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The problem of linear baroclinic seiches in rectangular basin is considered. It is supposed that density is

stratified into three layers. Internal waves are not taken into account. It is shown that one-dimensional

model allows one to determine the positions of thermocline and halocline. The model also allows one

to determine the values of temperature and salinity in the surface and bottom layers with satisfactory

accuracy. Fluctuations of temperature and salinity in pycnocline are estimated by calculating parameters

of baroclinic seiches. The results of calculations and measurements in Lake Shira are compared.

Keywords: internal seiche, three-layer stratification, vertical distribution of temperature and salinity of
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Introduction

In closed reservoirs circulation flows caused by wind and horizontal water density gradient
are formed. A temperature regime of a reservoir is determined by the flow of heat through the
water surface and by heat exchange with the surrounding water masses, that is, it is carried out
by advection and turbulent diffusion. The one-dimensional mathematical model to describe ver-
tical distribution of water temperature and salinity was proposed [1, 2]. In the one-dimensional
approximation the vertical distributions of temperature and salinity are determined by the ver-
tical exchange of heat and mass. The vertical turbulent exchange coefficient is defined by the
Prandtl-Obukhov formula and by the Ekman approximation for wind currents.

Density stratification of a lake is formed due to heating of the upper water layer and strati-
fication in halocline. In stratified reservoirs internal waves are formed. Internal waves are either
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travelling waves or standing waves. Standing internal wave (or baroclinic (internal) seiche) is a
result of the changes in pressure field over time, the influence of non-stationary wind stress on
the water surface. There is an extensive literature on mathematical modeling of internal seiche
in stratified reservoirs (see, eg, [3–7]). The results of field measurements of flow velocities and
water temperature in Lake Shira can be found in [8, 9]. Oscillations of water temperature and
vertical component of flow velocity was detected. This is the characteristic feature of internal
waves in a stratified reservoir.

To evaluate the effect of internal waves on dynamics of the vertical structure of a stratified
reservoir simple three-layer model of baroclinic seiches is used (Fig. 1). In stratified reservoirs one
can distinguish upper mixed layer called epilimnion (−d1 6 z 6 0), lower layer called hypolimnion
(d2 6 z 6 d1 + d3) and there is metalimnion (pycnocline) between them (0 6 z 6 d2). In the
metalimnion fluctuations of temperature and water salinity are observed. These fluctuations can
have a significant impact on dynamics of the vertical distribution of oxygen and nutrients.

Fig. 1. Three-layered structure of the reservoir

In this paper we consider the use of the one-dimensional vertical model for parametrization
of a vertical hydrophysical structure in the deep area of the stratified lake. The model takes into
account the internal seiche. Examples of calculations of the vertical distribution for temperature
and salinity in Lake Shira are given. Results are compared with the data of field measurements.

1. A one-dimensional (in the vertical direction) model
of a salt lake

The object of research is Lake Shira. Lake Shira (90011′ E, 54030′ N) is located in the northern
part of the Republic of Khakassia (Southern Siberia, Russian Federation), 17 km away from the
town of Shira. This is a large saline meromictic lake. The area of the lake is 39.5 km2 and
its maximum depth is about 24 m. The lake is closed, with the water inflow provided by the
Son River and by atmospheric, underground and anthropogenic runoffs. At a depth of 12–13
m and below, there is a stable anaerobic zone in the lake with hydrogen sulfide concentration
in the near-bottom layers varying from 15 to 20 mg/L. In summer, when density stratification
is well defined, mineral salt concentration in water in the epilimnion is about 10 mg/L and in
the hypolimnion is about 14 mg/L. All measurements were performed at several vertical lines in
the deepest part of the lake. Vertical profiles of temperature and conductivity were measured
with the use of Data-Sonde 4a submersible multi-channel probe (Hydrolab, USA) from 1 June
to 19 Jule 2011 and from 13 to 30 June 2013. Meteorological data were taken from the Internet
site “Weather records” (http://rp5.ru/Weather_archive_in_Shira).
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1.1. Vertical distribution of temperature and salinity in the deep region in various seasons can
be defined by the one-dimensional model [1,2]. Formation of temperature regime in non-flowing
stratified reservoirs (in the absence of ice) is due to wind currents and heat exchange with the
atmosphere. The problem for the temperature distribution is formulated as follows [1, 2]:

∂T

∂t
=

∂

∂z

(

KT

∂T

∂z

)

+ αβ
FIe

−βz

cpρ0

. (1)

The boundary conditions have the form

KT

∂T

∂z
= −

Fn

cpρ0

for z = 0, KT

∂T

∂z
=

FH

cpρ0

for z = H, (2)

here T is the water temperature, Kz(z) is the coefficient of vertical turbulent mixing, FH is
the heat exchange with the bottom, Fn is the total heat flow through the free surface, FI is the
incoming short-wave solar radiation, β is the radiation absorption coefficient, α is the parameter
that defines the portion of radiation penetrating into deep-water layers (0 6 α 6 1), cp is the
specific heat capacity of water, ρ0 is the typical water density, H is the depth of a lake, z is the
vertical coordinate.

The problem for the vertical distribution of salinity is similarly formulated:

∂S

∂t
=

∂

∂z

(

KS

∂S

∂z

)

,

KS

∂S

∂z
= −FS for z = 0, KS

∂S

∂z
= FSH for z = H.

(3)

Here S is the water salinity, KS(z) is the coefficient of vertical turbulent mixing for salinity, FSH

is the mass exchange with the bottom, FS is the flow of salt across the free surface. It is also
necessary to set the initial distributions of temperature and salinity:

T (0, z) = T 0(z), S(0, z) = S0(z). (4)

1.2. Parametrization of the coefficient of vertical turbulent exchange Turbulence considerably
influences the heat and mass transfer. For parameterization of vertical turbulent exchange the
formula obtained on the basis of the Prandtl-Obukhov formula and approximate Eckman solution
for wind currents is used [1]:

Kz =











(0.05h1)
2

√

(

τ

ρ0K0

)2

e−2αz −
g

ρ0

(

∂ρ

∂z

)

+ Kmin for B > 0,

Kmin for B < 0.

(5)

Here B =

(
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ρ0K0

)2

e−2αz
−

g

ρ0

(
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)

, τ =
√

τ2
x + τ2

y is the wind stress, Kmin=0.02 sm2/s is the

background value of the vertical turbulent exchange coefficient, K0 =
(0.05π)2τ

2ρ0f
, α =

√

f

2K0

,

h1 = π

√

K0

2f
, f is the Coriolis parameter.

The diffusion coefficients of heat and salt transfer in water are less than the coefficient of
viscosity. In this paper we suppose

KT = KS =

{

Kz for z 6 h ,

Kmin/10 for (z > h and Kz = Kmin).
(6)
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We also suppose that the intensity of the vertical turbulent exchange is defined by the velocity
gradient and stratification.

1.3. Parameterization of density. For fresh water density depends only on temperature. The
Boussinesq approximation for seawater is taken as state equation for salt water:

ρ = ρ0

(

ε1 + ε2

T

T0

+ ε3

S

S0

)

, (7)

where ρ0=1.0254 g/sm3, ε1 = 0, 9753, ε2 = −0.00317, ε3 = 0, 02737, T0 = 17.5◦C, S0 = 35%�.

1.4. Parametrization of the heat flows and wind stress. The heat flows are important param-
eters affecting the temperature conditions of the reservoir. The total heat flow through a free
surface is defined by the relation:

Fn = (1 − α)FI − (Fef + Fconv + Fev),

where FI is the incoming short wave solar radiation, Fef is the effective long-wave radiation, Fev

is the evaporation heat, Fconv is the convective heat exchange. The components of the heat flux
are determined by known formulas [10].

The wind shear stress is defined by the Saimons formula

τ = 1.5 · 10−2
· W 2,

here W is wind speed (m/s), τ is wind stress (g/(sm·s2)).

2. Internal waves in a three-layer reservoir

To evaluate the effect of internal waves on the vertical structure of stratified reservoir the
following simplified formulation of the problem is considered. Stratified reservoir is schematized
as three-layer fluid (Fig. 1). In the top water layer adjacent to a free surface (−d1 6 z 6 0),
the density of water is constant due to mixing, in the pycnocline (0 6 z 6 d2) the density varies
linearly with depth, in the bottom layer (d2 6 z 6 d1 +d3) the density does not vary with depth,
ρ ≈ const; d1, d2, d3 are thicknesses of the respective layers, d1 + d2 + d3 = H is the reservoir
depth. The water density is supposed to be continuous on boundaries of the layers z = 0 and

z = d2 (Fig. 1). N =

√

g

ρ00

dρ0

dz
is the Brunt-Vaisala frecuency, (ρ0(z) is unperturbed density

distribution, ρ00 is the characteristic density and g is the standard acceleration due to gravity).
For this scheme N1 = 0, N2 = const, N3 = 0.

Our study of wave processes in liquids is based on the linearized equations of hydrodynam-
ics [3,4]. It was noted [3] that the Boussinesq approximation (gravity force depends only on water
density) and the "solid cover" approximation (the vertical component of the water flow velocity
is equal to zero on the free surface z = −d1) can be used. Internal waves have substantially
greater height than surface wave because the work needed to lift a water layer in air is greater
than the work needed to lift a water layer in water. Therefore, the condition of the "solid cover"
is quite acceptable [3, 11]. The problem of oscillation of a three-layer fluid in a closed reservoir
of rectangular shape with the flat bottom is considered: 0 6 x 6 L, 0 6 z 6 H, H = const
is the reservoir depth. The Boussinesq approximation, approximation of hydrostatics and the
"solid cover" approximation are used. Flows in vertical plane are considered. Linear equations
of stratified fluid have the form [3]:

∂u

∂t
= −

1

ρ00

∂p

∂x
,

∂p

∂z
= gρ,

∂u

∂x
+

∂w

∂z
= 0,

∂ρ

∂t
+ w

dρ0

dz
= 0.

(8)
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Here x and z are rectangular coordinates, axis z is directed downward, t is time, V = (u,w)
is the velocity vector of water flow, p is pressure, ρ is water density. Basic equation of internal
wave with respect to vertical velocity w follows from (8):

∂2

∂t2

(

∂2w

∂z2

)

+ N2
∂2w

∂z2
= 0. (9)

Let us consider boundary conditions for the three-layer fluid (Fig.1). On the water surface
(in the "solid cover" approximation) and at the bottom the vertical velocity is equal to zero

w = 0 for z = −d1; z = d2 + d3. (10)

On the boundaries of layers kinematic (the linear approximation for vertical velocity) and
dynamic (the total pressures on the both sides of the border are equal) boundary conditions are
satisfied:

w1 = w2 for z = 0, w2 = w3 for z = d2,

g

(

ρ1

∂2w1

∂x2
− ρ2

∂2w2

∂x2

)

= ρ2

∂3w2

∂t2∂z
− ρ1

∂3w1

∂t2∂z
for z = 0,

g

(

ρ2

∂2w1

∂x2
− ρ3

∂2w3

∂x2

)

= ρ3

∂3w3

∂t2∂z
− ρ2

∂3w2

∂t2∂z
for z = d2.

(11)

We seek a solution of equation (9) that satisfies boundary conditions (10), (11) in the form
of a harmonic standing wave (baroclinic seiche):

w(t, x, z) = ϕ(z) · cos kx · cos ωt, (12)

ω is the wave frequency, λ =
2π

k
is the wave length.

From (9) and (12) follows

d2ϕ

dz2
+

N2

c2
ϕ = 0, c =

ω

k
. (13)

From boundary conditions (10), (11) we obtain

ϕ1(−d1) = 0, ϕ3(d2 + d3) = 0,

ϕ1(0) = ϕ2(0), ϕ2(d2) = ϕ3(d3),

ϕ′

1
(0) = ϕ′

2
(0), ϕ′

2
(d2) = ϕ′

3
(d3),

(14)

where ϕ′

i =
dϕi

dz
.

Because N1 = 0, N2 =

√

g△ρ

ρ00d2

, N3 = 0, △ρ = ρ3 − ρ1, the solution of (13) is

ϕ1(z) = a1 + b1z for − d1 6 z 6 0,

ϕ2(z) = a2 · sin
N2

c
z + b2 · cos

N2

c
z for − 0 6 z 6 d2,

ϕ3(z) = a3 + b3z for − d2 6 z 6 d2 + d3.

(15)

By virtue of (14), (15) we obtain uniform system of linear equations for constants ai, bi (i =
1, 2, 3). The system has the nontrivial solution if the determinant of the system matrix is equal
to zero. This gives us the dispersion relation for internal waves:

tg
N2 d2

c
=

(d1 + d3) cN2

d1 d3 N2

2
− c2

. (16)
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Solution of equation (16) is found iteratively with the use of the Newton method.
Coefficients ai, bi are calculated as follows

b1 =
a1

d1

, b2 = a1, a2 =
c

N2

b1,

a3 =
d2 + d3

d1

(

N2d1

c
sin

N2d2

c
− cos

N2d2

c

)

a1, b3 = −
a − 3

d2 + d3

.
(17)

The horizontal velocity u is found from equation
∂u

∂x
+

∂w

∂z
= 0 and (12):

u(t, x, z) = −
1

k
ϕ′(z) · sin kx · cos ωt.

It follows from boundary conditions u = 0 for x = 0 and x = L that k =
nπ

L
. If n = 1 it is

single-node seiche, for n = 2 it is two-node seiche, etc.

Let u10 be characteristic value of horizontal velocity in the top layer, thus u10 = −
1

k
ϕ′

1
=

−
b1

k
. Therefore

a1 = −kd1u10. (18)

Characteristic velocity of water flow u10 is defined by [11]

u10 = kW · W,

here W is the wind velocity (m/s), kW = 1.5 ÷ 1.9 is the wind coefficient, u10 in centimeter per
second.

3. Algorithm to estimate the effect of internal waves
on vertical structure of a stratified lake

At the first stage the one-dimensional problem (in vertical direction) (1)–(7) is solved. Vertical
distributions of temperature, salinity and density of water are determined. They depend on
weather data. At the second stage the calculated vertical distributions of temperature and
salinity for specific day are schematized by three-layer liquid (Fig. 1):

T = T0(z), S = S0(z) for t = t0. (19)

After that the fluctuations in temperature and salinity during the day are determined by the
solving the following equations:

∂T

∂t
+ w

∂T

∂z
= 0,

∂S

∂t
+ w

∂S

∂z
= 0. (20)

They satisfy initial conditions (19). The vertical velocity is defined by relation (12).

Results

Calculations of the vertical distribution of temperature, salinity and water density in Lake
Shira by one-dimensional model (1)–(7) were performed. Fig. 2 illustrates the observed and
calculated temperature profiles. One-dimensional model without internal waves allows us to
determine the positions of thermocline, halocline and pycnocline. It also allows us to determine
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Fig. 2. Calculated (solid line) and observed (points) values of temperature for various verticals
(24 June 2013). The initial distribution (dotted line) corresponds to the measured values of
June 13 2013

the values of temperature and salinity in the surface and in the bottom layers with reasonable
accuracy.

Fig. 3 shows the results of nature measurements for vertical water temperature distributions
in deep part of Lake Shira for various verticals (identical markers correspond to the same vertical).
We notice that the water temperature in the epilimnion and hypolimnion only slightly varies in
the horizontal direction. Therefore we can apply the one-dimensional vertical model.

Fig. 3. Measured values of temperature in four verticals: a) June 27 2013 at 17 pm, b) June 30
2013 at 3 pm. Identical markers correspond to the same vertical

In real situation wind conditions are changed both in magnitude and in direction. Therefore a
complex system of the internal waves appears. Noticeable fluctuations of the water temperature
are observed in the pycnocline (Figs. 3, 4). Fluctuations of temperature and salinity are estimated
by solving problems (20), (19) numerically with the use of the simplified model of the internal
seiche (12), (15), (17), (18). Fig. 5 shows examples of calculations for the superposition of two
modes of the single-node internal seiche.
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Fig. 4. Measured values of water temperature during one day at various depths (2–5.5 m, 3–7.5 m,
4–8.5 m, 5–12 m)

Fig. 5. Calculated values of water temperature at various depths (1–3 m, 2–5.5 m, 3–7.5 m,
4–8.5 m, 5–12 m). The internal seiche is taken into account

A comparison of calculations and field measurements shows that the proposed algorithm
allows us to determine the layer in which internal waves have a pronounced effect on oscillations
of temperature and salinity in a stratified lake.

The dynamics of the vertical distribution of water temperature and salinity in stratified
reservoirs can be predicted with the use of the one-dimensional vertical model, taking into account
changes in meteorological parameters. Fluctuations of temperature and salinity in pycnocline
can be estimated from the calculated vertical distributions of temperature and salinity by using
the simplified one-dimensional model of internal waves.

The work was supported by the RFBR, grants (13-05-00853, 14-01-00296).
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Бароклинные сейши в случае трехслойной плотностной
стратификации в бассейнах прямоугольной формы

Виктор М. Белолипецкий

Светлана Н. Генова

Андрей Г. Дегерменджи

Александр П. Толомеев

Рассматривается задача о линейных бароклинных сейшах в бассейнах прямоугольной формы.

Плотностная стратификация предполагается трехслойной. Показано, что одномерная модель

без учета внутренних волн позволяет с удовлетворительной точностью определить положения

термоклина и халоклина, а также значения температуры и солености воды в поверхностном и

придонном слоях. Колебания температуры и солености воды в пикноклине оцениваются по рас-

считанным параметрам бароклинных сейш. Результаты расчетов сопоставляются с данными

измерений на озере Шира.

Ключевые слова: дифференциальные уравнения, задача Коши, расщепление, устойчивость, сходи-

мость.
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