УДК 517.55

Boundary Version of the Morera Theorem for a Matrix Ball of the Second Type

Gulmirza Kh. Khudayberganov*
Zokirbek K. Matyakubov ${ }^{\dagger}$
National University of Uzbekistan
Vuzgorodok, Tashkent, 100174
Uzbekistan

Received 24.05.2014, received in revised form 26.08.2014, accepted 15.09.2014
In this article we prove a boundary Morera theorem for a matrix ball of the second type.
Keywords: matrix ball, automorphism, Poisson kernel, Morera theorem.

In this article we consider a boundary version of the Morera theorem for a matrix ball of the second type. Our starting point is Nagel and Rudin's result (see [1]), which says that if f is a continuous function on the boundary of a ball in \mathbb{C}^{n} and the integral

$$
\int_{0}^{2 \pi} f\left(\psi\left(e^{i \varphi}, 0, \ldots, 0\right)\right) e^{i \varphi} d \varphi=0
$$

for all (holomorphic) automorphisms ψ of a ball, then the function f is holomorphically extends into the ball. For classical domains an analog of a boundary Morera theorem was obtained in [7].

Let $\mathbb{C}[m \times m]$ be the space of $[m \times m]$-matrices with complex elements. We denote by $\mathbb{C}^{n}[m \times m]$ the Cartesian product of n copies of $\mathbb{C}[m \times m]$:

$$
\mathbb{C}^{n}[m \times m]=\mathbb{C}[m \times m] \times \ldots . . \times \mathbb{C}[m \times m]
$$

Set (see, for example [2])

$$
B_{I}=\left\{Z \in \mathbb{C}^{n}[m \times m]: \quad I-\langle Z, Z\rangle>0\right\}
$$

where $\langle Z, Z\rangle=Z_{1} Z_{1}^{*}+Z_{2} Z_{2}^{*}+\ldots+Z_{n} Z_{n}^{*}$ is a 'scalar' product, I is the identity matrix $[m \times m$], $Z_{\nu}^{*}=\bar{Z}^{\prime}{ }_{v}$ is the adjoint and transposed matrix to $Z_{\nu}, \nu=1,2, \ldots, n . B_{I}$ is called a matrix ball (of the first type). Here $I-\langle Z, Z\rangle>0$ means that the Hermite matrix $I-\langle Z, Z\rangle$ is positively defined, i.e. all eigen values are positive.

The skeleton of B_{I} is the set

$$
X_{I}=\left\{Z \in \mathbb{C}^{n}[m \times m]:\langle Z, Z\rangle=I\right\}
$$

The domain $B_{I I}$ in spaces $\mathbb{C}^{n}[m \times m]$:

$$
\begin{equation*}
B_{I I}=\left\{Z \in \mathbb{C}^{n}[m \times m]: I-\langle Z, Z\rangle>0, \quad Z_{v}^{\prime}=Z_{\nu}, \nu=1,2, \ldots, n\right\} \tag{1}
\end{equation*}
$$

where I is, as usual, the identity matrix of order m, is called a matrix ball of the second type (see [3]).

The skeleton of this domain is the following manifold:

$$
X_{I I}=\left\{Z \in \mathbb{C}^{n}[m \times m]:\langle Z, Z\rangle=I, \quad Z_{v}^{\prime}=Z_{\nu}, \nu=1,2, \ldots, n\right\}
$$

[^0]Lemma 1. The domain $B_{I I}$ has the following properties:

1) $B_{\text {II }}$ is bounded;
2) $B_{I I}$ is a complete circular domain;
3) $B_{I I}$ and its skeleton $X_{I I}$ are invariant under unitary transformations.

Proof. 1. The definition of the domain implies that each diagonal element of the matrix $\langle Z, Z\rangle$ is positive and less than 1 , and the sum of the squares of the modules of all elements in $Z_{\nu}, \nu=1, \ldots, n$, does not exceed m. This implies that the matrix ball of the second type is bounded.
2. If $Z \in B_{I I}$ and $\alpha \in \mathbb{C},|\alpha| \leq 1$, then

$$
I-\langle\alpha Z, \alpha Z\rangle=I-|\alpha|^{2}\langle Z, Z\rangle=I\left(1-|\alpha|^{2}\right)+|\alpha|^{2}(I-\langle Z, Z\rangle)>0
$$

3. Invariance under unitary transformations means that if U is a unitary matrix of order m, then for $Z \in B_{I I}$ we have $U Z \in B_{I I}$ and $Z U \in B_{I I}$. Indeed,

$$
\begin{aligned}
& I-\langle U Z, U Z\rangle=I-U Z_{1} \overline{Z_{1}} U^{*}-U Z_{2} \overline{Z_{2}} U^{*}-\ldots .-U Z_{n} \overline{Z_{n}} U^{*}= \\
& =I-U\left(Z_{1} \overline{Z_{1}}+Z_{2} \overline{Z_{2}}+\ldots .+Z_{n} \overline{Z_{n}}\right) U^{*}=I-U\langle Z, Z\rangle U^{*}=U(I-\langle Z, Z\rangle) U^{*}>0
\end{aligned}
$$

and

$$
\langle Z U, Z U\rangle=\langle Z, Z\rangle
$$

The invariance of the skeleton is proved similarly.
We consider normalized Lebesgue measures μ in $B_{I I}$ and σ on the skeleton $X_{I I}$, i.e.

$$
\int_{B_{I I}} d \mu(Z)=1 \text { and } \int_{X_{I I}} d \sigma(Z)=1 .
$$

We define the space $H^{1}\left(B_{I I}\right)$ as follows: a function f belongs to $H^{1}\left(B_{I I}\right)$ if it is holomorphic in $B_{I I}$ and

$$
\sup _{0<r<1} \int_{X_{I I}}|f(r Z)| d \sigma(Z)<\infty .
$$

We fix a point $\Lambda^{0} \in X_{I I}\left(\Lambda^{0}=\left(\Lambda_{1}^{0}, \ldots, \Lambda_{n}^{0}\right)\right)$ and consider the following embedding of a unit disk Δ in the domain $B_{I I}$

$$
\begin{equation*}
\left\{W \in \mathbb{C}^{n}[m \times m]: \quad W_{\nu}=\xi \Lambda_{\nu}^{0},|\xi|<1, \nu=1, \ldots, n,\right\} . \tag{2}
\end{equation*}
$$

By this embedding the boundary T of the disk Δ transforms into the disk on $X_{I I}$. If ψ is an automorphism of the domain $B_{I I}$, then the set (2) under the action of this automorphism becomes some analytic disk with the boundary on $X_{I I}$.

Theorem 1. Let f be a continuous function on $X_{I I}$. If f satisfies

$$
\begin{equation*}
\int_{T} f\left(\psi\left(\xi \Lambda^{0}\right)\right) d \xi=0 \tag{3}
\end{equation*}
$$

for all automorphisms ψ of the domain $B_{I I}$, then the function f has a holomorphic extension F in $B_{I I}$ of the class $C\left(\bar{B}_{I I}\right)$.

Proof. On $X_{I I}$ the subgroup of the automorphisms leaving 0 fixed acts transitively (see [3]). Since $X_{I I}$ is invariant with respect to unitary transformations, the condition (3) is satisfied for any point $\Lambda \in X_{I I}$.

First of all, we parametrize manifold $X_{I I}$ as follows: for $Z \in X_{I I}$ we put $Z=e^{i \theta} U$, where $0 \leqslant$ $\theta \leqslant 2 \pi$, and in the matrix U_{1} the element $u_{11}^{(1)}$ in the left top corner is positive. We denote the
manifold of such matrices by X^{+}. This way we parametrize not the whole set $X_{I I}$, but some smaller set, which differs from $X_{I I}$ by a set of zero measure.

The normalized Lebesgue measure $d \sigma$ can be written as (Lemma 8.4 in [2])

$$
d \sigma=\frac{d \theta}{2 \pi} d \sigma_{1}(U)=\frac{1}{2 \pi i} \frac{d \xi}{\xi} d \sigma_{1}(U)
$$

where $\xi=e^{i \theta}$, and the measure σ_{1} is positive on X^{+}.
Multiplying equality (3) by $d \sigma_{1}$ and integrating over X^{+}, from (3) we obtain

$$
\begin{equation*}
\int_{X_{I I}} f(\psi(Z)) z_{p q}^{\nu} d \sigma(Z)=0 \tag{4}
\end{equation*}
$$

where $z_{p q}^{\nu}$ are components of vector $Z=\left(Z_{1}, Z_{2}, \ldots, Z_{n}\right), p, q=1, \ldots, m, \nu=1, \ldots, n$.
We consider the automorphism ψ_{A} translating the point $A=\left(A_{1}, \ldots, A_{n}\right)$ from $B_{I I}$ into 0 (see [3]). It is defined up to a generalized unitary transformation.

Then we substitute the automorphism ψ_{A}^{-1} in (4) instead of ψ and change variables $W=$ $\psi_{A}^{-1}(Z)$. We get

$$
\begin{equation*}
\int_{X_{I I}} f(W) \psi_{p q}^{A, \nu}(W) d \sigma\left(\psi_{A}(W)\right)=0 \tag{5}
\end{equation*}
$$

where $\psi_{p q}^{A, \nu}$ are components of the automorphism ψ_{A}.
By Corollary 7.7 from [2] we have

$$
d \sigma\left(\psi_{A}(W)\right)=P(A, W) d \sigma(W)
$$

where $P(A, W)$ is an invariant Poisson kernel for the matrix ball $B_{I I}$ of the second type.
Then, from the condition (5) we have that

$$
\begin{equation*}
\int_{X_{I I}} f(W) \psi_{p q}^{A, \nu}(W) P(A, W) d \sigma(W)=0 \tag{6}
\end{equation*}
$$

for all points $A=\left(A_{1}, \ldots, A_{n}\right)$ from $B_{I I}$ and all $p, q=1, \ldots, m, \nu=1, \ldots, n$.
Thus, taking into account the properties of the Poisson integral of continuous functions, Theorem 1 follows from the next assertion.

Theorem 2. If for $f \in L^{1}\left(X_{I I}\right)$ the equality (6) holds for all automorphisms ψ_{A} of domain $B_{I I}$, then f is a radial boundary value of some function $F \in H^{1}\left(B_{I I}\right)$.

Proof. The invariant Poisson kernel for a matrix ball of the second type has the form

$$
\begin{gathered}
P(A, W)=\frac{\left(\operatorname{det}\left(I-A_{1} \bar{A}_{1}-\ldots . .-A_{n} \bar{A}_{n}\right)\right)^{\frac{(m+1) n}{2}}}{\left|\operatorname{det}\left(I-A_{1} \bar{W}_{1}-\ldots . .-A_{n} \bar{W}_{n}\right)\right|^{(m+1) n}}= \\
=\frac{\left(\operatorname{det}\left(I-A_{1} \bar{A}_{1}-\ldots . .-A_{n} \bar{A}_{n}\right)\right)^{\frac{(m+1) n}{2}}}{\left(\operatorname{det}\left(I-A_{1} \bar{W}_{1}-\ldots . .-A_{n} \bar{W}_{n}\right)\right)^{\frac{(m+1) n}{2}}\left(\operatorname{det}\left(I-W_{1} \bar{A}_{1}-\ldots . .-W_{n} \bar{A}_{n}\right)\right)^{\frac{(m+1) n}{2}}} .
\end{gathered}
$$

We write the elements of matrices A and W in the vector form:

$$
\begin{gathered}
A=\left(A_{1}, \ldots, A_{n}\right)=\left(a_{11}^{1}, \ldots, a_{1 m}^{1} ; \ldots ; a_{m 1}^{1}, \ldots, a_{m m}^{1} ; \ldots ; a_{11}^{n}, \ldots, a_{1 m}^{n} ; \ldots\right. \\
\left.\ldots ; a_{m 1}^{n}, \ldots, a_{m m}^{n}\right)=\left(\left\|a_{p q}^{1}\right\|, \ldots,\left\|a_{p q}^{n}\right\|\right) \\
W=\left(W_{1}, \ldots, W_{n}\right)=\left(w_{11}^{1}, \ldots, w_{1 m}^{1} ; \ldots ; w_{m 1}^{1}, \ldots, w_{m m}^{1} ; \ldots ; w_{11}^{n}, \ldots, w_{1 m}^{n} ; \ldots\right.
\end{gathered}
$$

$$
\left.\ldots ; w_{m 1}^{n}, \ldots, w_{m m}^{n}\right)=\left(\left\|w_{p q}^{1}\right\|, \ldots .,\left\|w_{p q}^{n}\right\|\right)
$$

where $\left\|a_{p q}^{\nu}\right\|=\left\|a_{q p}^{\nu}\right\|, \quad\left\|w_{p q}^{\nu}\right\|=\left\|w_{q p}^{\nu}\right\|, \quad p, q=1, \ldots, m, \quad \nu=1, \ldots, n$.
We shall compute

$$
\begin{equation*}
\sum_{p, q=1}^{m} \sum_{\nu=1}^{n} \bar{a}_{p q}^{\nu} \frac{\partial P(A, W)}{\partial \bar{a}_{p q}^{\nu}} \tag{7}
\end{equation*}
$$

Denote

$$
I-W_{1} \bar{A}_{1}-\ldots-W_{n} \bar{A}_{n}=\left\|\alpha_{s j}\right\| \quad(s, j=1, \ldots, m)
$$

where

$$
\alpha_{s j}=\delta_{s j}-\sum_{k=1}^{m} \sum_{\nu=1}^{n} w_{s k}^{\nu} \bar{a}_{j k}^{\nu}, \quad a_{j k}^{\nu}=a_{k j}^{\nu}, \quad w_{s k}^{\nu}=w_{k s}^{\nu}, \quad s, j=1, \ldots, m,
$$

and $\delta_{s j}$ is the Kronecker symbol.
Calculations show that

$$
\begin{gathered}
\sum_{q=1}^{m} \sum_{\nu=1}^{n} \bar{a}_{p q}^{\nu} \frac{\partial \operatorname{det}\left(I-W_{1} \bar{A}_{1}-\ldots-W_{n} \bar{A}_{n}\right)}{\partial \bar{a}_{p q}^{\nu}}= \\
=\operatorname{det}\left(I-W_{1} \bar{A}_{1}-\ldots-W_{n} \bar{A}_{n}\right)-\operatorname{det}\left(I-W_{1} \bar{A}_{1}-\ldots-W_{n} \bar{A}_{n}\right)[p, p],
\end{gathered}
$$

where $\operatorname{det}\left(I-W_{1} \bar{A}_{1}-\ldots-W_{n} \bar{A}_{n}\right)[p, p]$ denotes the cofactor of the element $\alpha_{p p}$ in the matrix $I-W_{1} \bar{A}_{1}-\ldots-W_{n} \bar{A}_{n}$.

Then

$$
\begin{gathered}
\sum_{p, q=1}^{m} \sum_{\nu=1}^{n} \bar{a}_{p q}^{\nu} \frac{\partial \operatorname{det}\left(I-W_{1} \bar{A}_{1}-\ldots-W_{n} \bar{A}_{n}\right)}{\partial \bar{a}_{p q}^{\nu}}= \\
=m \operatorname{det}\left(I-W_{1} \bar{A}_{1}-\ldots-W_{n} \bar{A}_{n}\right)-\sum_{p=1}^{m} \operatorname{det}\left(I-W_{1} \bar{A}_{1}-\ldots-W_{n} \bar{A}_{n}\right)[p, p] .
\end{gathered}
$$

Similarly

$$
\begin{gathered}
\sum_{p, q=1}^{m} \sum_{\nu=1}^{n} \bar{a}_{p q}^{\nu} \frac{\partial \operatorname{det}\left(I-A_{1} \bar{A}_{1}-\ldots-A_{n} \bar{A}_{n}\right)}{\partial \bar{a}_{p q}^{\nu}}= \\
=m \operatorname{det}\left(I-A_{1} \bar{A}_{1}-\ldots-A_{n} \bar{A}_{n}\right)-\sum_{p=1}^{m} \operatorname{det}\left(I-A_{1} \bar{A}_{1}-\ldots-A_{n} \bar{A}_{n}\right)[p, p] .
\end{gathered}
$$

Therefore, the expression (7) is equal to

$$
\begin{align*}
& \frac{m(m+1)}{2} n P(A, W)\left[\frac{\sum_{p=1}^{m} \operatorname{det}\left(I-W_{1} \bar{A}_{1}-\ldots-W_{n} \bar{A}_{n}\right)[p, p]}{\operatorname{det}\left(I-W_{1} \bar{A}_{1}-\ldots-W_{n} \bar{A}_{n}\right)}-\right. \\
& \left.-\frac{\sum_{p=1}^{m} \operatorname{det}\left(I-A_{1} \bar{A}_{1}-\ldots-A_{n} \bar{A}_{n}\right)[p, p]}{\operatorname{det}\left(I^{(m)}-A_{1} \bar{A}_{1}-\ldots-A_{n} \bar{A}_{n}\right)}\right]= \\
& =\frac{m(m+1)}{2} n P(A, W)\left[\operatorname{Sp}\left(I-W_{1} \bar{A}_{1}-\ldots-W_{n} \bar{A}_{n}\right)^{-1}-\operatorname{Sp}\left(I-A_{1} \bar{A}_{1}-\ldots-A_{n} \bar{A}_{n}\right)^{-1}\right] \text {. } \tag{8}
\end{align*}
$$

Here Sp , as usual, is the matrix trace.

An automorphism of the domain $B_{I I}$ has the form (see [3])

$$
\psi_{A}(W)=\bar{R}^{-1}\left(I-W_{1} \bar{A}_{1}-\ldots-W_{n} \bar{A}_{n}\right)^{-1} \sum_{\nu=1}^{n}\left(W_{\nu}-A_{\nu}\right) R_{\nu k}, \quad k=1, \ldots, n
$$

where R is a block matrix satisfying the condition

$$
R^{\prime}\left(I-A_{1} \bar{A}_{1}-\ldots-A_{n} \bar{A}_{n}\right) \bar{R}=I
$$

If the condition (6) is satisfied for the components of the map $\psi_{A}(W)$, the same condition is satisfied for the components of the map

$$
\varphi_{A}(W)=\left(I-A_{1} \bar{A}_{1}-\ldots-A_{n} \bar{A}_{n}\right)^{-1}\left(I-W_{1} \bar{A}_{1}-\ldots-W_{n} \bar{A}_{n}\right)^{-1} \sum_{\nu=1}^{n}\left(W_{\nu}-A_{\nu}\right),
$$

since matrices $R, \quad\left(I-A_{1} \bar{A}_{1}-\ldots-A_{n} \bar{A}_{n}\right)$ are nonsingular and depend only on A. Then from (6) we get

$$
\begin{equation*}
\int_{X_{I I}} f(W) \varphi_{p q}^{A, \nu}(W) P(A, W) d \sigma(W)=0 \tag{9}
\end{equation*}
$$

where $\varphi_{p q}^{A, \nu}(W)$ are the components of the $\operatorname{map} \varphi_{A}(W), \quad(p, q=1, \ldots, m, \nu=1, \ldots, n)$.
Now we compute the sum

$$
\sum_{p, q=1}^{m} \sum_{\nu=1}^{n} \bar{a}_{p q}^{\nu} \varphi_{p, q}^{A, \nu}
$$

It is obvious that this expression is equal to $\operatorname{Sp}\left\langle\varphi_{A}(W), A\right\rangle$, since

$$
\begin{align*}
& \sum_{p, q=1}^{m} \sum_{\nu=1}^{n} \bar{a}_{p q}^{\nu} \varphi_{p, q}^{A, \nu}= \operatorname{Sp}\left[\left(I-A_{1} \bar{A}_{1}-\ldots-A_{n} \bar{A}_{n}\right)^{-1}\left(I-W_{1} \bar{A}_{1}-\ldots-W_{n} \bar{A}_{n}\right)^{-1} \times\right. \\
&\left.\times\left(W_{1} \bar{A}_{1}+\ldots+W_{n} \bar{A}_{n}-A_{1} \bar{A}_{1}-\ldots-A_{n} \bar{A}_{n}\right)\right]= \\
&=\operatorname{Sp}\left[\left(I-A_{1} \bar{A}_{1}-\ldots-A_{n} \bar{A}_{n}\right)^{-1}\left(I-W_{1} \bar{A}_{1}-\ldots-W_{n} \bar{A}_{n}\right)^{-1} \times\right. \\
&\left.\times\left(\left(I-A_{1} \bar{A}_{1}-\ldots-A_{n} \bar{A}_{n}\right)-\left(I-W_{1} \bar{A}_{1}-\ldots-W_{n} \bar{A}_{n}\right)\right)\right]= \\
& \quad=\operatorname{Sp}\left[\left(I-W_{1} \bar{A}_{1}-\ldots-W_{n} \bar{A}_{n}\right)^{-1}-\left(I-A_{1} \bar{A}_{1}-\ldots-A_{n} \bar{A}_{n}\right)^{-1}\right] \tag{10}
\end{align*}
$$

Using this, we get from (9)

$$
\begin{equation*}
\sum_{p, q=1}^{m} \sum_{\nu=1}^{n} \bar{a}_{p q}^{\nu} \frac{\partial F(A)}{\partial \bar{a}_{p q}^{\nu}}=0 \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
F(A)=\int_{X_{I I}} f(W) P(A, W) d \sigma(W) \tag{12}
\end{equation*}
$$

is the Poisson integral of the function f.
The function $F(A)$ is real analytic in the domain $B_{I I}$. We expand $F(A)$ in a Taylor series in a neighborhood of 0 ,

$$
F(A)=\sum_{|\alpha|,|\beta| \geq 0} C_{\alpha, \beta} a^{\alpha} \bar{a}^{\beta}
$$

where $\alpha=\left(\left\|\alpha_{p q 1}\right\|, \ldots,\left\|\alpha_{p q n}\right\|\right)$ and $\beta=\left(\left\|\beta_{p q 1}\right\|, \ldots,\left\|\beta_{p q n}\right\|\right), \quad(p, q=1, \ldots, m)$ are matrices with nonnegative integer elements and

$$
|\alpha|=\sum_{p, q=1}^{m} \sum_{\nu=1}^{n} \alpha_{p q \nu}, \quad a^{\alpha}=\prod_{p, q=1}^{m} \prod_{\nu=1}^{n} a_{p q \nu}^{\alpha_{p q \nu}} .
$$

Then (11) implies

$$
\sum_{p, q=1}^{m} \sum_{\nu=1}^{n} \bar{a}_{p q}^{\nu} \frac{\partial F(A)}{\partial \bar{a}_{p q}^{\nu}}=\sum_{|\alpha|,|\beta|}|\beta| C_{\alpha, \beta} a^{\alpha} \bar{a}^{\beta}=0
$$

It follows that for $|\beta|>0$ all coefficients $C_{\alpha, \beta}$ are equal to zero. So, the function $F(A)$ is holomorphic in $B_{I I}$ and belongs to the class $H^{1}\left(B_{I I}\right)$.

If f is continuous on $X_{I I}$, then the function F belongs to $C\left(\bar{B}_{I I}\right)$ and its boundary values on $X_{I I}$ concide with f.

The proof of this theorem shows that it remains true if the conditions (3) and (6) are satisfied only for those automorphisms ψ_{A}, for which the point $A=\left(A_{1}, \ldots, A_{n}\right)$ lies in some open set $V \subset B_{I I}$. Therefore the following statement is true.

Theorem 3. If a function $f \in L^{1}\left(X_{I I}\right)$ satisfies the condition (6) for all points lying in some open set $V \subset B_{I I}$ and for all components of the automorphism ψ_{A}, then f is a radial boundary value for some function $F \in H^{1}\left(B_{I I}\right)$ on $X_{I I}$.

References

[1] A.Nagel, W.Rudin, Moebius-invariant functions spaces on balls and spheres, Duke Math. J., 43(1976), no. 4, 841-865.
[2] G.Khudayberganov, A.M.Kytmanov, B.Shaimkulov, Complex analysis in matrix domains, Krasnoyarsk, Siberian Federal University, 2011 (in Russian).
[3] G.Khudayberganov, B.B.Hidirov, U.S.Rakhmonov, Automorphisms of matrix balls, Doklady NUUz, (2010), no. 3, 205-210 (in Russian).
[4] S.Kosbergenov, On multidimensional boundary Morera's theorem for matrix ball, Izvestiya VUZov. Matematika, (2001), no. 4, 28-32 (in Russian).
[5] P.Lankaster, The theory of matrices, Academic Press, New York-London, 1969.
[6] F.R.Gantmakher, The theory of matrices, Chelsea Publition Company, 1977.
[7] S.Kosbergenov, A.M.Kytmanov, S.G.Myslivets, On a boundary Morera theorem for the classical domains, Sib. Math. J., 40(1999), no. 3, 506-514.

Граничный вариант теоремы Морера для матричного шара второго типа

Гулмирза Х. Худайберганов
 Зокирбек М. Матайкубов

В этой статъе доказывается граничная теорема Морера для матричного шара второго типа.
Ключевые слова: матричный шар, автоморфизм, ядро Пуассона, теорема Морера.

[^0]: *gkhudaiberg@mail.ru
 †zokirbek.1986@mail.ru © Siberian Federal University. All rights reserved

