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Abstract: Steam explosion is a well-known process to pretreat lignocellulosic biomass in order to
enhance sugar yields in enzymatic hydrolysis, but pretreatment conditions have to be optimized
individually for each material. In this study, we investigated how the results of a pretreatment
optimization procedure are influenced by the chosen reaction conditions in the enzymatic hydrolysis.
Beechwood was pretreated by steam explosion and the resulting biomass was subjected to enzymatic
hydrolysis at glucan loadings of 1% and 5% employing either washed solids or the whole pretreatment
slurry. For enzymatic hydrolysis in both reaction modes at a glucan loading of 1%, the glucose yields
markedly increased with increasing severity and with increasing pretreatment temperature at identical
severities and maximal values were reached at a pretreatment temperature of 230 ◦C. However,
the optimal severity was 5.0 for washed solids enzymatic hydrolysis, but only 4.75 for whole slurry
enzymatic hydrolysis. When the glucan loading was increased to 5%, glucose yields hardly increased
for pretreatment temperatures between 210 and 230 ◦C at a given severity, and a pretreatment
temperature of 220 ◦C was sufficient under these conditions. Consequently, it is important to precisely
choose the desired conditions of the enzymatic hydrolysis reaction, when aiming to optimize the
pretreatment conditions for a certain biomass.

Keywords: steam explosion; pretreatment; beechwood; whole slurry; enzymatic hydrolysis;
high solids

1. Introduction

Lignocellulosic biomass (e.g., wood, agricultural residues or wastepaper products) plays a major
role as a sustainable feedstock for biofuel and biochemical production due to its great abundance and
relatively low cost [1–3]. Especially in central and western Europe, beechwood (Fagus sylvatica) is a
promising but underutilized feedstock which is reflected by an ongoing inventory increase in the past
decades e.g., by 18.4% since 1983 in Switzerland [4].

Generally, cellulose, hemicelluloses and lignin are the main components of structural plant
material, whereas the latter provides natural protection towards degradation of (hemi-)celluloses
and thereby contributes to the recalcitrance towards biochemical conversion [5,6]. To overcome this
recalcitrance and to enhance sugar release by enzymatic hydrolysis, a range of physicochemical
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pretreatment processes can be applied [7–9]. The pretreatment improves enzyme access to the cellulose
by several mechanisms, including an increase of the surface area, solubilization of lignin and/or
hemicelluloses and a decrease of the cellulose crystallinity and degree of polymerization [10,11]. In this
work, a steam explosion process was used to pretreat beechwood. Here, the biomass is heated to the
target temperature by injection of saturated steam, followed by an explosive pressure release after the
desired incubation time. This leads to a disruption of the matrix of the plant material and a reduction of
the particle size in an energy efficient way [12,13]. As this method does not require any supplementary
chemicals, operating costs and corrosive effects on the equipment are minimized. Steam explosion
pretreatment has been shown to yield highly reactive substrates across various feedstocks such as
hardwoods [14–17] or herbaceous biomass [18–20] and belongs to the most economical methods [21–23].
However, there are only few reports on its application to beechwood [24,25]. Generally, the applied
pretreatment conditions (temperature, time and particle size) have to be optimized individually
for each feedstock in order to maximize the total sugar yields after pretreatment and enzymatic
hydrolysis [26–28]. To facilitate the comparison of different pretreatment conditions, the pretreatment
severity log R0 can be calculated as a function of the variables temperature T [◦C] and time t [min],
as introduced by Overend et al. [29]:

log R0 = log
(
t·e

T−100
14.75

)
(1)

The influence of the size of the particles entering the pretreatment process is not reflected in
Equation (1), but it has also been shown to influence the effectiveness of the pretreatment [13]. However,
no clear general trends could be observed, and the influence of the particle size depends on the type
of biomass and the pretreatment method. For steam exploded poplar (a hardwood), no difference in
enzymatic digestibility was found for two different particle size fractions (2–5 and 12–15 mm) [30],
while, for steam exploded pine (a softwood) and corn stover, higher enzymatic glucose yields from the
solid fraction were found for larger particles [31,32]. A typical pretreatment optimization methodology
is described in the publications of the Biomass Refining Consortium for Applied Fundamentals and
Innovation (CAFI), which compared different pretreatment strategies for corn stover [33], poplar [34]
and switchgrass [9,35]. Enzymatic hydrolysis reactions were performed with washed pretreated
biomass solids at a low glucan loading of 1% and a medium cellulase dosage of 15 filter paper units
(FPU) per gram of glucan. Although those conditions are appropriate to determine the reactivity of
the pretreated solids, they hardly match the conditions on industrial biorefinery scale. For instance,
a minimal titer of 4 wt% ethanol is required for economic product recovery by distillation [36],
which translates to a biomass concentration of approximately 12–15% in the enzymatic hydrolysis
step. Furthermore, it is desirable to process the whole pretreated biomass slurry containing different
inhibitors without any washing and detoxification steps to reduce the number of necessary unit
operations [37,38].

To the best of our knowledge, it has not been investigated how the results of a pretreatment
optimization aiming to find the conditions that allow for maximal glucose and xylose release are
altered, if enzymatic hydrolysis is performed at a higher solid loading or if whole slurry biomass is used
instead of washed biomass solids. For that reason, this work examined steam explosion pretreatment
of beechwood applying a broad range of pretreatment severities at temperatures from 160–230 ◦C.
Besides determining the composition of the resulting solid and liquid process streams to obtain a mass
balance for xylan, we subjected the pretreated biomass to enzymatic hydrolysis at a glucan loading
of 1% employing either washed solids or the whole pretreatment slurry and measured the resulting
xylose, glucose and total sugar yields. Finally, enzymatic hydrolysis was performed also at a glucan
loading of 5% with beechwood pretreated at 210–230 ◦C.
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2. Materials and Methods

2.1. Biomass Feedstock

In this study, beechwood (Fagus sylvatica) harvested in winter 2015/2016 from a forest in Messen,
canton Solothurn, Switzerland, was used as feedstock. It was chopped to the particle size of G30,
air-dried to a final dry matter of 94% and milled (Retsch, SM 100, Haan, Germany) through a screen
to a particle size of <1.5 mm. The untreated beechwood contained 40.8 ± 1.2% glucan, 19.1 ± 0.6%
xylan, 25.3 ± 0.9% acid insoluble lignin, 7.3 ± 0.2% acetyl, 0.5% ash and 0.9% extractives. Here,
the difference to full mass closure can be explained by not accounting for acid soluble lignin and for
other carbohydrates present in minor amounts.

2.2. Steam Explosion Pretreatment

All steam explosion pretreatment experiments were performed with a custom-built steam gun
system (Industrieanlagen Planungsgesellschaft m.b.H., Graz, Austria), as previously described [39].
For steam pretreatment optimization, each run was performed with 250 g of air-dried beechwood.
After a defined incubation time (count-down started at 99% of the target temperature typically reached
in less than 1 min), the biomass was explosively discharged into a stainless-steel receiving vessel
equipped with a drum liner (55 gallon polyethylene drum liner, McMaster-Carr, Elmhurst, IL, USA) to
collect the pretreated biomass slurry. After weighing the drum liner with the pretreated biomass slurry
to determine the total weight of the pretreated beechwood, the solids and the liquid prehydrolyzate
were separated by vacuum filtration through Whatman No. 1 filter paper. The solid filter cake was
washed thoroughly with room temperature water until the filtrate was colorless, and the mass and
the dry matter content of the washed solids were measured. The mass of the prehydrolyzate was
calculated by subtracting the dry mass of the washed solids from the total weight of the pretreated
biomass slurry.

The applied pretreatment conditions are summarized in Table 1.

Table 1. Summary of the tested pretreatment conditions. Shown are the pretreatment durations in
[min] to reach the targeted severities log R0 (see Equation (1)) at a given temperature.

Temperature [◦C]
Pretreatment Severity log R0

3 3.25 3.5 3.75 4 4.25 4.5 4.75 5 5.25

160 17.1 30.4 54.1 96.2 171.2 - - - - -
170 - 15.5 27.5 48.9 86.9 154.5 - - - -
180 - - 13.9 24.8 44.1 78.4 139.5 - - -
190 - - - 12.6 22.4 39.8 70.8 125.9 - -
200 - - - 6.4 11.4 20.2 35.9 63.9 - -
210 - - - - 5.8 10.3 18.2 32.4 57.7 -
220 - - - - 2.9 5.2 9.3 16.5 29.3 -
230 - - - - - 2.6 4.7 8.4 14.9 26.4

Based on literature results for other hardwoods, a pretreatment temperature range of 160–230 ◦C
was selected [40–43]. Furthermore, we chose the tested severities for each temperature as such that the
pretreatment duration is between 2 and 180 min. Preliminary experiments comparing the enzymatic
glucose yields after pretreatment at two conditions (log R0 = 5.0, T = 210 and 230 ◦C) of milled
(<1.5 mm) and chopped (G30) beechwood did not show any statistically relevant differences (data not
shown), thus particle size was not included as an optimization parameter in this study.

Pretreatments were performed as single experiments, but one condition (log R0 = 5.0, 230 ◦C)
was carried out in triplicates in order to check the reproducibility of the results. For this condition,
the mean values together with the standard deviation of the mean are reported.
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2.3. Xylan Mass Balance

For the xylan mass balance, the xylose concentration in the prehydrolyzate was analyzed after
posthydrolysis and the xylan content in the washed pretreated solids was determined (see Section 2.5).
With the measured volume of the prehydrolyzate and the mass of the washed solids after pretreatment,
absolute values were calculated to determine the recovery of xylan after the pretreatment.

2.4. Enzymatic Hydrolysis

2.4.1. Enzymatic Hydrolysis of Washed Solids

Washed solids obtained after steam explosion pretreatment were enzymatically hydrolyzed
in 50 mL screw-top flasks at 50 ◦C in an incubation shaker (Infors HT, MultitronPro, Bottmingen,
Switzerland) at 150 rpm. Commercial Accellerase 1500 (DuPont, St Joseph, MO, USA) with an activity
of 58.7 FPU/mL (measured according to Ghose [44]) was used with a cellulase loading of 15 FPU per
g of glucan in the raw biomass. A 50 mmol/L citric acid buffer maintained a pH of 5.0 and 0.01 g/L
sodium azide prevented microbial growth in the hydrolysis mixtures. The glucan loading was set to 1%
or 5%, respectively, based on the composition of the raw beechwood to consider any carbohydrate loss
that might take place during pretreatment. To determine the necessary amount of washed pretreated
beechwood for enzymatic hydrolysis, a conversion factor relating the mass of the raw beechwood to
the mass of washed pretreated solids was utilized. Samples were taken after 7 days, centrifuged and
the supernatant was stored at −20 ◦C until analysis for glucose, xylose and cellobiose.

The sugar yields after pretreatment and enzymatic hydrolysis in this series of experiments
were calculated by adding up the amount sugars released into the prehydrolyzate (analyzed by
posthydrolysis) and the amount of sugars solubilized by enzymatic hydrolysis. Yields are reported as
xylan and glucan recoveries which are obtained by converting glucose and xylose concentrations to
the corresponding glucan and xylan amounts using the stochiometric conversion factors of 0.9 and
0.88, respectively. The results of this experimental series are displayed in Figures 2B, 3B, 4B and 5.

2.4.2. Whole Slurry Enzymatic Hydrolysis

Whole slurry enzymatic hydrolysis was performed as described in Section 2.4.1, but also
prehydrolyzate was added to the reaction mixture. To determine the volume of prehydrolyzate
to be added, an additional conversion factor relating the mass of the raw beechwood to the volume of
the prehydrolyzate was utilized.

The sugar yields after pretreatment and enzymatic hydrolysis in this series of experiments were
calculated based on the amount of glucose and xylose measured in the supernatant of enzymatic
hydrolysis reaction and are reported as xylan and glucan recoveries. Results of this experimental series
are displayed in Figures 2A, 3A, 4A and 5.

All enzymatic hydrolysis experiments were performed in triplicates and in Section 3, the mean
values are shown. The average standard deviation of the mean was 1.7% and the maximal standard
deviation was 6.0%. For a better readability, the error bars are not included in the figures.

2.5. Analytical Methods

Raw and pretreated biomass was analyzed for its glucan, xylan and acid insoluble lignin content,
and soluble oligomeric sugars in the prehydrolyzate were quantified by posthydrolysis with 4% H2SO4

as reported by the National Renewable Energy Laboratory (Golden, CO, USA). All compositional
analysis runs were performed in triplicates and reported are the mean values. For xylan the mean
standard deviation over all samples was 0.25% and the maximal standard deviation was 2.2%. For a
better readability, the corresponding error bars are not included in the figures.

Glucose, xylose and cellobiose in the liquid fractions were quantified by high performance
liquid chromatography (Waters 2695 Separation Module, Waters Corporation, Milford, CT, USA) with
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refractive index detection (Waters 410) using an Aminex HPX-87H column (Bio-Rad, Hercules, LA,
USA) at 60 ◦C and 5 mmol/L H2SO4 as a mobile phase flowing with 0.6 mL/min.

3. Results and Discussion

3.1. Xylan Mass Balance after Pretreatment

The beechwood used in this study contained 19% xylan, which is the second largest carbohydrate
fraction after glucan. It is well known that xylan is more easily solubilized than glucan during acid and
water only based pretreatments, but that it is also prone to decomposition to furfural [36]. To determine
a mass balance for xylan (calculated in the following as the sum of xylan, xylooligomers and xylose)
after steam pretreatment, we analyzed the distribution of xylan between the pretreated solids and
the prehydrolyzate (Figure 1). The xylan content of the solid fraction after pretreatment strongly
decreased with rising temperature or severity of the pretreatment process (Figure 1B). For the highest
pretreatment severities at 220 and 230 ◦C, xylan was completely solubilized as no residual xylan was
detected in the solid fraction. In contrast, during the pretreatments with low severities at temperatures
of 160 and 170 ◦C, the xylan content in the pretreated biomass was identical to the raw biomass.
Correspondingly, the xylan recovery in the liquid fraction was very low at severities below 3.75 and
then steeply increased with increasing severity until reaching a maximum value of 54% at a severity
of 4.25 and a pretreatment temperature of 180 ◦C (Figure 1A). At pretreatment severities above 4.5,
the xylan yield in the liquid fraction decreased due to the partial degradation of xylose to furfural.
At 230 ◦C and a severity of 5.25, xylan was completely degraded. As detailed in the companion
publication, most of the solubilized xylan in the liquid fraction was present as xylooligomers and not
as monomeric xylose. Overall, the total amount of xylan that could be recovered after pretreatment
steadily decreased with increasing severity, but also with increasing temperature at a constant severity
(Figure 1C). At the condition where the maximal amount of xylan was found in the liquid phase,
the total xylan recovery amounted to 91%.
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Figure 1. Mass balance for xylan after pretreatment. The recovery of xylan (A) in the prehydrolyzate in
the form of xylose and soluble xylooligomers and (B) in the solids after steam explosion pretreatment.
(C) The resulting total xylan recovery based on the composition of the raw material is shown as a
function of pretreatment temperature and severity.

3.2. Xylan Recovery after Steam Explosion Pretreatment and Enzymatic Hydrolysis at Low Solid Loading

The xylan mass balance presented in Section 3.1 represents the maximal possible amount of xylan
that can be recovered in the liquid phase after combined pretreatment and enzymatic hydrolysis,
but it does not show how much of the xylan is actually available in the form of solubilized sugars
for fermentation after pretreatment and enzymatic hydrolysis. Thus, the washed pretreated solids
as well as the whole biomass slurry were subjected to enzymatic hydrolysis at a glucan loading of
1%, and xylose concentrations after seven days were measured. For the whole slurry experiments,
this number corresponds to the total xylose yield after pretreatment and enzymatic hydrolysis
(Figure 2A). These results were compared with the sum of the xylose release in enzymatic hydrolysis
of washed solids and the total amount of xylose and xylooligomers determined after posthydrolysis of
the liquid fraction (Figure 2B). It was found that there were only minor deviations of the solubilized
xylan yields between the two kinds of experiments. This shows that the xylooligomers in the
prehydrolyzate were converted almost quantitatively to xylose monomers by the enzymes in the whole
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slurry experiments. The maximum values of xylan solubilization and recoveries were 72% for whole
slurry enzymatic hydrolysis at a severity of 4.0 at 210 ◦C and 75% for combined posthydrolysis and
washed solid enzymatic hydrolysis at a severity of 4.0 at 180 ◦C.
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Figure 2. Solubilization of xylan after pretreatment and low solid enzymatic hydrolysis.
The solubilization and recovery of xylan as xylose or soluble xylooligomers after pretreatment
and enzymatic hydrolysis was determined (A) after whole slurry enzymatic hydrolysis or (B) after
combined enzymatic hydrolysis of washed solids and separate acid hydrolysis of the prehydrolyzate as
a function of the pretreatment severity. A glucan loading of 1% based on the unpretreated biomass was
applied in enzymatic hydrolysis experiments.

3.3. Glucose Yields after Pretreatment and Enzymatic Hydrolysis at Low Solid Loading

Similar to the measurement of the xylose yields after pretreatment and enzymatic hydrolysis
described in Section 3.2, we also determined the corresponding glucose yields (Figure 3). At low
pretreatment severities and temperatures, the glucose yields were similar for both whole slurry
and washed solids enzymatic hydrolysis. However, with increasing pretreatment severity, the yield
difference between the two types of experiments increased. If enzymatic hydrolysis was performed
with washed solids, the maximal glucose yield was 88% and was reached at a temperature of 230 ◦C
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and a severity of 5.0. For comparison, Nitsos et al. [41] observed a maximal glucose yield of 58%
in enzymatic hydrolysis of washed hot water pretreated beechwood at a pretreatment temperature
of 190 ◦C for 15 min (log R0 = 3.81). When in the same study, the pretreatment temperature was
raised to 220 ◦C while keeping the duration constant (log R0 = 4.69), the glucose yields dropped to
31% [37]. The differences to the steam explosion pretreatment method reported in this manuscript are
the slower heating rate of 7 ◦C/min (versus approximately 230 ◦C/min) and the absence of the explosive
decompression. Explosive decompression has been shown to reduce the particle size and alter the
microstructure of the biomass which leads to enhanced glucose yields in enzymatic hydrolysis [39,45].
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Figure 3. Solubilization and recovery of glucan after pretreatment and low solid enzymatic hydrolysis.
The solubilization and recovery of glucan as glucose or soluble glucose oligomers after pretreatment
and enzymatic hydrolysis was determined (A) after whole slurry enzymatic hydrolysis or (B) after
combined enzymatic hydrolysis of washed solids and separate acid hydrolysis of the prehydrolyzate as
a function of the pretreatment severity. A glucan loading of 1% based on the unpretreated biomass was
applied in enzymatic hydrolysis experiments.
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In the whole slurry experiments, the highest glucose yield was 65%, corresponding to a relative
reduction of 26% compared to the washed solids enzymatic hydrolysis (Table 2). This maximal value
was reached at a slightly lower severity of 4.75 but at an identical pretreatment temperature of 230 ◦C.
The differences between both experimental types show the influence of the inhibitory compounds
derived from the pretreatment process in the whole slurry liquor that is investigated in more detail in
the companion paper. The negative influence of the inhibitors was also shown by the decline of the
yield at higher severities than 4.75 at 230 ◦C occurring only in the whole slurry enzymatic hydrolysis
experiments. The yield reduction in whole slurry enzymatic hydrolysis of pretreated beech was
more severe than the predicted yield reduction of about 5% during enzymatic hydrolysis of Avicel
in the presence of prehydrolyzates at the same concentration level (see Part 2 of this paper series).
The substrate might also influence the amount of inhibition, e.g., by lowering the amount of available
enzymes by irreversible adsorption onto lignin or by the requirement of different types of enzymes
that are inhibited to different extents.

Table 2. Summary of the maximal sugar yields after steam explosion pretreatment and enzymatic
hydrolysis. Shown are the maximal sugar yields after steam explosion pretreatment and enzymatic
hydrolysis of washed solids or whole biomass slurry at two different glucan loadings.

Whole Slurry Enzymatic
Hydrolysis

Combined Washed Solids
Enzymatic Hydrolysis and Dilute

Acid Hydrolysis of Prehydrolyzate

Sugar, Glucan
Concentration in

Enzymatic Hydrolysis
Yield (%)

Optimal Pretreatment
Conditions (log R0,

T [◦C])
Yield (%)

Optimal Pretreatment
Conditions (log R0,

T [◦C])

Glucan, 1% 65 4.75, 230 88 ± 2 5.0, 230

Xylan, 1% 72 4.0, 210 75 4.0, 180

Total sugars, 1% 49 4.5, 220 62 4.75, 230

Glucan, 5% 28 5.0, 220 67 4.75, 220

Xylan, 5% 44 4.0, 220 59 4.0, 220

Total sugars, 5% 26 4.0, 220 54 4.25, 220

Both experimental series clearly showed that the pretreatment temperature has a higher influence
on the digestibility of the substrate than predicted by the severity factor which combines the pretreatment
duration and temperature in one number (Equation (1)) as the glucose yields at a constant severity
increased with increasing pretreatment temperature. This observation was also made by others and,
e.g., Kim et al. therefore altered the calculation of the severity factor by lowering the empirical factor
of 14.75 to 4.6 to be able to correlate the glucose yield in enzymatic hydrolysis with the pretreatment
severity [46].

3.4. Total Sugar Yields after Steam Explosion Pretreatment and Enzymatic Hydrolysis at Low Solid Loading

Based on the data presented above, we calculated the total sugar yields that could be reached
after steam explosion pretreatment and enzymatic hydrolysis (Figure 4). Due to the different optimal
conditions for maximum glucan and xylan recovery, the maximum total sugar yields were lower than
the maximum yields achieved for one type of sugar (see Table 2). At high severities, glucan recovery is
maximal, but xylan recovery is very small due to thermal degradation. At medium severities, high
amounts of xylan can be recovered as soluble molecules, but the enzymatic digestibility of the glucan
fraction is modest. The maximum total sugar yield for combined washed solids enzymatic hydrolysis
and acid hydrolysis of the prehydrolyzate amounted to 62% at a severity of 4.75 at 230 ◦C. For whole
slurry enzymatic hydrolysis, the maximum total sugar yield is 49% reached at a severity of 4.5 at a
temperature of 220 ◦C.
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Figure 4. Total sugar yields after pretreatment and low solid enzymatic hydrolysis. The solubilization
and recovery of glucan and xylan as soluble molecules after pretreatment and enzymatic hydrolysis was
determined (A) after whole slurry enzymatic hydrolysis or (B) after combined enzymatic hydrolysis of
washed solids and separate acid hydrolysis of the prehydrolyzate as a function of the pretreatment
severity. A glucan loading of 1% based on the unpretreated biomass was applied in enzymatic
hydrolysis experiments.

3.5. Optimization of Steam Explosion Pretreatment Conditions for High Solids Enzymatic Hydrolysis

To examine the influence of the solid loading in enzymatic hydrolysis on the results of the
optimization of the steam explosion pretreatment conditions, the materials pretreated at temperatures
of 210–230 ◦C were enzymatically hydrolyzed also at a glucan loading of 5% (Figure 5). Analogous to
the above described experiments, the whole pretreatment slurry as well as the washed solids were used.
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Figure 5. Solubilization and recovery of glucan and xylan after pretreatment and high solid enzymatic
hydrolysis. Shown are the recoveries of (A) total sugars, (B) glucan and (C) xylan as soluble molecules
after steam explosion pretreatment and whole slurry enzymatic hydrolysis (dashed line) or combined
enzymatic hydrolysis of washed solids and acid hydrolysis of the prehydrolyzate (solid line). A glucan
loading of 5% was applied.
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In this experimental series, the highest total xylan recovery of 59% was found when posthydrolysis
of the liquid fraction was combined with enzymatic hydrolysis of washed solids pretreated at 220 ◦C
at a severity of 4.0. In comparison to this, the xylose yield of the whole slurry experiment for the
same condition was 44%, corresponding to a yield reduction of 25%. Analogous to the pretreatment
optimization for low solids enzymatic hydrolysis, the xylan recovery was decreasing with increasing
pretreatment severities. The glucose yields in high solids enzymatic hydrolysis of washed pretreated
biomass showed much less variation over the range of severities tested than observed in the low
solids enzymatic hydrolysis. At high solids concentration, the glucose yields varied between 47% and
67%, while at low solids enzymatic hydrolysis values of 43–88% were observed at similar conditions.
In contrast to the low solids experiments, almost identical glucose yields could be achieved when
hydrolyzing high concentrations of beechwood pretreated at a given severity independently of the
pretreatment temperature. The highest glucose yield of 67% was achieved at a severity of 4.75 and a
pretreatment temperature of 220 ◦C. It was not surprising that the glucose yield in enzymatic hydrolysis
dropped at higher solids concentration, as this effect is described in the literature and is termed the
solids effect [47,48]. The suggested causes for this phenomenon are lower cellulase adsorption due
to increased sugar concentrations [49], product inhibition, inadequate mixing and availability of free
water. However, to the best of our knowledge, there are only few publications, where the solids effect
is quantified and compared for differently pretreated materials. Martins et al. [50] reported a higher
reduction of glucose yield upon increasing the solids concentration for sugar cane bagasse pretreated
with hypochlorite compared to material pretreated with dilute sulfuric acid or alkaline hydrogen
peroxide. Cara et al. demonstrated that delignification of steam pretreated olive tree biomass was
able to increase glucose yields in enzymatic hydrolysis at solid concentrations between 2% and 10%
but not at solid concentrations of 20–30% [51]. This confirms our results that the solids effect can
mask the enhanced reactivity of biomass pretreated at more optimal conditions observed at low solids
enzymatic hydrolysis.

When using whole pretreatment slurry at high solids concentration, the glucose yield dropped
considerably compared to the washed solids experiment and values between only 18% and 28% were
found. The yield reduction due to the presence of the different inhibitors was, at 58% (when comparing
the individual yields at optimal conditions), much higher in the high solids concentration experiments
compared to the low solids whole slurry enzymatic hydrolysis. Thus, the strength of the yield reducing
effect of the pretreatment inhibitors depends on their concentration, which is discussed in more detail
in the companion paper.

Finally, the total sugar yields we calculated for the high solids concentration experiments are
in the range of 44–54% when using washed solids for enzymatic hydrolysis and are in the range of
13–26% when using the whole pretreatment slurry experiment. When using washed solids, the highest
total sugar yield was reached at a severity of 4.25 and a pretreatment temperature of 220 ◦C. For whole
slurry enzymatic hydrolysis, the highest total sugar yield was reached with a pretreatment severity of
4.0 at the same pretreatment temperature.

4. Summary and Conclusions

We showed in this study that the results of a pretreatment optimization for beechwood depend
on the chosen enzymatic hydrolysis conditions. For enzymatic hydrolysis at a glucan loading of 1%,
the glucose yields increased with increasing pretreatment temperature, even at identical severities,
and maximal values were reached at a pretreatment temperature of 230 ◦C. When whole slurry
pretreated beechwood instead of the washed pretreated solids was enzymatically hydrolyzed at low
solid loading, the optimal severity for maximal glucose yield shifted from 5.0 to 4.75 and glucose yields
were generally lower. At elevated solid loading in the enzymatic hydrolysis reaction, the observed
glucose yields were virtually identical for the tested pretreatment temperatures (210–230 ◦C) at a
given severity. Thus, the extent of the solids effect varies for different pretreatment conditions and the
enhanced reactivity of beechwood pretreated at 230 ◦C observed at low solids enzymatic hydrolysis
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was presumably masked by product inhibition at high solid loadings. Further work will explore
whether this is the case also for simultaneous saccharification and fermentation.
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