

lim Az/p5|u§|2dx+2)\u52/ |el-j(uf\)|2dx+’y/ (divus)?dzx | +
e—0 Q Qs Qs (58)

wy - frdx —|—/ (ux + w?\) - fadz.

+ lim afjkhekh(ui)eij(ui)dx :/
Qh 521

e—0 Qo

€

Let us introduce the vector function
3 (x) = eul (z, e ta) + b3 (2) for = € Qp;  Y3°(x) =0 for x ¢ Q,

where bi¢ is a boundary layer function in a neighborhood of 89, such that ¥1* € H}(Q)? and
16381 Er1 (00)2 — 0 as & — 0 (see [18]).

Denote by 21 (z,y) the right-hand side of (35), where Q*"(y) and Q(y) are replaced by Q*"(y)
and Q(y), respectively. It is easy to check that

/ div, 2idy = 7/ div, uldy.
s Yh

Then, in view of (16), we obtain that z; satisfies the equality

II
/ (div uy + divy wy + divy z}\) dy = ——py. (59)
s y
Let us now introduce the vector function

36 (x) = wy(z, e a) +ezy (@, e ) + b3 (2) + b3 (2) for @ € Q,

3(x) =0 for x ¢ Q,
where b3° and b3 are boundary layer functions in a neighborhood of 92; (see [18]) such that
3¢ € Hj(9)? and
||b25||H1(Ql)3 — O, ||b36”L2(Ql)3 — 0, 5||Vb?€‘|L2(Ql)3 — 0, supp b3€ C Qg

Now we denote 15 (z) = ux(x) + 935 (x) + ¥3°(z). By construction, the vector function 5
belongs to H{(Q2)3. Setting v = 95 in (7) and then passing to the two-scale limit as ¢ — 0, we
obtain

6
Z I, = /Q Uy - f)\dl' +/ (U)\ +w9\) ) f)\dx> (60)
n=1 0

Q1
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where

I :)\2/30/ lur[*dz, I :)\2/73/ |U/\|2d1’+)\203/ / |ux + wx [*dzdy,
Qo Ql Q1 s

I;= /Q /Y aijen(y) (ern(un) + el (uR)) (e (un) + eﬁ’j(ug))dq:dy,
L*::/g /Qh““kh<yN€MJUA>**e%xui>xew<ux>+fe%<u§»dxdy,

11
Is = /\u/ / |Vywy|?dzdy, Is=— | pidz (according to (59)).
o Jy TS

By the property of lower semicontinuity (ii), the left-hand side of (58) is greater than or equal
to the left-hand side of (60). Since the right-hand sides of (58) and (60) coincide, we have

A2 lim/ P |us Pde = I, \? lim/ p°|us Pdx = I,
e—0 Qo e—0 o

lim [ afenn (ud)es (ui)de = I, Tim [ aSu,enn(u)es (u5)da = Lo,
e—0 Q0 e—0 Jon

le
21 lim/ e2lei;(us)Pdr = Is, ~ylim [ (divu§)?de = Ie.
e—0 Qs e—0 Qs
Now, using properties (iii)—(v) of two-scale convergence leads to (53) and (54). Moreover, we
have

e(u5 () = e(ur()) + ey (W (2,9)), @ € D, (61)

X(Q)e(ui (@) > X(Yh) (e(ur()) +ey(ur(z,y))), @€, (62)

eX(Q2)e(us (x) 2 X(Y)ey (wa(@,y)), @€ . (63)

Under the above smoothness assumptions, (55)—(57) follow immediately from (61)—(63). This
completes the proof of Theorem 1. O

Finally, applying the inverse Laplace transform to (53)—(57), we deduce the following result.
Theorem 2. Let u®(z,t) be a solution of problem (1)—(4). Then

lim [uf(x,t) — u(z,t)|?dx = 0, hm Ip° (2, ) — p(x,t)|*dr = 0,

e—=0 Jon —0 Qs
lim |u (2, t) — u(z,t) — w(x,e ‘o, t)Pde = 0,
e—0 Qs
lir% le (uf (2, t) — u(z,t) — eu’(z,e 'z, t)) |2 dx =0,
=0 Jq,
lim le (uf(@,t) — u(z,t) — eu' (v,e "', t)) |2 =0,
E_>0 Q?’E
lim % le (u(z,t) — w(z, e 'z, 1)) |2 dz = 0.
e—0 Qs

Here the pair {u(x,t),p(z,t)} is the solution of the homogenized problem (48)—(52), w(x,y,t) is
given by (47), and
8uk

u’(z,y,t) = V(y v h( 1), ul(@y ) = —Q " (y) 5 (2.t) — p(z, )Q(y),

where the vector functions VF¥'(y), Q¥ (y), and Q(y) are the solutions of the cell problems (27),
(28), and (38), respectively.

8’1”~C
8$h
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YcpenHeHne ypaBHEHUIT aKyCTUKH JIJIsT YaCTUIHO
1nepdOopUPOBAHHOIO YIIPYTrOoro MaTepuaJia
CO CJIaDOBA3KOI YKMIKOCTHIO

Anekceii C. I[ITamaeB
Baapnnena B. Illymniaosa

Paccmompena mamemamuseckas Moodeab, ONUCHLBAIOWLAL MAAVLE KOACOAHUSA 2emepo2entoli cpedvl, COCMO-
Auwet U3 4acmuwHo nepPopuposarHo20 Ynpyao2o Mamepuard U CAGO08A3KOT CHCUMAEMOT HcudKocmu,
3anoansowet noput. aa dannotl modeau ¢ nomowpbro memoda 08yrmacuwumabHoti cxodumMocmu nocmpo-
ena COOMBEMCMEYIOULAA YCPEOHEHHAA MOOEAD U HATLOEHDL 2PAHUNHDBLE YCAOBUS, CBA3BIBANOULUE YPACHEHUS
ycpednennoti Modeay Ha 2PaHUUE MEHCAY CLAOUHBIM YNPY2UM MATMEPUGAOM U NOPUCTIBIM YNPY2UM M-
MEPUAAOM C HCUIKOCTNDIO.

Karoueswie caosa: ycpednenue, 08Yyrmacumabnas crolumocmys, 2emepo2ernas cpeoa.
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