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A new interatomic potential for metals based on the embedded atom method is proposed in this paper.
Some approzimation of electron density distribution is suggested from the basic principles of quantum
mechanics. The functional form of the electron density distribution includes two adjustable parameters.
The form of this distribution defines the pair potential and, in part, the form of embedding energy func-
tion. The parameters are determined empirically by fitting to the equilibrium lattice constant, cohesion
energy, vacancy formation energy, low index surface energy and elastic constants. Potential parameters
for 27 metals (10 fcc metals, 9 bce metals and 8 hep metals) are presented. Potential is expressed by

simple functions and can be used in molecular dynamics simulations of large atomic systems.
PACS: 34.20.Cf, 61.50.Ah
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Notation

a, ¢ — equilibrium lattice constants,

E., E ¢ — experimental cohesive energy per atom and unrelaxed vacancy formation energy,
c11, C12, C13, C33, C44 — experimental crystal elastic constants,

B — experimental bulk modulus,

Eéa), Eg‘}) — calculated cohesion energy per atom and unrelaxed vacancy formation energy,

cg‘i), c(l‘é), c§‘§), cé’é), cfli) — calculated crystal elastic constants,

B(@) — calculated bulk modulus,
() — nucleus charge.

Introduction
In spite of considerably increased computer speeds, the application of ab initio methods for

an atomistic simulation of materials is still limited to relatively small systems of atoms and
relatively short simulation times. By contrast, the use of empirical interatomic potentials makes
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it possible to simulate much larger systems for much longer times. For this reason there is a
demand for realistic interatomic potentials.

In this paper we propose a consistent and practicable interatomic potential for pure metals. In
this section of the paper we introduce our approach to the development of interatomic potential.
Section 1 describes a strategy of parametrization of interatomic potential. In section 2 we present
the results of fitting and testing the potential for 27 metals. In section 3 we summarize our results
and make some conclusions.

The potential developed in this work is based on the formalism of the embedded-atom method
(EAM) [1,2]. In the framework of EAM, the total energy of a system can be written as

N N N
1
Eior = § E,, E,= F(Pn) + 5 E (P(rnm) y Pn = § p(rnm)v (1)
n=1 m;l m;l

here E,,; is total energy of the system of N atoms, F, is the internal energy associated with
atom n, p, is the electron density at atom n due to all other atoms, p(r,,, is the contribution
to the electron density at atom n due to atom m at the distance ry,,, from atom n, F(p,) is
the embedding energy of the atom into the electron density p,, ©(rn.m) is the two body central
potential between atoms n and m separated by r,,,. Interpretation and functional form of ¢(r),
p(r), and F(p) depend on a particular method. The popularity of the EAM model results from its
quantum mechanical justification, as well as its mathematic simplicity, which makes this model
conducive to large-scale computer modeling.

In recent years, a number of EAM potential models for fcc metals have been proposed. For
example, Sheng et al. [3] have developed EAM potentials for fourteen fcc metals. The potentials
were developed by fitting the potential-energy surface of each element derived from high-precision
first-principles calculations. The three determining functions were expressed with quintic spline
functions for each element. Typically 15 equidistant spline knots were used for both the density
and the pair functions, and 6 spline knots were used for the embedding function. This results
in a great quantity of fitting parameters. Hijazi and Park [4] have proposed potential for seven
fcc metals: Ag, Al, Au, Cu, Ni, Pd and Pt. This potential has six adjustable parameters. Dai
et al. [5] have proposed an extended Finnis-Sinclair potential for six fec metals: Ag, Au, Cu, Ni,
Pd and Pt.

A potential for a bee metal should predict an energetic stability of a more open (not close
packed) bcc structure. Dai et al. [5] have developed an extended Finnis-Sinclair potential for
six bec metals: Fe, V, Mo, Nb, Ta and W. Lee et al. [6] have applied the second nearest-
neighbor modified embedded atom method (MEAM) to bce transition metals, Fe, Cr, Mo, W,
V, Nb, and Ta. In MEAM model the electron densities are defined as the sum of term with
s, p, d, and f symmetry from the neighboring atoms. By including these angular terms in the
background electron density, angular forces are introduced into the model. MEAM potentials
are up to 10 times less computationally efficient as compared to EAM potentials [7]. This is
because the electron density in MEAM has more complicated expression involving sums over
three-body contributions that depend on the angle 6;;;, subtended by atoms j and % at a central
atom 7. Wilson and Riffe [8] have presented an EAM model that accurately describes vibrational
dynamics in the alkali metals Li, Na, K, Rb, and Cs.

Compared to both fcc and bee metals, the hexagonal close-packed (hep) metals have been
studied relatively little, both experimentally and with simulations. The application of EAM to
hep metals is more difficult in comparison with the cubic metals. In fitting potentials for an
hep metal one should take care to ensure the required c¢/a ratio which experimentally seldom
equals exactly (8/3)'/2 (it is the “ideal” value calculated for close packing of hard spheres). In
addition there are 5 elastic constants, rather than 3 as in cubic metals. Pasianot and Savino [9]
have made EAM-like potentials for hcp metals Hf, Ti, Mg and Co. They also showed that an
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EAM-like model cannot reproduce all elastic constants correctly for those hcp metals which have
1
C13 — C44 > 0 or 5 (3612 — 811) < €13 — C44.

Such metals are e.g. Be, Y, Zr, Cd and Zn. Cleri and Rosato [10] have derived parameters
of tight-binding potential for the hcp metals Ti, Zr, Co, Cd, Zn and Mg. Comparison with the
experimental data shows that they obtained a reasonable agreement for Mg and Co whereas the
agreement is not satisfactory for other metals. Chen et al. [11] have proposed an EAM potential
for five metals, Co, Ti, Hf, Zr and Ru. In order to simulate anisotropic properties of hcp metals
two sets of parameters in the potential model was used. The equilibrium hcp structure contains
only two types of planes with an alternating ABAB. .. arrangement. The first set of parameters
determines the interactions between atoms in A-plane or in B-plane. The second set determines
the interaction between atoms of A-plane and B-plane. Thus, this potential can be applied only
to the problems where atomic structure is close to the equilibrium hcp structure. Baskes and
Johnson [12] have developed a MEAM potential for hep metals.

The purpose of this paper is to present consistent and practicable EAM model which can
be applied to many widely used metals. Some approximation of electron density distribution is
suggested in this paper. The form of this distribution defines the pair interaction and, in part,
the form of embedding energy function. Such approach is physically justified because interaction
in metals is governed by the electron density distribution of atoms.

1. Potential construction

Consider an atom with N electrons. In the non-relativistic case many-electron wave func-
tion ¥ satisfies the Schredinger equation [13]:
h2
—mA\I/ + U (rl, ceey I'N) U = .E\II7
where h is Planck’s constant and m, is the electron mass. The Laplace operator A acts in the
N-dimensional coordinate space. Potential energy is

N N
1
U(rl,...,rN): E U0(|I'n‘)—|—§ E U1 (‘I‘n—I‘mD,
n=1

mn
where Uy is the potential energy of electron-nucleus interaction and U is the potential energy of
electron- electron interaction. To consider electrostatic interaction between atoms one can use
the quasiclassical approximation where electron charge is "smoothed" around nucleus and the
electron density is introduced. The density of an electron cloud is defined as follows

p(I‘) = Q </ \112(1‘1, FETTY S P W N [PPPIRN PN)dvl..d‘/i_ld‘/i+1..dVN> 5

where angle brackets mean averaging over all possible permutations with respect to r and r; and
integration is performed over 3(N —1) coordinates. Suppose that 15 (r),k = 1,2,... is a complete
set of orthonormalised single- electron wave functions. Then any many-electron wave function
can be expressed as a linear combination of products of single-electron wave functions as follows

N 2
U(ry,...ry) = Zai H Zbijk¢k<rj) ) / (Z bijkwk(rj)> av; =1,
k

i j=1 k
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where index ¢ enumerates all possible many-electron states in terms of appropriate statistics and
index k enumerates all possible single-electron states. Then we obtain the following expression
for the electron density

() = @Y a?uE(r). @

Consider a hydrogen-like atom. The normalized wave function in this case has the form in
spherical coordinates [13]

lbnlm(n 9; 90) = Dnl (’I“)lem(a, (p)e—’ynr7 (3)

where n, [, m are the quantum numbers, Y;,,,(6), ¢) are spherical harmonics and D, (r) are some
polynomials. After substituting wave functions (3) into (2) and averaging over the angles, we

obtain
p(r) = QY a?PE(r)e .

Here we express the sum of squares of polynomials D,,;(r) with positive coefficients as the square
of some polynomial P;(r).

We will calculate the interaction between the two atoms when the distance between them is
relatively large so that only the outer electron clouds overlap. This corresponds to small values
of a;. We will determine parameters of electron density distribution from experimental data
so that the degree of polynomial P; should not be too high. As a first approximation, one can
suggest the following form of the electron density distribution

Qa®

pr) = po(1+Br)°e™", po = g oy

The electric potential created by this electron density can be shown to be

o(r)

r

o Q [2 af?(rPa® +2ra+2)  2aB(a+26)(ra+1) 2\ _ar
8w < ( (6af + 1262 +a?) (608 + 1262 + a?) —l—a—&—r)e )’

where ¢g is the vacuum permittivity. Consider the energy of electrostatic interaction between
two atoms. The energy consists of three parts:

U () =Upnn (r) + Uss () + Ups (1),

where U, is the energy of electrostatic interaction between nuclei, Uy is the energy of interaction
between electron shells and U, is the energy of interaction between nucleus and electron shell
of other atom. They are

_ Qs

dmegr

Uss (r) = 27 /OO (Aﬂ <‘I>1 (r") p2 <\/7‘2 + () —2r (r’)cos(ﬁ))> sin(&)d@) () dr'+

+2m /: N ( /0 ’ (% (') p1 <\/r2 + ()2 —2r (r’)cos(@))) sm(e)do) (') dr,

where r is the distance between the centres of electron shells where nuclei with charges Q1 u Q-
are located. One can obtain the analytical expression for Ugs. However the expression is very
cumbersome even in the case of two identical atoms and it is not presented here. A quantum

Unin (1)

s Uns (1) = Q1P2 (1) + Q291 (1),
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mechanical effect of the exchange interaction plays an important role when electron shells overlap.
To take into account this effect we introduce the adjustable parameter v and then write the two
body central potential in the form

@ (1) =7 (Unn (r) + Uss (1) + Uns (1)) - (4)
Substituting the analytical expression for U into (4) and rearranging the obtained relation gives

the following form of the two body potential for identical atoms

6

p(r) =c-exp(-ar) Y an(an)", e=

n=—1

yaQ?

dmeg

where parameters a,, depend on « and :

a_1 =1,

Qnp (aaﬁ) — p7z+1( ( f) n = O, ceny 6.

Functions p,, are of the form

po (@, ) = (0 + 603 + 126°),

p1 (o, B) = 0.3125a* + 5.1250° 3 + 31.502 3% + 88.875a4° + 98.15623%,
P2 (o, B) = —0.1875a" — 0.875a° 5 + 1.50% (% + 16.845a3° + 723%,

p3 (a, ) = —0.02a* — 0.50°3 — 2.4402 3% — 3.8750,3° + 2.1253%,

pa (o, f) = —0.040° 3 — 0437502 % — 1.5a3% — 1.8753%,

ps (o, f) = —0.15a% — 0.02902 5% — 0.2253%,

pe (o, B) = —0.008a3% — 0.018753%,

pr (a, ) = —0.000895"

The first-principles calculations give the following important information about the general be-
havior of the embedding energy function [14]:

F(0)=0, (5)
F(p) <0, (6)
%ﬁ (o) <0, ()
?;pg (o) >0, ®

where p is the background electron density found in metals. The embedding energy function
F(p) is assumed to be in the following form:

es(p*)? +ea(p) +es(p™)°, p < pe

F(p):CO+Clp*+C2(p*)2+{ * *\4 *
co(p™)’ + er(p*)* +es(p*)” p > pe, 9)

where p. is the equilibrium electron density and ¢, are some coefficients.
In practical applications of EAM potentials, it is also desirable to employ a switching function
in order to terminate the potential and forces smoothly at the cut off distance because the
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energy conservation is sensitive to the truncation of the force field. For this purpose, a simple
polynomial switching function f.(r) can be applied to the electron density distribution and to
the pair potential in a region just below the cut off distance r..:

o(r)—=p@)felr) , plr)—pl)felr),

1 , T <Tsw
fc (T) = dl(r*)g + dQ(T*>4 + dg(T*)5 ) Tsw g T g Te
0, r>nmr.
=L 1,
Te

where 74, is the distance at which the switching function is applied. The values of coefficients
dy,ds, d3 follows from the conditions

d*f.
dr?

dfe

fc (Tsw> =1, W (Tsw) =0, (Tsw) =0.

2. Parameterization procedure
In order to define the potential of interaction between identical metal atoms one need to fit
two parameters of the electron density distribution a and (3, and coefficients of the embedding
energy function (9). Consider a perfect, homonuclear crystal at zero temperature. Because all
atoms are equivalent, we can associate the origin of the coordinates with some atom and rewrite
(1) as
E, = F(p.) Z@ m)s Pe=Y_p(rm), (10)
m

where r,, are the distances between neighbors and the sum is over neighbors. The distances
are determined by the lattice parameters. The ground-state properties of solid metal can be
calculated from (10). The lattice equilibrium is defined by the condition

— Z Tm + %i (pe) Zrm% (Tm) =0. (11)

The cohesive energy per atom is given by

The unrelaxed vacancy formation energy is

B =5 X o) = S P (e = plr)) = F o) =

m

2
~ % ; ' (T7n) + %f; (pe) %: P (T7rL ; (zp ,Oe Zp T?n

The elastic constants at equilibrium can be also calculated [15] and approximate value of bulk
modulus is given by
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1 |1 d? d OF q2 d
(a) — - 2 @7 R ar o d°p _dp
B 9Va {2 Zm; </rm d,,,,2 (rm) T'm dr (Tm)> + 8p (pe)z (Tm er (Tm) T'm ar (Tm))-|—
2
0*F dp
+ 8p2 (pe) (; T’m% (Tm)> R

where V, is the underformed atomic volume. Parameterization procedure consists of three stages:

1. The set of values of («,0) is specified. For each pair («,3) we calculate the values of 7, p
F(pe), F'(pe) and F”(p.) that satisfy condition (11) and the condition

= Eé“))2 + (Bus - Eg‘;))Z +(B- B(“))2 = 0;

2. We choose such pairs («,() wherein v > 0 and conditions (6)—(8) are satisfied for p=p.;

3. From the obtained set of pairs we determine the optimal pair («, ) that provides the minimal

value of ) ) )
<611 — Cgi)) + <C12 — C%?) + (844 - Cz(li))

for bee and fce metals or the minimal value of
2 2 2 2 2
(Cll - Cgi)) + (Cl2 - ng)) + (Cla - ng)) + (633 — Cé?) + (644 — CE&))

for hep metals. To calculate coefficients ¢,, of embedding energy function (9) we require nine
conditions. First of all we have values of p., F(p.), F'(p.) and F”(p.) that correspond to the
optimal pair («,3). Then we can calculate

oF 1 ,0°F
co=F (pe) 3 C1 = Pe% (pe) s Co = §P387p2 (pe) .

Many studies require knowledge of interatomic interaction at distances different from the
equilibrium one. Rose it et al. [27] have shown that the total binding energy of most metals,
both alloys and elements, as a function of lattice constant can be described by a universal
equation:

E(a%) = f (a%) exp (—a”),
E. )1/ 2 (12)

127TB’I"WSE

a* = %(TWS_TWSE)a l= (
where f(a*) is a low-order polynomial, ¢* is a scaled length determined by the radius of Wigner-
Seitz sphere ry g, rwse and [ are equilibrium radius and the length scale, respectively. The
values of coeflicients c3, ¢4 and c5 are so calculated that they provide the best fit to the equation
of state (EOS) of Rose et al. [27] when 0.7a < lattice constant < a. The surface energy is a
fundamental property of a metal surface and it is the energy required to create a new surface.
The surface energy can be determined by taking the energy difference between the total energy
of a periodic slab and an equivalent bulk reference amount:

Eyp = % (Estab — N - Epuik) »

where Fg,p is the total energy of an N-atom slab, Ey,x is the energy of one atom in the bulk at
the lattice constant of the atoms in the interior of the slab (=E.), S is the area of the slab surface,
and the factor 1/2 accounts for the two surfaces in the slab. For simplicity, the calculations were
done using the bulk equilibrium lattice parameters, with no relaxation or reconstruction at the
surface. We have calculated the formation energies for bulk terminated low index (100), (110)
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and (111) surfaces. It is known that F,¢(111) < E,¢(100) < E.¢(110) for bee and fec metals.
Then E,;(100) should be close to the average surface energy for polycrystalline solids Esy. The
values of the last three coefficients ¢g, ¢7 and ¢g are so calculated that they satisfy condition (5),
condition (F,¢(100) — Egy) /Esy < 0.05 and provide the best fit to the equation of state (EOS)
of Rose et al. [27] when a < lattice constant < 1.5a.

As an illustration the proposed EAM potential functions for Al, Fe and Ti are shown in
Figs. 1-3 on page 238. The density in Fig. 3 is scaled by the corresponding equilibrium electron
density. Fig. 4 presents the total energy versus lattice constant for Al, Fe and Ti for the present
model in comparison with the calculated results from the EOS of Rose et al. [27]. The predicted
results by the present model are in good agreement with those from the equation of state (12).

3. Results

The experimental data used in fitting procedure consist of the equilibrium lattice constant,
the cohesive energy, the vacancy formation energy, the bulk modulus and three elastic constants.
They are given in Tab. 1-6 and 11. The fitting procedure is performed using a cutoff distance
r. = 2a for fcc and bee metals, and r. = 2¢ for hep metals so that the long-range interactions
are included.

Table 1. Properties of pure fcc metals used in fitting

a, A E., eV | E,f, eV | B,eV/A? | c11, eV/A3 | c1a, €V/A3 | cyq, eV/A3
Al | 4.05 [15] | 3.34 [15] | 0.64 [16] | 0.474 [20] | 0.666 [20] | 0.377 [20] | 0.177 [20]
Ca | 5.58 [15] | 1.84 [15] | 0.70 [17] | 0.133 [21] | 0.173 [21] | 0.114 [21] | 0.102 [21]
Ni | 3.52 [15] | 4.44 [15] | 1.79 [18| | 1.161 [20] | 1.548 [20] | 0.967 [20] | 0.775 [20]
Cu | 3.61 [15] | 3.49 [15] | 1.23 [18] | 0.863 [22] | 1.042 [22] | 0.754 [22] | 0.466 [22]
Pd | 3.80 [15] | 3.80 [15] | 1.85 [19] | 1.205 [20] | 1.417 [20] | 1.099 [20] | 0.447 [20]
Ag | 4.09 |15] | 2.95 [15] | 1.10 [18] | 0.632 [20] | 0.763 [20] | 0.566 [20] | 0.283 [20]
Ir | 3.84 [15] | 6.94 [15] | 1.97 [16] | 2.216 23] | 3.683 [23] | 1554 [23] | 1.635 [23]
Pt | 3.92 |15| | 5.84 |15] | 1.35 [18| | 1.765 |20 2.164 (20 1.565 |20 0.478 |20
Au | 4.08 [15] | 3.81 [15] | 0.90 [18 1.083 |20 1.204 |20 1.022 |20 0.259 (20
Pb | 4.95 |15] | 2.03 [15] | 0.58 [18] | 0.279 [20] | 0.310 [20] | 0.264 [20] | 0.094 [20]

Table 2. Parameters of the atomic electron density distribution

po, /A% [ o, 1/A | 3, 1/A
Al 11.8189 2.0240 | -0.7023
Ca | 11.1967 | 1.6034 | -0.4968
Ni 64.7056 2.5152 | -0.7412
Cu | 61.8709 | 2.4387 | -0.7104
Pd | 81.8363 2.2790 | -0.6496
Ag | 68.5546 | 2.1650 | -0.6436
Ir 15.5880 2.7752 | -2.2862
Pt | 127.2935 | 2.3590 | -0.7700
Au | 119.0748 | 2.2650 | -0.7220
Pb | 65.4301 | 1.8120 | -0.5660
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Table 3. Parameters of pair potential

Al Ca Ni Cu Pd
€, eV 1.1942 2.2694 5.2908 3.5064 5.0178
a1 1 1 1 1 1
ag 0.2789 0.1123 4.7257TE-02 | 3.3716E-02 | 9.6939E-03
ay 4.8352 4.5452 4.1637 4.0568 3.8375
as 0.3980 0.4139 0.4083 0.4058 0.4001
as -2.5136E-02 | -2.6444E-02 | -2.6100E-02 | -2.5914E-02 | -2.5444E-02
ay -3.6957E-03 | -4.6128E-03 | -5.0168E-03 | -5.1006E-03 | -5.2458E-03
as 4.7400E-04 7.5911E-04 | 8.4373E-04 | 8.5756E-04 | 8.7750E-04
ag -9.79774E-05 | -9.5564E-05 | -8.9424E-05 | -8.7614E-05 | -8.3827E-05
Ag Ir Pt Au Pb
€, eV 3.0321 54.8862 4.3999 2.7498 1.6215
a_1 1 1 1 1 1
ag 5.7924E-02 0.7359 0.1874 0.1526 0.1236
ay 4.2404 1.4333 4.7776 4.6934 4.5928
as 0.4100 0.1066 0.4112 0.4135 0.4140
as -2.6214E-02 | -1.6370E-02 | -2.6115E-02 | -2.6338E-02 | -2.6434E-02
ay -4.9504E-03 | -2.2352E-03 | -4.1715E-03 | -4.3713E-03 | -4.5441E-03
as 8.3172E-04 | -2.3589E-04 | 6.3817E-04 | 6.9646E-04 | 7.4216E-04
ag -9.0705E-05 | -2.3226E-05 | -9.8622E-05 | -9.7661E-05 | -9.6268E-05
Table 4. Parameters of embedding energy function
Al Ca Ni Cu Pd
pe, /A3 | 0.6071 0.2825 1.3864 1.2873 1.5224
co, €V -4.0196 -2.6178 -6.2832 | -4.7327 | -5.5288
c1, eV -1.2472 -1.4711 -3.5972 | -2.4513 | -3.2781
ca, eV 1.5546 0.1251 0.7075 1.4285 4.2048
c3, eV 1.7127 -2.8157 14.4820 | 11.6178 | 32.8210
¢y, €V 10.2885 -1.4062 47.6636 | 35.5600 | 83.2640
c5, €V 7.3580 0.388 31.2032 | 23.0893 | 52.3971
cg, €V 6.8388 7.0545 16.2018 | 11.2783 | 17.3320
c7, eV -8.3183 -7.8377 -19.1089 | -13.1025 | -15.1792
cg, eV 2.7751 2.6050 6.7657 4.6236 4.7505
Ag Ir Pt Au Pb
pe, €/A3 | 1.5208 2.9282 3.4701 2.9855 1.6884
co, €V -4.0177 -4.9872 -7.0594 | -4.5788 | -2.5791
c, eV -2.0716 | -1.7248E-02 | -2.2656 -1.4342 -1.0345
Ca, eV 1.8795 1.6268E-05 5.2919 4.1205 1.7630
c3, eV 12.3597 -12.9772 8.3276 8.7865 3.6147
cyq, eV 35.3728 -13.7696 25.1362 | 22.7899 | 10.8850
cs, eV 22.9465 -5.7624 17.3066 | 14.9793 7.4887
cg, €V 10.5983 7.8483 13.1224 | 8.8042 5.9092
cr, eV | -11.0679 -4.5586 -10.9029 | -6.7961 | -5.4636
cg, eV 3.7000 0.6965 3.0877 1.9187 1.6822
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Table 5. Calculated and experimental properties of pure metals. The first lines present
the experimental values of the three elastic constants (they are used in fitting procedure),
average surface energy and the commonly accepted values of vacancy formation energies.

The second lines present the values predicted by the potential

C11, C12, C44, B7 Evf, eV <Esf>, Esf(loo),
eV/A3 | eV/A3 | eV/A3 | eV/A3 J/m?

AL | 0.666 | 0.377 | 0.177 | 0.474 0.62-0.66 [10] 1.143, 1.16 [16,54]
0.645 | 0.388 | 0.179 | 0.474 0.64 1.17

Ca | 0.173 | 0.114 | 0.102 | 0.133 0.7 [17] 0.502, 0.49 [16, 54]
0.213 | 0.093 | 0.086 0.13 0.70 0.51

Ni | 1.548 0.967 0.775 1.161 1.6, 1.79 [18, 24| 2.38, 2.45 |16, 54]
1.783 0.850 0.710 1.161 1.79 2.454

Cu | 1.042 0.754 0.466 0.863 1.28, 1.3 [18,25] 1.79, 1.825 [16, 54]
1.225 0.681 0.423 0.863 1.28 1.84

Pd | 1.417 | 1.099 | 0447 | 1.205 | 1.7, 1.85[18,19] | 2.003, 2.05 [16,54]
1.565 1.025 0.431 1.205 1.85 2.06

Ag | 0.763 | 0.566 | 0.283 | 0.632 .1 [18,25] 1.246, 1.25 [16,54]
0.870 0.513 0.267 0.632 1.1 1.26

Ir | 3.683 | 1.554 | 1.635 | 2.216 | 1.79, 2.27% [18,26] | 3.048, 3.00 [16,54]
3.676 1.486 1.486 2.216 1.97 3.03

Pt | 2.164 1.565 0.478 1.765 1.35, 1.5 [18,25] 2.489, 2.475 [16, 54|
2.239 1.528 0.474 1.765 1.35 2.48

Au | 1.204 | 1.022 | 0.250 | 1.083 | 0.8, 0.93 [18,10] | 1.506, 150 [16,54]
1.333 | 0.958 | 0.253 | 1.083 0.9 1.51

Pb | 0.310 | 0.264 | 0.094 | 0.279 0.58 [18] 0.593, 0.60 16, 54]
0.363 0.237 0.088 0.279 0.58 0.61

@ — result of ab initio calculations

3.1.

Results of potential fitting for bcc metals

In what follows the results of fitting for nine bcc metals are presented. Tab. 7 lists the
parameters of the atomic electron density distribution. Parameters of pair potential are listed in
Tab. 8. Coefficients of the embedding function F(p) are given in Tab. 9.

The calculated properties of pure metals from the proposed potential are compared with the
experimental values, to which they were fitted in Tab. 10. The first lines contain the experimental
values, while the second lines contain the values predicted by the potential. As the fitting
procedure suggests the equilibrium lattice constant, the cohesive energy, the vacancy formation
energy and the bulk modulus are reproduced exactly. For softer materials such as Li, Na and K,
the average discrepancy between the calculated and experimental values of elastic constants is
found to be relatively large. For other metals, the match between experiment and the proposed
EAM model is good and the average discrepancy is found to be less than 5%.

Table 6. Properties of pure bce metals used in fitting

a, A E.,eV | By, eV | B, eV/A% | c11, eV/A? | c12, eV/A? | cyyq, eV/A?
Li 3.51 |15 1.65 (15 0.34 (28 0.081 |35 0.09 |35 0.076 [35 0.067 |35
Na | 4.29 [15 1.13 |15 | 0.39 |29 | 0.045 |36 0.52 [36 0.042 (36 0.032 |36
K 5.34 |15 0.94 [15 0.39 [30] | 0.023 [37 0.026 |37 0.021 (37 0.018 [37
Vv 3.03 |15 5.31 (15| | 2.10 (31 0.97 [20] 1.427 |20 0.743 (20 0.277 (20
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Fe 2.87 15 4.28 [15 1.60 |32 1.04 |20 1.440 [20] 0.84 [20] 0.726 |20
Nb | 3.30 |15 7.57 [15] | 2.75 (33 1.02 [20 1.50 [20 0.784 [20 0.176 [20
Mo | 3.147 [15] | 6.82 [15] | 3.10 [33 1.62 [20 2.89 (20 0.985 [20 0.680 |20
Ta | 3.30 |15 8.10 |15 2.18 [5] 1.25 [38 1.66 [38 0.987 38 0.545 |38
W | 3.16 [15 8.90 [15] | 3.95 [34] | 1.937 [20] 3.26 |20 1.276 |20 1.020 |20
Table 7. Parameters of the atomic electron density distribution
Po, e/A(3 o) 1/A 67 1/A
Li 4.9320 2.1860 | -0.5800
Na 9.9897 1.7900 | -0.4660
K 11.9047 | 1.5790 | -0.3950
V | 104.4650 | 3.0600 | -0.7370
Fe | 75.1320 | 2.6810 | -0.7661
Nb | 159.2303 | 2.9080 | -0.6900
Mo | 198.1089 | 3.0980 | -0.7490
Ta | 145.5923 | 2.3560 | -0.6600
W | 301.6596 | 2.9480 | -0.7300
Table 8. Parameters of pair potential
Li Na K A% Fe
€, eV 2.061185 2.4386 5.9982 82.1435 9.2046
a_1 1 1 1 1 1
ao -0.0525 -0.0645 -0.0837 -0.0951 1.2335E-02
ay 3.0107 2.7788 2.2963 1.8600 3.8637
as 0.3724 0.3631 0.3419 0.3202 0.4009
as -2.2853E-02 | -2.1925E-02 | -1.9725E-02 | -1.7413E-02 | -2.5506E-02
ay -5.5517E-03 | -5.5803E-03 | -5.5636E-03 | -5.4548E-03 | -5.2300E-03
as 8.8403E-04 | 8.7147E-04 | 8.2895E-04 | 7.7261E-04 | 8.7564E-04
ag -6.9006E-05 | -6.4744E-05 | -5.5766E-05 | -4.7535E-05 | -8.4284E-05
Nb Mo Ta w
€, eV 154.6293 193.6024 12.9004 151.8057
a_1 1 1 1 1
ap -0.9793 -0.9426 -7.7812E-03 | -8.7430E-02
ay 1.6977 1.9024 3.6497 2.1763
as 0.3114 0.3224 0.3946 0.3362
as -1.6469E-02 | -1.7652E-02 | -2.4962E-02 | -1.9120E-02
a4 -5.3892E-03 | -5.4695E-03 | -5.3458E-03 | -5.5429E-03
as 7.4734E-04 | 7.7881E-04 | 8.8735E-04 | 8.1513E-04
ag -4.4443E-05 | -4.8338E-05 | -8.0524E-05 | -5.3513E-05
Table 9. Parameters of embedding energy function
Li Na K A% Fe
pe, €/A% | 0.0512 0.09536 0.0686 0.3435 1.0427

241 —




Viktor E. Zalizniak, Oleg A. Zolotov

Towards a Universal Embedded Atom Method Interatomic...

co, eV -1.9735 -1.4880 -1.3246 -7.3118 -5.9779
c1, eV -0.6574 | -0.7400 -0.7697 | -4.0071 -3.2790
ca, eV 0.1063 0.1416 0.0765 1.3299 0.3189
c3, eV -10.5307 | -3.6949 -1.5679 | -13.9586 | -9.6004
c4, eV -25.9305 | -8.9704 -4.0784 | -36.6665 | -15.2388
cs, eV -16.6095 | -5.8820 -2.9890 | -24.6826 | -8.0182
cg, €V 0.81 0.6017 -0.0436 -1.9572 9.9234
cr7, eV -1.1659 -0.8135 -0.0406 1.4516 | -10.4948
cs, eV 0.4366 0.3067 0.0152 -0.3653 3.3785
Nb Mo Ta W

pe, €/A3 0.4181 0.5157 1.7998 1.0802
co, eV -10.0954 | -9.7242 | -10.2274 | -12.8561
c1, eV -5.1378 -5.9440 -4.1311 -7.8513
ca, eV 1.8751 0.8068 2.9597 0.7619
c3, eV -15.3758 | -6.7596 | -18.4551 2.3567
c4, eV -44.4385 | -15.0462 | -37.2274 | &.1014
cs, eV -32.1451 | -11.2600 | -21.9090 1.5018
cg, €V -3.3407 1.6791 11.5807 4.3212
cr7, eV 2.2848 -1.3272 | -11.6852 | -3.5853
cg, eV -0.5279 0.2945 3.7310 0.8843

Table 10. Calculated and experimental properties of pure metals. The first lines present

the experimental values of the three elastic constants (they are used in fitting procedure,

average surface energy and the commonly accepted values of vacancy formation energies.
The second lines present the values predicted by the potential

Ci1, C12; C44, B, Eyy, (Esf), Esr(100),
eV/A3 | eV/A3 | eV/A3 | eV/A3 eV J/m?
Li | 0.090 | 0.076 | 0.067 | 0.081 0.34, 0.4 [28,39] 0.52, 0.525 [16, 54]
0.115 | 0.064 | 0.051 0.081 0.34 0.51
Na | 0.052 | 0.042 | 0.032 | 0.045 0.36, 0.39 [29,40] 0.261, 0.26 [16,54]
0.061 0.037 | 0.028 | 0.045 0.39 0.27
K 0.026 0.021 0.018 0.023 0.35, 0.39 [30,41] 0.145, 0.13 [16, 54]
0.033 | 0.018 | 0.014 | 0.023 0.39 0.14
v 1.427 0.743 0.277 0.97 2.1, 2.2 (18, 31] 2.622, 2.55 [16, 54]
1.422 0.744 0.278 0.97 2.1 2.606
Fe 1.440 0.84 0.726 1.04 1.6, 1.79 [32, 33| 2.42, 2.475 [16,54]
1.608 | 0.755 | 0.676 1.04 1.6 2.48
Nb | 150 | 0.784 | 0.176 | 1.02 | 2.75, 2.7 3.0 [13,33] | 2.655, 2.70 [16,54]
1.56 0.750 | 0.175 1.02 2.75 2.73
Mo 2.89 0.985 0.680 1.62 3.0, 3.1 (18, 33] 2.907, 3.00 [16, 54]
2.88 0.987 0.676 1.62 3.1 3.05
Ta 1.66 0.987 0.545 1.25 2.18, 3.1 [5,18] 2.902, 3.15 [16,54]
1.69 1.02 0.540 1.25 2.18 3.08
W | 326 | 1.276 | 1.02 | 1.037 | 3.95, 3.6 4.1 [18,34] | 3.27, 3.675 | [16,54]]
3.28 1.266 1.02 1.937 3.95 3.57
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3.2. Results of potential fitting for hcp metals

In what follows the results of fitting for eight hcp metals are presented. Tab. 12 lists the
parameters of the atomic electron density distribution. Parameters of pair potential are listed in
Tab 13. Coefficients of the embedding function F(r) are given in Tab. 14.

The calculated properties of pure metals from the proposed potential are compared with the
experimental values, to which they were fitted in Tab. 15. The first lines contain the experimental
values, while the second lines contain the values predicted by the potential. As the fitting
procedure suggests the equilibrium lattice constant, the cohesive energy, the vacancy formation
energy and the bulk modulus are reproduced exactly. For such materials as Sc, Ta and Y, the
errors are found to be relatively large. As for other metals, the match between experiment and
the proposed EAM model is generally satisfactory and the average discrepancy is found to be
less than 10%. Generally, if we consider the match between experimental and calculated results
for hep metals then it is worse in comparison with the results obtained for bee and fecc metals.
This is due to reasons discussed in Introduction.

Table 11. Properties of pure hcp metals used in fitting

Mg Sc Ti Co
a, A 3.21 [15 3.31 [15 2.95 [15 2.51 [15
c, A 5.21 [15 5.27 [15 4.68 |15 4.07 |15
E., eV 1.53 [15 3.93 |15 4.856 [15] | 4.387 [15]
Eyg, eV 0.58 [42 1.15 |12 1.41 [43,44] | 1.35[12

B, eV/A% | 0.22[20 0.348 [49 0.672 [50 1.17 [49
ci11, eV/A3 | 0.37 |20 0.618 [49 1.021 [50 1.84 [49
c12, eV/A3 | 0.16 [20 0.250 [49 0.576 [50 0.99 [49
c13, eV/A3 | 0.136 [20] | 0.181 [49 0.424 [50 0.69 [49
c33, €V/A3 | 0.384 [20] | 0.668 [49 1.156 [50 2.09 [49
cas, eV/A3 1 0.102 [20] | 0.175 [49 0.294 [50 0.44 [49

Y Zr Hf Tl
a, A 3.65 |15 3.23 |15 3.19 15 3.46 [15
c, A 5.73 |15 5.15 [15 5.05 [15 5.52 |15

E., eV | 4387 [15] | 6.316 [15] | 6.35 [15 1.87 [15
E.p, eV | 1.25[12] | 1.75 [45,46] | 2.45 [47] | 0.52 [48
B, eV/A® [ 0.264 [51] | 0.595 [52] | 0.680 [49] | 0.223 [53
11, &V/AT | 052 [51] | 0.896 [52 1.187 [49] | 0.255 [53
12, &V/A® | 0.182 [51] | 0.453 [52] | 0.465 [49] | 0.221 [53
c13, &V /A3 [ 0.119 [51] | 0.406 [52] | 0.409 [49] | 0.181 [53
cs3, oV /A% | 0500 [51] | 1.023 [52 1.276 [49] | 0.329 [53
Ca1, &V/A® | 0.168 [51] | 0.200 [52] | 0.375 [49] | 0.045 [53

Table 12. Parameters of the atomic electron density distribution

po, /A% | o, 1/A | B, 1/A
Mg 9.0989 1.8290 | -0.5980
Sc 8.9626 1.6300 | -0.5920
Ti 17.4479 1.8900 | -0.6350
Co | 61.1899 2.5140 | -0.7520
Y 61.4080 2.1480 | -0.5500
Zr 51.1438 2.0200 | -0.5520

—243 —



Viktor E. Zalizniak,

Oleg A. Zolotov

Towards a Universal Embedded Atom Method Interatomic...

Hf

126.1746

2.2320

-0.5900

T1

52.9236

1.6640

-0.5000

Table 13. Parameters of pair potential

Mg Sc Ti Co
€, eV 1.1679 1.7117 2.0822 3.9685
a1 1 1 1 1
ao 0.1899 0.3455 0.2306 0.0657
ay 4.7822 4.7477 4.8324 4.2924
as 0.4110 0.3825 0.4062 0.4108
asz | -2.6095E-02 | -2.4199E-02 | -2.5711E-02 | -2.6280E-02
as | -4.1576E-03 | -3.3991E-03 | -3.9373E-03 | -4.9020E-03
as 6.3391E-04 | 3.4979E-04 | 5.6213E-04 | 8.2249E-04
as | -9.8663E-05 | -9.4998E-05 | -9.8852E-05 | -9.1563E-05
Y Zr Hf Tl
€, eV 23.8608 6.4257 19.7289 0.7036
a_1 1 1 1 1
ag -0.0735 -0.0301 -0.0550 0.0714
ay 2.5764 3.3649 2.9653 4.3289
as 0.3546 0.3853 0.3706 0.4114
as | -2.1046E-02 | -2.4106E-02 | -2.2677E-02 | -2.6321E-02
ag | -5.5860E-03 | -5.4616E-03 | -5.5592E-03 | -4.8661E-03
as 8.5624E-04 | 8.9212E-04 | 8.8199E-04 | 8.1536E-04
ag | -6.0996E-05 | -7.5436E-05 | -6.8173E-05 | -9.2160E-05

Table 14. Parameters of embedding energy function

Mg Sc Ti Co
e, €/A3 0.3615 0.6972 0.9203 1.3680
co, €V -2.1730 -5.3722 | -6.4410 | -5.7471
c1, eV -1.1996 -2.5796 | -2.9289 | -2.6172
co, eV 0.5061 0.3228 1.6350 1.7910
c3, €V -10.5844 | -10.8212 | -8.9633 | -11.4124
cq, €V -25.5821 -20.6288 | -18.8240 | -28.4863
cs, €V -15.4650 | -12.2774 | -11.7378 | -18.4127
cg, eV 2.1772 7.0366 5.2336 1.5758
c7, €V -2.7321 -9.4380 | -7.4424 | -1.8760
cg, eV 0.9453 3.3412 2.6969 0.5993
Y Zr Hf Tl
e, €/A3 0.3456 0.7212 1.1647 1.6113
co, €V -5.6922 -7.8750 | -8.8098 | -2.2974
c1, eV -2.5550 -3.1711 | -4.8883 | -0.8454
co, eV | 2.5624E-03 | 2.6298 0.3551 2.4945
c3, eV -29.3197 | -23.3250 | -31.8673 | 1.2063
ca, €V -71.7834 | -63.7504 | -78.3001 | -1.8342
cs, eV -45.5983 | -42.4995 | -49.9992 | -1.9980
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ce, €V -0.0985 -2.8443 0.1694 -2.5204
cr, eV -0.2879 3.8680 -0.8856 3.6203
cg, eV 0.0884 -1.6212 0.3690 -1.5656

Table 15. Calculated and experimental properties of pure metals. The first lines present
the experimental values of the five elastic constants (they are used in fitting procedure),
average surface energy and the commonly accepted values of vacancy formation energies.
The second lines present the values predicted by the potential

\ | e, | oco | s, | oess, | ocun | Eyp, eV | (Es), E5r(0001),

eV/A3 | eV/A3 | eV/A3 | eV/A3 | eV /A3 J/m?

Mg | 0.370 0.160 0.136 0.384 0.102 0.58 [42] 0.785, 0.76 [16,54]
0.365 0.153 0.142 0.377 0.106 0.58 0.78

Sc [ 0.618 | 0.250 | 0.181 | 0.668 | 0.175 115 [12] 1.275 [10]
0.613 0.221 0.207 0.634 0.195 1.15 1.318

Ti 1.021 0.576 0.424 1.156 0.294 1.27, 1.55 [43,44] 1.989, 2.10 [16, 54]
1.080 0.479 0.454 1.113 0.301 1.41 2.09

Co | 1.840 | 0.990 | 0.600 | 2.090 | 0.440 1.35 [12] 5,522, 2.55 [16,54]
1.834 0.862 0.810 1.897 0.485 1.35 2.55

Y 0.520 0.182 0.119 0.500 0.168 1.25 [12] 1.125 [16]
0.464 0.155 0.159 0.498 0.155 1.25 1.126

Zr 0.896 0.453 0.406 1.023 0.200 | >1.5, 2.07* [45,46] 1.909, 2.0 [16, 54]
0.885 0.460 0.435 0.924 0.212 1.75 2.02

Hf 1.187 0.465 0.409 1.276 0.375 2.45+0.2 [47] 2.193, 2.15 [16, 54]
1.178 0.423 0.411 1.275 0.377 2.45 2.196

Tl 0.255 0.221 0.181 0.329 0.045 0.52 [48] 0.6, 0.575 [16,54]
0.286 0.196 0.188 0.287 0.045 0.52 0.6

@ — result of ab initio calculations

4.

Summary

This paper presents parameters of a new EAM potential model to describe pure metals.
The potential model has a simple function form and it is easy to use in computer simulations.
The potential parameters were determined by fitting the pure metal bulk properties: equilibrium
lattice constant, the cohesive energy, the bulk modulus, the vacancy formation energy and elastic
constants. The fitting procedure has been applied to 27 metals (10 fcc metals, 9 bee metals and
8 hep metals). The equilibrium lattice constant, the cohesive energy, the bulk modulus and
the vacancy formation energy are reproduced exactly. The agreement between the calculated
elastic constants and the experimental data is good. The pair potentials for all metals include
long-range interactions. Metal embedding energies have a positive curvature that is in line with
first-principles calculations. For all metals, the calculated relation between total energy and
lattice constant is in good agreement with that obtained from the equation of state of Rose et
al. One common problem with the EAM is that this method often underestimates the surface
energies. In the current work, we see improvement of the newly developed potentials over previous
EAM models in describing surface energies.

The theory of dynamic bonding [55] suggests that electrons in metals are not free but they
are rather tightly bound to the atoms. Then we can assume that the form of electron density dis-
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tribution of a metal atom depends only slightly on surrounding atoms. As a first approximation,
one can assume that the embedding energy function is the unique property of an atom because
it depends only on electron density due to all other atoms. Then the proposed potential for pure
metals allows one to create extensive interaction parameters database for binary systems. All
one need to do is to fit the parameters of pair cross-interaction functions against experimental
or ab initio data for the relevant alloy system.

The proposed EAM potentials are believed to find applications in diverse areas of materials

science and engineering.
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yHI/IBepcaﬂbeIﬁ IIoTeHnmnaJl BBaHMOﬂeﬁCTBHﬂ MeToda
BHEAPEHHOI'o aToMa JAJid YUCTbIX METaJlJIOB

B.E. Sanusngak
0O.A. 3oJsioTOoB

IIpedaazaemes 1o6vil NOOTO0 K NOCMPOEHUIO NOMEHUUANG 83AUMOIETCTNEUA OAS MEMANLOE HA OCHOBE
Mmemoda enedpernozo amoma. M3 0cro8HBT NPUHYUNOE KEAHMOBOT METAHUKY 3a0aEMCA ANNPOKCUMAUUS,
pacnpedeserus INEKMPOHHOT NAOMHOCTIU ATNOMOG, U3 KOMOPOU CAedYem He MOoAbKO NAPHbIT NOMEeHUU-
an 83aUMO0ETUCMEUA, HO U YACTNUYHO KOHKPEeMHbil 6ud GyrnKyuu enedpénnoti anepeuu. aa onucanua
€60UCME KOHKPEMH020 Memaira mpebyemcs nodobpams 06a Napamempa pacnpeieienus IAeKmporHot
NAOMHOCTNY U QONOAHUMENDHBLE NAPAMEMPBL GYHKUUU 6HeOperHotl snepeun. [lodbop smux napamem-
P06 OCYWLLCTNBAACTNCA ONA PABHOBECHOT PEULETVKY € UCTLOAB30BAHUEM IKCNEPUMEHMANLHOIT 3HAYEHUT
NAPAMEMPos PEWEMKY, IHEPLUL CBA3U, IHEP2UL 00PA308ANHUA BAKAHCUL, YNPY2UT NOCTNOAHHLT U TO-
eeprrocmnol anepeuw. Ilpusodames nomenyuais, 63aumodeticmeus 0is 27 MEMAAI06 € PABAULHDLMU
Kpucmassueckumy cmpykmypamu. Obwul 6ud NOMEHYUUAAL UMEET, NPOCTIYIO GHAAUMUMECKYIO HOPMY
U MOIHCEM, UCTLONDIOBAMBCA 0N MOOCAUPOBAHUSA ODOALULULT GIMOMMHBLT CUCTNEM 8 PAMEKAT MEmoda Mmone-
KYAAPHOT OUHAMUKY.

Karouesvie caosa: nomeryuan MeICaAImomHo20 eaaumoﬁeacmeu;l, Mmemod 6H€ap€HH020 amoma.
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