

Journal of Siberian Federal University. Biology 4 (2014 7) 395-410

~ ~ ~

УДК 561.26, 58.056, 551.5

Diatoms of Holocene Sediments of Lake Bolshoy Kharbei (Bolshezemelskaya Tundra, Russia)

Olga V. Palagushkina^{a*}, Larisa B. Nazarova^{a,b} and Larisa A. Frolova^a ^aKazan (Volga Region) Federal University 18 Kremlevskaya, Kazan, 420008, Russia ^bInstitute of Polar and Marine Research A 43 Telegrafenberg, Potsdam, 14473, Germany

Received 19.10.2014, received in revised form 09.11.2014, accepted 07.12.2014

Arctic lakes, which are not affected by direct human impact, are excellent objects for paleoclimatic reconstructions. Diatoms can be a source of information about the changes that occurred in lakes. The recent Holocene sediments from deep glacial arctic Lake Bolshoy Kharbei of Bolshezemelskaya tundra were studied for diatoms. In total, 122 taxa of 2 classes, 5 orders, 18 families, 45 genus of cosmopolitan forms with a predominance of alkaliphilic benthic species of diatoms preferring a standing – flowing waters, indifferent to salinity and moderate temperature conditions were revealed. There is a trend in forming diatom flora of Holocene sediments of Lake Bolshoy Kharbei manifested in changes in the composition of dominants due to climate warming. As a response to increase of paleotemperature, the lengthening of the growing season and period of open water in the lake, the rise of the water level and the rate of water exchange took place, which contributed to the development of planktonic centric and small pennate diatoms with a consequent increasing of their valves share in the sediments.

Keywords: diatoms algae, Lake Bolshoy Kharbei, Holocene sediments, climate change.

[©] Siberian Federal University. All rights reserved

^{*} Corresponding author E-mail address: opalagushkina@mail.ru

Диатомовые водоросли из голоценовых осадков озера Большой Харбей

(Большеземельская тундра, Россия)

О.В. Палагушкина^а, Л.Б. Назарова^{а,6}, Л.А. Фролова^а

^aКазанский (Приволжский) федеральный университет Россия, 420008, Казань, ул. Кремлевская, 18 ^бИнститут полярных и морских исследований Германия, 14473, Потсдам, Телеграфенберг, А 43

Арктические озера, не затронутые прямым антропогенным воздействием, являются прекрасными объектами для палеоклиматических реконструкций. Одним из источников информации о произошедших изменениях в экосистемах озер могут быть диатомовые водоросли. Изучение диатомовых водорослей в голоценовых осадках ледникового оз. Большой Харбей Большеземельской тундры позволило установить 122 видовых и внутривидовых таксона, относящихся к 2 классам, 5 порядкам, 18 семействам и 45 родам с преобладанием космополитных алкалифильных бентосных видов стояче-текучих вод, индифферентных к солености, обитающих в умеренных температурных условиях. Была выявлена тенденция формирования диатомовой флоры голоценовых осадков оз. Большой Харбей, проявляющаяся в изменении состава доминантов в связи с потеплением климата. В качестве реакции на рост палеотемператур происходит увеличение периода открытой воды в озере и водности, что способствует лучшему развитию планктонных центрических и мелких пенатных диатомей с последующим возрастанием доли их створок в донных осадках.

Ключевые слова: диатомовые водоросли, оз. Большой Харбей, голоценовые осадки, изменение климата.

Введение

Последние 100 лет человеческой цивилизации отмечены ростом уровня загрязнения окружающей среды и связаны с глобальной экологической проблемой изменения климата. Очевидность этой проблемы признана везде, в том числе в самых удаленных Арктических областях, которые, как выяснилось, являются наиболее чувствительными к климатическим изменениям (Douglas et al. 1994; Overpeck et al.,1997; ACIA, 2004; Solovieva at al., 2005). Возможность использования донных отложений арктических озер, особенно не затронутых антропогенным воздействием, для палеоклиматических реконструкций повышает значимость исследований, проводимых в Арктических областях.

Целью исследований было выявление тенденции формирования таксономического состава диатомовых оз. Большой Харбей в Большеземельской тундре в меняющихся климатических условиях позднего голоцена.

Материалы и методы

Район исследований охватывает восточную часть Большеземельской тундры в

Европейско-Западносибирской тундровой провинции в пределах Циркумполярной тундровой области в подзоне кустарниковой тундры (Тетерюк, 2012). Область подстилается пермскими породами и четвертичными отложениями. Рельеф холмистый, с максимальной высотой 230 м над уровнем моря. Климат региона суровый, резко-континентальный, с чем связано глубокое и длительное промерзание почвы и развитие криогенных процессов (Власова, 1976). Зима длится восемь-девять месяцев, самым холодным месяцем является февраль с минимальной температурой около минус 55 °C; самым теплым месяцем – июль с максимальной температурой, достигающей 31 °C. Годовое количество осадков колеблется между 370 и 395 мм, из них 60 % выпадают в течение летних месяцев с максимумом в августе (Мухин и др., 1964). За последние десятилетия в регионе исследований усилилась континентальность климата: разница между самым теплым (июль) и самым холодным (январь) месяцами увеличилась на 1,4 °C. За 1961-1990 гг. январь стал холоднее в среднем на 0,4 °C, а июль потеплел на 1 °C по сравнению с наблюдениями за 110 лет (Фефилова, 2006).

Харбейские озера, ледниковые по своему происхождению, расположены в междуречье Коротаихи и Большой Роговой на территории Ненецкого автономного округа примерно в 100 км от г. Воркуты. Система озер представлена тремя последовательно соединенными водоемами – Головка, Большой Харбей, Малый Харбей – и множеством мелких озер, соединенных протоками (Фефилова, 2006). Сток из Харбейских озер происходит по ручью Харбей-вис через р. Сейда в р. Уса. Физикохимические исследования воды в озерах показали благоприятный кислородный режим, незначительную минерализацию и преимущественно гидрокарбонатно-кальциевый со-

став воды при невысокой ее цветности, нормальном рН и незначительном содержании биогенных элементов (Батурина и др., 2012).

Палеоэкологические исследования летом 2012 г. проводили на самом крупном озере системы Большой Харбей, площадь водосбора которого составляет 57,3 км² и отличается высокой степенью заболоченности. Такие морфометрические показатели озера, как площадь водного зеркала и максимальная глубина, равны 21,3 км² и 18,5 м соответственно, средняя глубина составляет 4,6 м (Власова, 1976; Фефилова, 2006). На период исследования вода в оз. Большой Харбей характеризовалась как низкоминерализованная (электропроводность воды составляла 27 иЅ/см), нейтрально-слабощелочная (рН = 7,1-7,3), прозрачность воды менялась от 2,7 до 2,9 м. Для диатомового анализа в южной части оз. Большой Харбей (67° 31.832′ с.ш., 062° 52.669 в.д.) на глубине 6 м с помощью ударного пробоотборника UWITEC был отобран керн голоценовых осадков S (K1) длиной 26 см, который впоследствии был разрезан на слои с интервалом в 1 см. Для дальнейшей обработки было выбрано 17 образцов, начиная с поверхностного слоя керна (образец 0-1 см) до слоя 25 см (образец 24-25 см).

Техническую обработку образцов донных отложений на диатомовый анализ осуществляли с использованием метода водяной бани (Battarbee, 1986) в лаборатории Института полярных и морских исследований им. Альфреда Вегенера (г. Потсдам, Германия). Для изготовления постоянных препаратов брали высокопреломляющую смолу Naphrax. При установлении видового состава использовались отечественные и зарубежные определители (Забелина и др., 1951; Krammer, Lange-Bertalot, 1986, 1988, 1991 а, 1991 b). При составлении систематического списка применена общепринятая в России классифи-

кация диатомовых водорослей (Глезер и др., 1988) с учетом последних ревизий (Генкал и др., 2013; http://www.algaebase.org/browse/taxonomy/?id=77640).

Подсчет створок диатомей проводили в постоянных препаратах по параллельным трансектам до 300-500 штук с использованием светового микроскопа Axioplan Zeiss и иммерсионной среды. Отмечали интервалы осадков, в препаратах с которых число створок было меньше чем 300. Общее число створок принимали за 100 %. Доминирующими считались виды, составляющие 10 % и более от общего числа створок в препарате, субдоминантами - виды, число створок которых колебалось от 5 до 10 %. Экологогеографическая характеристика диатомовых дана по отношению к местообитанию, солености, рН воды, по географическому распространению, температурной приуроченности и реофильности (Давыдова, 1995; Баринова и др., 2006).

С помощью Европейской базы данных по диатомовым водорослям были произведены реконструкции значений рН и содержания общего фосфора (ТР) (http://craticula.ncl.ac.uk/Eddi/jsp). Для оценки видового разнообразия и выровненности диатомовых сообществ вычисляли индексы Шеннона (Shannon, Weaver, 1963) и Симпсона (Макрушин, 1974). Трофический статус озера по восстановленному значению общего фосфора определяли по классификации Reynolds (Reynolds, 2003).

Для исследования общих тенденций изменений видового состава был использован метод главных компонент (Principal component analysis, PCA), выполненный в программе CANOCO 4.5 (ter Braak and Šmilauer, 2002). Диаграмма распределения таксонов диатомовых в голоценовых осадках построена в программе C2 (Juggins,

2007), ее зонирование выполнено при помощи кластерного анализа в программе PAST (Hammer et al., 2001).

Результаты

По результатам исследования 17 проб керна S (К1) донных осадков оз. Большой Харбей было определено 122 таксона диатомовых водорослей, принадлежащих к 2 классам, 5 порядкам, 18 семействам и 45 родам (табл.).

Среди диатомовых керна по местообитанию преобладали бентосные виды — 74 (60,7 %), затем следовали планктоннобентосные — 28 (23 %), планктонные виды были представлены 5 видами (4,1 %), эпифитные виды были самыми малочисленными — 1 (0,8 %).

По отношению к фактору солености преобладали олигогалобы — 105 (86 % от общего числа видов), из них наиболее представленной являлась группа видов-индифферентов — 74 (70,5 % от числа олигогалобов), затем следовали виды-галофобы — 17 (16,1 %), среди галлофилов было отмечено 13 видов (12,4 %). Кроме того, было встречено три вида-мезогалоба (2,5 % от общего числа таксонов) — Navicula digitoradiata, Surirella amphioxys, Surirella ovalis.

По отношению к рН большая часть отмеченных таксонов — обитатели вод со щелочной реакцией воды — 61 (50 % от общего числа таксонов): причем 51 таксон (41,8 %) — алкалифилы, 10 (8,2 %) — алкалибионты; индифференты представлены 25 таксонами (20,5 % от общего числа таксонов), ацидофилы самые немногочисленные — 15 (12,3 %).

По географической приуроченности большая часть видов была отнесена к космо-политами -73 (59,8 % от общего числа таксонов), 11 (9 %) – к бореальным, 9 (7,4 %) – к аркто-альпийским, был также отмечен один

№	Таксон
	Класс Centrophyceae
	Порядок Thalassiosirales
	Семейство Stephanodiscaceae Makarova
	Род Stephanodiscus Ehrenberg 1845
1	Stephanodiscus alpinus Hustedt
	Род Stephanocostis Genkal & Kuzmina 1985
2	Stephanocostis chantaicus Genkal & Kuzmin
	Род Cyclotella (Kützing) Brébisson 1838
3	Cyclotella comensis Grunow
4	Cyclotella iris Brun & Héribaud-Joseph
5	Cyclotella ocellata Pantocsek
6	Cyclotella radiosa (Grunow) Lemmermann
7	Cyclotella striata (Kützing) Grunow
	Род Discostella Houk & Klee 2004
8	Discostella pseudostelligera (Cleve & Grunow) Houk & Klee
	Порядок Paraliales
	Семейство Paraliaceae Crawford
	Род <i>Ellerbeckia</i> Crawford 1988
9	Ellerbeckia arenaria (Moore ex Ralfs) Crawford
	Порядок Aulacosirales
	Семейство Aulacosiraceae Moisseeva
	Род Aulacoseira Thwaites 1848
10	Aulacoseira granulata (Ehrenberg) Simonsen
11	Aulacoseira islandica (O.Müller) Simonsen
12	Aulacoseira subarctica (O.Müller) Haworth
	Класс Pennatophyceae
	Порядок Araphales
	Семейство Fragilariaceae (Kützing) De Toni
	Род <i>Fragilaria</i> Lyngbye 1819
13	Fragilaria capucina Desmazières
14	Fragilaria leptostauron var. martyi (Héribaud-Joseph) Lange-Bertalot
	Род Staurosira Ehrenberg 1843
15	Staurosira binodis (Ehrenberg) Lange-Bertalot
16	Staurosira construens Ehrenberg
	Род Staurosirella D.M.Williams & Round 1988
17	Staurosirella leptostauron (Ehrenberg) Williams & Round
18	Staurosirella pinnata (Ehrenberg) D.M.Williams & Round
	Род Fragilariforma D.M.Williams & Round 1988
19	Fragilariforma virescens (Ralfs) Williams & Round
	Род <i>Pseudostaurosira</i> D.M.Williams & Round 1988
20	Pseudostaurosira brevistriata (Grunow) Williams & Round

№	Таксон
21	Pseudostaurosira subconstricta (Grunow) Kulikovskiy & Genkal
22	Pseudostaurosira subsalina (Hustedt) Morales
	Род <i>Ulnaria</i> Compére 2001
23	Ulnaria acus (Kützing) Aboal
24	Ulnaria ulna (Nitzsch) Compére
	Семейство Diatomaceae Dumortier
	Род <i>Diatoma</i> Bory 1824
25	Diatoma tenuis C.Agardh
	Семейство Tabellariaceae Schütt
	Род <i>Tabellaria</i> Ehrenberg 1844
26	Tabellaria flocculosa (Roth) Kützing
27	Tabellaria fenestrata (Lyngbye) Kützing
	Порядок Raphales
	Семейство Cavinulaceae Mann
	Род Cavinula Mann & Stickle 1990
28	Cavinula cocconeiformis (Gregory ex Greville) Mann & Stickle
29	Cavinula scutelloides (W.Smith) Lange-Bertalot
	Семейство Naviculaceae Kützing
	Род Caloneis Cleve 1894
30	Caloneis bacillum (Grunow) Cleve
31	Caloneis silicula (Ehrenberg) Cleve
	Род Diploneis Ehrenberg 1844
32	Diploneis elliptica (Kützing) Cleve
33	Diploneis ovalis (Hilse in Rabenhorst) Cleve
	Род Fallacia Stickle & D.G.Mann in Round et al.1990
34	Fallacia tenera (Hustedt) D.G.Mann
	Род <i>Frustulia</i> Rabenhorst 1853
35	Frustulia saxonica Rabenhorst
	Род <i>Gyrosigma</i> Hassall 1845
36	Gyrosigma acuminatum (Kützing) Rabenhorst
37	Gyrosigma attenuatum (Kützing) Rabenhorst
	Род <i>Luticola</i> D.G.Mann in Round et al 1990
38	Luticola mutica (Kützing) D.G.Mann
	Pog Navicula Bory 1822
39	Navicula americana Ehrenberg
40	Navicula cryptocephala Kützing
41	Navicula digitoradiata (Gregory) Ralfs in Pritchard
42	Navicula laevissima Kützing
43	Navicula radiosa Kützing
44	Navicula reinhardtii (Grunow) Grunow in Cleve & Müler
45	Navicula rhynchocephala Kützing

$N_{\underline{0}}$	Таксон
46	Navicula sp.
	Род <i>Neidium</i> Pfitzer 1871
47	Neidium ampliatum (Ehrenberg) Krammer
48	Neidium bisulcatum (Lagerstedt) Cleve
49	Neidium hitchcockii (Ehrenberg) Cleve
	Род <i>Pinnularia</i> Ehrenberg 1843
50	Pinnularia borealis Ehrenberg
51	Pinnularia borealis var. rectangularis Carlson
52	Pinnularia brevicostata Cleve
53	Pinnularia interrupta W. Smith
54	Pinnularia microstauron (Ehrenberg) Cleve
55	Pinnularia rupestris Hantzsch
56	Pinnularia streptoraphe Cleve
57	Pinnularia sudetica Hilse
58	Pinnularia viridis (Nitzsch) Ehrenberg
	Род Stauroneis Ehrenberg
59	Stauroneis anceps Ehrenberg
60	Stauroneis phoenicenteron (Nitzsch.) Ehrenberg
61	Stauroneis smithii Grunow
	Семейство Achnanthaceae Kützing
	Род Achnanthes Bory 1822
62	Achnanthes brevipes Agardh
63	Achnanthes lutheri Hustedt
64	Achnanthes obliqua (Greg.) Hustedt
65	Achnanthes parvula Kützing
66	Achnanthes sp.
	Род Achnanthidium Kützing 1844
67	Achnanthidium exiguum (Grun.) Czarnecki
68	Achnanthidium minutissimum (Kützing) Czarnecki
	Род <i>Planothidium</i> Round & Bukhtiyarova 1996
69	Planothidium calcar (Cleve) M.B.Edlund
70	Planothidium delicatulum (Kützing) Round & Bukhtiyarova
71	Planothidium lanceolatum (Brébisson ex Kützing) Lange-Bertalot
	Род <i>Platessa</i> Lange-Bertalot 2004
72	Platessa holsatica (Hustedt) Lange-Bertalot
	Род <i>Psammothidium</i> Bukhtiyarova & Round 1996
74	Psammothidium levanderi (Hustedt) Bukhtiyarova & Round
	Семейство Cocconeidaceae Kützing
	Род <i>Cocconeis</i> Ehrenberg 1838
75	Cocconeis euglypta Ehrenberg
76	Cocconeis pediculus Ehrenberg

№	Таксон
77	Cocconeis placentula Ehrenberg
78	Cocconeis placentula var. klinoraphis Geitler
	Семейство Eunotiaceae Kützing
	Род Amphorotia Williams & Reid 2006
79	Amphorotia clevei (Grunow) Williams & Reid
	Род <i>Eunotia</i> Ehrenberg 1837
80	Eunotia bilunaris (Ehrenberg) Schaarschmidt
81	Eunotia incisa W. Gregory
82	Eunotia pectinalis (Kützing) Rabenhorst
83	Eunotia praerupta Ehrenberg
84	Eunotia soleirolii (Kützing) Rabenhorst
85	Eunotia sudetica Otto Müller
86	Eunotia triodon Ehrenberg
87	Eunotia sp.
	Семейство Cymbellaceae (Kützing) Grunow
	Род Amphora Ehrenberg 1844
88	Amphora libyca Ehrenberg
89	Amphora pediculus (Kützing) Grunow ex A.Schmidt
	Род <i>Cymbella</i> Agardh 1830
90	Cymbella amphycephala var. citrus (Carter & Bailey-Watts) Krammer
91	Cymbella cistula (Ehrb. in Hemprich & Ehrenberg) Kirchner
92	Cymbella lanceolata (Agardh) Agardh
93	Cymbella mesiana Cholnoky
94	Cymbella silesiaca Bleisch in Rabenh.
95	Cymbella sp.
	Род Cymbopleura (Krammer) Krammer 1997
96	Cymbopleura inaequalis (Ehrenberg) Krammer
97	Cymbopleura subaequalis (Grunow) Krammer
	Род <i>Reimeria</i> Kociolek & Stoermer 1987
98	Reimeria sinuata (Gregory) Kociolek & Stoermer
	Семейство Gomphonemataceae (Kützing) Grunow
	Род <i>Didymosphenia</i> M.Schmidt, 1899
99	Didymosphenia geminata (Lyngbye) M.Schmidt
	Род Gomphonema Ehrenberg 1824
100	Gomphonema acuminatum Ehrenberg
101	Gomphonema coronatum Ehrenberg
102	Gomphonema clavatum Ehrenberg
103	Gomphonema olivaceum (Hornemann) Brébisson
104	Gomphonema parvulum (Kützing) Kützing
105	Gomphonema truncatum Ehrenberg
	Семейство Epithemiaceae Grunow

Окончание таблица

№	Таксон
	Род <i>Epithemia</i> Brébisson ex Kützing 1844
106	Epithemia adnata (Kützing) Brébisson
	Семейство Rhopalodiaceae Topatschewsky
	Род <i>Rhopalodia</i> O. Müller 1895
107	Rhopalodia gibba (Ehrenberg) O. Müller
	Семейство Nitzschiaceae Grunow
	Род <i>Nitzschia</i> Hassal 1845
108	Nitzschia dissipata (Kützing) Rabenhorst
109	Nitzschia frustulum (Kützing) Grunov
110	Nitzschia lanceolata W.Smith
111	Nitzschia palea (Kützing) W.Smith
112	Nitzschia paleacea Grunow in Van Heurck
113	Nitzschia subacicularis Hustedt in Schmidt et al.
114	Nitzschia sp.
	Род <i>Hantzschia</i> Grunow 1877
115	Hantzschia amphioxys (Ehrenberg) Grunow in Cleve & Grunow
	Семейство Surirellaceae Kützing
	Род Surirella Turpin 1828
116	Surirella amphioxys W.Smith
117	Surirella didyma Kützing
118	Surirella elegans Ehrenberg
119	Surirella lapponica A.Cleve
120	Surirella ovalis Brébisson
121	Surirella tenera Gregory
	Семейство Entomoneidaceae Reimer
	Род Entomoneis Ehrenberg 1845
122	Entomoneis alata (Ehrenberg) Ehrenberg

голарктический вид $Planothidium\ delicatulum\ (0,8\%).$

По температурной приуроченности информация имеется для 30 видов, из них 22 характеризовались как обитатели умеренных температурных условий, 4 вида — холодолюбивые, 3 — эвритермные, 1 вид — *Planothidium lanceolatum* — теплолюбивый.

По отношению к фактору течения выявлена характеристика для 87 видов, из них преобладали виды стояче-текучих (45) и текучих вод (23), стоячие воды были представ-

лены 18 видами, также был отмечен один видарофил – *Pinnularia borealis*.

В диатомовой диаграмме голоценовых осадков оз. Большой Харбей с помощью кластерного анализа было выделено четыре интервала с отличающимися комплексами диатомей, эти интервалы в тексте статьи будут называться зонами (рис. 1).

Зона DI (24–19 см) объединила 6 проб керна и характеризовалась числом видов от 15 до 23, индексом видового разнообразия Шеннона в пределах 2,2 – 2,7, индексом Симпсо-

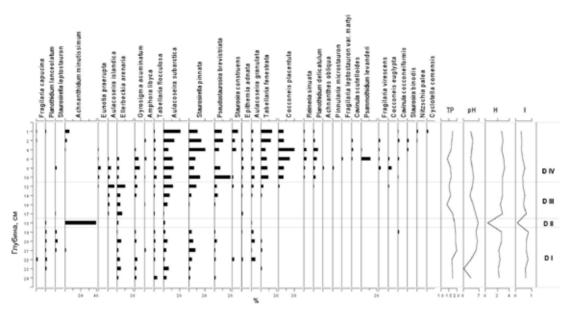


Рис. 1. Распределение диатомовых водорослей в голоценовых осадках оз. Большой Харбей, реконструированные значения pH, концентрации общего фосфора (TP, мкг/л), рассчитанные индексы Шеннона (H) и Симпсона (I); DI – DIV – статистически выделенные зоны. Представлены виды, число створок которых составляло ≥ 2 % от общего числа створок в препарате

на – от 0,84 до 0,92. Число створок диатомей в постоянных препаратах было небольшим – от 56 до 127,5. В донных осадках преобладали космополитные бентосные и планктоннобентосные алкалифильные виды, индифферентные по отношению к солености воды, предпочитающие умеренные температурные условия и стояче-текучие воды (рис. 2). Присутствие в видовом составе холодолюбивого вида Gyrosigma acuminatum позволяет говорить об умеренном или прохладном климате в данном временном промежутке, а преобладание бентосных и планктонно-бентосных форм среди диатомовых может быть связано с невысоким уровнем воды в озере. Восстановленное значение рН в пределах зоны колебалось от 6,69 до 7,24, что не противоречит ранее изложенному факту преобладания в составе диатомовых алкалифильных видов. Реконструированные концентрации общего фосфора в воде колебались в пределах 1,69-1,99 микрограмм на литр, что соответствует ультраолиготрофному статусу озера (Reynolds, 2003).

В зоне DII (19-18 см) видовое богатство снизилось до 14 видов (индекс Шеннона составил 0,45, индекс Симпсона – 0,15), но увеличилось число створок диатомей в препарате до 464. Восстановленное значение рН соответствовало нейтральной среде (7,03), содержание общего фосфора – ультраолиготрофному статусу (1,76 микрограмм на литр). Абсолютное доминирование *Achnanthidium minutissimum* (92 % от общего числа створок) отражает увеличение проточности воды на фоне возможного потепления.

Зона DIII (18–11 см) объединяет 4 пробы керна и характеризуется ростом числа видов до 24-38, повышением индексов Шеннона в пределах 2,5 – 2,9 и Симпсона от 0,87 до 0,92. Максимальное число створок в постоянных препаратах менялось от 62,5 до 218,5 штук. Восстановленное значение рН колебалось от 6,84 до 7,01 (нейтральная среда), содержание

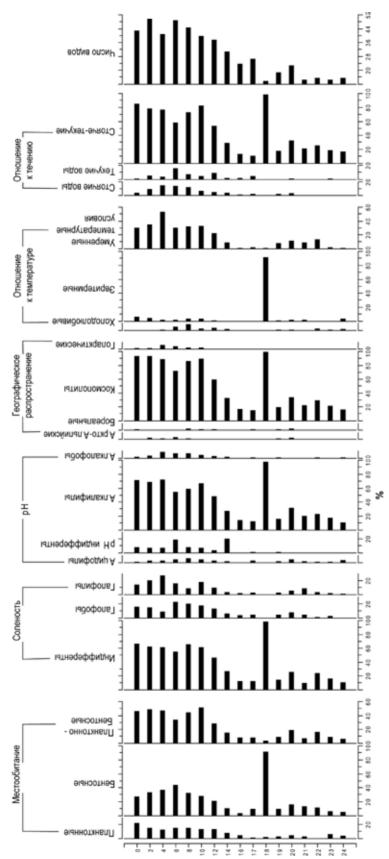


Рис. 2. Число видов и процентное соотношение створок диатомовых водорослей различных экологических групп в голоценовых осадках оз. Большой Харбей: по местообитанию, солености, рН, географической приуроченности, температуре и наличию течения

общего фосфора уменьшилось до 1,37-1,67 микрограмм на литр, что также соответствовало ультраолиготрофным условиям. Среди диатомовых отмечается снижение доли бентосных форм и постепенное увеличение доли планктонных и планктонно-бентосных видов. Так, начиная с глубины 17 см добавляется новый для голоценовых осадков озера планктонный вид-субдоминант Aulacoseira islandica, а на глубине 11 см - планктонный вид Aulacoseira subarctica и планктоннобентосный Ellerbeckia arenaria становятся доминирующими видами (12,5 и 10,5 % соответственно от общего числа створок в препарате). По отношению к фактору солености отмечается рост доли галофобных видов (с 5 до 14,5 %). По отношению к температурному фактору в видовом составе зоны DIII встречается ранее отмеченный холодолюбивый вид Gyrosigma acuminatum, также появляются Eunotia praerupta, Aulacoseira islandica и Pinnularia brevicostata. Изменения видового состава и комплекса доминантов косвенно отражают продолжающиеся процессы обводнения озера, связанные с притоком талых вод со склонов Полярного Урала, снижение общей минерализации воды, уменьшение обеспеченности биогенными элементами.

Зона DIV (11-0 см) объединяет 6 проб позднеголоценовых осадков и характеризуется самыми высокими в колонке видовым богатством (40–50 видов) и индексами видового разнообразия Шеннона (2,7-3,2) и Симпсона (0,9-0,95). Восстановленное значение рН менялось от 6,91 до 7,13, что характерно для нейтральной — слабощелочной среды. Концентрация общего фосфора несколько возросла и колебалась от 1,4 до 1,77 микрограмм на литр, что по-прежнему соответствовало ультраолиготрофному статусу.

В постоянных препаратах проб, статистически объединенных в зону DIV, отмеча-

ется последовательное увеличение доли створок планктонных и планктонно-бентосных видов с доминированием и субдоминированием Aulacoseira subarctica (6-21 %), Tabellaria fenestrata (5-14,8 %), Cocconeis placentula (6-20,3 %), Pseudostaurosira brevistriata (5 -20 %), Staurosira construens (5,8-7,7 %), что отражает процессы увеличения уровня воды в озере в связи с потеплением. Присутствие в списке субдоминантов бентосных видов Achnanthidium minutissimum, Psammothidium levanderi показывает рост влияния проточности на формирование диатомовых палеосообществ этой зоны. Диатомовым водорослям данного интервала осадков свойственны высокие доли створок алкалифильных видов (от 55 до 73 %). Преобладание створок галофильных видов отмечалось на глубинах 5-2 см, а большая доля створок галофобных видов была на глубинах 9-6 см и на поверхности (1-0 см).

РСА-анализ позволил выделить три группы проб, близких по видовому составу, и отделить пробу №18 (с горизонта 19-18 см) как заметно отличающуюся (рис. 3). Статистическое распределение проб керна обусловлено комплексами доминирующих и субдоминирующих видов, смена которых связана с изменением условий обитания в озере. Как отражение нарастающего потепления окружающей среды и обводнения озера в пробах керна, начиная с глубины 12 см и выше, возрастает доля створок видов Aulacoseira subarctica, Ellerbeckia arenaria, Staurosirella pinnata, отмечавшихся в нижерасположенных горизонтах в статусе субдоминантов, и появляются новые доминирующие виды Cocconeis placentula, Pseudostaurosira brevistriata, Tabellaria fenestrata. Результаты РСА-анализа дополняют данные кластерного анализа, позволяя четче разделить периоды наиболее значимых изменений в окружающей среде.

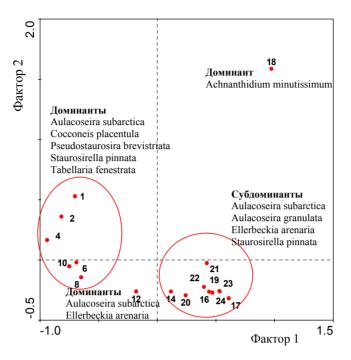


Рис. 3. PCA видового состава диатомовых водорослей проб керна голоценовых осадках оз. Большой Харбей

Обсуждение

Согласно литературным данным (Стенина, Гецен, 1975; Стенина, 1978; Стенина, 2009), характерной чертой фитопланктона водоемов Большеземельской тундры признано видовое богатство и обилие диатомей в относительно глубоких ледниковых озерах с хорошим водообменном. Типично для фитопланктона таких озер небольшое разнообразие истинно планктонных, особенно центрических диатомей, сходство доминирующих видов, частая встречаемость представителей перифитона и фитобентоса в условиях перемешивания водных масс. Основную роль в сложении диатомовых сообществ в ледниковых озерах играют преимущественно виды из родов Aulacoseira, Asterionella, Tabellaria, менее представлены роды Cyclotella и Stephanodiscus.

Гидробиологические исследования, проводимые на оз. Большой Харбей ранее, позволили выявить в видовом составе фитоплан-

ктона 146 таксонов рангом ниже рода. При этом видовое богатство фитопланктонных диатомей озера формировалось, в основном, за счет обитателей дна и обрастаний, истинно планктонные виды составляли около 9 % от общего числа видов. Среди доминантов отмечались Aulacoseira islandica, Aulacoseira subarctica, Asterionella formosa, Tabellaria fenestrata. В отношении активной реакции среды диатомеям фитопланктона Харбейских озер была свойственна большая доля алкалифилов в сравнении с другими озерами Большеземельской тундры, а доля бореальных видов была выше, чем доля аркто-альпийских (Стенина, 2009).

Как и в фитопланктоне, среди диатомовых керна оз. Большой Харбей преобладали бентосные и планктонно-бентосные формы, а доля планктонных видов была наименьшей — всего 4,1 %. Среди доминантов отмечались центрические диатомовые рода *Aulacoseira* —

Aulacoseira islandica, Aulacoseira subarctica. По отношению к рН среды преобладали виды-обитатели вод со щелочной реакцией, преимущественно алкалифилы, а доля бореальных видов также превышала таковую аркто-альпийских.

Палеоэкологические исследования керна S (К1) позволили выделить четыре интервала осадков (зоны), охарактеризованных комплексами диатомей, сформировавшихся в различных экологических условиях. По данным диатомового анализа, первые признаки потепления зафиксированы на глубине 12 см и прослеживаются вверх по разрезу. В основном они проявлялись в увеличении обилия планктонной Aulacoseira subarctica и бентосных и планктонно-бентосных Pseudostaurosira brevistriata, Staurosirella pinnata, а также Tabellaria fenestrata.

Исследования других озер Большеземельской тундры, также не затронутых непосредственным антропогенным действием, показали рост доли планктонных центрических видов в формировании диатомовой флоры начиная с 70-х гг. ХХ в. (Solovieva at al., 2005, 2008). Эта тенденция отражала потепление климата и связанное с ним увеличение периода открытой воды, способствующее развитию планктонных центрических диатомей рода Aulacoseira. Кроме того, роду Aulacoseira для нормального развития необходимо достаточное количество кремния, который становится доступным только при хорошем перемешивании водной толщи (Ruhland and Smol, 2005). Виды Pseudostaurosira brevistriata, Staurosirella pinnata становятся доминантами, поскольку отмечаются первыми в богатых карбонатами водах недавно оттаявшей местности. Их доминирование также отражает условия щелочной среды, обусловленные большим притоком основных катионов с недавно оттаявших водосборов (Rouillard et al., 2012; Puusepp et al., 2010). Доминирование вида Staurosirella pinnata, по мнению ряда исследователей, также отражает увеличение палеотемператур и потепление климата (Weckstrom et al., 1997; Kumke et al., 2004; Holmgren et al., 2010). Развитие и доминирование Tabellaria fenestrata может быть связано с дальнейшим повышением уровня воды в озере из-за потепления климата (Трифонова, Афанасьева, 2008).

В связи с вышеизложенным результаты радиоуглеродного датирования голоценовых отложений керна S(K-1), которые в настоящее время пока не получены, помогут более точно установить время начала потепления, отраженное в архивах донных осадков в оз. Большой Харбей.

Заключение

Проведенные исследования установили тенденцию формирования состава диатомовых водорослей в голоценовых осадках оз. Большой Харбей. Эта тенденция общая для большинства озер Большеземельской тундры, проявляется в изменении доминирующей группы и обусловлена потеплением климата. В качестве реакции на рост палеотемператур происходит увеличение периода открытой воды в озере и водности, что способствует лучшему развитию планктонных центрических и мелких пенатных диатомей и, как следствие, росту доли их створок в диатомовой флоре донных осадков.

Список литературы

I. Баринова С.С., Медведева Л.А., Анисимова О.В. (2006) Биоразнообразие водорослейиндикаторов окружающей среды. Тель-Авив: Pilies Studio, 498 с.

- 2. Батурина М.А., Лоскутова О.А., Фефилова Е.Б., Хохлова Л.Г. (2012) Зообентос озера Большой Харбей (Большеземельская тундра): современное состояние и анализ ретроспективных данных. Известия Коми научного центра УрО РАН Выпуск 4(12): 21-29.
- 3. Власова Т.А. (1976) Гидрологические и гидрохимические условия биологического продуцирования в озерах Харбейской системы. В: Продуктивность озер восточной части Большеземельской тундры. Л.: Наука, с. 6-32.
- 4. Генкал С.И., Куликовский М.С., Михеева Т.М., Кузнецова И.В., Лукьянова Е.В. (2013) Диатомовые водоросли планктона реки Свислочь и ее водохранилищ. М.: Научный мир, 236 с.
- 5. Глезер З.И., Караева Н.И., Макарова И.В. и др. (1988) Классификация диатомовых водорослей. В: Макарова И.В. (ред.) Диатомовые водоросли СССР (ископаемые и современные). Т.2, вып.1. Л., с. 31-35.
- 6. Давыдова Н.Н.(1985) Диатомовые водоросли индикаторы природных условий водоемов в голоцене. Л.: Наука, 244 с.
- 7. Забелина М.М., Киселев И.А., Прошкина-Лавренко А.И., Шешукова В.С. (1951) Диатомовые водоросли: Определитель пресноводных водорослей СССР, Вып. 4. М.: Советская наука, 620 с.
- 8. Макрушин А.В. (1974) Биологический анализ качества вод. Л., 60 с.
- Мухин Н.И., Петракова В.М., Шевченко А.И. (1964) Климатические характеристики Печорского угольного бассейна. В: Геокриологические условия Печорского угольного бассейна. М., с.20-28.
- 10. Стенина А.С., Гецен М.И. (1975) Диатомовые водоросли в планктоне тундровых Харбейских озер (Коми АССР). Ботанический журнал 60 (6): 1178-1183.
- 11. Стенина А.С. (1978) Особенности флоры восточной части Большеземельской тундры. Диатомовые. В: Флора и фауна водоемов Европейского севера. Л.: Наука, с. 21-26.
- 12. Стенина А.С. (2009) Диатомовые водоросли в озерах востока Большеземельской тундры. Сыктывкар, 174 с.
- 13. Тетерюк Б.Ю. (2012) Флора древних озер Европейского северо-востока России. Известия Самарского научного центра Российской академии наук 14 (1): 82-90.
- 14. Трифонова И.С., Афанасьева А.Л. (2008) Многолетние изменения фитопланктона оз.Красного. Многолетние изменения биологических сообществ мезотрофного озера в условиях климатических флуктуаций и эвтрофирования. СПб: ЛЕМА, 246 с.
- 15. Фефилова Е. (2006) Зоопланктон и мейобентические ракообразные Харбейских озер. Вестник Института биологии 10: 7-11.
- ACIA (2004) Impacts of Warming Arctic: Arctic Climate Impact Assessment. Cambridge University Press, 139 p.
- 17. AlgaeBase http://www.algaebase.org/browse/taxonomy/?id=77640.
- 18. Battarbee R.W. (1986) Diatom analysis. In: Berglund B.E. (ed.) Handbook of Holocene Palaeoecology and Palaeohydrology. J. Wiley & Sons, p. 527-570.
- 19. Douglas M.S.V., Smol J.P. and Blake W. (1994) Marked post-18th century environmental change in high Arctic ecosystems. Science 266: 416-419.
- 20. European Diatom Database http://craticula.ncl.ac.uk/Eddi/jsp.

- 21. Hammer Ø., Harper D.A.T., Raan P.D. (2001) PAST: Palaeontological statistics software package for education and data analysis. Palaeontologia electronica 41: 9 p.
- 22. Juggins S. (2007) C2 Version 1.5 User guide. Software for ecological and palaeoecological data analysis and visualisation. Newcastle University, Newcastle upon Tyne, UK.
- 23. Krammer K., Lange-Bertalot H. (1986) Bacillariophyceae. 1. Teil: Naviculaceae: Suesswasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart, Jena, 976 p.
- 24. Krammer K., Lange-Bertalot H. (1988) Bacillariophyceae. 2. Teil: Bacillariaceae, Epitemiaceae, Surirellaceae: Suesswasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart, Jena, 596 p.
- 25. Krammer K., Lange-Bertalot H. (1991) Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae: Suesswasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart, Jena, 576 p.
- Kumke T., Kienel U., Weckström J., Korhola A., Hubberten H.-W. (2004) Inferred Holocene palaeotemperatures from diatoms at Lake Lama, Central Siberia. Arctic Antarctic and Alpine Research 36: 626-636.
- 27. Overpeck J., Hughen K., Hardy D. Bradley R., Case R., Douglas M., Finney B., Gaewski K., Jacoby G., Jennings F., Lamoureux S., Lasca A., MacDonald G., Moore J., Retelle M., Smith S., Wolfe A. and Zielinski G. (1997) Arctic environmental change of the last four centuries. Science 278: 1251-1256.
- 28. Solovieva N., Jones V.J., Nazarova L., Brooks S.J., Birks H.J.B., Grytnes J.-A., Appleby P.G., Kauppila T., Kondratenok B., Renerg I. and Ponomarev V. (2005) Paleolimnological evidence for recent climatic change in lakes from the northern Urals, arctic Russia. Journal of Paleolimnology 33: 463-482.
- 29. Solovieva N., Jones V.J., Birks J.H.B., Appleby P., Nazarova L. (2008) Diatom responses to 20th century climate warming in lakes from the northern Urals, Russia. Palaeogeography, Palaeoclimatology, Palaeoecology 259: 96-106.
- 30. Puusepp L., Kangur M. (2010) Linking diatom community dynamics to changes in terrestrial vegetation: a palaeolimnological case study of Lake Ķūzi, Vidzeme Heights (Central Latvia). Estonian Journal of Ecology 59 (4): 259-280.
- 31. Reynolds C.S. (2003) The development of perceptions of aquatic eutrophication and its control. Ecohydrology Hydrobiologe 3 (2): 149-163.
- 32. Rouillard A., Michelutti N., Rosén P., Douglas M.S.V., Smol J.P. (2012) Using paleolimnology to track Holocene climate fluctuations and aquatic ontogeny in poorly buffered High Arctic lakes. Palaeogeography, Palaeoclimatology, Palaeoecology 321–322: 1-15.
- 33. Rühland K., Smol J.P. (2005) Diatom shifts as evidence for recent Subarctic warming in remote tundra lake, NWT, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 226: 1-16.
- 34. Shannon C.E., Weaver W. (1963) The mathematical theory of communication. Urbana: Univ. Illinois Press, 117 p.
- 35. ter Braak, C.J.F., Šmilauer, P. (2002) CANOCO Reference Manual and CanoDraw for Windows User's Guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, NY.
- 36. Weckstrom J., Korhola A., Blom T. (1997) Diatoms as quantitative indicators of pH and water temperature in subarctic Fenoscandian lakes. Hydrobiologia 347: 171-184.