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With the use of holomorphic automorphism of the matriz ball of the second type the validity of the integral
Bergman and Cauchy—Sege formulae is proven in this article.
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1°. Let us assume that C[m x m] is the space of complex matrices of size [m x m]. Direct
multiplication of n matrices is denoted by C™*[m x m)].
The set
B — {Z = (Z1, e Zn) €CP [m xm] : [™ —(Z,2) > 0}

m,n

is referred to as matrix ball of the first type (see [6]). Here (Z,Z) = Z1Z7 + Z2Z5 + ...+ Zp, Z}; is
the "dot" product, I is the unit matrix of size [m x m], Z = Z’, is the conjugate transpose of
matrix Z,, v =1,2,...,n, and I — (Z, Z) > 0 means that a Hermitian matrix is positive definite
that is all matrix eigenvalues are positive.

Matrix ball the second type qu%)n has the following form (see [7]):
B® = {Z = (Zyy e Zn) €CP [mxm] : [™ —(Z2,2) >0, Z, =2, v=1, n} .

Let us denote the Shilov boundary of a matrix ball Bg)n by X,(,i)n, that is,

X ={ZeC'mxm]:(2,2)=1, Z,=2,, v=1,2,..n}.

This domain was originally considered in [7] and a group of holomorphic automorphisms of
B,(y%)n was described. The purpose of this paper is to find kernels of the integral Bergman and
Cauchy- Szego formulae in the matrix ball of the second type. The integral Bergman formula
for the matrix ball of the first type has been found in [6 ].

20. Let us consider a point P = (Py, Py, ..., P,)) € B2, Mapping

Wi=R (I™—<2P>) "3 (2~ P)Gu.k=1,.,n, 1)

s=1

that transforms point P into 0 is an automorphism of the matrix ball Bfg)n (see [T ]). Here R
is a matrix of size [m x m] and G is a block matrix of size [m x n]. They satisfy the following

relations o -
R(I— <P P>R=1", G'UI™ —pP)G=1m, (2)
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Lemma 1. Real Jacobean Jr of the mapping W = ¢,(Z) at the point Z = P is

(m+1)(n+1)

det(I™ — < P, P >)
Jrop = 3
|det(I(m) — < Z, P >)|

Proof. Let us find the real Jacobean Jg of the mapping W = ¢,(Z) at the point Z = P. It
follows from (1) that

n

AW, =R '(I™— < z,p>)"1 > dz;Pr(I™— < Z,P>)"' (Z, — P)Gat

=1 s=1
+R (1M - < 2,P )Y dzyGae
s=1

dWy|z=p = R 1(I(m)— < Z,P>)"! ZdZsGsk.
s=1

Gix
dZ @ G = (dZy,...,dZ,) : k=1,n,
Gnk

AW =R '(I™- <z P>)"'dZeG.

Then we have

¢p(P)=R '(I™-<2,P>)"'®aG,
where <p;; is the Jacobi matrix of the mapping ¢p. The sign ® means the Kronecker product of
two matrices. Taking into consideration properties of the Kronecker product (see [3]) and using
relation (2), we obtain

m—+1 m;l n

> (det G")

det op (P) = (det R)

Then applying the result of Theorem 2.1.2 from (see [2, p.37]), we find the real Jacobean of
the mapping ¢z.
Since )
Jrpz = ‘det ﬁP,P‘

then

mi1 mi1 _ () (nt1)
2

Jroz(Z) =det 2 (RR')det 2 "(GG') = det (I™— <7 7>). (3)

Taking into account relations (2), we obtain

det(I™— < W, W >) =det(R (I™— < 2, P >)"Y)det(I"™ — < Z,Z >)x
I™m_ <z 7z
x det((I™— < P,Z >)"'R'1) = detll™ - < 2,2 >) -
det((I™M— < Z, P >)R) det(R' (I — < P, Z >))

B det(I'™ — < 7,7 >) _
~ det(Im— < Z, P >)det(I™) — < P, Z >)det(RR')

IM— <P P>=R'R " =&R)"?

= | det(I™— < P,P >) = det(RR')~! =
det(RR') = det *(I™— < P, P >)
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B det(I™— < 7,7 >) B
~det(IM— < Z, P >)(det(I(m — < Z, P >))*(det(I(m— < P,P >))~1

_det(I™— < Z,Z >)det(I'™— < P, P >)
|det(1(m) — < Z, P >)|2

)

det(I™— < P, P >)det(I'™— < Z, Z
det(10) — < W, ) = et <PP>)detll™ - <2,2>) (4)
|det(1(m) — < Z, P >)|

Mapping 1, = pw oppo cp}l conserves 0. Therefore it is a generalized unitary mapping and
the absolute value of the Jacobian determinant equals 1, i. e., pp = <p;V1 oYy 0@y
Then from relations (3) and (4) we obtain

(m+1)(n+1) (mt1)(n+1)
-2 2

(IM— < W, W >) <det(I(m) <W,W >)

Tné _ det B
REP T o =m0 et =< 7,7 >)

et (Itm— < Z,Z>)

(m41)(nt1)
2

[ det™— < P, P>)
|det(10m) — < 2, P >)|?

()

O
30, Let us consider the normalized Lebesgue measures v in the ball Bg)n and o on the Shilov

(2)
/ dv(Z) =1 and / do(Z) =1.
B, S

boundary Xm/n, i.e.
m,n

Following the procedure given in [6] for By(,f,)n, the Bergman kernel is defined as follows:

1

K(Z,W) =
(Itm)— < Z,W >)

, ZeBY,.

(m+1) (n+1)
et 2

In particular, when n = 1, this kernel coincides with the Bergman kernel for the classical
region of the second type (see [2]).

The Hilbert space of holomorphic functions in Bg)n that are square integrable with respect
to Lebesgue measure dv is designated as H?( 7(5)”), ie., f e H? (Bg)n) if f is a holomorphic in

B,(yi)n fuction and

[ QP ) < +x.
Biiin

L? (X,(,f,)n7 du) signifies the space of scalar functions f that are square integrable with respect
to the normalized Haar measure dp on the Shilov boundary X,(f)n of the matrix ball Bff)n

Theorem 1. For each functionf € Hl(Bg)n) the following relation is true

m,n"

12 = [ HOVK@ W)W, Ze B, W e X

Integral in this relation defines the orthogonal projection from space LQ(BT(,%,)TL) to space

H%(BY),).
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Proof. Let us consider a point P € By(f)n Let us assume first that the function f EA(Bg?n)

(f is holomorphic function in Bg)n and it is continuous function on the closure B,(n)n) Let us

consider the following function

o(2) = I;EJZ;QJ%Z).
Then g GA(B%)”) and
F(P) = 9(P) = (g0 p))(0). (©)

Expanding f in a series of homogeneous polynomials and integrating it over the ball, we
obtain

£(0) = fFW)dv(W).

B3,

Taking into account this relation and relation (5) we have
1B)= [ st (W)avm). @
After the change of variables ¢ (W) = U in (7), we obtain

1) = [ oW nopdv(v) = [ | FUIKPU)AD).
Byiin Byain
Due to the completeness of the matrix ball the space of functions A(Br(,f)n) is dense in the
space H2(BS?,). Then the theorem holds for functions f € L2(B{2,). 0
49, Let us build the Cauchy-Szego kernel for the matrix ball of the second type.
We define the Cauchy-Szego kernel C(Z, W) as follows

C(Z,W) =

1 2 2
(m+1)n ’Z € B1(n,)n’ We X1g@,)n (8)

det T (I0m) — (Z, W)

At n = 1 the Cauchy—Szego formula coincides with the Cauchy—Szego kernel for the classical
region of the second type [2].
This kernel is defined for all pairs (Z, W) € C"[m x m] x C™[m x m] such that the matrix

™ —(Z, W)

is not degenerate matrix. In particular, the kernel is defined for Z € B,(,f?n, W e Xg)n
The kernel C(Z, W) is a holomorphic function with respect to elements of the block matrix
Z and it is a antiholomorphic function with respect to elements of the block matrix .

If fe Ll(BT(,%?n) on Xy(,%)n one can introduce the following integral

ClANZ) = [, CWIFW)s(W), 2 € B, W € X2 Q

Let us designate C[f] as Cauchy integral with respect to f. The operator that transforms f
into C[f] we designate as Cauchy transform.

Lemma 2. Cauchy transform commutes with the action of the unitary group ,,, namely,

Clf o] = (Clf]) o u, f € L'(0).
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Proof. Let us show that the following equality is true
C(Z ' W) = C(uZ,W). (10)

In fact, UU* = I™), VV* = ™) are unitary and block unitary matrices. Then we have

_ 1 1
C(Z,1, 1W) = (miln . = (m+Dn =
det ™ =z (Im) —(Z yg'W)) det” = (I(m) —(Z,U-'WV~1))
1 1
= (m+Dn = (m+Dn =
det™ 2 (I(m") — 7 - U*WV*) det™ 2 (VV* —VV*Z . U*WV*)
1 1

- - = C(YuZ,W).

det ™5 (10mm) — (UZV) W) det " H (100 — (UZV, W)

Here we use the equality
det(I™ — (Z, W) = det(I™™) — Z* . W),

which is true by virtue of Theorem 2.1.2 (see [2, p.37]) for arbitrary Z = (Zi,...,Z,) and
W = (W1, ..., W,). Since the measure o is invariant with respect to t,, then

Clyovl= [, COWI@WIW) = [ O3 W)FW)in(1V) =

x2),

=/X(2> C(puZ, W) f(W)da(W) = (C[f]) 0 ty.

O
Theorem 2. For each functionf € H* (Bg)n) the following relation is true
12— [ HNCE W W).Z2 e BE,, W e XD, ()

X 7(3 ,>n

Proof. Let us assume that f € Hl(B,(,f)n) and Z € Bf,f)n Let us express a point ¢ € C™[mxm)|
as ¢ = ('¢, ), where '¢ = (1, ..., (u—1). By the lemma we can assume without loss of generality
that Z, =0, i.e. Z=('Z,0).

Let us introduce the following function

9(Q) = C(Z,0)f(C), (e BY,.

Because Z,, = 0 then the Cauchy—Szego kernel in B,(,%,)n coincides with the Bergman kernel
B’r(g)n:
C(Z,¢) =K('Z/ ().
Further, for any W € Xg)n function g('W, {,) is the holomorphic function with respect to ¢,

in the matrix circle 5

W W) — (aGn >0, (12)

and it is continuous function in the closure of the circle.
Therefore, it follows from [2, c.91] that

g('W,0) = [3 o'W, W, )do (W), (13)

n
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where S, is the Shilov boundary of matrix disk (12) and do(W,,) is the invariant Haar measure

on S,. Let us integrate relation (13) over ij?n_l.

According to Fubini’s theorem, on the right-hand side we obtain

/..., sm¥) = ClA@).

Because g('W,0) = K(Z, W) f('"W,0) then it follows from Theorem 1 that the integral on the
left-hand side of (13) is f('Z,0) = f(Z).
The theorem is proved. g
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Anpa Beprmana n Konm-Cere ajiss MaTpMYHOro Imapa
BTOPOTO THUIIA

I'ynmupza X. Xymaitbepranon
Ykram C. PaxmoHOB

C' nomouwywro 2040MOpPHOCMU ABMOMOPPHUIMOE MAMPULHOZ20 ULAPAE 6TROPO20 MUNG 00KA3AHA CNPAEEIAU-
8ocmb unmezpasbhux popmys Bepemara u Kowu—Ceze.

Karoueswie caosa: mampuunvidi wap, adpo Bepamana, adpo Kowu-Ceze, asmomoppusm mampuyurnozo
wapa.
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