
– 4 –

Journal of  Siberian Federal University.  Biology 1 (2014 7) 4-13 
~ ~ ~

УДК 004.42

Calculation of Force Field Grids  
for Molecular Docking  
Using Graphics Processing Unit

Mikhail A. Farkov*
Siberian Federal University

79 Svobodny, Krasnoyarsk, 660041, Russia

Received 05.08.2013, received in revised form 13.08.2013, accepted 11.03.2014

The vast majority of problems faced by bioinformatics are very complex and time consuming. They 
require the use of modern high-performance computational systems and the development of algorithms 
for such system. Heterogeneous computing systems which include graphics processing unit (GPU) 
occupy a separate niche. Such systems allow to accelerate solving of some task significantly. The task 
performing molecular docking namely accelerating the calculation of force field grids for fast ligand-
protein molecular docking is studied in this work. Algorithms for fast calculation of the large number 
of force field grids which are scaled to all GPUs available in the system were developed. Extensive 
testing on different platforms was performed.

Keywords: GPGPU, CUDA, molecular docking, virtual screening, ligand-protein docking.

Вычисление сеток силовых полей  
для молекулярного докинга  
с использованием графических процессоров

М.А. Фарков
Сибирский федеральный университет 

Россия, 660041, Красноярск, пр. Свободный, 79

Подавляющее большинство задач, с которыми приходится сталкиваться биоинформатике, 
чрезвычайно сложны и времязатратны. Для их успешного решения требуется использовать 
современные высокопроизводительные вычислительные системы, для которых необходимо 

	 © Siberian Federal University. All rights reserved
*	 Corresponding author E-mail address: mihail.farkov@gmail.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Siberian Federal University Digital Repository

https://core.ac.uk/display/38643651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


– 5 –

Mikhail A. Farkov. Calculation of Force Field Grids for Molecular Docking Using Graphics Processing Unit

разрабатывать новые, специфичные алгоритмы. Среди таких систем отдельную нишу 
занимают гетерогенные вычислительные системы, в состав которых входят графические 
процессоры. Подобные системы позволяют существенно ускорить вычисления некоторых задач. 
В работе представлены алгоритмы, использующие возможности графических процессоров для 
ускорения молекулярно докинга, а именно для построения сеток силовых полей для ускорения 
молекулярного лиганд-белкового докинга. Предложенные алгоритмы ориентированы на 
быстрое вычисление большого количества сеток силовых полей и масштабируются на любое 
доступное компьютеру количество графических процессоров.

Ключевые слова: GPGPU, CUDA, молекулярный докинг, виртуальный скрининг, лиганд-
белковый докинг.

Introduction

The rational drug design is a process that 
requires much time and financial investments. 
It takes several years to develop a new drug. 
The one of the key problems in rational drug 
design is a selection of perspective candidates 
in drugs. This process can take considerable 
period of time (1-3 years) and requires significant 
financial investments for chemicals and complex 
equipments (Kuntz, 1992). The main goal of this 
stage is to find some set of molecular compounds 
for the next stage of development, i.e. preclinical 
and clinical experiments. Errors at this stage of 
development can cause enormous losses at the next 
stages. Molecular docking is used to overcome 
the above problems. It is computer modeling of 
interaction of some molecules. Molecular ligand-
protein docking is a modeling of interaction of a 
small molecule candidate in drugs (called ligand) 
and protein (called biotarget). Molecular docking 
gives information about principal possibility of 
reaction between molecules and gives estimates 
of the energy of the reaction that will be used to 
select perspective compounds for “in vitro” and “in 
vivo” experiments. Molecular docking is a quite 
computationally costly procedure that requires 
modeling of significant amounts of compounds 
at different spatial locations. Moreover it is 
necessary to estimate energy of interactions of 
the large number of atoms for single compounds. 

Thereby for such calculation it is necessary to 
use high performance computers that contain 
graphics processing units (GPU) which are very 
suited for solving of the proposed task.

Program for calculation of force field grids 
for molecular docking is presented in this paper. 
Graphics processing units are used in order to 
get speedup for the traditional grids approach. 
Electrostatic and van der Waals forces are taken 
into account.

Methods

The energy of the molecules interaction can 
be estimated as a linear combination of several 
components (Cornell et al., 1995; Jones et al., 
1997; MacKerell et al., 1998). 

возможности графических процессоров, для ускорения молекулярно докинга, а именно для 

построения сеток силовых полей для ускорения молекулярного лиганд-белкового докинга. 

Предложенные алгоритмы ориентированы на быстрое вычисление большого количества 

сеток силовых полей и масштабируются на любое доступное компьютеру количество 

графических процессоров. 

Ключевые слова: GPGPU, CUDA, молекулярный докинг, виртуальный скрининг, лиганд-

белковый докинг. 

 

Introduction 

The rational drug design is a process that requires much time and financial investments. It 

takes several years to develop a new drug. The one of the key problems in rational drug design is a 

selection of perspective candidates in drugs. This process can take considerable period of time (1-3 

years) and requires significant financial investments for chemicals and complex equipments (Kuntz, 

1992). The main goal of this stage is to find some set of molecular compounds for the next stage of 

development, i.e. preclinical and clinical experiments. Errors at this stage of development can cause 

enormous losses at the next stages. Molecular docking is used to overcome the above problems. It is 

computer modeling of interaction of some molecules. Molecular ligand-protein docking is a 

modeling of interaction of a small molecule candidate in drugs (called ligand) and protein (called 

biotarget). Molecular docking gives information about principal possibility of reaction between 

molecules and gives estimates of the energy of the reaction that will be used to select perspective 

compounds for “in vitro” and “in vivo” experiments. Molecular docking is a quite computationally 

costly procedure that requires modeling of significant amounts of compounds at different spatial 

locations. Moreover it is necessary to estimate energy of interactions of the large number of atoms 

for single compounds. Thereby for such calculation it is necessary to use high performance 

computers that contain graphics processing units (GPU) which are very suited for solving of the 

proposed task. 

Program for calculation of force field grids for molecular docking is presented in this paper. 

Graphics processing units are used in order to get speedup for the traditional grids approach. 

Electrostatic and van der Waals forces are taken into account. 

 

Methods 

The energy of the molecules interaction can be estimated as a linear combination of several 

components (Cornell et al., 1995; Jones et.al. 1997; MacKerell et al., 1998).  

torsionanglebondelecvdw Ε+Ε+Ε+Ε+Ε=Εtotal

Evdw is the van der Waals energy (this energy 
arises between atoms 2 and 5 on Fig.  1); Eelec 

is the electrostatic energy (atoms 1 and 6 on 
Fig. 1); Ebond is the energy of interaction between 
two covalently bound atoms (atoms 2 and 3 on 
Fig. 1); Eangle is the energy of interaction between 
three covalently bound atoms (atoms 1, 2 and 
3 on Fig.  1); Etorsion is the energy of interaction 
between covalently bound atoms that form 
torsion angle (atoms 1,2,3 and 4 on Fig.  1). 
These components can be roughly divided into 



– 6 –

Mikhail A. Farkov. Calculation of Force Field Grids for Molecular Docking Using Graphics Processing Unit

two groups: intermolecular and intromolecular 
interconnections. Ebond, Eangle, Etorsion are the 
energies of intromolecular interconnections. 
These types of energies are kind of penalty 
that indicates that structure of molecule differs 
from the “ideal” structure, i.e. there are covalent 
bonds lengths, covalent and torsion angles that 
differ from the “ideal” covalent bonds lengths, 
covalent and torsion angles between atom types 
in molecule. The van der Waals and electrostatic 
energies are intermolecular interconnection. 
These types of energies are the main contributors 
to the total estimation of the energy. In turn, each 
intermolecular component can be calculated as a 
linear combination of interaction between each 
atom of ligand and each atom of biotarget.

The van der Waals energy is calculated by 
using the Lennard-Jones potential also known 
as the 6-12 potential (Goodford, 1985; Jones et 
al.,1997; Ewinga et al., 2001; Gilson et al., 2007):

Evdw is the van der Waals energy (this energy arises between atoms 2 and 5 on Fig. 1); Eelec is the 

electrostatic energy (atoms 1 and 6 on Fig. 1); Ebond is the energy of interaction between two 

covalently bound atoms (atoms 2 and 3 on Fig. 1); Eangle is the energy of interaction between three 

covalently bound atoms (atoms 1, 2 and 3 on Fig. 1); Etorsion is the energy of interaction between 

covalently bound atoms that form torsion angle (atoms 1,2,3 and 4 on Fig. 1). These components 

can be roughly divided into two groups: intermolecular and intromolecular interconnections. Ebond, 

Eangle, Etorsion are the energies of intromolecular interconnections. These types of energies are kind of 

penalty that indicates that structure of molecule differs from the "ideal" structure, i.e. there are 

covalent bonds lengths, covalent and torsion angles that differ from the "ideal" covalent bonds 

lengths, covalent and torsion angles between atom types in molecule. The van der Waals and 

electrostatic energies are intermolecular interconnection. These types of energies are the main 

contributors to the total estimation of the energy. In turn, each intermolecular component can be 

calculated as a linear combination of interaction between each atom of ligand and each atom of 

biotarget. 

The van der Waals energy is calculated by using the Lennard-Jones potential also known as 

the 6-12 potential (Goodford, 1985; Jones et al.,1997; Ewinga et al., 2001; Gilson et al., 2007): 

( ) ( )( )∑ −ε= 6
0

12
0ij /2/ ijijijijvdw rrrrE ,  

where εij and r0ij are constants, rij is the distance between interacting atoms. 

The electrostatic energy is calculated by using the Coulomb's law:  

( ) ( )∑ ε= ijjielec rqqE / , 

where ε is the permittivity, rij is the distance between interacting atoms, qi,qj are charges of atoms. 

A common technique to accelerate molecular docking is called the grids approach. Biotarget 

is placed in some limited area (e.g. cuboid) and is considered as fixed. Some components of the 

total energy are calculated for each cell of the grid with some step for each atom type that is 

presented in the ligand. The probe atom type (e.g. hydrogen) is placed in each cell of the grid and 

the van der Waals interaction with the biotarget is calculated (Fig. 2).  

This can be done only for intermolecular components of the total energy because these 

components don't depend on mutual location of the ligand and the biotarget. The result of the 

procedure is a set of grids which are used for molecular docking. The same atom types of the 

explored ligand will be placed at the approximately same points of the area during docking process 

very often. Hence during docking it is not necessary to repeat the large number of the same type of 

calculation for different locations of the explored ligand. One can get precalculated value of the 

energy from the grid for the desired atom type. The grid approach gives extra speedup for flexible 

ligand-protein docking since it is necessary to use additional internal degrees of freedom of the 

where εij and r0ij are constants, rij is the distance 
between interacting atoms.

The electrostatic energy is calculated by 
using the Coulomb’s law: 

Evdw is the van der Waals energy (this energy arises between atoms 2 and 5 on Fig. 1); Eelec is the 

electrostatic energy (atoms 1 and 6 on Fig. 1); Ebond is the energy of interaction between two 

covalently bound atoms (atoms 2 and 3 on Fig. 1); Eangle is the energy of interaction between three 

covalently bound atoms (atoms 1, 2 and 3 on Fig. 1); Etorsion is the energy of interaction between 

covalently bound atoms that form torsion angle (atoms 1,2,3 and 4 on Fig. 1). These components 

can be roughly divided into two groups: intermolecular and intromolecular interconnections. Ebond, 

Eangle, Etorsion are the energies of intromolecular interconnections. These types of energies are kind of 

penalty that indicates that structure of molecule differs from the "ideal" structure, i.e. there are 

covalent bonds lengths, covalent and torsion angles that differ from the "ideal" covalent bonds 

lengths, covalent and torsion angles between atom types in molecule. The van der Waals and 

electrostatic energies are intermolecular interconnection. These types of energies are the main 

contributors to the total estimation of the energy. In turn, each intermolecular component can be 

calculated as a linear combination of interaction between each atom of ligand and each atom of 

biotarget. 

The van der Waals energy is calculated by using the Lennard-Jones potential also known as 

the 6-12 potential (Goodford, 1985; Jones et al.,1997; Ewinga et al., 2001; Gilson et al., 2007): 

( ) ( )( )∑ −ε= 6
0

12
0ij /2/ ijijijijvdw rrrrE ,  

where εij and r0ij are constants, rij is the distance between interacting atoms. 

The electrostatic energy is calculated by using the Coulomb's law:  

( ) ( )∑ ε= ijjielec rqqE / , 

where ε is the permittivity, rij is the distance between interacting atoms, qi,qj are charges of atoms. 

A common technique to accelerate molecular docking is called the grids approach. Biotarget 

is placed in some limited area (e.g. cuboid) and is considered as fixed. Some components of the 

total energy are calculated for each cell of the grid with some step for each atom type that is 

presented in the ligand. The probe atom type (e.g. hydrogen) is placed in each cell of the grid and 

the van der Waals interaction with the biotarget is calculated (Fig. 2).  

This can be done only for intermolecular components of the total energy because these 

components don't depend on mutual location of the ligand and the biotarget. The result of the 

procedure is a set of grids which are used for molecular docking. The same atom types of the 

explored ligand will be placed at the approximately same points of the area during docking process 

very often. Hence during docking it is not necessary to repeat the large number of the same type of 

calculation for different locations of the explored ligand. One can get precalculated value of the 

energy from the grid for the desired atom type. The grid approach gives extra speedup for flexible 

ligand-protein docking since it is necessary to use additional internal degrees of freedom of the 

where ε is the permittivity, rij is the distance 
between interacting atoms, qi,qj are charges of 
atoms.

A common technique to accelerate molecular 
docking is called the grids approach. Biotarget 
is placed in some limited area (e.g. cuboid) and 
is considered as fixed. Some components of the 
total energy are calculated for each cell of the 
grid with some step for each atom type that is 
presented in the ligand. The probe atom type (e.g. 
hydrogen) is placed in each cell of the grid and 
the van der Waals interaction with the biotarget is 
calculated (Fig. 2). 

This can be done only for intermolecular 
components of the total energy because these 
components don’t depend on mutual location of 
the ligand and the biotarget. The result of the 
procedure is a set of grids which are used for 
molecular docking. The same atom types of the 
explored ligand will be placed at the approximately 
same points of the area during docking process 
very often. Hence during docking it is not 
necessary to repeat the large number of the same 
type of calculation for different locations of the 
explored ligand. One can get precalculated value 
of the energy from the grid for the desired atom 
type. The grid approach gives extra speedup 
for flexible ligand-protein docking since it is 
necessary to use additional internal degrees of 
freedom of the ligands for such calculation (it is 

 
 

Fig. 1. Model of atoms in molecules 

 

Fig. 2. Example of grid 

 

 

 

 

 

 

 

 

Fig. 3. Decomposition of the calculation of the single grid 

H

Probe atom

Fig. 1. Model of atoms in molecules



– 7 –

Mikhail A. Farkov. Calculation of Force Field Grids for Molecular Docking Using Graphics Processing Unit

rotation around covalent bonds and alteration of 
valence and torsion angles).

Implementation

There is a set of targets TARGETS at the 
input of the procedure where each element targeti 
is matched to a set of ligands LIGANDSi where 
each element ligandij is matched to a set of atom 
types ATOM_TYPESij such that each atom_typeijk 
is presented in the ligand at least once. The result 
of the calculation is a set of grids GRIDS where 
each element gridijk is a result of the calculation 
of the grid for atom type k that belongs to ligand 
j and interacts with biotarget i. It is true that grids 
for the same atom type from different ligands that 
interact with the same biotarget are equal, i.e.:

ligands for such calculation (it is rotation around covalent bonds and alteration of valence and 

torsion angles). 

 

Implementation

There is a set of targets TARGETS at the input of the procedure where each element targeti 

is matched to a set of ligands LIGANDSi where each element ligandij is matched to a set of atom 

types ATOM_TYPESij such that each atom_typeijk is presented in the ligand at least once. The 

result of the calculation is a set of grids GRIDS where each element gridijk is a result of the 

calculation of the grid for atom type k that belongs to ligand j and interacts with biotarget i. It is true 

that grids for the same atom type from different ligands that interact with the same biotarget are 

equal, i.e.: 

lmnijklmnijk gridgridatom_typesatom_types =→= . 

Hence it is possible to reduce the calculation. Pair-wise calculations of the grids for each 

biotargets targeti from the set TARGETS and each ligand from the set LIGANDSi are replaced with 

calculations of grid for targeti and atom types that are presented in ligands from set LIGANDSi at 

least once. 

It is not necessary to calculate grids for each charge in ligands since it is possible to evaluate 

the electrostatic energy at the grid’s point without charges of the ligand because the biotarget is 

fixed and impacts equally to the points of the area and it is possible to factor out charge of ligand in 

the Coulomb's law. As a result it is necessary to calculate 

i1)-i(Ni1i0 LIGANDS:N,1ATOM_TYPES...ATOM_TYPESATOM_TYPES =+∪∪∪ grids for one biotarget. 

Two different approaches for calculation of the permittivity for the Coulomb’s law are used 

in this work. The constant permittivity is used in the first approach. A user sets up the necessary 

permittivity and this value is used during all calculation. The second approach is the distance 

dependent approach for evaluation of the permittivity according to the distance between point of the 

grid and atoms of the biotarget. The parameters offered by Mehler and Eichele are used in this work 

(Mehler et al., 1984; Mehler et al., 1991) This approach demonstrates significantly better results 

comparable with the results of the calculations using molecular dynamic. But it takes a bit more 

calculation time (benchmarks are presented in the Results chapter). 

Information from AMBER99 force field is used as a topology for biotargets. General 

AMBER force field (GAFF) is used as a resource of parameters for the van der Waals calculation. 

Typing the ligand molecule is performed with the Antechamber program from the AmberTools 

package (Wang et al., 2004; Wang et al., 2006). 

Calculations of both energy components in each cell of the grid are fully independent. Tasks 

with such level of data parallelism are very suiTable for GPU that has a lot of simple arithmetic 

 

ligands for such calculation (it is rotation around covalent bonds and alteration of valence and 

torsion angles). 

 

Implementation

There is a set of targets TARGETS at the input of the procedure where each element targeti 

is matched to a set of ligands LIGANDSi where each element ligandij is matched to a set of atom 

types ATOM_TYPESij such that each atom_typeijk is presented in the ligand at least once. The 

result of the calculation is a set of grids GRIDS where each element gridijk is a result of the 

calculation of the grid for atom type k that belongs to ligand j and interacts with biotarget i. It is true 

that grids for the same atom type from different ligands that interact with the same biotarget are 

equal, i.e.: 

lmnijklmnijk gridgridatom_typesatom_types =→= . 

Hence it is possible to reduce the calculation. Pair-wise calculations of the grids for each 

biotargets targeti from the set TARGETS and each ligand from the set LIGANDSi are replaced with 

calculations of grid for targeti and atom types that are presented in ligands from set LIGANDSi at 

least once. 

It is not necessary to calculate grids for each charge in ligands since it is possible to evaluate 

the electrostatic energy at the grid’s point without charges of the ligand because the biotarget is 

fixed and impacts equally to the points of the area and it is possible to factor out charge of ligand in 

the Coulomb's law. As a result it is necessary to calculate 

i1)-i(Ni1i0 LIGANDS:N,1ATOM_TYPES...ATOM_TYPESATOM_TYPES =+∪∪∪ grids for one biotarget. 

Two different approaches for calculation of the permittivity for the Coulomb’s law are used 

in this work. The constant permittivity is used in the first approach. A user sets up the necessary 

permittivity and this value is used during all calculation. The second approach is the distance 

dependent approach for evaluation of the permittivity according to the distance between point of the 

grid and atoms of the biotarget. The parameters offered by Mehler and Eichele are used in this work 

(Mehler et al., 1984; Mehler et al., 1991) This approach demonstrates significantly better results 

comparable with the results of the calculations using molecular dynamic. But it takes a bit more 

calculation time (benchmarks are presented in the Results chapter). 

Information from AMBER99 force field is used as a topology for biotargets. General 

AMBER force field (GAFF) is used as a resource of parameters for the van der Waals calculation. 

Typing the ligand molecule is performed with the Antechamber program from the AmberTools 

package (Wang et al., 2004; Wang et al., 2006). 

Calculations of both energy components in each cell of the grid are fully independent. Tasks 

with such level of data parallelism are very suiTable for GPU that has a lot of simple arithmetic 

Hence it is possible to reduce the calculation. 
Pair-wise calculations of the grids for each 
biotargets targeti from the set TARGETS and each 
ligand from the set LIGANDSi are replaced with 
calculations of grid for targeti and atom types that 
are presented in ligands from set LIGANDSi at 
least once.

It is not necessary to calculate grids for each 
charge in ligands since it is possible to evaluate 
the electrostatic energy at the grid’s point without 
charges of the ligand because the biotarget is 
fixed and impacts equally to the points of the area 
and it is possible to factor out charge of ligand in 
the Coulomb’s law. As a result it is necessary to 
calculate

ligands for such calculation (it is rotation around covalent bonds and alteration of valence and 

torsion angles). 

 

Implementation

There is a set of targets TARGETS at the input of the procedure where each element targeti 

is matched to a set of ligands LIGANDSi where each element ligandij is matched to a set of atom 

types ATOM_TYPESij such that each atom_typeijk is presented in the ligand at least once. The 

result of the calculation is a set of grids GRIDS where each element gridijk is a result of the 

calculation of the grid for atom type k that belongs to ligand j and interacts with biotarget i. It is true 

that grids for the same atom type from different ligands that interact with the same biotarget are 

equal, i.e.: 

lmnijklmnijk gridgridatom_typesatom_types =→= . 

Hence it is possible to reduce the calculation. Pair-wise calculations of the grids for each 

biotargets targeti from the set TARGETS and each ligand from the set LIGANDSi are replaced with 

calculations of grid for targeti and atom types that are presented in ligands from set LIGANDSi at 

least once. 

It is not necessary to calculate grids for each charge in ligands since it is possible to evaluate 

the electrostatic energy at the grid’s point without charges of the ligand because the biotarget is 

fixed and impacts equally to the points of the area and it is possible to factor out charge of ligand in 

the Coulomb's law. As a result it is necessary to calculate 

i1)-i(Ni1i0 LIGANDS:N,1ATOM_TYPES...ATOM_TYPESATOM_TYPES =+∪∪∪ grids for one biotarget. 

Two different approaches for calculation of the permittivity for the Coulomb’s law are used 

in this work. The constant permittivity is used in the first approach. A user sets up the necessary 

permittivity and this value is used during all calculation. The second approach is the distance 

dependent approach for evaluation of the permittivity according to the distance between point of the 

grid and atoms of the biotarget. The parameters offered by Mehler and Eichele are used in this work 

(Mehler et al., 1984; Mehler et al., 1991) This approach demonstrates significantly better results 

comparable with the results of the calculations using molecular dynamic. But it takes a bit more 

calculation time (benchmarks are presented in the Results chapter). 

Information from AMBER99 force field is used as a topology for biotargets. General 

AMBER force field (GAFF) is used as a resource of parameters for the van der Waals calculation. 

Typing the ligand molecule is performed with the Antechamber program from the AmberTools 

package (Wang et al., 2004; Wang et al., 2006). 

Calculations of both energy components in each cell of the grid are fully independent. Tasks 

with such level of data parallelism are very suiTable for GPU that has a lot of simple arithmetic 

  

ligands for such calculation (it is rotation around covalent bonds and alteration of valence and 

torsion angles). 

 

Implementation

There is a set of targets TARGETS at the input of the procedure where each element targeti 

is matched to a set of ligands LIGANDSi where each element ligandij is matched to a set of atom 

types ATOM_TYPESij such that each atom_typeijk is presented in the ligand at least once. The 

result of the calculation is a set of grids GRIDS where each element gridijk is a result of the 

calculation of the grid for atom type k that belongs to ligand j and interacts with biotarget i. It is true 

that grids for the same atom type from different ligands that interact with the same biotarget are 

equal, i.e.: 

lmnijklmnijk gridgridatom_typesatom_types =→= . 

Hence it is possible to reduce the calculation. Pair-wise calculations of the grids for each 

biotargets targeti from the set TARGETS and each ligand from the set LIGANDSi are replaced with 

calculations of grid for targeti and atom types that are presented in ligands from set LIGANDSi at 

least once. 

It is not necessary to calculate grids for each charge in ligands since it is possible to evaluate 

the electrostatic energy at the grid’s point without charges of the ligand because the biotarget is 

fixed and impacts equally to the points of the area and it is possible to factor out charge of ligand in 

the Coulomb's law. As a result it is necessary to calculate 

i1)-i(Ni1i0 LIGANDS:N,1ATOM_TYPES...ATOM_TYPESATOM_TYPES =+∪∪∪ grids for one biotarget. 

Two different approaches for calculation of the permittivity for the Coulomb’s law are used 

in this work. The constant permittivity is used in the first approach. A user sets up the necessary 

permittivity and this value is used during all calculation. The second approach is the distance 

dependent approach for evaluation of the permittivity according to the distance between point of the 

grid and atoms of the biotarget. The parameters offered by Mehler and Eichele are used in this work 

(Mehler et al., 1984; Mehler et al., 1991) This approach demonstrates significantly better results 

comparable with the results of the calculations using molecular dynamic. But it takes a bit more 

calculation time (benchmarks are presented in the Results chapter). 

Information from AMBER99 force field is used as a topology for biotargets. General 

AMBER force field (GAFF) is used as a resource of parameters for the van der Waals calculation. 

Typing the ligand molecule is performed with the Antechamber program from the AmberTools 

package (Wang et al., 2004; Wang et al., 2006). 

Calculations of both energy components in each cell of the grid are fully independent. Tasks 

with such level of data parallelism are very suiTable for GPU that has a lot of simple arithmetic 

 
grids for one biotarget.

Two different approaches for calculation 
of the permittivity for the Coulomb’s law are 
used in this work. The constant permittivity 
is used in the first approach. A user sets up the 
necessary permittivity and this value is used 
during all calculation. The second approach is the 
distance dependent approach for evaluation of the 
permittivity according to the distance between 
point of the grid and atoms of the biotarget. The 
parameters offered by Mehler and Eichele are used 
in this work (Mehler et al., 1984; Mehler et al., 
1991). This approach demonstrates significantly 
better results comparable with the results of the 
calculations using molecular dynamic. But it 

 
 

Fig. 1. Model of atoms in molecules 

 

Fig. 2. Example of grid 

 

 

 

 

 

 

 

 

Fig. 3. Decomposition of the calculation of the single grid 

H

Probe atom

Fig. 2. Example of grid



– 8 –

Mikhail A. Farkov. Calculation of Force Field Grids for Molecular Docking Using Graphics Processing Unit

takes a bit more calculation time (benchmarks are 
presented in the Results chapter).

Information from AMBER99 force field 
is used as a topology for biotargets. General 
AMBER force field (GAFF) is used as a resource 
of parameters for the van der Waals calculation. 
Typing the ligand molecule is performed with 
the Antechamber program from the AmberTools 
package (Wang et al., 2004; Wang et al., 2006).

Calculations of both energy components 
in each cell of the grid are fully independent. 
Tasks with such level of data parallelism are very 
suitable for GPU that has a lot of simple arithmetic 
logic units (ALU) and is oriented to SIMD 
programming model. Calculation of a single 
grid is decomposed between all ALUs of GPU in 
such way that a single ALU calculates energy in 
one cell of grid at one moment. The result of the 
calculation is placed in the grid that represents 
in GPU memory as one dimension array in such 
way that the X coordinate is increased most 
rapidly (Fig. 3). Such decomposition and memory 
representation guarantee that all requests to 
global memory will be coalesced and at least N*32 
grid’s point will be evaluated simultaneously 
where N is the number of multiprocessor in GPU. 
The actual number will be greater because of the 
different number of dispatchers on different GPU 
architecture. 

At the same time calculation of different 
grids is an independent process too. It allows us 
to add an additional level of decomposition in 

case of several GPUs on one computer. The basic 
computational unit is a single grid which is fully 
calculated on the same GPU (Fig.  4). Different 
grids (even for one biotarget since time for reading 
the biotarget is short) are dispatched between 
different appropriate GPUs. Load balancing is 
performed according to the time complexity 
of the algorithm. The complexity for the single 
grid calculation is equal to O(n*m) where n is the 
number of cells in the grid and m is the number 
of atoms in the biotarget. The number of atoms is 
approximately equal between different biotarget; 
is negligibly small compared with the number of 
cells in the grid and is unknown at the balancing 
stage. Hence only the number of cells is used in 
load balancing. Grids are dispatched in such way 
that a new grid is assigned to GPU with the lowest 
load according to the number of calculations that 
have been assigned to GPU.

GPU is a separate computational unit and it 
is necessary to provide significant load for each 
GPU in order to hide latency during memory 
exchanging. Two critical procedures in the 
workflow which significantly inhibit computing 
on GPU are reading biotargets and ligands from 
the disk and writing completed grids back to 
the disk. In order to overcome this problem and 
support an adequate level of load for GPU, the 
workflow for a single GPU is divided into three 
central processing unit (CPU) threads: i_thread 
(for input), o_thread (for output), d_thread (for 
calculation on GPU). All three threads share a 

 
 

Fig. 1. Model of atoms in molecules 

 

Fig. 2. Example of grid 

 

 

 

 

 

 

 

 

Fig. 3. Decomposition of the calculation of the single grid 

H

Probe atom

Fig. 3. Decomposition of the calculation of the single grid



– 9 –

Mikhail A. Farkov. Calculation of Force Field Grids for Molecular Docking Using Graphics Processing Unit

special program object called a runtime manager 
that controls the workflow of the calculation, 
using of memory and errors. Moreover the 
runtime manager contains two queues (i_queues 
and o_queues) for the task for GPU (Fig.  5). 
There are three types of tasks (Appendix A, B): 
vdw (the van der Waals task), elec (electrostatic 
task) and elecDd (electrostatic task that uses 
the distance dependent approach for calculation 
of the permittivity). Queue for a single GPU is 
input of i_thread that goes through all biotargets 
and grids. i_thread parses biotarget, repacks 
it to format that is suitable  for GPU, forms the 
runtime representations of the biotarget and puts 

it to a set of the runtime biotargets in the runtime 
manager. Atomic coordinates, charges and vdw 
types are necessary for the grid calculation from 
the biotarget. This information is repacked to one 
dimensional array (Fig. 6). Such organization of 
memory for biotarget guarantees that all GPUs 
threads along warps will read the exact same 
cell of memory hence memory requests will be 
coalesced.

i_thread forms the runtime representation 
for each new grid (independent from biotarget) 
and puts it to a set of runtime grids. For each 
ligand that is assigned to some grid i_thread 
runs antechamber program in order to assign 

 
 

Fig. 4. Decomposition between multiple GPUs 

 

 
Fig. 5. Runtime manager 

 

 

 

Fig. 6. The organization of information on biological target in GPU memory 

 

Fig. 4. Decomposition between multiple GPUs

 
 

Fig. 4. Decomposition between multiple GPUs 

 

 
Fig. 5. Runtime manager 

 

 

 

Fig. 6. The organization of information on biological target in GPU memory 

 

Fig. 5. Runtime manager

 
 

Fig. 4. Decomposition between multiple GPUs 

 

 
Fig. 5. Runtime manager 

 

 

 

Fig. 6. The organization of information on biological target in GPU memory 

 

Fig. 6. The organization of information on biological target in GPU memory



– 10 –

Mikhail A. Farkov. Calculation of Force Field Grids for Molecular Docking Using Graphics Processing Unit

proper atom types according to GAFF. After 
that i_thread a adds task to i_queue according 
to available memory and set of atom types that 
are presented in ligands. The grid is calculated 
only for one atom type if some atom types 
that are presented in ligand have similar vand 
der Waals parameters. It is allow to reduce the 
calculation and at the same time save thetg 
flexibility of customization of the force field. 
If there is a low level of free memory, i_thread 
divides set of atom types and forms several vdw 
tasks. If there is no memory for a new task, 
i_thread waits until o_thread unloads grids to 
the disk. The runtime manager has a special 
watchdog counter to control waiting time and 
stops calculations if i_thread wait memory is 
too long. Each biotargets or grids have their 
own references counter which is incremented by 
i_thread when it adds a new task that uses this 
biotarget or grid. i_thread checks all references 
counters after each new biotarget and remove 
unused biotargets and grids. It is allowed to use 
memory more rationally and protect the system 
against memory leaks when the screening of the 
large number of biotargets/grids is performed.

d_thread gets a new task from i_
queue, loads to the GPU memory runtime 
biotarget representation and the runtime grid 
representation if they have not been already 
loaded. After that d_thread allocates memory on 
GPU for grids and starts calculation according 
to the task type. Then d_thread dumps back 
the grid to CPU memory and transfers the 
completed task to o_queue. All steps are 

perform synchronously. GPU has asynchronous 
capabilities however they require using of CPU 
page-locked memory for asynchronous memory 
exchanging and it is not rational especially at 
large sets of input data and when computers 
with multiple GPUs are used.

o_thread gets the completed task from o_
queue and dumps the completed grids to disk. 
After that the task is removed, all used memory is 
freed and references counters are decremented.

If a computer has multiple GPUs, a separate 
runtime manager is created for each GPU. Such 
separation allows to use computational resources 
more effectively especially on the multicore 
system.

Results and Discussion

All tests were performed on different 
modern CUDA GPUs with different computer 
capabilities (2.0, 2.1, 3.5) and different target 
markets (low-cost and HPC solutions) in order 
to study the behavior of algorithms on different 
platforms. GPUs which were used in the test are 
presented in Table 1.

As mentioned above two different approaches 
for the calculation of the permittivity were used 
in this work. A user can select the necessary 
approach depending on the required priorities 
(performance or accuracy). Performance tests 
are presented in Table  2. In general, the usual 
approach is faster than the distance dependent 
approach by 1.75-2.37 times.

The results of speedup of algorithm for 
GPU are presented in Table  3. The base value 

Table 1. Test GPUs

GPU Computer 
capabilities Multiprocessors ALU Market

Tesla M2090 2.0 16 512 HPC
Tesla K20 3.5 13 2496 HPC
GeForce GT 440 2.1 2 96 Low-cost



– 11 –

Mikhail A. Farkov. Calculation of Force Field Grids for Molecular Docking Using Graphics Processing Unit

for comparison is the result of the calculation 
of 9 grids (size along all dimensions is 64) for 
one biotarget with using the program AutoGrid4 
that was developed in Scripps Research Institute 
and is used for grids calculation for the program 
AutoDock4 (Morris et al., 1997; Morris et al., 
2009). The tests were performed on the computer 
with Intel Core i7 920 and 3 GB RAM. Speedup 
varies on different GPUs but even on a low-
cost GPU with the low number of ALUs it is 
significant.

The results of speedup of implementation 
with the runtime manager and with different 
threads for input, output and execution 
(Fig.  6) are presented in Table  4. The tests 
were performed by using two Tesla M2090. 

They included three cases with 60 grids with 
different sizes and different ligands for each 
grid. This conception gives additional speedup 
regardless of grids size and hides latency of 
memory exchange.

Additional tests in order to estimate quality 
of load balancing were performed. Two arrays of 
GPU were used: 2 GPU Tesla M2090 and 4 GPU 
Tesla K20. It is a common configuration of arrays 
of GPU. The average time of execution of task on 
each GPU and unloading completed grid to the 
disk for a pair of Tesla M2090 are presented in 
Table 5.

Similar tests were performed for a quartet of 
Tesla K20. The results are presented in Table 6. 
Load is distributed well across multiple GPUs 

Table 2. The average time of the kernel with (dd column) and without (not dd column) using the distance dependent 
approach

GPU not dd,ms dd,ms Speedup (dd/not dd)

Tesla M2090 126.15 220.44 1.75
Tesla K20 87.25 205.82 2.36
GeForce GT 440 740.295 1758.09 2.37

Table 3. Average time of calculation of 9 grids using different GPUs

GPU Elapsed,ms Speedup

AutoGrid 4 74010 1
Tesla M2090 1824.04 40.58
Tesla K20 1523.21 48.59
GeForce GT 440 11370.01 6.51

Table 4. Results of comparison between implementation using single thread and implementation using separate 
threads (i_o_d column)

Test case single thread,s i_o_d,s speedup

64*64*64 221 145 1.52

128*128*128 1296 877 1.48

Varying size 32-128 702 334 2.11



– 12 –

Mikhail A. Farkov. Calculation of Force Field Grids for Molecular Docking Using Graphics Processing Unit

Table 5. Execution time (d_thread) and dumping time (o_thread) on 2 Tesla M2090

Test case
d_thread,s o_thread,s

GPU #0 GPU #1 GPU #0 GPU #1
64*64*64 124 128 114 117
128*128*128 761 754 620 585
Varying size 32-128 235 237 290 291

Table 6. Execution time (d_thread) and dumping time (o_thread) on 4 Tesla K20

Test case
d_thread,s o_thread,s

GPU #0 GPU #1 GPU #2 GPU #3 GPU #0 GPU #1 GPU #2 GPU #3
64*64*64 41 43 45 46 69 73 74 76
128*128*128 264 256 267 255 459 421 470 442
Varying size 32-128 96 86 105 95 165 136 163 159

independent from size of array without idle of 
GPU.

The set of test results shows that the proposed 
algorithms are computationally effective. They 
use maximum of computer and GPU resources 
and scale for different platforms well. The 
algorithms are implemented in a program for 
very fast calculation of the large number of grids 
of force fields GPU-CGFF.

The program is registered in the Federal 
Institute of Industrial Property of Russian 
Federation on November 14, 2013. Registration 
number is 2013660687.

Conclusion

Proposed approach for force field grids 
calculation demonstrates high performance 
compared with traditional CPU approaches. 

Algorithm efficiently and automatically scales 
computational load on multiple graphics 
processors. Commonly used force field and 
accurate distance dependent approach for 
evaluation of the permittivity are used. The 
algorithms are useful for acceleration of the 
ligand-protein molecular docking.

Acknowledgment

The author thanks Sergey Feranchuk from 
United Institute of Informatics Problems of the 
National Academy of Sciences of Belarus for 
helpful consultations during this work; The 
HPC Research Department of Siberian Federal 
University and The Tauber Bioinformatics 
Research Center at University of Haifa for 
providing of computing resources that were used 
to carry out the research.

References

Brooijmans N., Kuntz I.D. (2003) Molecular recognition and docking algorithms. Annual Review 1.	
of Biophysics and Biomolecular Structure 32: 335-373.
Cornell W.D., Cieplak P., Bayly C.I., Gould I.R., Merz K.M., Ferguson D.M., Spellmeyer D.C., 2.	
Fox T., Caldwell J.W., Kollman P.A. (1995) A second generation force field for the simulation of 
proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society 117 
(19): 5179-5197. 



Mikhail A. Farkov. Calculation of Force Field Grids for Molecular Docking Using Graphics Processing Unit

Ewing T.J.A., Makino S., Skillman A.G., Kuntz I.D. (2001) DOCK 4.0: Search strategies for 3.	
automated molecular docking of flexible molecule databases. Journal of Computer-Aided 
Molecular Design 15: 411-428.
Gilson M.K., Zhou H.X. (2007) Сalculation of protein-ligand binding affinities. Annual Review 4.	
of Biophysics and Biomolecular Structure 36: 21-42.
Goodford P.J. (1985) A computational procedure for determining energetically favorable binding 5.	
sites on biologically important macromolecules. Journal of Medicinal Chemistry 28: 849-857.
Jones G., Willett P., Glen R.C., Leach A.R., Taylor T. (1997) Development and validation of a 6.	
genetic algorithm for flexible docking. Journal of Molecular Biology 267: 727-748.
Kuntz I.D. (1992) Structure-based strategies for drug design and discovery. Science 257 (5073): 7.	
1078-1082.
MacKerell A.D., Bashford D., Dunbrack R.L.et al. (1998) All-atom empirical potential for 8.	
molecular modeling and dynamics studies of proteins. The Journal of Physical Chemistry 102 
(18): 3586-3616. 
Mehler E.L., Eichele G. (1984) Electrostatic effects in water-accessible regions of proteins. 9.	
Biochemistry 23 (17): 3887-3891.
Mehler E.L., Solmajer T. (1991) Electrostatic effects in proteins: comparison of dielectric and 10.	
charge models. Protein Engineering 4(8): 903-910.
Morris G.M., Goodsell D.S., Halliday R.S., Huey R., Hart W.E., Belew, R.K., Olson A.J. (1998) 11.	
Automated docking using a Lamarckian genetic algorithm and empirical binding free energy 
function. Journal of Computational Chemistry 19: 1639-1662.
Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J. 12.	
(2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. 
Journal of Computational Chemistry 30: 2785-2791.
Wang, J., Wolf R.M., Caldwell J.W., Kollman P.A., Case D.A. (2004) Development and testing of 13.	
a general AMBER force field. Journal of Computational Chemistry 25: 1157-1174.
Wang, J., Wang, W., Kollman, P.A., Case D.A. (2006). Automatic atom type and bond type 14.	
perception in molecular mechanical calculations. Journal of molecular graphics modeling 25 (2): 
247-260.



Mikhail A. Farkov. Calculation of Force Field Grids for Molecular Docking Using Graphics Processing Unit

Appendix A. CUDA kernel for van der Waals calculation 

__global__ void vdwMultipleKernel(float *deviceTargetInfo,float *deviceRadius,float
*deviceEpsilon,float *deviceProbE,float *deviceProbR,unsigned short int
*deviceProbCount,unsigned char *deviceTypes,unsigned int *deviceProteinAtomCount,float
*deviceVdwGrid,float *deviceGridParameters,unsigned short int *deviceGridSize)
{

unsigned short int registerProbCount=*deviceProbCount, xIndex,yIndex,zIndex; 
unsigned int registerProteinAtomCount=*deviceProteinAtomCount,     

        numberOfCellInGrid=deviceGridSize[0]*deviceGridSize[1]*deviceGridSize[2];
float currentX,currentY,currentZ, r,e,r0; 

    //Loop over all cells 
    for(unsigned int index=blockIdx.x*blockDim.x+threadIdx.x;  index<numberOfCellInGrid;  
        index+=gridDim.x*blockDim.x){           

        for(unsigned short int probIndex=0;probIndex<registerProbCount;++probIndex) 
            deviceVdwGrid[numberOfCellInGrid*probIndex+index]=0; 

        xIndex=index/(deviceGridSize[1]*deviceGridSize[2]);
        yIndex=(index%(deviceGridSize[1]*deviceGridSize[2]))/deviceGridSize[2];
        zIndex=index%deviceGridSize[2];  
        currentX=xIndex*deviceGridParameters[3]+deviceGridParameters[0]; 
        currentY=yIndex*deviceGridParameters[3]+deviceGridParameters[1]; 
        currentZ=zIndex*deviceGridParameters[3]+deviceGridParameters[2]; 

        //Loop over target atoms 
        for(unsigned int atomsIndex=0; atomsIndex<registerProteinAtomCount;++atomsIndex){ 
            r=__fsqrt_rn((deviceTargetInfo[atomsIndex]-currentX)*  
                (deviceTargetInfo[atomsIndex]-currentX)+ 
                (deviceTargetInfo[atomsIndex+registerProteinAtomCount] – currentY)* 
                (deviceTargetInfo[atomsIndex+registerProteinAtomCount]-currentY)+
                (deviceTargetInfo[atomsIndex+registerProteinAtomCount*2] -currentZ)*  
                (deviceTargetInfo[atomsIndex+registerProteinAtomCount*2]-currentZ));  
            //Loop over probes 
 for(unsigned short int probIndex=0;probIndex<registerProbCount;++probIndex){
     r0=deviceProbR[probIndex]+deviceRadius[deviceTypes[atomsIndex]]; 
     e=__fsqrt_rn(deviceProbE[probIndex]*deviceEpsilon[deviceTypes[atomsIndex]]);  
                deviceVdwGrid[numberOfCellInGrid*probIndex+index]+=
                  e*(__powf((r0/r),12)-2*__powf((r0/r),6))*((unsigned short int)      
                  (deviceTargetInfo[atomsIndex]>=deviceGridParameters[0]&& 
                  deviceTargetInfo[atomsIndex]<= 
                  (deviceGridParameters[0]+deviceGridParameters[3]*deviceGridSize[0]))&&
                  (deviceTargetInfo[atomsIndex+registerProteinAtomCount]>= 
                  deviceGridParameters[1]&& 
                  deviceTargetInfo[atomsIndex+registerProteinAtomCount]<= 
                  (deviceGridParameters[1]+deviceGridParameters[3]*deviceGridSize[1]))&&
                  (deviceTargetInfo[atomsIndex+registerProteinAtomCount*2]>= 
                  deviceGridParameters[2]&& 
                  deviceTargetInfo[atomsIndex+registerProteinAtomCount*2]<=
                  (deviceGridParameters[2]+deviceGridParameters[3]*deviceGridSize[2])));
}}}}



Mikhail A. Farkov. Calculation of Force Field Grids for Molecular Docking Using Graphics Processing Unit

Appendix B. CUDA kernel for electrostatic calculation.

__global__ void elDdPrototypeKernel(float *deviceTargetInfo,unsigned int
*deviceProteinAtomCount,float *deviceCoulombPrototype,float *deviceGridParameters,unsigned
short int *deviceGridSize,float *devicePermittivity) 
{

unsigned int registerProteinAtomCount=*deviceProteinAtomCount,      
        numberOfCellInGrid=deviceGridSize[0]*deviceGridSize[1]*deviceGridSize[2];

unsigned short int inGrid, xIndex,yIndex,zIndex; 
float coulomb,r,currentX,currentY,currentZ; 

    for(unsigned int index=blockIdx.x*blockDim.x+threadIdx.x;
        index<numberOfCellInGrid;index+=gridDim.x*blockDim.x){ 
          xIndex=index/(deviceGridSize[1]*deviceGridSize[2]);
          yIndex=(index%(deviceGridSize[1]*deviceGridSize[2]))/deviceGridSize[2];
          zIndex=index%deviceGridSize[2];  
          currentX=xIndex*deviceGridParameters[3]+deviceGridParameters[0]; 
          currentY=yIndex*deviceGridParameters[3]+deviceGridParameters[1]; 
          currentZ=zIndex*deviceGridParameters[3]+deviceGridParameters[2]; 

        coulomb=0; 
        for(unsigned int atomsIndex=0;atomsIndex<registerProteinAtomCount;++atomsIndex){ 
              r=__fsqrt_rn((deviceTargetInfo[atomsIndex]-currentX)* 
              (deviceTargetInfo[atomsIndex]-currentX)+ 
              (deviceTargetInfo[atomsIndex+registerProteinAtomCount]-currentY)*
              (deviceTargetInfo[atomsIndex+registerProteinAtomCount]-currentY)+
              (deviceTargetInfo[atomsIndex+registerProteinAtomCount*2]-currentZ)* 
              (deviceTargetInfo[atomsIndex+registerProteinAtomCount*2]-currentZ));  
              inGrid=((unsigned short int) 
                (deviceTargetInfo[atomsIndex]>=deviceGridParameters[0]&& 
                deviceTargetInfo[atomsIndex]<= 
                (deviceGridParameters[0]+deviceGridParameters[3]*deviceGridSize[0]))&&
                (deviceTargetInfo[atomsIndex+registerProteinAtomCount]>= 
                deviceGridParameters[1]&& 
                deviceTargetInfo[atomsIndex+registerProteinAtomCount]<= 
                (deviceGridParameters[1]+deviceGridParameters[3]*deviceGridSize[1]))&&
     (deviceTargetInfo[atomsIndex+registerProteinAtomCount*2]>= 
                deviceGridParameters[2]&& 
                deviceTargetInfo[atomsIndex+registerProteinAtomCount*2]<= 
                (deviceGridParameters[2]+deviceGridParameters[3]*deviceGridSize[2])));

              coulomb+=(deviceTargetInfo[atomsIndex+registerProteinAtomCount*3]/(r*r))* 
                inGrid*(ELEC_DD_A+(*devicePermittivity-ELEC_DD_A)/ 
                (1+ELEC_DD_K*__expf(ELEC_DD_L*(*devicePermittivity-ELEC_DD_A)*r)));
        } 
    deviceCoulombPrototype[index]=coulomb; 
}}


	01_Farkov
	Appendix_Farkov

