
Towards Verifying the Bitcoin-S Library
Ramon Boss
Bern University of Applied Sciences, Switzerland
ramon.boss@outlook.com

Kai Brünnler
Bern University of Applied Sciences, Switzerland
kai.bruennler@bfh.ch

Anna Doukmak
Bern University of Applied Sciences, Switzerland
anna.doukmak@gmail.com

Abstract
We try to verify properties of the Bitcoin-S library, a Scala implementation of parts of the Bitcoin
protocol. We use the Stainless verifier which supports programs in a fragment of Scala called Pure
Scala. Since Bitcoin-S is not written in this fragment, we extract the relevant code from it and
rewrite it until we arrive at code that we successfully verify. In that process we find and fix two
bugs in Bitcoin-S.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Bitcoin, Scala, Bitcoin-S, Stainless

Digital Object Identifier 10.4230/OASIcs.FMBC.2020.8

Category Short Paper

Supplementary Material The original Bitcoin-S code we started from, the extracted code, and the
finally verified code are available in our GitHub repository [6]: https://github.com/kaibr/bitcoin-
s-verification.

1 Introduction

For software handling cryptocurrency, correctness is clearly crucial. However, even in very
well-tested software such as Bitcoin Core, serious bugs occur. The most recent example is
the bug found in September 2018 [9] which essentially allowed to arbitrarily create new coins.
Such software is thus a worthwhile target for formal verification. In this work, we set out to
verify properties of the Bitcoin-S library with the Stainless verifier. So this is a case study in
applying the Stainless verifier to existing real-world code.

The Bitcoin-S Library. The Bitcoin-S library is an implementation of parts of the Bitcoin
protocol in Scala [10, 11]. In particular, it allows to serialize, deserialize, sign and validate
Bitcoin transactions. The library uses immutable data structures and algebraic data types
but is not specifically written with formal verification in mind. According to the website, the
library is used in production, handling significant amounts of cryptocurrency each day [10].

The Stainless Verifier. Stainless is the successor of the Leon verifier and is developed at
EPF Lausanne [2, 13, 1]. A distinguishing feature of Stainless is that it accepts specifications
written in the programming language itself (Scala). Also, it focusses on counterexample
finding in addition to proving correctness. Counterexamples are immediately useful to
programmers, which can not be said about correctness proofs.

© Ramon Boss, Kai Brünnler, and Anna Doukmak;
licensed under Creative Commons License CC-BY

2nd Workshop on Formal Methods for Blockchains (FMBC 2020).
Editors: Bruno Bernardo and Diego Marmsoler; Article No. 8; pp. 8:1–8:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germanys

o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
2
4
4
5
1
/
a
r
b
o
r
.
1
4
2
5
9

|

d
o
w
n
l
o
a
d
e
d
:

3
.
6
.
2
0
2
1

mailto:ramon.boss@outlook.com
mailto:kai.bruennler@bfh.ch
mailto:anna.doukmak@gmail.com
https://doi.org/10.4230/OASIcs.FMBC.2020.8
https://github.com/kaibr/bitcoin-s-verification
https://github.com/kaibr/bitcoin-s-verification
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

8:2 Towards Verifying the Bitcoin-S Library

1 def factorial(n: Int): Int = {
2 require(n >= 0)
3 if (n == 0) {
4 1
5 } else {
6 n * factorial(n - 1)
7 }
8 } ensuring(res => res >= 0)

Figure 1 Factorial function with specification.

Figure 2 Stainless output for the factorial function.

The example in Figure 1 is adapted from the Stainless documentation [7] and shows how
the verifier is used. Note how a precondition is specified using require and a postcondition
using ensuring. Our function does not satisfy the specification. An overflow in the 32-bit
integer type leads to a negative result for the input 17, as Stainless reports in Figure 2.
Changing the type Int to BigInt will result in a successful verification.

The Pure Scala Fragment. The Scala fragment supported by Stainless comprises algebraic
data types in the form of abstract classes, case classes and case objects, objects for grouping
classes and functions, boolean expressions with short-circuit interpretation, generics with
invariant type parameters, pattern matching, local and anonymous classes and more. In
addition to Pure Scala Stainless also supports some imperative features, such as while loops
and using a (mutable) variable in a local scope of a function. They turn out not to be
relevant for our current work.

What will turn out to be more relevant for us are the Scala features which Stainless
does not support, such as: inheritance by objects, abstract type members, and inner classes
in case objects. Also, Stainless has its own library of some core data types and functions
which are mapped to corresponding data types and functions inside of the SMT solver that
Stainless ultimately relies on. Those data types in general do not have all the methods of the
Scala data types. For example, the BigInt type in Scala has methods for bitwise operations
while the BigInt type in Stainless does not.

Outline and Properties to Verify. In the next section we try to verify the property that a
regular (non-coinbase) transaction can not generate new coins. We call it the No-Inflation
Property. Trying to verify it, we uncover and fix a bug in the Bitcoin-S library. We then find
that there is too much code involved that lies outside of the supported fragment to currently
make this verification feasible. So we turn to a simpler property to verify. The simplest

R. Boss, K. Brünnler, and A. Doukmak 8:3

1 def checkTransaction(transaction: Transaction): Boolean = {
2 val inputOutputsNotZero =
3 !(transaction.inputs.isEmpty || transaction.outputs.isEmpty)
4 val txNotLargerThanBlock =
5 transaction.bytes.size < Consensus.maxBlockSize
6 val outputsSpendValidAmountsOfMoney =
7 !transaction.outputs.exists(o =>
8 o.value < CurrencyUnits.zero || o.value > Consensus.maxMoney)
9

10 val outputValues = transaction.outputs.map(_.value)
11 val totalSpentByOutputs: CurrencyUnit =
12 outputValues.fold(CurrencyUnits.zero)(_ + _)
13 val allOutputsValidMoneyRange =
14 validMoneyRange(totalSpentByOutputs)
15 val prevOutputTxIds = transaction.inputs.map(_.previousOutput.txId)
16 val noDuplicateInputs =
17 prevOutputTxIds.distinct.size == prevOutputTxIds.size
18
19 val isValidScriptSigForCoinbaseTx = transaction.isCoinbase match {
20 case true =>
21 transaction.inputs.head.scriptSignature.asmBytes.size >= 2 &&
22 transaction.inputs.head.scriptSignature.asmBytes.size <= 100
23 case false =>
24 !transaction.inputs.exists(
25 _.previousOutput == EmptyTransactionOutPoint)
26 }
27 inputOutputsNotZero && txNotLargerThanBlock &&
28 outputsSpendValidAmountsOfMoney && noDuplicateInputs &&
29 allOutputsValidMoneyRange && noDuplicateInputs &&
30 isValidScriptSigForCoinbaseTx
31 }

Figure 3 The checkTransaction function.

possible property we can think of is the fact that adding zero satoshis to a given amount of
satoshis yields the given amount of satoshis. We call it the Addition-With-Zero Property and
we try to verify it in Section 3. Here as well we see that a significant part of the code lies
outside of the supported fragment. We rewrite it until we arrive at code that we successfully
verify. In that process we find and fix a second bug in Bitcoin-S.

2 The No-Inflation Property

An Attempt at Verification. Naively trying Stainless on the entire Bitcoin-S codebase
results in many errors – as was to be expected. We tried to extract only the code relevant to
the No-Inflation Property and to verify that. However, even the extracted code has more
than 1500 lines and liberally uses Scala features outside of the supported fragment. We
started to rewrite the code in the supported fragment, but quickly realized that a better
approach is to first verify a simpler property depending on less code and later come back to
the No-Inflation Property with more experience. However, during the process of trying to
rewrite the code, we found a bug in the checkTransaction function shown in Figure 3.

A Bug in the checkTransaction Function. Given a transaction the function returns true
if some basic checks succeed, otherwise false. For example, one of those checks is that both
the list of inputs and list of outputs need to be non-empty.

Note particularly lines 15-17. Here, the value prevOutputTxIds gathers a list of all
transaction identifiers referenced by the inputs of the current transaction. If the size of this
list is the same as the size of this list with duplicates removed, we know that no transaction

FMBC 2020

8:4 Towards Verifying the Bitcoin-S Library

15 val prevOutputs = transaction.inputs.map(_.previousOutput)
16 val noDuplicateInputs =
17 prevOutputs.distinct.size == prevOutputs.size

Figure 4 Bug Fix.

has been referenced twice. This prevents a transaction from spending two different outputs
of the same previous transaction. The check is too strict: checkTransaction returns false
for valid transactions.

The fix is simple: we perform the duplicate check on the TransactionOutPoint instances
instead of on their transaction identifiers. Note that TransactionOutPoint is a case class
and thus its notion of equality is just what we need: equality of of both the transaction
identifier and the output index.

Specifically, we replace lines 15-17 as shown in Figure 4. We submitted this fix together
with a corresponding unit test to the Bitcoin-S project in a pull request, which has been
merged [5].

We now turn to the much simpler Addition-With-Zero Property.

3 The Addition-With-Zero Property

It is of course a crucial property we are verifying here: if zero satoshis were credited to your
account, you would not want your balance to change! It is also the simplest meaningful
property to verify that we can think of. However, the code involved in performing the addition
of two satoshi amounts in Bitcoin-S is non-trivial. The reason for that is a peculiarity of
consensus code: agreement with the majority is the only relevant notion of correctness. The
most widely used bitcoin implementation by far is the reference implementation Bitcoin
Core, written in C++. For consensus code, Bitcoin-S thus has little choice but to be in strict
agreement with the reference implementation. To achieve that, it implements C-like data
types in Scala and then implements functionality using those C-like data types. For example,
the Satoshis class, which represents an amount of satoshis, is implemented using the class
Int64 which aims to represent the C-type int64_t.

Extracting the Relevant Code. The relevant code for the addition of satoshis is in two
files: CurrencyUnits.scala and NumberType.scala. From those files we removed the majority
of the code because it is not needed for the verification of our property. For example, we
removed all number types except for Int64 (so Int32, UInt64, etc.) because they are not
used. We also removed the superclasses Factory and NetworkElement of CurrencyUnit
and Number, respectively, because the inherited members are not used. We further removed
all binary operations on Number that are not used, like subtraction and multiplication. The
extracted code is shown in Figure 5 and Figure 6.

A Bug in the checkResult Function. Note the checkResult function on line 12 and the
value andMask on line 23 of NumberType.scala. The function is intended to catch overflows
by performing a bitwise conjunction of its argument with andMask and comparing the result
with the argument. However, because of the way Java BigIntegers are represented [14] and
because bitwise operations implicitly perform a sign extension [8] on the shorter operand,
the function does not actually catch overflows.

R. Boss, K. Brünnler, and A. Doukmak 8:5

1 package extracted.number
2
3 sealed abstract class Number[T <: Number[T]] {
4 type A = BigInt
5 protected def underlying: A
6 def toLong: Long = toBigInt.bigInteger.longValueExact ()
7 def toBigInt: BigInt = underlying
8 def andMask: BigInt
9 def apply: A => T

10 def +(num: T): T = apply(checkResult(underlying + num.underlying))
11
12 private def checkResult(result: BigInt): A = {
13 require ((result & andMask) == result ,
14 "Result␣was␣out␣of␣bounds ,␣got:␣" + result)
15 result
16 }
17 }
18
19 sealed abstract class SignedNumber[T <: Number[T]] extends Number[T]
20
21 sealed abstract class Int64 extends SignedNumber[Int64] {
22 override def apply: A => Int64 = Int64(_)
23 override def andMask = 0xffffffffffffffffL
24 }
25
26 trait BaseNumbers[T] {
27 def zero: T
28 }
29
30 object Int64 extends BaseNumbers[Int64] {
31 private case class Int64Impl(underlying: BigInt) extends Int64 {
32 require(underlying >= -9223372036854775808L,
33 "Number␣was␣too␣small␣for␣a␣int64 ,␣got:␣" + underlying)
34 require(underlying <= 9223372036854775807L,
35 "Number␣was␣too␣big␣for␣a␣int64 ,␣got:␣" + underlying)
36 }
37
38 lazy val zero = Int64 (0)
39 def apply(long: Long): Int64 = Int64(BigInt(long))
40 def apply(bigInt: BigInt): Int64 = Int64Impl(bigInt)
41 }

Figure 5 Extracted Code from NumberType.scala.

FMBC 2020

8:6 Towards Verifying the Bitcoin-S Library

1 package extracted.currency
2
3 import extracted.number .{ BaseNumbers , Int64}
4
5 sealed abstract class CurrencyUnit {
6 type A
7 def satoshis: Satoshis
8 def ==(c: CurrencyUnit): Boolean = satoshis == c.satoshis
9 def +(c: CurrencyUnit): CurrencyUnit = {

10 Satoshis(satoshis.underlying + c.satoshis.underlying)
11 }
12 protected def underlying: A
13 }
14
15 sealed abstract class Satoshis extends CurrencyUnit {
16 override type A = Int64
17 override def satoshis: Satoshis = this
18 def toBigInt: BigInt = BigInt(toLong)
19 def toLong: Long = underlying.toLong
20 def ==(satoshis: Satoshis): Boolean = underlying == satoshis.underlying
21 }
22
23 object Satoshis extends BaseNumbers[Satoshis] {
24 val zero = Satoshis(Int64.zero)
25 def apply(int64: Int64): Satoshis = SatoshisImpl(int64)
26 private case class SatoshisImpl(underlying: Int64) extends Satoshis
27 }

Figure 6 Extracted Code from CurrencyUnits.scala.

While this is a potentially serious bug, it turns out that checkResult is only ever called
inside a constructor call for a number type which contains the intended range check, see lines
32-35. The checkResult function thus can, and should, be removed entirely. The Bitcoin-S
developers have acknowledged the bug and we submitted a pull request to fix it, which has
been merged [4].

For further development of Bitcoin-S, this raises a question. If the goal of the Int64 type
is to emulate int64_t then why does it prevent overflows? To achieve strict agreement with
Bitcoin Core, a better approach might be to remove overflow checking from the data type
and to add it in exactly those places where it happens in Bitcoin Core.

Rewriting the Code. We now turn to the list of Scala features used by the extracted code
which are not supported by Stainless and how to rewrite the code in the supported fragment.

All code changes are equivalent in the (admittedly narrow) sense that if the Addition-
With-Zero Property holds for the rewritten code, then it also holds for the original code.

Inheriting Objects. In both files we have objects extending the BaseNumbers trait, on lines
30 and 23 respectively, which Stainless does not support. We simply turn those objects into
case objects. That code is equivalent: case objects have various additional properties (for
example, being serializable) but none of our code depends on the absence of those.

Abstract Type Members. In CurrencyUnits.scala on line 6 there is an abstract type that
is not supported. Note that we can not simply replace it with a (supported) type parameter
since the CurrencyUnit class uses one of its implementing classes: Satoshis. Since the Satoshis
class overrides A with Int64 anyway, we just remove the abstract type declaration and replace
A by Int64 everywhere.

R. Boss, K. Brünnler, and A. Doukmak 8:7

Non-Literal BigInt Constructor Argument. In CurrencyUnits.scala on line 18 the BigInt
constructor is called with a non-literal argument. As described before, the types in the
Stainless library are more restricted than their Scala library counterparts. In particular, the
Stainless BigInt constructor is restricted to literal arguments. So we simply replace toLong
by underlying.toBigInt: instead of converting the underlying Int64 (which in turn has an
underlying BigInt) to Long and then back to BigInt we simply directly return the BigInt.
This is an equivalent transformation: the only thing that might go wrong in the detour via
Long is that the underlying BigInt does not fit into a Long. However, the only constructor of
Int64Impl ensures exactly that and all functions producing Int64 do so via this constructor.

Self-Reference in Type Parameter Bound. In NumberTypes.scala both on lines 3 and 19
is a class with a type parameter and a type boundary that contains that type parameter itself.
Stainless does not currently support such self-referential type boundaries. We opened an
issue [3] on the Stainless repository and the developers have targeted version 0.4 to support
self-referential type boundaries. Since our code only uses Number with type parameter T
instantiated to Int64, we just remove the type parameter declaration and replace all its
occurrences by Int64.

Missing Member bigInteger in BigInt. In NumberType on line 6 there is a reference to
bigInteger. The Scala BigInt class is essentially a wrapper around java.math.BigInteger.
BigInt has a member bigInteger which is the underlying instance of the Java class. The
Java class has a method longValueExact which returns a long only if the BigInteger fits
into a long, otherwise throws exception. Stainless does not support Java classes and in
particular its BigInt has no member bigInteger. However, our code does not call toLong
anymore, so we just remove it.

Type Members. In NumberType.scala there is a type member on line 4. Our version of
Stainless (0.1) does not support type members. We just remove the declaration and replace
all occurrences of A with BigInt, since A is never overwritten in an implementing class. Note
that in the meantime Stainless has implemented support for type members [12]. Since version
0.2 verification should succeed without this change.

Missing Bitwise-And Method on BigInt. Contrary to Scala BigInt, the Stainless BigInt
class does not support bitwise operations, in particular not the &-method used in Num-
berType.scala on line 13. However, as described above, the checkResult function is both
broken and redundant, so we remove it and all calls to it.

Inner Class in Case Object. We have inner classes in NumberType.scala on line 31 and in
CurrencyUnits.scala on line 26. Stainless does not support inner classes in a case object. We
just move the inner classes out of the case objects. They do not interfere with any other
code.

Message Parameter in Require. The calls of the require function on lines 32 and 34 in
CurrencyUnits.scala have a second parameter: the error message. Stainless does not support
the message parameter. We simply remove it.

FMBC 2020

8:8 Towards Verifying the Bitcoin-S Library

9 def +(c: CurrencyUnit): CurrencyUnit = {
10 Satoshis(satoshis.underlying + c.satoshis.underlying)
11 } ensuring (res =>
12 (c == Satoshis.zero) ==> (res == this))

Figure 7 Addition function with specification.

Figure 8 Stainless output for the rewritten code.

Missing Implicit Long to BigInt Conversion. The Scala BigInt class has implict conver-
sions from Long which NumberType.scala uses on lines 32 and 34. They are missing in the
Stainless BigInt. A BigInt constructor with a Long argument is also missing. We thus
replace the Long literals by an explicit call to the BigInt constructor with a literal string
argument, e.g. BigInt("-9223...5808").

The Specification. Now that all our code is in the supported fragment, we can finally
write our specification. We add a postcondition to the +-method of the CurrencyUnit-class
(Figure 6, lines 9-11) resulting in Figure 7. We successfully verify it with Stainless, as the
output in Figure 8 shows.

The original Bitcoin-S code we started from, the extracted code, and the finally verified
code are available in our GitHub repository [6].

4 Conclusion and Future Work

We are happy to see some friendly green verifier output. However, apart from the bugs we
found, the main conclusion of this work is that we had to non-trivially transform even a very
small portion of the code (70 lines) in order to verify it. And that was true even though
the code was purely functional to begin with. At the moment, it is probably unrealistic to
routinely formally verify properties as part of the Bitcoin-S development process. However,
Stainless development has already progressed (e.g. type members are supported in recent
versions) and continues to do so (e.g. self-referential type bounds are on the roadmap). Some
missing features that we identified are presumably very easy to support, like the message
parameter in the require function. Some other features presumably require more substantial
work, like bitwise operations on integer types.

On the other hand, Bitcoin-S uses features that might not be supported even by future
Stainless versions, such as calls to Java code.

Given our experience, the best route towards integrating verification into the Bitcoin-S
development process would be to re-implement parts of the library in Pure Scala. We would
split the library into a verified and non-verified part, and use Stainless only on the verified
part. It is then both a technical but also a political question how much code, if any, can be
moved to the verified part. That is an interesting direction for future work.

R. Boss, K. Brünnler, and A. Doukmak 8:9

References
1 Régis Blanc and Viktor Kuncak. Sound reasoning about integral data types with a reusable

SMT solver interface. In Philipp Haller and Heather Miller, editors, Proceedings of the 6th
ACM SIGPLAN Symposium on Scala, Scala@PLDI 2015, Portland, OR, USA, June 15-17,
2015, pages 35–40. ACM, 2015. doi:10.1145/2774975.2774980.

2 Régis Blanc, Viktor Kuncak, Etienne Kneuss, and Philippe Suter. An overview of the leon
verification system: verification by translation to recursive functions. In Proceedings of the 4th
Workshop on Scala, SCALA@ECOOP 2013, Montpellier, France, July 2, 2013, pages 1:1–1:10.
ACM, 2013. doi:10.1145/2489837.2489838.

3 Ramon Boss. Issue 519: Unknown type parameter type T in self referencing generic. Accessed
2019-06-27. URL: https://github.com/epfl-lara/stainless/issues/519.

4 Ramon Boss. Remove redundant function checkresult. Accessed 2019-07-03. URL: https:
//github.com/bitcoin-s/bitcoin-s/pull/565.

5 Ramon Boss. Transaction can reference two different outputs of the same previous transaction.
Accessed 2019-06-19. URL: https://github.com/bitcoin-s/bitcoin-s/pull/435.

6 Ramon Boss, Kai Brünnler, and Anna Doukmak. The bitcoin-s-verification repository. Accessed
2019-07-06. URL: https://github.com/kaibr/bitcoin-s-verification.

7 LARA Lab, École Polytechnique Fédérale de Lausanne. Stainless documentation. Accessed
2019-06-19. URL: https://epfl-lara.github.io/stainless/.

8 Oracle and/or its affiliates. Class BigInteger. Accessed 2019-07-03. URL: https://docs.
oracle.com/javase/8/docs/api/java/math/BigInteger.html.

9 Jimmy Song. Bitcoin Core Bug CVE-2018–17144: An Analysis. Accessed 2019-
06-20. URL: https://hackernoon.com/bitcoin-core-bug-cve-2018-17144-an-analysis-
f80d9d373362.

10 Suredbits & the bitcoin-s developers. The bitcoin-s website. Accessed 2019-06-19. URL:
https://bitcoin-s.org.

11 The bitcoin-s developers. The bitcoin-s repository. Accessed 2019-06-19. URL: https:
//github.com/bitcoin-s.

12 The Stainless developers. Type aliases, type members, and dependent function types. Accessed
2019-06-27. URL: https://github.com/epfl-lara/stainless/pull/470.

13 Nicolas Voirol, Etienne Kneuss, and Viktor Kuncak. Counter-example complete verification
for higher-order functions. In Philipp Haller and Heather Miller, editors, Proceedings of the
6th ACM SIGPLAN Symposium on Scala, Scala@PLDI 2015, Portland, OR, USA, June 15-17,
2015, pages 18–29. ACM, 2015. doi:10.1145/2774975.2774978.

14 Wikipedia contributors. Two’s complement. Accessed 2019-07-03. URL: https://en.
wikipedia.org/wiki/Two%27s_complement.

FMBC 2020

https://doi.org/10.1145/2774975.2774980
https://doi.org/10.1145/2489837.2489838
https://github.com/epfl-lara/stainless/issues/519
https://github.com/bitcoin-s/bitcoin-s/pull/565
https://github.com/bitcoin-s/bitcoin-s/pull/565
https://github.com/bitcoin-s/bitcoin-s/pull/435
https://github.com/kaibr/bitcoin-s-verification
https://epfl-lara.github.io/stainless/
https://docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html
https://docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html
https://hackernoon.com/bitcoin-core-bug-cve-2018-17144-an-analysis-f80d9d373362
https://hackernoon.com/bitcoin-core-bug-cve-2018-17144-an-analysis-f80d9d373362
https://bitcoin-s.org
https://github.com/bitcoin-s
https://github.com/bitcoin-s
https://github.com/epfl-lara/stainless/pull/470
https://doi.org/10.1145/2774975.2774978
https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Two%27s_complement

