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Energy expenditure estimation 
from respiration variables
Rahel Gilgen-Ammann1, Marcel Koller1, Céline Huber1, Riikka Ahola2, Topi Korhonen2 & 
Thomas Wyss1

The aim of this study was to develop and cross-validate two models to estimate total energy 
expenditure (TEE) based on respiration variables in healthy subjects during daily physical activities. 
Ninety-nine male and female subjects systematically varying in age (18–60 years) and body mass 
index (BMI; 17–36 kg*m−2) completed eleven aerobic activities with a portable spirometer as the 
criterion measure. Two models were developed using linear regression analyses with the data from 67 
randomly selected subjects (50.0% female, 39.9 ± 11.8 years, 25.1 ± 5.2 kg*m−2). The models were 
cross-validated with the other 32 subjects (49% female, 40.4 ± 10.7 years, 24.7 ± 4.6 kg*m−2) by 
applying equivalence testing and Bland-and-Altman analyses. Model 1, estimating TEE based solely on 
respiratory volume, respiratory rate, and age, was significantly equivalent to the measured TEE with a 
systematic bias of 0.06 kJ*min−1 (0.22%) and limits of agreement of ±6.83 kJ*min−1. Model 1 was as 
accurate in estimating TEE as Model 2, which incorporated further information on activity categories, 
heart rate, sex, and BMI. The results demonstrated that respiration variables and age can be used to 
accurately determine daily TEE for different types of aerobic activities in healthy adults across a broad 
range of ages and body sizes.

Physical activity helps to prevent chronic diseases and premature death, for example by augmenting energy 
metabolism1. In the prevention or treatment of several lifestyle-related diseases, the assessment of daily energy 
expenditure plays an important role in regulating body weight2. Total energy expenditure (TEE) in humans 
consists of the basal metabolic rate, the thermic effect of food, and the energy expenditure caused by physical 
activity3.

Despite the importance of the appropriate amount of daily TEE, accurate assessment of TEE in free-living 
conditions remains difficult4–6. For instance, self-reported questionnaires or seven-day physical activity recalls 
intended to evaluate TEE were shown to either over- or underestimate TEE by up to 60%7,8. There is a clear need 
for measurement tools that allow for the objective monitoring of individuals’ TEE. A range of accelerometer- or 
heart-rate-based activity monitors are on the market that claim to obtain TEE or activity energy expenditure9. 
Their outputs have been shown to produce relatively small to moderate mean differences between the estimated 
and measured energy expenditures10–13. Yet, in order to minimize individual errors, these methods may require 
additional information like activity task recognition, subjects’ anthropometrics, calibration, or users’ training 
statuses5,6.

Another approach is the measurement of respiration variables14,15. Currently, there is a fair amount of newer 
developments that aim towards the assessment of respiration variables in free-living individuals16. These weara-
bles include sensors such as a respiration electrode patch that operates via impedance plethysmography or bio-
impedance and are incorporated into for example, smart t-shirts17–19. Already in the middle of the 20th century, a 
linear relationship between pulmonary ventilation and TEE was demonstrated20. Several previous studies high-
lighted that TEE can be estimated based on pulmonary ventilation only15,20–22 or in addition to heart rate23,24 and/
or body weight25. However, the prediction models based on respiration variables have typically been evaluated 
using the same individuals from whom the original equations were derived15,23,24, and the data obtained under 
laboratory conditions were primarily from sitting and gait activities15,24,25. In addition, the previous research was 
generally based on small sample sizes that were restricted to specific subgroups, such as male participants or 
active people13,15,22,24. Consequently, little is known about the precision offered by TEE predictions based on respi-
ration variables when used under free-living conditions or during different intensities. It is also unknown whether 
the TEE estimations are valid for a broad population (such as in younger to older people, male and female adults, 
or under-, normal-, and overweight people). Such evidence would be necessary in order to justify more effort into 
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the development of portable devices measuring respiration variables for activity monitoring. Therefore, the aim of 
this study was the calculation and cross-validation of two models estimating daily TEE from respiration variables, 
heart rate, and anthropometrics for different types of aerobic activities in a broad population group.

Materials and Methods
Subjects.  Healthy male and female volunteers were recruited to participate in this study. Anthropometrics 
including age, sex, height, and weight were obtained by self-report to ensure that the sample would consist of a 
broad range of ages and body sizes and that the final models would therefore be applicable to a broader popu-
lation. Exclusion criteria were an age above 60 years of age or body mass index (BMI) > 36 kg*m−2. Potentially 
eligible participants were screened using the physical activity readiness questionnaire (PAR-Q) to assess whether 
the subjects could do all the exercises without risk26. Participants who answered yes to any PAR-Q question or 
took any medication affecting the heart or metabolism were excluded from the study. In total, 113 subjects were 
recruited to participate in this study. All participants signed an informed consent form prior to data collection. 
The final study sample consisted of 99 participants (Table 1). The data of 14 subjects were excluded due to techni-
cal problems with the reference device (2.6%) or the heart rate monitor (9.7%).

The study and consent form were reviewed and approved by the ethics commission of the Canton Berne. All 
experiments were performed in accordance with relevant guidelines and regulations.

Experimental protocol.  On two test days separated by one week, the participants had not consumed caf-
feine or participated in exercise for the previous 12 hours. On day 1, maximal oxygen uptake (VO2max) was 
measured by an incremental test in running to volitional exhaustion applying the adapted Bruce protocol ramp 
test27,28. On day 2, data collection was completed with each participant individually, and each performed eleven 
aerobic activities that were categorised as sitting, household, cyclic, and anti-cyclic (Table 2). The latter comprised 
strength training (biceps curls with individual weights, sit-ups, lunges, and push-ups), tennis play with a partner, 
and a soccer course (including drippling, sprinting with/without the ball, passing the ball, and shooting). The 
configuration of the tasks was designed to be as realistic as possible. Each activity lasted four minutes with a 
one-minute resting time after the transition from the previous to the next activity. The order of the activities was 
predetermined, starting with the anticipated lowest task intensity (Table 2). Task intensities were self-selected to 
represent individual habits13. Walking and running speeds averaged 4.3 km*h−1 (ranging from 3.0–5.0 km*h−1) 
and 9.8 km*h−1 (ranging from 7.5–12.0 km*h−1), respectively.

Total N = 99 Men N = 50 Female N = 49

Age [years] 40.2 ± 11.1 40.7 ± 11.3 39.8 ± 10.9

Height [m] 1.74 ± 0.09 1.80 ± 0.07 1.68 ± 0.06

Weight [kg] 75.6 ± 17.2 83.4 ± 17.1 67.6 ± 13.2

Body mass index [kg*m−2] 24.8 ± 4.8 25.7 ± 4.5 24.0 ± 4.9

VO2max [ml*min*kg] 45.5 ± 10.0 48.7 ± 9.2 42.1 ± 9.6

Table 1.  Characteristics of the final study sample obtained in the laboratory presented as mean ± standard 
deviation.

Activity task % VO2max

Sitting

 Office work 10.7 ± 3.2

 Stroop test 10.0 ± 2.3

Household duties

 Cleaning table 22.9 ± 5.4

 Floor sweeping 28.4 ± 6.9

 Tidying up 32.0 ± 7.5

Cyclic activities

 Cycling on a cycle ergometer 49.0 ± 7.1

 Walking flat on a treadmill 31.9 ± 7.1

 Running flat on a treadmill 74.3 ± 9.2

Anti-cyclic sport activities

 Strength training* 41.8 ± 6.0

 Tennis play 69.0 ± 14.0

 Soccer course** 82.8 ± 13.0

Table 2.  The eleven activity tasks categorised and presented in the order of execution and its intensity as 
mean ± standard deviation. Note. *self-guided biceps curls, sit-ups, lunges, and push-ups; **including 
drippling, sprinting with/without the ball, passing the ball, and shooting.
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Instruments.  A portable open-circuit metabolic system (MetaMax 3B; Cortex Biophysik, Leipzig, Germany) 
was used to obtain measures of oxygen consumption, carbon dioxide production, respiratory volume, and res-
piratory frequency29,30. The equipment was calibrated prior to each measurement according to the manufacturer’s 
instructions including ambient air pressure, gas, and volume. The device was mounted on the participant with 
a face mask and a chest harness. Heart rate assessment was accomplished by means of a chest strap (WearLink 
wind, Polar Electro Oy, Kempele, Finland). Running and cycling were performed on a treadmill (Mercury; 
h/p/cosmos sports & medical GmbH, Nussdorf-Traunstein, Germany) and a cycle ergometer (Ergoselect 200; 
Ergoline GmbH, Bitz, Germany), respectively.

Data analysis.  Two models were developed for the estimation of TEE: the “simpler” Model 1, without the 
incorporation of known activity tasks, and Model 2, which included these tasks. It has previously been shown that 
activity recognition increases the accuracy of TEE estimation; however, one disadvantage is that it requires valid 
measurement systems to obtain activity tasks5.

For the development and cross-validation of the models, the sample was randomly assigned to two groups. 
To develop robust prediction equations, the sample was balanced with respect to sex, four age categories (18–29, 
30–39, 40–49, and 50–60 years of age), and four BMI categories (17–19.9, 20–24.9, 25–29.9, and 30–36 kg*m−2). 
Thereafter, two-thirds of each “sex-age-BMI” category were randomly allocated to the developmental group 
(N = 67, 67.7%), while the remaining participants served as the cross-validation group (N = 32, 32.3%). This 
design may be a reasonable balance between optimizing bias and variability31, and therefore, was also applied in 
related research32.

Breath-by-breath data for oxygen uptake, carbon dioxide emission, respiratory volume, and respiratory fre-
quency were collected; from the four-minute activities, the average values for one minute measured from 2:45 to 
3:45 were used to calculate TEE [kJ*min−1] using Péronnet’s formula33. This approach is commonly accepted for 
estimating TEE during aerobic or submaximal intensities34,35. However, the formula does not hold for anaerobic 
activities, as TEE was shown to be significantly underestimated36,37. Therefore, the focus in the present study 
was on aerobic tasks. To ensure the limitation to aerobic data in the developmental and validation groups, the 
measurements with respiratory quotients > 1 were excluded in both groups38. From cyclic and anti-cyclic activi-
ties we removed a total of 105 of 737 (14%) data points for the developmental group and 42 of 352 (12%) for the 
validation group.

Statistical analysis.  Statistical analyses were performed using Excel 2011 (Microsoft, Redmond, WA) and 
SPSS 22.0 (SPSS, Inc. Chicago, IL), and the results were considered to be significant if p ≤ 0.05. Using the data 
from the developmental group, two models were determined to reflect the best set of predictors. To investigate 
Model 1, a backward multiple linear regression was performed with TEE as the dependent variable and respira-
tory volume, respiratory frequency, sex, BMI, age, and heart rate as independent variables. To compute Model 2, a 
separate backward multiple linear regression equation was applied for each of the four activity categories with the 
aforementioned independent variables, prior to summarization in one regression equation. In the case of multi-
collinearity with respiratory volume or respiratory frequency (target variables) or non-significant prediction of 
TEE within the models, the relevant variable was excluded from that particular regression analysis.

Thereafter, the two resulting regression equations were applied as Model 1 and Model 2 to the data from the 
cross-validation group in order to evaluate their accuracy in the estimation of TEE. Equivalence testing was 
performed to determine whether the estimations were significantly equivalent to the criterion measure10,39,40. 
The estimates were considered to be equivalent if the 95% confidence interval for the absolute mean error of the 
estimated TEE fell into the proposed equivalence zone (±5%) of the measured TEE39,40. Bland-and-Altman plots 
with corresponding 95% limits of agreement were used to calculate and visualize systematic differences in TEE 
predictions41. Lastly, the root mean square errors and the Pearson correlation coefficients (r) were calculated.

Results
The developmental and validation groups did not differ in terms of age (40.4 ± 10.7 years and 39.9 ± 11.8 years, 
respectively, p = 0.536), BMI (24.7 ± 4.6 kg*m−2 and 25.1 ± 5.2 kg*m−2, respectively, p = 0.259), sex (50.0% and 
49.2% female, respectively, p = 0.816), and training status (VO2max: 45.0 ± 11.5 and 45.7 ± 9.1 ml*kg*min−1, 
respectively, p = 0.349).

Linear regression analyses.  For the calculation of Model 1, the variable heart rate had to be excluded 
due to its multicollinearity with respiratory volume (r = 0.812, p < 0.001). The sex and BMI variables were also 
excluded from Model 1 due to non-significant prediction (Equation 1; Table 3). To determine Model 2, the fol-
lowing variables were excluded due to non-significant prediction: the variable age for the sitting and household 

R R2 Adjusted R2 SEE

Model 1 0.985 0.970 0.970 3.421

Model 2

Sitting 0.926 0.857 0.851 0.790

Household 0.969 0.938 0.937 1.500

Cyclic 0.985 0.970 0.969 3.089

Anti-cyclic 0.964 0.929 0.927 4.862

Table 3.  Characteristics of the regression models. Note. SEE = Standard error of the estimate.
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activities, BMI for the cyclic activities, and respiratory frequency, heart rate, and BMI for the anti-cyclic activities 
(Equation 2; Table 3).

TEE[kJ min ] 7 473 0 822 RV 0 265 RF 0 055 age (1)1∗ = . + . ∗ − . ∗ − . ∗−

if sitting activity

if household activity

if cyclic activity

if anti cyclic activity

TEE[kJ min ]

1 401 0 656 RV 0 079 RF 0 021 HR 0 351 sex 0 55 BMI

2 681 0 825 RV 0 117 RF 0 032 HR 0 784 sex 0 53 BMI

6 714 0 828 RV 0 330 RF 0 39 HR 0 067 age

9 302 0 667 RV 2 180 sex 0 078 age (2)

1∗ =

− . + . ∗ − . ∗ + . ∗ − . ∗ + . ∗

− . + . ∗ − . ∗ + . ∗ − . ∗ + . ∗

. + . ∗ − . ∗ + . ∗ − . ∗
−

. + . ∗ − . ∗ − . ∗

−

when RV is respiratory volume, RF is respiratory frequency, HR is heart rate, BMI is body mass index, and sex is 
indicated by 0 for male and 1 for female.

Validation.  The calculated mean TEE from the criterion measure, from Model 1 and from Model 2 for 
each activity task is presented in Table 4. The mean TEE of the criterion measure was 28.35 kJ*min−1, of which 
5% ( ± 1.42 kJ*min−1) was used to determine the interval of tolerable difference. Model 1 resulted in a mean 
estimated TEE of 28.41 kJ*min−1 and an absolute difference from the reference of 0.06 kJ*min−1 with limits of 
agreement of ± 6.83 kJ*min−1 (Table 5; Fig. 1). Equivalence testing showed that the criterion data and the values 
estimated by the regression in Model 1 were significantly equivalent. Since the reported 95% confidence interval 
(−0.33, + 0.45) for the difference between the estimated TEE from the regression Model 1 and the criterion TEE 
were completely within the interval of tolerable difference (−1.42, + 1.42), the estimated and the measured TEE 
can be declared equivalent at the 0.025 significance level.

Activity task Criterion measure Model 1 Model 2

Sitting

 Office work 7.4 ± 2.1 9.3 ± 2.8* 7.6 ± 2.2¥

 Stroop test 7.3 ± 1.9 8.7 ± 2.7* 7.6 ± 2.0¥

Household duties

 Cleaning table 16.5 ± 4.7 17.6 ± 4.9* 17.5 ± 5.2*

 Floor sweeping 19.3 ± 5.6 19.2 ± 5.2 19.4 ± 5.5

 Tidying up 21.2 ± 5.0 20.9 ± 4.6 21.3 ± 5.0

Cyclic activities

 Cycling on a cycle 
ergometer 37.0 ± 6.6 35.7 ± 6.3 37.3 ± 6.4¥

 Walking flat on a treadmill 21.1 ± 4.0 20.6 ± 3.7 21.9 ± 4.2*¥

 Running flat on a treadmill 57.3 ± 14.6 54.8 ± 13.7 57.3 ± 13.7¥

Anti-cyclic sport activities

 Strength training 32.2 ± 8.7 32.2 ± 9.5 32.8 ± 8.6

 Tennis play 49.1 ± 13.7 50.3 ± 13.6 50.0 ± 11.9

 Soccer course 65.2 ± 20.2 64.2 ± 20.7 62.2 ± 18.0

 TOTAL 28.4 ± 20.3 28.4 ± 19.6 28.6 ± 19.7

Table 4.  The calculated total energy expenditure in kJ*min−1 for each activity task as mean ± standard from the 
criterion measure, the Model 1 and the Model 2. Note. *significant (p < 0.05) difference to criterion; ¥significant 
(p < 0.05) difference between Model 1 and 2.

Model 1 Model 2

Mean TEE [kJ*min−1] 28.411 28.553

Absolute difference to reference [kJ*min−1] 0.062 0.204

Relative difference to reference (%) 0.22 0.72

RMSE [kJ*min−1] 3.480 3.241

r (p-value) 0.985 (<0.001) 0.987 (<0.001)

Table 5.  Concurrent validity of the two regression models with the criterion measure. TEE = total energy 
expenditure; RMSE = root mean square error; r = Pearson correlation coefficient.
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Model 2 estimated TEE with a bias of 0.20 kJ*min−1 with ± 6.35 kJ*min−1 limits of agreement (Table 5; Fig. 1). 
The TEE values calculated by Model 2 were also significantly equivalent to the criterion data. The 95% confidence 
interval (−0.16, + 0.57) for the difference between the estimated TEE from Model 2 and the criterion TEE was 
within the equivalence zone (−1.42, +1.42).

Discussion
This study presents two models based on respiration variables, heart rate, and anthropometrics to estimate aer-
obic TEE in a broad population under free-living conditions. The accuracy of the two models was evaluated by 
comparing the estimated TEE with that of a portable spirometer. The findings suggest very high concordance 
between the methods on the basis of statistical analyses. With relative deviations from the criterion measure of 
0.2 ± 12.3% and 0.7 ± 11.4% in Model 1 and Model 2, respectively, the models were significantly equivalent to 
the criterion. The accuracy of our models was similar to or higher than that of previous studies investigating TEE 
estimations. For instance, cross-sectional time series models based on heart rate, physical activity measured by 
accelerometry, and time-invariant covariates predicted TEE with a mean error of 0.9 ± 10.3%42. Other models 
were shown to be less accurate; for example, Rothney et al.43 validated an arterial neural network model based on 
acceleration data obtained at the hip and stated a mean difference of 4.5 ± 3.6% compared to the measured TEE. 
Similarly, an error in TEE prediction of 5% based on pulmonary ventilation20 or overestimations of up to 10% 
using a two-regression model based on counts have been reported44,45.

Respiration variables seem very promising in the accurate estimation of daily TEE in comparison with other 
physiological or physical variables. Measuring daily TEE for different activities (e.g., cycling or strength training) 
based on acceleration is challenging, without a set of measurement devices with one placed on each of several 
body parts35. In contrast, respiration variables might change with every effort and seem to be unaffected by tasks 
involving only certain body parts or relating to movements that are performed with an extra load. It appears that 
respiration variables increase linearly with increased intensity not as happens with heart rate14,46. Interestingly, 
it seems that the relationship between respiration variables and TEE does not depend on the training status and 
the type of exercise. The latter was emphasised by the fact that Model 2, incorporating known activity categories, 
did not outperform Model 1, incorporating only respiration variables and age. This is in contrast to other studies, 
focused on acceleration and heart rate data for TEE estimation, stating that objective measurement tools are 
required to better assess activity type and intensity to increase the accuracy of TEE estimations5. Consequently, 
Model 1 is a promising algorithm with high feasibility as it does not require any user calibration or extended 
collection of user information.

The proposed models confirm and extend the previous findings that TEE can be estimated based on respira-
tion variables. In general, a majority of previously published research showing the relationship between respira-
tion variables and TEE was based on data obtained under limited conditions, such as during gait or other specific 
activities, with subjects that were male or only represented a small population14,15,20. Our study presents accurate 
models that apply across a broad range of ages, BMI levels, and training statuses, to both sexes, and during a vari-
ety of activity tasks in daily life. Hence, the population and activity task diversities in our study were higher14,47. 
Previously, it was claimed that the ventilation-based approach is not valid when ventilation is too low or too high 
and that it should be restricted to 15–50 l*min−1. However, the proposed models in the present study cover all 
aerobic intensities (respiration quotient < 1.0) with ventilation ranging from 5 up to 115 l*min−1. An additional 
strength of this study is that the development and validation of the models were performed separately with two 
distinct sample groups.

Nevertheless, future research is recommended to evaluate the proposed models when applied to a sample 
that is performing different activities and when assessed with an independent device. Effective, the presented 

Figure 1.  Bland-and-Altman plots of the total energy expenditure (TEE) obtained during different activities: 
Model 1 vs. criterion measure (left) and Model 2 vs. criterion measure (right). The solid lines represent the 
systematic bias; the dashed lines represent the limits of agreement (systematic bias ± 1.96*SD).
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theoretical models were developed under optimal conditions. Furthermore, it was not known whether the differ-
ent activities that were grouped into the same category (i.e., defining walking, running, and cycling as cyclic activ-
ities) proceeded in the same way and were therefore comparable. It is possible that different classifications (i.e., 
low-, moderate-, and high-intensity activities) would have improved TEE estimation further. However, activity 
categories vary among previous studies48–50. Lastly, only aerobic activities were included for the model calcula-
tions due to a lack of valid formulas estimating TEE during anaerobic activities36,37. However, as a large amount of 
the population is insufficiently active or/nor barely reaches an anaerobic state during most of the days, one may 
connive at this limitation51,52.

The present study provides evidence that TEE can be accurately estimated based on respiration variables. 
Therefore, in a next step the incorporation of the present models into portable devices measuring respiration 
variables is needed for practical application in the future. For the ambulatory assessment of respiratory volume, 
Gastinger et al.47 presented a promising method which was based on two pairs of electromagnetic coils. Moreover, 
there are upcoming wearables (e.g. smart shirts or sensor system networks) that may assess respiratory volume 
and rate16–19. Such tools might be used to track changes in aerobic responses across the lifespan, allowing for 
the monitoring of patients during clinical interventions or rehabilitation programmes as well as in natural set-
tings17,19. In the long term this may help to achieve health benefits, as TEE plays an important role in such pro-
cesses as body weight regulation1.

Conclusion
This study demonstrated the good validity of a model estimating daily TEE based on respiration variables and 
age in a broad population and during a wide range of aerobic activities. The analyses revealed equivalent results 
between the estimated and the measured TEE values. Consequently, the use of respiration variables to estimate 
daily TEE is highly recommended.
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