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आमुख 

vkt nqfu;k Hkj esa vk.kfod tho foKku ç;ksx'kkykvksa vkSj lwpuk çkS|ksfxdh ds Bksl ç;kl ds 

dkj.k vkt vuqØe vkSj lajpukRed vkadM+ksa dh ,d cM+h ek=k lkoZtfud tSfod MsVkcsl esa mIyC/k 

gSa A vuqØe vkSj lajpukRed ;qfädj.k ds lkFk dq'ky lk/kuksa  rFkk mpp dksfV ds fo'ys"k.kkRed 

midj.kksa dks Hkh fMtkbu djus dh ck;ksbuQ‚jeSfVDl esa ,d dsaæh; pqukSrh gSa A bl rjg ds fo'ks"k 

midj.k vuqØe.k MsVk ,oa lwpuk dks tSojklk;fud vkSj tSoHkkSfrdh Kku esa cnyus rFkk buesa fn;s 

gq, lajpukRed] dk;kZRed vkSj fodkl laca/kh lajpukvks dks le>us ds fy, vko';d gSA tSfod 

vuqØe vkSj lajpuk MsVk ds fo'ys"k.k esa çfr:i lqesyu (pattern matching) ,d egRoiw.kZ dne 

gSA çfr:i lqesyu çksVhu 3 Mh lajpukvksa dk v/;;u] vU; çksVhu ds lkFk fodkloknh vkSj 

lajpukRed laca/k Kkr djus esa ,d egRoiw.kZ Hkwfedk fuHkkrk gS rFkk thofoKkfu;ksa dks lajpukvksa 

vkSj fodkl ls tqM+s fofHkUu igyqvksa dks le>us esa enn djrk gS A çksVhu 3 Mh lajpukvksa ds 

MsVkcsl vf/kd cM+s gksus dh otg ls gesa u;s mUur ,o de le; ysus okys midj.k vkSj 

rqyukRed rjhdksa dh vko';drk gSA 3 Mh lajpuk dh rqyuk miyC/k MsVkcsl esa fofo/krk] fo'ys"k.k 

rFkk oSKkfud var–Zf"V  dks le>us esa ,d egRoiw.kZ Hkwfedk fuHkkrk gSaA ;g /;ku j[kuk egRoiw.kZ gS 

fd bu MsVkcsl fd òf) dk eryc dsoy ek=k ugha gS] cfYd fofo/krk] tfVyrk] Hks|rk vkSj 

,d:irk Hkh gSaA blfy,] rqyukRed midj.k dks u dsoy mPp 'kq)rk rFkk foLr`r vk;ke dh 

vko';drk gksrh gS] cfYd lajpukvksa dh c<+rh la[;k ls fuiVus ds fy;s de le; esa fudkyuk Hkh 

gSA çksVhu vuqØe.k fof'k"V :i ls vius ewy ifjos'k esa ,d lajpuk dks fu/kkZfjr djrk gSA çksVhu 

ds dk;Z dks le>us esa ;g lajpukRed tkudkjh vf/kd egRoiw.kZ gSA Ms<+ n'kd ds ckn Hkh çksVhu 

lajpuk dh rqyuk vkt dh çeq[k 'kks/k çkFkfedrk ds :i esa çpfyr gS] rFkk cgqr 'kks/k ys[k bl~ 

fn'kk esa çdkf'kr gks jgs gSA foxr o"kksaZ esa gq, çxfr ds rjhdksa esa lq/kkj tkjh gSA vr% vHkh Hkh 

çksVhu lajpuk dh rqyuk ,d [kqyh pqukSrh gSA 

lkfgR; dh leh{kk ds vk/kkj ij] xzkQ fl)kar vk/kkfjr rduhfd;ksa dk bLrseky çksVhu rqyuk ds 

fy, fd;k tk ldrk gSA xzkQ e‚My dks  fofHkUu xzkQ ekinaMksa dk mi;ksx dj cuk;k tk ldrk 

gSA vke rkSj ij] xzkQ fl)kar dk mi;ksx tfVy LFkkfud lajpuk dks ifjHkkf"kr ,oa le>us ds fy, 

fd;k tkrk gS ftlds ijek.kq vkil esa tfVyrk ls tqM+s gq, gS rFkk ,d nwljs ij fuHkZj gSA ijek.kq 

ds Lrj ij fo'ys"k.k xzkQ fl)kafrd fof/k 3 Mh lajpuk fo'ys"k.k ds fy, fdlh vU; fof/k dh 

rqyuk esa csgrj ifj.kke ns ldrk gSA bu egRoiw.kZ fcanqvksa dks /;ku esa j[krs gq, ifj;kstuk çksVhu 

…Mh lajpuk dh rqyuk ds fy, xzkQ F;ksjh vk/kkfjr midj.k dk fodkl rS;kj fd;k x;k gSA 



 

geus 1½ xzkQ foHkktu vkSj 2½ xzkQ xq.kksa dk mi;ksx djds çksVhu 3 Mh lajpuk dh rqyuk djus ds 

fy, nks u;h fof/k;ksa dks fodflr fd;k gSA nksuksa fodflr fof/k;ksa dks MATLAB esa ykxw fd;k x;k 

gSA fodflr rjhdksa dks nks orZeku esa mIyC/k loksZÙke rjhdksa tSls lhbZ (CE) vkSj ts,Q,Vhlh,Vh 

¼jFATCAT½ ds lkFk 100 çksVhu csapekdZ MkVklsV ij SCOP MkVkcsl ds lkFk ijh{k.k fd;k x;k 

gSA fodflr dh x;h fof/k;ka le; ,oa mR—"Vrk dh –f"V ls mIyC/k rduhfd;ksa ls csgrj lkfcr 

fl) gqbZA 
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PREFACE 

Today, large volume of sequence and structural data is publically available in the 

form of biological databases based on integrated effort of molecular biology laboratories 

throughout the world and advances in information technology. A global challenge in 

bioinformatics is the rationalization of the huge amount of sequences and structural data with 

a view not only to derive efficient and useful meaning from this data, but also for designing 

sharper analytical tools. The analytical tools are required for conversion of sequence 

data/information into biochemical and biophysical properties and to decipher the structural, 

functional and evolutionary clues encoded in the data. Pattern matching is one of main 

important aspects in the analysis of biological sequence and structure data. The alignment and 

comparison of protein 3D structures are very important and fundamental task in structural 

biology to study evolutionary and structural relatedness with other proteins and helps 

biologists to understand various functions and evolution from these structures to identify its 

structural neighbors. In addition to this, databases of three-dimensional protein structures 

became so large that fast search tools and comparison methods are required. The 3D structure 

comparison play a key role in understanding the diversity of structure space by analyzing and 

deriving interesting scientific insights in the existing vast structural databases. It is important 

to note that an increase in deposited structures does not just contain quantity, but also variety, 

complexity, vulnerability, and singularity. Hence, comparison tools are essentially required 

not only to improve accuracy and coverage but also reduce time complexity. Protein 

sequence uniquely determines a structure in its native environment. This structural 

information is vital in understanding the function of a protein. In last one and an half decade, 

the research on protein structure comparison has been taken up on priority basis and numbers 

of research articles were exists in literature. There are incremental advances over previous 

efforts, and still methods are being development for further improvement.  

The graph theory approaches can be used for protein 3D structure comparison. Graph 

models can be created using various graph parameters. Generally, graph theory is used to 

represent/decipher complex spatial structures which are mutually connected and dependent. 

The 3D structure of protein is a complex structure. The atom level analysis may yield better 

result in 3D structure analysis than any other method. Considering these important points, the 

project has been formulated to develop a tool for comparison of protein 3D structure using 

graph theoretic approach. 



 

We have developed two novel methods for comparison of 3D structure based on 1) 

graph partition and 2) graph properties.  Both methods have been implemented in MATLAB 

by writing codes for various functions. The performance of the developed methodologies is 

tested with two existing best methods such as CE and jFATCAT on 100 proteins benchmark 

dataset with SCOP (Structural Classification Of Proteins) database. The proposed methods 

performed better in terms of classification accuracy and time complexity. 
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CHAPTER –I: INTRODUCTION 

 

GENESIS AND RATIONALE OF THE PROJECT 

 

Protein sequence uniquely determines a structure in its native environment. This structural information 

is vital in understanding the function of a protein. The structural information of protein is classified into 

primary, secondary, tertiary and quaternary. The primary structure of a protein refers to the amino acid 

sequence of the polypeptide chain, which is formed during the process of protein biosynthesis and it is 

held together by covalent or peptide bonds. The secondary structure refers to highly regular local sub-

structures defined by the patterns of hydrogen bonds between the peptide chains. The alpha helix and 

the beta strand are considered as the major secondary structures, which represent a way of saturating all 

the hydrogen bond donors and acceptors in the peptide backbone. Tertiary structure is the particular 

arrangement of secondary structure elements in three dimensional spaces. Quaternary structure is a 

larger assembly of several protein molecules. Proteins are versatile biological molecules that perform 

numerous functions in a living organism. These functions are at two levels; one at molecular level 

(physical/chemical activity) and cellular level (signalling /metabolic pathways activity).  In nature, 

protein 3D structure is more conserved than protein sequence. Hence, 3D structure can provide 

significant insights about protein function. The intimate relationship between protein structure and 

function has been well established (Perutz 1960). 

 The quantitative comparison of protein 3D structures is an important and fundamental task in 

structural biology to study evolutionary and structural relatedness with other proteins and helps 

biologists to understand various aspects of function, evolution from these structures and identify its 

structural neighbours. In addition to this, databases of three-dimensional protein structures are very 

large and increasing day by day. Hence, fast search tools and comparison methods are needed. The 3D 

structure comparison play a key role in understanding the diversity of structure space by analysing and 

deriving interesting scientific insights from the existing vast structural databases. It is important to note 

that an increase in deposited structures does not just imply quantity, but also variety, complexity, and 

singularity.  Hence, efficient methods require for protein structure comparison for not only high 

accuracy but also fast execution to cope up with the increasing number of structures. 

 

KNOWLEDGE/TECHNOLOGY GAPS  

 

 Since one and an half decade, the research on protein structure comparison has been taken up on 

priority and numbers of research articles were published. There are incremental advances over previous 

efforts, and still methods continue to improve.  Hence there is still an open challenge for protein 

structure comparison. Despite of extensive research, the accuracy of their alignments has not been 

benchmarked or compared. They are not capable to report whether the computed similarity is optimal 

according to the corresponding scoring function used in structure comparison.  

The alignment of protein structures is a difficult task, and its accuracy may depend on the 

method or program used. The major approaches to structure comparisons are based on Cα and 

Secondary Structure Elements (SSEs) alignments,  Comparing intramolecular & inter-residue distances 

(SSAP, DALI), Matching main-chain fragments by CE (Combinatorial Extension) & dynamic 

programming by representing proteins as a set of Cα distances for octamers (i.e., between eight 

consecutive residues in the structure) and  each pair of octameric fragments that can be aligned within a 

given threshold is considered in an Aligned Fragment Pair (AFP). Secondary Structure Elements 

methods (VAST, SARF, MATRAS) use the Cα atoms to generate a set of vectors of connecting 

residues.  Such vectors effectively represent the structure in two dimensions providing both position and 

directionality. 

One of the disadvantages of using the SSEs is that active sites are frequently small and 

contained in the coiled regions, and it is particularly important to align these correctly. Methods based 

on decomposition of protein structures to smaller blocks are most likely to suffer from combinatorial 
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complexity. Another method of curbing combinatorial complexity is by using the scoring function 

based on the rigid-body superposition, possibly allowing for “hinges” between superposable rigid parts. 

Root Mean Square Deviation (RMSD) values are considered as reliable indicators of variability 

when applied to very similar proteins, like alternative conformations of the same protein. On the other 

hand, RMSD data calculated for structure pairs of different sizes cannot be directly compared, because 

the RMSD value obviously depends on the number of atoms included in the structural alignment. 

RMSD is a good indicator for structural identity, but less so for structural divergence. 

 Well-designed method or tool is needed to address the below mentioned issues while comparing 3D 

protein structures.  

 Accurate and Fast Methods for Multiple Structure Alignment: Existing methods for 

multiple structure alignment are reaching unprecedented levels of coverage and accuracy. 

Currently, the PDB contains 93,788 proteins. A full set of comparisons approximately requires 

K
2
x10

9
 (K is no of SSEs) comparisons to be computed and stored. Faster and more biologically 

meaningful clustering and classification algorithms are needed. 

 Flexible Structure Alignment: Biological features that depend on flexibility have yet to be 

considered as part of the alignment procedure.  

 Biologically Relevant Alignments: Existing methods usually focus on optimizing geometrical 

similarities between two or more structures and not contemplate with biological information. 

Few methods are able to account for additional biological (chemical, physical, or evolutional) 

information that might lead to more accurate alignments.  

 Biologically Relevant Division of the Structural Space: Defining and identifying unique 

structural units that are recurrent between protein structures remains an unresolved issue. 

   

LITERATURE REVIEW 

 

National level 

 

Bhattacharya et al. (2007) proposed a protein structure comparison scheme, which is capable of 

detecting correct alignments even in difficult cases, e.g., non-topological similarities. This method 

computes protein structure alignments by comparing, small substructures, called neighbourhoods.  

Deshmukh et al. (2008) proposed GIPSCo (Geometric Invariant based Protein Structure 

Comparison) that compares a protein pair by using geometric invariants of local geometry of the 

backbone structures. The method first generates a list of aligned fragment pairs (AFPs) using the 

geometric invariants of the local geometry and then these structurally similar AFPs are assembled using 

a graph theoretic approach to maximum weighted clique to obtain global structural alignment between 

two proteins.  

Shivashankar et al. (2011) and group have proposed an improved representation of protein 

structures using latent dirichlet allocation (LDA) topic model.  In this, they compared the proposed 

representations and retrieval framework on the benchmark dataset developed by Kolodny and co-

workers (2002). Further, they also demonstrated that LDA indeed models relationships between 

fragments in protein structures effectively and another important contribution of this work is stated that 

proposed multi-viewpoint homology detection framework is able to effectively find close, as well as, 

remote homologous proteins for a query protein structure. 

 

International Level 

Holm and Sander (1993) developed (DALI) pair wise structural alignment using residues-

residues distance from protein co-ordinates to form distance matrix (DM).  This DM decomposed into 

elementary contact patterns.  Subsequently, submatrices formed and decomposed into large consistent 
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set of pairs. Furter, Monte Carlo procedure have been used to optimize similarity. Finally, alignment or 

superimposition has been obtained. 

 The SARF (Spatial ARangement of backbone Fragments) (Alexandrov 1996) is arrangements of 

fragments in a pair of proteins; it measures similarity using RMSD between Cα atoms and statistical 

significance of the similarities.  Then take searching common spatial arrangement of backbone 

fragments in a pair of proteins.  

 Vector Alignment Search Tool (VAST) (Gibrat et al. 1996) calculates a p-value for the best 

substructure superposition as the probability; this score would be seen by chance in drawing SSE pairs 

at random, Generates the possible number of alternative substructure alignments of SSEs in the protein 

pair. The p-value calculation makes use of an empirical distribution of superposition scores for 

randomly aligned fragment pairs and the search space is determined by a combinatorial formula giving 

the number of possible SSE alignments, Here is used the statistical theory of  BLAST (Basic Local 

Alignment Search Tool). 

 Singh and Brutlag (1997) have proposed hierarchical protein structure superposition using both 

Secondary Structure and atomic representations.  

 Local Secondary Structure Superposition: Compare pairs of vectors from target and 

query protein using orientation independent scoring functions. Select the pair that results in 

the best local secondary structure alignment and transform the query protein to minimize 

the RMSD between this pair of vectors. Using dynamic programming, compare all vectors 

from the target and query proteins based on orientation independent and orientation 

dependent scores. Transform the query protein to minimize the RMSD between the atoms 

of the aligned secondary structure elements.  

 Atomic Superposition: For every atom in the query protein, find the nearest atom (within a 

threshold distance) on the target protein. Transform the query protein to minimize the 

RMSD between these pairs of atoms. Iterate until the RMSD converges.  

 Core Superposition: Find the best core of correctly aligned and sequentially ordered atoms 

and minimize the RMSD between them. Iterate until the RMSD converges. 

 Taylor (1999) has developed a tool using by incorporating a random element into an iterative 

double dynamic programming algorithm. The maximum scores from repeated comparisons from a pair 

of structures converged on a value that was taken as the global maximum. Finally, this has been 

characterized the alignment by their alignment length and root-mean-square deviation (RMSD). 

 Shindyalov and Bourne (1998) have developed protein structure alignment by incremental 

combinatorial extension (CE) of the optimal path. This involves a combinatorial extension of an 

alignment path defined by aligned fragment pairs (AFP). AFPs are pairs of confer similar fragments 

based on local geometry and one from each protein. Combinations of AFPs that represented possible 

continuous alignment paths are selectively extended or discarded, leading to a single optimal alignment.  

 Carugol and Pongor (2001) have employed normalized root-mean-square distance for comparing 

protein three-dimensional structures. A very popular quantity RMSD used to express the structural 

similarity between equivalent atoms in two structures, defined as  where d is the distance between each 

of the n pairs of equivalent atoms in two optimally superposed structures. The RMSD is 0 for identical 

structures, and its value increases as the two structures become more different.   

 Kawabata (2003) has developed server MATRAS (MArkov TRAnsition of protein Structure 

evolution) for  protein 3D structure comparison based on transition matrix and Markov transition 

probability for calculating environment, distance and SSE scores then finally calculating similarity 

between two proteins using these scores. The server has three main services. The first one is a pairwise 

3D alignment, which is simply align two structures. The second service is a multiple 3D alignment, 

which compares several protein structures. In which pairwise 3D alignments are assembled in the 
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proper order. The third service is a 3D library search, which compares one query structure against a 

large number of library structures. 

 Zemla (2003) has proposed LGA (Local-Global Alignment) method to facilitate the comparison of 

protein structures or fragments of protein structures in sequence dependent and sequence independent 

modes. 

 Zotenko et al., (2007) employed Structural foot printing methods (SEGF); In this method, first is 

selection of  a representative set of structural fragments as models and then map a protein structure to a 

vector in which each dimension corresponds to a particular model and "counts" the number of times the 

model appears in the structure. It used contiguous segments (thirty-two residues long) of protein 

backbone as structural fragments. The conformation of a backbone segment is captured by a set of 

fourteen shape descriptors introduced by Rogen et al (1996). This method measures structural similarity 

based on the presence/absence of common structural fragments. 

 Wohlers et.al. (2010) and his team introduced a general mathematical model for optimal alignment 

of inter-residue distance matrices.  The proposed model is based on an integer linear programming 

(ILP) formulation of Caprara et al. (2004). This computes a pair wise alignment of two protein 

structures that maximizes the number of common contacts. Two residues are in contact if they are in 

some sort of chemical interaction, e.g. by hydrogen bonding and whenever the distance between two 

residues is below a predefined distance threshold, the residues are considered to be in contact.  

Lagrangian relaxation uses to compute alignments, which leads to an iterative double dynamic 

programming (DP) algorithm and every optimal solution of the relaxed problem provides an upper 

bound on the optimal score of the original problem.  

 Nguyen and Madhusudhan (2011) have developed the algorithm consists of four sequential steps, as 

follows.   

 Extracting features: Residues in a protein are represented by the Cartesian coordinates of one 

representative atom (typically the Ca), side-chain solvent accessibility and secondary structure.  

 Forming cliques: all possible internal pair-wise distances between the representative atoms are 

computed and defined a clique as a subset of n points, where the Euclidean distance between 

any pair within the clique is within a predefined threshold.  

 Clique matching: The objective is to compute a one to one mapping between amino acid 

residues of the two structures.  

 Based on a formalism for representing and comparing local structure called Local Descriptors of  

Protein Structure (LDPS) (Daniluk and Lesyng 2011). All of the local descriptors in each structure are 

identified as they are compared against each other. Pairs of similar descriptors are then used as building 

blocks for the alignment. Further it has  Identified all residues in contact with the descriptor’s central 

residue. Elements are then built by including two additional residues along the main-chain, both 

upstream and downstream of each contact residue. 
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BRIEF ABOUT THE PROJECT 

 

Based on the review of literature, the graph theory approaches can be used for protein 

comparison. Many graph models can be created using various graph parameters. Generally, graph 

theory is used to represent/decipher complex spatial structure which mutual connected and depended. 

As we know that  3D structure of protein is a complex structure. The atoms level analysis may yield 

better result for 3D structure analysis than any other method. Considering these important points, the 

project is formulated for comparison of 3D protein structure using graph theoretic approach. This 

research will also leads to application of graph theory to other bioinformatics area such as biological 

networks (PPI, protein function prediction, disease network, drug-drug relation etc. 

The above discussed methods are based on alignment of SSEs, Cα coordinates and geometry of 

residues. None of the these methods used graphical methods for quantification of 3D structure of 

protein. Further, based on extensive literature survey given below, graph theoretic approach can be 

employed for comparison of 3D structures.   

 Demonstrated calculation of free energy for all-atom models of protein structures using GBP 

(Generalized Belief Propagation) and Markov Random Field model for protein structure 

(Kamisetty et al., 2008). 

 A chain graph model built on a causally connected series of segmentation conditional random 

fields (SCRFs) (Liu et a., 2009) has been proposed to predict protein folds with structural 

repeats using segmentation conditional random field and  position weight matrix. 

 A graph theoretical algorithm to identify backbone clusters of residues in proteins (Patra and 

Vishveshwara, 2000) to cluster protein sites with the highest degree of interactions.  This based 

on adjacency matrix of 3D structure and eigenvectors.  

 Described graph-theoretic (Artymiuk et al. 1994) by subgraph-isomorphism methods for the 

representation and searching of three-dimensional patterns of side-chains in protein structures.  

 Razavian and his team (2010) developed Time-Varying Gaussian Graphical Models for  

Molecular Dynamics Data. Based  learning sparse, maximum aposteriori (MAP) estimate  to 

learn structure using topology,  parameters of the model, L1-regularization of the negative log-

likelihood to ensure sparsity (density), and a kernel to ensure smoothly varying topology and 

parameters over time.  

 A novel methodology presented to track a simple 3D biological event/structures and 

quantitatively analyse the underlying structural change over time using graph theory (Lund  

2009). Raland and his team (Luth et al., 1992) has explained for assessing quality of protein 

model with 3D profiles. 

 Graph theoretical (Frommel et al., 2003) approach for screening hierarchy of the protein. The 

approach encompass Molecular Surface Patches (MSP) and defined similarity matrix, 

considered the similarity matrix  as weighted graph (similarity Graph) and performed random 

permutation of the edges and then hierarchy screening the protein. 

In view of above point from the published literature, the project was taken on comparison of 3D 

protein structure using graph theory, graph properties and machine learning techniques. 

 

GRAPH THEORY 

 

A graph is a symbolic representation of a network or connected components. It implies an 

abstraction of the reality so it can be simplified as a set of linked nodes or components.  
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Graph theory is a branch of mathematics concerned about how networks can be encoded and 

their properties measured. It has been enriched in the last decades by growing influences from studies of 

social and complex networks. 

 

The origins of graph theory can be traced to Leonhard Euler who devised it in 1735 a problem 

that came to be known as the "Seven Bridges of Konigsberg". In this problem, someone had to cross 

each of these bridges only once and in a continuous sequence. A problem the Euler proved to have no 

solution by representing it as a set of nodes and links. This led the foundation of graph theory and its 

subsequent improvements. Initially graph theory applications on most networks have spatial basic, 

namely road, transit and rail networks.  This it is not necessarily the case for all transportation networks. 

Later, this has been extended to telecommunication system such as Mobile telephone networks or the 

Internet. Now, this is extended to bioinformatics areas such as gene regulatory network, gene 

interaction, protein-protein interactions, and many more.  

 

A graph G=[V,E] in context of protein 3D structure is defined as an ordered pair consisting of 

two sets V and E, where V represents a set of vertices or atoms and E is a set of edges and weighted 

distances in set V.  The edges of the graph are discriminated from each other by giving different 

weights for each of them for calculating Euclidian distance between atoms. Some of the important 

terms are defined as below: 

 

 Graph: A graph G is a set of vertex (nodes) v connected by edges (links) e. Thus G=(v , e). 

 Vertex (Node). A node v is a terminal point or an intersection point of a graph.  

 Edge (Link): An edge e is a link between two nodes. The link (i , j) is of initial extremity i and 

of terminal extremity j. A link is the abstraction of a transport infrastructure supporting 

movements between nodes. It has a direction that is commonly represented as an arrow. When 

an arrow is not used, it is assumed the link is bi-directional. 

 Sub-Graph: A sub-graph is a subset of a graph G where p is the number of sub-graphs. For 

instance G’ = (v’, e’) can be a distinct sub-graph of G.   

 Simple graph: A graph that includes only one type of link between its nodes. In proposed work 

we have taken simple graph means it has only one connection. 

 Multigraph: A graph that includes several types of links between its nodes.  

 Connection: A set of two nodes as every node is linked to the other. Considers if a movement 

between two nodes is possible, whatever its direction. Knowing connections makes it possible 

to find if it is possible to reach a node from another node within a graph. 

 Path: A sequence of links that are traveled in the same direction. For a path to exist between 

two nodes, it must be possible to travel an uninterrupted sequence of links. Finding all the 

possible paths in a graph is a fundamental attribute in measuring accessibility and traffic flows. 

 Chain: A sequence of links having a connection in common with the other. Direction does not 

matter. 

 Length of a Link, Connection or Path: Refers to the label associated with a link, a connection 

or a path. This label can be distance, the amount of traffic, the capacity or any attribute of that 

link. The length of a path is the number of links (or connections) in this path. 

 Cycle: Refers to a chain where the initial and terminal node is the same and that does not use 

the same link more than once is a cycle. 

 Circuit: A path where the initial and terminal node corresponds. It is a cycle where all the links 

are traveled in the same direction. Circuits are very important in transportation because several 
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distribution systems are using circuits to cover as much territory as possible in one direction 

(delivery route). 

 Clique: A clique is a maximal complete subgraph where all vertices are connected. 

 Cluster: Also called community, it refers to a group of nodes having denser relations with each 

other than with the rest of the network. A wide range of methods are used to reveal clusters in a 

network, notably they are based on modularity measures (intra- versus inter-cluster variance). 

 Symmetry and Asymmetry: A graph is symmetrical if each pair of nodes linked in one 

direction is also linked in the other direction. By convention, a line without an arrow represents 

a link where it is possible to move in both directions. However, both directions have to be 

defined in the graph. Most transport systems are symmetrical but asymmetry can often occur as 

it is the case for maritime (pendulum) and air services. Asymmetry is rare on road 

transportation networks, unless one-way streets are considered. 

 Assortativity and disassortativity: Assortative networks are those characterized by relations 

among similar nodes, while disassortative networks are found when structurally different nodes 

are often connected. Transport (or technological) networks are often disassortative when they 

are non-planar, due to the higher probability for the network to be centralized into a few large 

hubs. 

 Completeness: A graph is complete if two nodes are linked in at least one direction. A 

complete graph has no sub-graph and all its nodes are interconnected. 

 Connectivity:  A complete graph is described as connected if for all its distinct pairs of nodes 

there is a linking chain. Direction does not have importance for a graph to be connected, but 

may be a factor for the level of connectivity. If p>1 the graph is not connected because it has 

more than one sub-graph (or component). There are various levels of connectivity, depending 

on the degree at which each pair of nodes is connected. 

 Complementarity: Two sub graphs are complementary if their union results in a complete 

graph. Multimodal transportation networks are complementary as each sub-graph (modal 

network) benefits from the connectivity of other sub-graphs. 

 

MACHINE LEARNING TECHNIQUES FOR CLUSTERING AND CLASSIFICATION 

 

Biological research world over has generated a vast quantity of bioinformatics data both 

sequences and structural. One of the challenge in bioinformatics is developing effective computational 

methods that can recognize the patterns which are leads to decipher functional, structural and 

evolutionary relatedness of data. A most promising approach for these challenges is pattern recognition. 

Brief descriptions of pattern recognition by machine learning approaches, similarity metrics and 

validation techniques are presented below 

Pattern recognition can be defined as “the act of taking raw data and making an action, based 

on the category of the pattern (Duda et al., 2007).  Human beings are good at recognizing/distinguishing 

patterns but it is difficult to recognize patterns correctly when there is high complexity in patterns and a 

large number of predefined classes are present. Reliable, fast and accurate pattern recognition by 

machine would be immensely useful from the practical point of view. Pattern recognition deals with the 

design of systems that recognize patterns in data.  Important application areas are image analysis, 

character recognition, fingerprint identification, speech analysis, DNA and protein sequence analysis, 

person identification, etc. 

The goal of pattern recognition research is to devise ways and means of automating certain 

decision-making processes based on supervised learning or classification and unsupervised learning or 

clustering. This process generally has steps of acquisition of the data, pre-processing to remove noise or 
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normalization of the data, feature extraction, classification or supervised learning / clustering or 

unsupervised learning and finally evaluation.  

Pattern recognition scheme employs two learning paradigms namely, supervised and 

unsupervised learning. In supervised learning, a teacher provides a category label for each pattern in a 

training set. The objective is to use the learnt abstraction to assign a label to the given new pattern.   In 

unsupervised learning, there is no explicit teacher and training patterns are not labeled. Clustering is a 

unsupervised learning technique. The technique forms clusters or natural groupings of the input patterns 

(Duda et al., 2007). In this work, we have employed clustering techniques for pattern recognition and to 

develop methodology for protein structure comparison and clusters analysis is used to evaluate the 

proposed methods. 

Clustering is a grouping procedure accomplished by finding similarities between data according 

to the characteristics found in the given dataset. Clustering is a collection of data objects which are 

similar to one another within the same cluster but dissimilar to the objects in other clusters. Clustering 

is an unsupervised learning technique to divide a collection of patterns into groups of similar objects.  

The main objective of this learning technique is to find a natural grouping or meaningful partition by 

using distance or similarity measures. Some basic features of clustering are: 

 The number of clusters is not known 

 There may not be any  prior knowledge  concerning the clusters 

 Cluster results are dynamic. 

 

For a given dataset D= {t1, t2, …… tn} of n tuples and integer value k as number of clusters, the 

clustering problem is to define a mapping f : D[1, 2, …. k]   where each tuple ti is assigned to one 

cluster Kj , 1≤j≤k. A cluster, Kj , contains precisely those tuples mapped to it: that is, Kj ={ti | f(ti)=Kj , 1 

≤ i ≤ n and ti Є D} 

 

Categorization of clustering algorithms: Clustering methods are broadly classified into three main 

categories namely, 1) Sequential, 2) Hierarchical, 3) Partitional and 4) Hybrid clustering.  

 

 Sequential Clustering: These algorithms produce clusters in a single loop or few loops. They 

are quite straight forward and fast. In these, all the feature vectors are presented to the 

algorithms once or a few times (less than 5). These schemes produce compact and 

hyperspherically or hyperellipsoidally shaped dynamic clusters using threshold. Examples of 

sequential clustering techniques including Neural Network as a leader. 

 

 Hierarchy Clustering: With hierarchical clustering, a nested set of clusters are created. Each 

level in the hierarchy has a separate set of clusters.  At the highest level, all items belong to the 

same cluster and at the lower level, each item is in its own unique cluster. The output of the 

algorithm is called as dendrogram. There are two approaches for hierarchical clustering:  

 

o Top-down (Divisive/splitting) approach: Starts with the entire data in one cluster and 

then hierarchically splits the dataset into smaller blocks successively until all items are 

in their own cluster.  

o Bottom-up (Agglomerative/merging) approach: Starts with each individual item in its 

own cluster and iteratively merges clusters until all items belong in one cluster.  

 

 Partitional Clustering: Partitional clustering creates the clusters in one step. Only one set of 

clusters is created, although several different sets of clusters may be created internally. Since 
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only one set of clusters is outputted, the user must provide initially k, the desired number of 

clusters. In addition, some metric or criterion function is used to determine the goodness of any 

such solution. This measure of quality could be the average distance between clusters or some 

other metric. Examples of partitional clustering algorithm are K-Means, K-Centroids, K-

Medians, K-Mediods and PAM (Partitioning Around Mediods).  

 

 Hybrid Clustering (Combination of different methods): The idea of design a hybrid 

classifier is combining the merits of various techniques. The hybrid algorithm is a choice at a 

high level between at least two distinct algorithms and each of which can solve the same 

problem. The choice is motivated by an improved performance. Fuzzy-neural networks and 

Fuzzy C-means clustering are commonly used hybrid methods for pattern classification in a 

variety of applications.  

 

SIMILARITY AND DISTANCE MEASURES 

 

The concept of dissimilarity (or distance) or dual similarity is the essential component of any 

form of clustering and classification that help us to navigate through the data space and form 

clusters/classes. Thus, clustering and classification methods require an index of proximity, or alikeness, 

or association between pairs of patterns such as distance or similarity measures.  

The similarity between two tuples ti and tj with h dimension, sim(ti, tj), in a dataset D, is a 

mapping from DxD to the range [0,1]. Thus, it can be represented as sim(ti,tj)Є [0,1]. The objective is to 

define the similarity mapping so that the documents that are more alike and have a higher similarity 

value. Thus, the following are desirable characteristics of a good similarity measure: 

 V ti Є D, sim(ti, ti) = 1 

 V ti , tj Є D, sim(ti, ti) = 0 if ti and tj are not alike at all 

 V ti , tj, tk  Є D, sim(ti, tj) < sim(ti, tk) if ti is more like tk than it is like tj 

 

Some of the similarity measures commonly used in classification and clustering are given below.  

 

 

 

 
Distance measures are often used instead of similarity measures. The following are desirable 

properties of distance measures: 

 Nonnegative: Dist(ti, tj) ≥ 0 

 Reflexivity: Dist(ti, tj) = 0 if and only if ti= tj 

 Symmetry: Dist(ti,tj) = Dist(tj,ti) 

 Triangle inequality: Dist(ti,tj) + Dist(tj, tk) ≥ Dist(ti, k) 

 

                                                k 

Euclidean distance : dist (ti, tj) =     Σ (tih  -  tjh )2 
                                                                       h=1          

                                               k 

Manhattan distance: dist (ti, tj) =     Σ | tih  -  tjh | 
                                                                     h=1          

                                                k 

Minkowski distance: dist (ti, tj) =     Σ (|tih  -  tjh|
p 

)
1/p

 
                                                                       h=1          

 Mahalanobis distance: dist (ti, tj) =    (ti  -  tj )
T
 Σ

-1
 (ti  -  tj) 

 

Where Σ
-1 

is covariance matrix of ti and tj 
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Similarity using Jaccard co-efficient for binary data is defined as follows 

 

Dissimilarity(ti, tj) = (b+c/(a+b+c)  

Similarity(ti, tj) = 1-dissimilarity(ti, tj) 

 

where a is the number of attributes (or features) equal to 1 for both tuples, b is the number of 

attributes that is equal to 1 for tuple ti and 0 for tuple tj, c is the number of attributes that is equal to 0 for 

tuple ti and 1for tuple tj, d is number of attributes that are equals to 0 for both.  

 

VALIDATION AND EVALUATION TECHNIQUES 

Evaluation is important measure to assess the performance of technique and to identify the need 

for improvements in its components. To compare the proposed techniques with existing techniques, we 

have employed following benchmark data and performance matrices.  

 

Benchmark data 

A datasets of protein structures from SCOP (Structural Classification of Proteins) (Murzin et al 

1995) database have been selected as benchmark data. This data were also used by Liu et al. (2010) and 

compared their techniques for classification of proteins. A dataset consists of 100 proteins structures in 

three classes and having 45 proteins from class I, 40 from class II and 15 from class III and details is 

given in Table -1. 

 

Table-1 Benchmark data set used for evaluation of proposed method. 

 

Class Fold SF 

No. of 

Proteins 

a.1.1.1 1DLW,1S69,1IDR,1NGK,1UX8 1-5 1 1 1 5 

a.1.1.2 1B0B,1H97,1A6M,1MBA,1ASH 6-10 1 1 2 5 

a.1.1.3 1JBO,1ALL,1B8D,1XG0 11-14 1 1 3 4 

a.2.3.1 1XBL,1NZ6,1IUR,1FAF,1GH6,1WJZ 15-20 1 2 4 6 

a.3.1.1 1C75,1CTJ,1C52,1QL3,1E29,1YCC,1I8O 21-27 1 3 5 7 

a.3.1.4 1M70,1H1O,1FCD 28-30 1 3 6 3 

a.4.1.1 1P7I,1LE8,1K61,1LFB,1PUF 31-35 1 4 7 5 

a.4.1.2 1IJW,1GDT,1TC3,1U78,2EZL,2EZI 36-41 1 4 8 6 

a.4.1.3 1GV2,1GVD,1FEX,1UG2 42-45 1 4 9 4 

b.1.1.1 1QFO,1DQT,1NEU,1PKO,1EAJ,1JMA,1XED 46-52 2 5 10 7 

b.1.1.2 1DN0,1L6X,1FP5,1HXM,1K5N,1HDM,1UVQ 53-59 2 5 11 7 

b.1.1.3 1VCA,1IAM,2OZ4,1ZXQ,1CID,1CCZ 60-65 2 5 12 6 

b.6.1.1 1PLC,1KDJ,2Q5B,1BQK,1F56 66-70 2 6 13 5 

b.6.1.3 2BW4,1KBV,1KV7,1GSK,1AOZ 71-75 2 6 14 5 

b.7.1.1 1QAS,1RLW,1BDY,1GMI,2ZKM 76-80 2 7 15 5 

b.7.1.2 1RSY,1UOW,1UGK,1RH8,1A25 81-85 2 7 16 5 

c.2.1.1 2JHF,1JVB,1H2B,1RJW,1VJ0 86-90 3 8 17 5 

c.3.1.1 1DJQ,1PS9,1LQT,1GTE 91-94 3 9 18 4 

c.3.1.5 1ONF,1GES,1FEC,1H6V,1TRB,1M6I 95-100 3 9 19 6 

 

Classification Accuracy 
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The simplest measure of classifier performance is the Classification Accuracy (Duda et al., 

2007). The Classification Accuracy (CA) depends on the number of samples correctly classified is 

evaluated by the formula:  

CA= (No. correctly classified sample ) /( Total number of samples) 

 

Precision, Recall and f-measure 

 

Generally, most of the clustering/classification methods suffer from overfitting problem, 

therefore evaluation is needed to improve the performance by adjusting the parameters, or changing the 

algorithm or changing the training set. Therefore, we use f-measure as validation in our experiment.  f-

measure combines Precision and Recall. The traditional f-measure or balanced f-score is the harmonic 

mean of precision and recall. According to Yang and Liu (Yang & Liu, 1999), this measure was first 

introduced by van Rijsbergen (van Rijsbergen, 1979), which combines both precision (p) and recall(r) 

with equal weights and is defined as 

recallprecision

recallprecision
F




.
.2  

 

Precision and Recall are two widely-used evaluation measures in classification and clustering. 

Precision can be seen as a measure of exactness, whereas Recall is a measure of completeness. 

In a classification task, a Precision score of 1.0 for a class C means that every item labelled as 

belonging to class C does indeed belong to class C, but gives no information about the number of items 

from class C that were not labelled correctly, whereas a Recall of 1.0 means that every item from class 

C was labelled as belonging to class C, but has no information about how many other items were 

incorrectly labelled as belonging to class C). 

 

The Precision for a class is the number of true positives (i.e.) the number of items correctly 

labelled as belonging to the positive class divided by the total number of elements labelled as belonging 

to that particular class (i.e.) the sum of true positives and false positives, which are items incorrectly 

labelled as belonging to the class. Recall, in this context, is defined as the number of true positives 

divided by the total number of elements that actually belong to the positive class (i.e.) the sum of true 

positives and false negatives, which are items that were not labelled as belonging to the positive class 

but should have been. 

 

The terms true positives, true negatives, false positives and false negatives (statistical Type I 

and Type II errors) are used to compare the given classification of an item (i.e.) the class label assigned 

to the item by a classifier with the desired correct classification (i.e.) the class the item actually belongs 

to. This is illustrated in Table 1. 

Table 1. Confusion matrix table 

 True classification 

Obtained 

classification 

tp 
(true positive) 

fp 
(false positive) 

fn 
(false negative) 

tn 
(true negative) 

 

Precision and Recall are calculated by: 
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Receiver Operating Characteristic (ROC) is used to evaluate the method followed in this study 

with other methods. The ROC is a comparison of two operating characteristics, True Positive Rate 

(TPR) and False Positive Rate (FPR). TPR=tp/(tp+fp) and FPR=fp/(fp+tn).   

 

Here, we also use Accuracy (ACC) to measure the degree of closeness between the observed 

and true classes and Matthews Correlation Coefficient (MCC) for correlation between experimental 

classes and actual classes.   

 

ACC= (tp+tn)/(tp+fn+fp+tn) 

MCC = ((tp*tn)-(fn*fp))/ ((tp+fn)(fp+tn)(tp+fp)(fn+tn)). 

 

The report is organized as follows  

Chapter-I is about introduction and basic existing knowledge employed in the proposed methods, 

which contains genesis and rationale of the project, knowledge/technology gaps, literature review, 

existing study and status at  national and international level, brief about the proposed project, basic of 

graph theory, machine learning  techniques, similarity and distance measures, benchmark data and 

evaluation procedure and metrics. Based on existing knowledge discussed in this, we have developed 

two methods using graph partitioning and graph properties techniques, and illustrated in detail in 

following chapters.  

 

In Chapter- II, we have described a novel method based on graph partitioning and alignment of graph 

partitions to derive global alignment of 3D structure of protein. In this chapter, we illustrated in detail 

about all steps such as converting 3D structure to graph model, partitioning the graph model into sub-

graphs, and then aligning subgraphs to complete graphs, final computing similarity from aligned pair of 

graphs in detail. Here, we presented results about evaluation of the proposed method in results and 

discussion section and final concluded in the conclusion section.  

 

Chapter- III is about another method using graph properties and machine learning techniques. This 

demonstrates extracting graph properties from 3D structure of proteins, use of graph properties to 

compare protein 3D structures and its application in structural classification of proteins.  

   

Summarised the conclusion of both proposed methods in  Chapter-IV -Summery and Conclusion. 

 

The proposed both methods have been implemented in MATLAB. All functions such as PDB file 

reading, selection for protein structure model and chain, reading x, y, z co-ordinates, calculating 

distance & adjacency matrix, graph partition, graph properties extraction, clustering algorithms, 

similarity measures and graphical presentations codes are presented in  Annexure –I. 
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CHAPTER- II: GRAPH PARTITIONING/CLUSTERING AND ALIGNMENT 

 

 

INTRODUCTION 

In this chapter, a detail about novel method for comparison of 3D structure using graph 

partition and alignment method has been illustrated. A novel methodology has been developed for 

comparing protein structure by employing conversion of 3D graph into 2D graph, partitioning of 2D 

graph into sub-graphs and then finally aligning sub-graphs to structure.  Also, structure similarity has 

been calculated by identifying local structural similarities to global structural similarity. The proposed 

method has been implemented in MATLAB by writing codes for various functions. The performance 

of the developed methodology is tested with two existing best methods such as CE and jFATCAT on 

100 proteins benchmark dataset with SCOP (Structural Classification Of Proteins) database. The 

proposed method has shown significant improvement over jFATCAT and accuracy has increased up 

to 12-15%.  

 

MATERIAL AND METHODS 

 

An algorithm has been developed to calculate the similarity between two protein structure 

(Figure 1) based on  i) Representing 3D protein structure into 2D graph model,  ii) Partitioning the 

graph models into sub-graphs and iii) aligning the sub-graphs between pair of proteins. The 

information in 2D model is comprehensive and can be perceived to a 3D protein model.  It is also 

observed that information about geometric and molecular properties in 3D are lost upon 

representation of a protein structure from 3D to 2D, but favourable interactions between atoms are 

carried (Pietal et al. 2015). The favourable interactions tend to be preserved in physico-chemical and 

evolutionary evolution reflections. Also these interactions are covalent bonds, Ionic bonds, Hydrogen 

bonds and Hydrophobic interactions, Van der Waals forces that represent transient and weak electrical 

attraction of one atom to another and common contact due to chemical interactions. 2D graph model 

is an adjacency or distance matrix of all atoms means NXN matrix, where N is number of atoms in the 

3D structure. The matrix is an undirected weighted graph model. This graph has been decomposed 

into subgraphs using graph partitioning/clustering algorithm. These partitioning on principal of 

retaining connection between atoms having strong interaction and discard connections of weak 

interaction atoms. Further, it is identified isomorphism of sub-graphs of two proteins and finally 

alignment has been done based on similarity between sub-graphs (Figure-1).  

 

a) Basic concepts 

A graph G=[V,E] in context of protein 3D structure is defined as an ordered pair consisting of two 

sets V and E, where V represents a set of vertices or atoms and E is a set of edges and weighted 

distances in set V.  The edges of the graph are discriminated from each other by giving different 

weights for each of them for calculating Euclidian distance between atoms. 

 

In this, the protein 3D structure is represented as a graph models in terms of 2D distance matrices.  

The distance matrix of a protein D= dij is the Euclidean distances between all pairs (i, j) of its atoms. 

The matrix provides a 2D representation of a 3D structure, and contains enough information for 

retrieving the actual structure, except for overall chirality (Havel et al.1983, Holm and Sander 1993). 

The idea underlying DALI (Holm 1993) is that if two structures are similar, then their distance 
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matrices must be similar too. An analogous idea is used to compare structures via their contact maps 

and is well described (Havel et al., 1983; Holm and Sander, 1993) in literature.  

 

 

Fig. 1. Overall schematic data and work flow diagram 

b) Conversion of protein 3D structure to 2D graph model 

In PDB file, all atoms are labelled with coordinates and these coordinates are based on 

Ångström. The 2D graph and corresponding distance matrix is derived from the distance (in 

Ångström) between all pair-wise atoms in the conformation.  This 2D graph is fully connected 

weighted graph and weight is distance between pair of atoms. This fully connected graph intricate all 

bonded and non-bonded interactions.  If a structure contains N atoms, the matrix will have size N×N. 

In graph-theoretic applications the atoms are referred to as vertices and weighted connections are 

referred to as edges.  

 

D NxN = dij = (|xi-xj| + |yi-yj| + |zi-zj|) for i,j= 1 to  N   

where  x, y and z are 3D co-ordinated of protein. 

 The entries of diagonal are all zero, i.e. dii = 0 for all  i=1 to N. 

 All the off-diagonal entries are positive (dij > 0 if i ≠ j), 

 The matrix is a symmetric matrix (dij = dji), and 

 dij ≤ dik + dkj for all i, j, k. 

The distance matrix represents all atoms as weighted connectedness of graph. In this graph, each 

vertex is a representation of an atom (all atoms except hydrogen atoms). The graph thus represents the 



 

17 

 

mathematical relation of spatial proximity for all atoms pairs in 3D space. The proposed distance 

function is simple Euclidean distance as real values. 

 

For a typical protein of length 200 amino acids, these 200 amino acids of protein 3D structures are 

converted to corresponding distance matrix. This conversion using MATLAB usually takes less than 

one second. A visualization of a protein distance matrix is shown in Figure 2. 

 

 

Figure 2. Example distance matrix 

c) Partitioning of the graph model into sub-graphs 

Partitioning of graph into subgraphs is done by clustering of nodes /atoms. Subgraph 

isomorphism are leads to fold, pattern identification, structural motif recognition. Subgraph is 

important for function as binding site, structure, folding and identification of similar folds. This will 

finally help to build or generate knowledge between graph topological and physical properties to 

protein function. 

Identification of clusters is an important operation carried out in the field of unsupervised 

classification and it requires several iterative steps to complete clustering. Spectral and MCL (Markov 

Clustering) techniques are popular and used as a general techniques for graph partitioning. Graph 

spectral method is an important technique and yield unique results by a single numeric computation 

(Hagen and Kahng, 1992). Further, it can also be used to get clustering information on weighted 

graphs. These concepts are adopted to obtain non-bonded clusters in protein structures (Kannan and 

Vishveshwara, 1999; Patra and Vishveshwara, 2000) 

The structure of proteins is governed to a large extent by non-covalent, but non-bonded 

interactions are conferring unique three-dimensional structures of proteins. Analysis of the topological 

details of atoms in proteins using the clustering analysis, specifically non-bonded atoms in a cluster 

leads to decipher knowledge of structural confirmation, fold and function.  

Detection of clusters/subgraph and isomorphism among them is influential procedure in 

protein structure comparison. Since graph partitioning is a hard problem and one of the main research 

areas in clustering. As discussed in disadvantages for optimal size of decomposition of protein 

structure in aligning SSE approach, we have introduced automatic decomposition of structure into 

sub-structures. There are two broad categories of methods namely local and global methods. Local 
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methods are the random initial partitioning of the vertex set and rely on properties of initial partitions, 

which can affect the quality of final solution. Global methods rely on properties of the entire graph. 

The most common algorithms on global properties are spectral partitioning and Markov Chain 

Clustering (MCL) as Algorithm-2 (Stijn van Dongen, 2000).  

Two algorithms Spectral (Algorithm-1) and MCL (Algorithm-2) have been used in the 

proposed method. In view of time complexity and accuracy, MCL performed well compared to 

Spectral as mentioned in the literature. In spectral clustering, number of clusters and size of clusters 

are influenced by length of the protein, but MCL produces clusters in small range of variation in 

cluster size and this variation indicates class of proteins. 

The eigen values and eigen vectors of adjacent or distance matrix associated with a graph are 

most important graph spectral parameters, which provide information on the structure and topology of 

the graph and analysis. Graph spectra are also extensively used in chemical graph theory to derive 

topological indices such as the resonance energy, molecular orbital energy and topology of electron 

systems. There is no unique way of identifying graph isomorphism. Graph spectral analysis is one of 

prime technique in isomorphism. Graph spectral analysis gives information on isomorphism and 

isomorphic graphs have the same spectra (Vishveshwara et al. 2002). 

In view of above points, we have employed two graph partitioning or clustering algorithm to 

extrication a graph into subgraphs. These clusters exhibit properties of folding, non-bonded  

interaction and conserved motifs, which are more frequently observed as properties for 3D structure 

confirmation. 

 

Algorithms of Spectral and MCL 

Algorithm 1. Automatic spectral clustering (Sanguinetti et. al., 2005) 

Given a dataset consisting of n x n symmetric similarity matrix. 

1. Form  an affinity matrix of the order nxn . 

2. Normalize (Laplacian  matrix)  L=D
-½ 

S D
-½.   

  

3. Compute k eigen vectors with the largest eigen values of the matrix L and form a matrix  X of 

order nxk. 

4. Initialize q =2 and two centers from rows of matrix X on maximum value in the 1
st
 and 2

nd
 

column. 

5. Select the first q columns from matrix X and assemble them in n x q as Matrix Y and initialize 

(q+1)
th
 center at the origin. 

6. Perform automated k-means clustering with q+1 centers on Y (Use Weighted Mahalanobis 

Distance procedure).   

7. If the (q+1)
th 

 cluster contains any data points, then there must be at least one extra cluster 

and (q+1)<given maximum no. of clusters then set q=q+1 and go back to step 5.  Otherwise, 

end the algorithm. 
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Procedure. Weighted Mahalanobis Distance (Khaled  and Younis 1995; Mao and Jain 1996) 

1. For each ci, compute the distance of all points x from it as follows: 

If cici
T
> 0 if the centre is not the origin  

    e-dist(x,ci)=(x-ci) M (x-ci)
 T

 

    where M=(I – λ) (ci
T
ci +  Iλ)

-1
  

Here λ is the sharpness parameter that controls the elongation (if greater, the clusters are 

more elongated ) 

If the centre is very near the origin, cici
T
<e, the distances are measured using the Euclidean 

distance. 

2. Using this distance measure, assign each point x to the nearest centre. Update the location 

for each centre by taking the mean of all the data assigned to it. 

3. Return to step 1 and repeat until there is no change in the location. 

 

Algorithm 2. Markov Chain clustering (Stijn van Dongen 2000;  Enright et al 2002) 

1. G is a graph and create the adjacent matrix 

2. set Γ to some value for granularity  

3. set M_1 to be the matrix of random walks on G  

4. Normalize the matrix 

5. Initialize change=1 

6. while (change)  

   {  

M_2 = M_1 * M_1  //expansion  

M_1 = Γ(M_2)  // inflation  

change = difference(M_1, M_2)  

}  

7. Interpret resulting matrix to discover clusters of M_1  

 

d) Aligning the sub-graphs between pair of proteins and similarity measure 

Two protein graphs can be compared by graph isomorphism detection method, which leads 

sharing common confirmation. A number of heuristic methods are available for searching a subgraph 

in the given graph. Tree searching algorithm compares successive subgraph isomorphism by 

superimposing the graph one over another. The superimpose areas are structurally similar, which may 

involve structural/functional commonalities.  

Two sub-graphs of the same number of nodes (N), they represent two sets of pairwise 

interaction matrix of size NxN such as if there a connectivity, the value is set as 1(one) otherwise 0 

(zero). The comparison of  two graphs by comparing the induced set of 0 or 1 showed the connectivity 

of nodes among subgraphs. Let the clusters of protein-1 and protein-2 are represented by graph G1 
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and graph G2 respectively. We construct the graph connectivity/interaction matrix G1, by computing 

the connectivity between each pair of elements i, j ∈ Ck. The connectivity between the two elements i, 

j, denoted by 1  if these elements are in the same k
th
 cluster  (Ck) otherwise 0.  It means that, i

th
 will 

interact with j
th
 if i and j are in the same cluster. Similarly, the G2 will be constructed for protein-2. 

Once interaction matrix for graph G1 and G2 for all pairs of nodes have been constructed, it can find 

the similarity/distance between them by using any distance or similarity measures such as Jaccard 

coefficients,  Kullback - Leibler distance and Tanimoto similarity measures etc.  This is 

superimposing of two graphs with best matching by sliding the matrices with window size minimum 

(M,N). Here, f-measure calculated as harmonic mean of precision and recall. The f-measure value 

shows the percentage similarity between two proteins. 

Given two binary matrices, G1 and G2, the Jaccard coefficient is one of the useful measures for 

overlapping of G1 and G2 with their attributes. Each attribute of G1 and G2 can either be 0 or 1. The 

total number of each combination of attributes for both G1 and G2 are specified as follows: 

 

Algorithm 3: Aligning subgraphs to complete graph and similarity measure 

 

 M11 represents the total number of attributes where G1 and G2 both are having value 1. 

 M01 represents the total number of attributes where the attribute of G1 is 0 and the attribute of 

G2 is 1. 

 M01 represents the total number of attributes where the attribute of G1 is 1 and the attribute of 

G2 is 0. 

 M00 represents the total number of attributes where G1 and G2 both have a value of 0. 

 The Jaccard similarity coefficient,   J = M11/ (M11+ M10 + M01) 

 The jaccard distance dj = 1-J = ( M10 + M01) / (M11+ M10 + M01) 

 Precision (p) = M11/ (M11+ M10 ) 

 Recall (r) = M11/ (M11+ M01) 

 f-measure  = 2* p*r /(p+r) 

RESULTS AND DISCUSSION 

The above algorithms of the proposed method including reading of pdb file and generating 

distance matrix for comparing protein structures are implemented in MATLAB.  The performance of 

the developed methodology has been tested and compared with two existing best methods such as CE 

and jFATCAT on 100 proteins benchmark dataset with SCOP (Structural Classification Of Proteins) 

(Murzin et al., 1995). 

Interaction matrix represents small clusters of atoms that detect local structure similarity. This 

reveals bonded and non-bonded interaction of atoms between clusters and within the clusters.  

Superpositioning of two binary matrices (interaction matrix) shows the performance with global 

similarity. These clusters have intrinsic topological characteristics of the structures. The proposed 

method maps cluster to cluster and compares two structures by taking consideration of position of 

atom in the clusters over set of residue level structural alignment. Majority of 3D structure 

comparison methods are rely on only Cα atoms, but here all atoms are considered except hydrogen 

atoms.   

The decomposition of SSEs to scaffolds and interfaces rather than single residues could be 

observed as basic interaction units in the arrangement of structure elements within a protein structure. 

Similarly, the decomposition of structure to sub-structure/clusters than single residues and SSE, could 

be favourable interaction of non-bonded residues within a structure as discussed above. Atom 
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positions and associations with other atoms within sub-structure are considered and complete 

alignment of the structure was used to identify similar geometry and similarity of the two structures.  

The proposed method showed improved performance over the existing techniques based on 

classification accuracy. The reason for the improvement in the accuracy is due to inclusion of all 

atoms but CE and jFATCAT used only backbone Cα atoms. Non-bonded  interaction  in a cluster 

divulge Van der Waals forces and play important role in inclusion of folding information of protein 

while comparing the 3D structures.  

 

Clusters of bonded and non-bonded atoms 
It is important to note that sub-graphs in a graph would result in cluster of atoms composed 

nearest bonded and non-bonded atoms and disconnection of weak bonded atoms. The Non-bonded 

interactions are confirming unique three-dimensional structures to proteins. Analysis of the 

topological details of atoms in proteins using the clustering analysis specifically non-bonded atoms in 

a cluster leads to decipher knowledge of structural confirmation and folding of protein. The specific 

interactions between different non-bonded atoms constitute the structural basis for protein stability.  

The figure 3(a) sows 3D structure of protein 1tos and 3(b) represents graphical representation of 1tos. 

Figure 3(c) and 3(d) depict clusters where some atoms of residues 1, 7, 8 and 10 are belong to same 

cluster (5
th
 cluster in figure 3(c) and magenta color in figure 3(d)). This indicates some non-bonded 

interaction between them. 

     

Figure 3. 3D structure of 1tos protein, Graph model, clusters of atoms and cluster presentation. 
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Similarly, later part of atoms of residues 2 are identified with atoms of residues 4 and 5. 

Atoms of residues 3 and 6 belong to same cluster.  Similarly some atoms of 1
th
 and 10

th
 shares same 

clusters. These patterns are converted into binary matrix with locations using algorithm-3. Then 

similar patterns searched in another protein binary matrix. Such patterns convey interaction and 3D 

confirmation of atoms in structure. Small clusters of atoms detect local structure similarity as well as 

get global similarity by aligning all sub-graphs. The method maps sub-graph to sub-graph and 

compares two structures by taking into account the position of atom in the clusters over residue-level 

(Cα) structural alignment of existing methods. In existing methods, the quality of 3D superposition is 

often measured by the number of matched Cα atoms. Automatic decomposition using graph portioning 

is unique from existing fragment decomposition methods and is able to identify local structural 

similarities and lead to global similarity. Folded polypeptide chain enable to even residues at precisely 

different position in amino acid sequences to come into contact one another and vice-versa. 

 

Relation between number of clusters and number of SSEs 

We observed that number of amino acid and atoms in clusters range 2.5 to 3.0 and 15 to 30 

respectively and significant bifurcating level of alpha-helix and beta-sheet combination in the 

structures (Table 1). 

As shown in Table 1, number of atoms and residues per cluster are clearly indicated by main 

class of protein structure. Number of atoms per cluster is varying with range from 16 to 20 and this 

range indicated structures have influenced by β-sheet (Class B in SCOP). Numbers of atoms per 

cluster are in range from 21 to 23 and this range indicated structures have influenced by α-helix and β-

sheet (Class C & D in SCOP). Similarly, α-Helix (Class –A of SCOP) are belongs to a range from 23 

to 25 atoms per cluster. 

 

Table 1. Benchmark proteins data with number of atoms and residues and sub-graphs by clustering 

PDB pdb 

total 

atoms 

No. of 

atoms 

in A 

chain 

No of 

C 

alpha 

in A 

Chain 

No of 

subgraphs 

Ration of 

no. of C-

alpha in 

subgraph 

Ration of 

no. of 

atoms in 

subgraph 

helix beta coil 

 1F56.pdb  2070 690 91 41 2.22 16.83 1 7 9 

 1FP5.pdb  1618 1617 208 92 2.26 17.58 5 17 29 

 1VCA.pdb  3106 1553 199 88 2.26 17.65 3 17 19 

 2OZ4.pdb  5245 2022 266 114 2.33 17.74 5 20 46 

 1DQT.pdb  3624 906 117 51 2.29 17.76 1 11 13 

 1IAM.pdb  1436 1435 185 79 2.34 18.16 2 19 48 

 1L6X.pdb  1949 1658 207 91 2.27 18.22 5 18 37 

 1ZXQ.pdb  1500 1499 192 82 2.34 18.28 3 18 21 

 1AOZ.pdb  8732 4366 552 237 2.33 18.42 11 32 43 

 1BDY.pdb  2354 960 123 52 2.37 18.46 2 8 10 

 1KDJ.pdb  758 757 102 41 2.49 18.46 2 8 11 

 UGK.pdb  2190 1090 138 59 2.34 18.47 2 8 10 

 1EAJ.pdb  1962 1010 124 54 2.30 18.70 2 13 23 
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 HXM.pdb  13756 1611 206 86 2.40 18.73 4 18 9 

 1KBV.pdb  13746 2291 302 122 2.48 18.78 6 21 27 

 1XED.pdb  4988 865 111 46 2.41 18.80 3 8 12 

 1NEU.pdb  931 930 115 49 2.35 18.98 2 11 15 

 1JMA.pdb  2783 2053 261 108 2.42 19.01 8 14 12 

 1QFO.pdb  2702 901 115 47 2.45 19.17 3 11 11 

 1GMI.pdb  1057 1056 135 55 2.45 19.20 2 8 8 

 HDM.pdb  2927 1482 184 77 2.39 19.25 2 12 17 

 1GSK.pdb  4044 4043 502 210 2.39 19.25 10 31 40 

 1CCZ.pdb  1411 1410 171 73 2.34 19.32 2 16 12 

 2Q5B.pdb  2432 812 105 42 2.50 19.33 4 9 14 

 UVQ.pdb  3075 1456 182 75 2.43 19.41 2 13 16 

 1DN0.pdb  6594 1638 215 84 2.56 19.50 4 19 23 

 RLW.pdb  1001 1000 126 51 2.47 19.61 2 8 49 

2ZKM.pdb 1098 986 986 50 2.47 19.61 2 8 8 

 1KV7.pdb  3561 3560 463 181 2.56 19.67 10 30 39 

 1RH8.pdb  2317 1162 142 59 2.41 19.69 4 8 5 

 1A25.pdb  2174 1087 132 55 2.40 19.76 8 20 26 

 1IUR.pdb  1511 754 88 38 2.32 19.84 3 0 3 

 1CID.pdb  1381 1380 177 68 2.60 20.29 1 15 16 

 UOW.pdb  1248 1247 156 61 2.56 20.44 4 8 22 

 1M6I.pdb  3525 3524 459 171 2.68 20.61 18 28 41 

 1DJQ.pdb  11480 5740 729 278 2.62 20.65 29 29 54 

 1P7I.pdb  1721 434 53 21 2.52 20.67 3 0 4 

 1RSY.pdb  1066 1065 135 51 2.65 20.88 3 8 22 

 1FCD.pdb  8724 3018 401 144 2.78 20.96 11 25 35 

 1FEC.pdb  7453 3743 490 178 2.75 21.03 18 25 41 

 1TRB.pdb  2394 2393 316 113 2.80 21.18 11 19 30 

 1K5N.pdb  3362 2404 285 113 2.52 21.27 7 17 24 

 GVD.pdb  491 490 56 23 2.43 21.30 3 0 13 

 1QAS.pdb  7969 3990 505 187 2.70 21.34 22 27 39 

 1GES.pdb  6832 3417 450 160 2.81 21.36 18 27 40 

 1H6V.pdb  22514 3764 490 176 2.78 21.39 19 29 37 

 1GTE.pdb  30878 7683 1005 359 2.80 21.40 46 54 77 

 1PUF.pdb  2082 664 79 31 2.55 21.42 3 0 4 
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 2BW4.pdb  2875 2874 374 134 2.79 21.45 6 30 28 

 1H2B.pdb  5331 2668 343 124 2.77 21.52 17 23 29 

 1PS9.pdb  5097 5096 671 235 2.86 21.69 26 36 47 

 1IJW.pdb  915 287 52 13 0.00 22.08 3 0 5 

 1VJ0.pdb  11302 2830 366 128 2.86 22.11 15 16 30 

 1RJW.pdb  10216 2554 339 115 2.95 22.21 15 23 28 

 1PLC.pdb  1546 784 102 35 2.91 22.40 2 10 11 

 1JVB.pdb  2555 2554 339 113 3.00 22.60 16 23 32 

 1U78.pdb  1876 815 103 36 2.86 22.64 7 0 8 

 1BQK.pdb  913 912 124 40 3.10 22.80 3 9 12 

 1TC3.pdb  1238 435 51 19 0.00 22.89 3 0 8 

 1GH6.pdb  3627 941 114 41 2.78 22.95 4 0 40 

 2EZI.pdb  1225 623 75 27 2.78 23.07 4 0 43 

 2JHF.pdb  5866 2954 392 128 3.06 23.08 18 18 30 

 1XBL.pdb  1230 624 75 27 2.78 23.11 3 0 14 

 1ONF.pdb  3457 3456 439 149 2.95 23.19 17 20 37 

 1YCC.pdb  838 837 107 36 2.97 23.25 5 0 6 

 1GDT.pdb  4255 1424 183 61 3.00 23.34 9 4 13 

 1NZ6.pdb  1552 773 94 33 2.85 23.42 7 0 19 

 1FEX.pdb  938 469 59 20 2.95 23.45 3 0 14 

 1WJZ.pdb  1453 730 94 31 3.03 23.55 4 0 5 

 1E29.pdb  1073 1072 135 45 3.00 23.82 7 2 9 

 1UG2.pdb  1381 698 95 29 3.28 24.07 3 0 3 

 1M70.pdb  5548 1390 190 57 3.33 24.39 12 0 13 

 1LQT.pdb  14287 3585 473 147 3.22 24.39 23 19 37 

 1GV2.pdb  879 878 103 36 2.86 24.39 6 0 13 

 1QL3.pdb  2928 732 99 30 3.30 24.40 6 0 8 

 1B0B.pdb  1051 1050 141 43 3.28 24.42 13 15 7 

 1LFB.pdb  641 640 77 26 2.96 24.62 4 0 5 

 1IDR.pdb  1910 961 127 39 3.26 24.64 10 0 9 

 1PKO.pdb 1040 1039 130 42 3.10 24.74 3 10 15 

 1XG0.pdb  3699 569 76 23 3.30 24.74 6 15 4 

 1I8O.pdb  848 847 113 34 3.32 24.91 11 9 7 

 1CTJ.pdb  724 723 91 29 3.14 24.93 6 0 6 

1DLW.pdb  837 836 116 33 3.52 25.33 8 0 9 
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 1JBO.pdb  2541 1244 162 49 3.31 25.39 9 0 10 

 2EZL.pdb  1553 789 99 31 3.19 25.45 5 0 42 

 1H1O.pdb  2618 1318 172 51 3.37 25.84 12 0 13 

 1LE8.pdb  1807 414 53 16 3.31 25.88 3 0 4 

 1ALL.pdb  2399 1198 160 46 3.48 26.04 10 0 11 

 1C75.pdb  985 527 73 20 3.65 26.35 5 0 6 

 1FAF.pdb  1297 644 79 24 3.29 26.83 4 0 12 

 1S69.pdb  969 968 123 36 3.42 26.89 8 0 9 

 1UX8.pdb  971 970 118 36 3.28 26.94 8 0 9 

 1C52.pdb  1228 997 131 37 3.54 26.95 8 2 11 

 MBA.pdb  1083 1082 146 40 3.65 27.05 8 0 9 

 1H97.pdb  2343 1171 147 43 3.42 27.23 10 0 10 

 1ASH.pdb  1239 1238 147 45 3.27 27.51 9 0 9 

 1B8D.pdb  6255 1240 164 45 3.64 27.56 8 0 8 

 1K61.pdb  2749 486 60 17 3.53 28.59 3 0 7 

 1A6M.pdb  1336 1335 151 46 3.28 29.02 10 0 9 

 NGK.pdb  12856 1078 131 37 3.54 29.14 8 0 9 

 

Cluster Analysis 

The above analysis confirmed that by observation of non-bonded interaction found in clusters 

and shows clear indication about association between secondary structures in 3D protein structure and 

number clusters. Cluster analysis of benchmark SCOP data set of 100 proteins has been carried out to 

compare the proposed method with CE and jFATCAT. The benchmark data has proteins belongs to 

all major classes and number of residues are ranging from 51 to 1005.  For cluster analysis,   a number 

of clustering techniques such as Hierarchical clustering, K-Means, C-Means, Spectral K-Means have 

been used and various accuracy metrics are calculated. In this analysis, k-means clustering is found 

suitable over other clustering techniques. Recall, Precision and f-measure are considered as accuracy 

metrics. The percentage of the precise clusters indicates the performance of protein 3D structure 

comparison algorithm.  

To find out the potential roles of clusters in aligning and comparing two structures with 

alignment location, a set of 100 proteins benchmark data has been used. Detailed analysis has been 

done and compared with existing tools CE and FATCAT.  Under this analysis, similarity matrix of 

100x100 using proposed method has been constructed. The example data has shown in table 2. 

Similarly, we have calculated similarity matrix of 100x 100 for best existing method CE and 

jFATCAT.  The K-means cluster technique applied to these three similarity matrices. The clustering 

results are evaluated with exact classification obtained from SCOP database of benchmark data.  The 

cluster analysis results are presented in table 3 with recall, precision, f-measure and random index as 

accuracy metrics.  Significantly 97% accuracy with CE, 86% similarity with jFATCAT and proposed 

method performed at 91% accuracy. The proposed algorithm is computationally expensive since it 

involves up to (|M-N|+1)* Min(M,N) comparisons, where M and N are nodes  of the two graphs. 
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Table 2.  Example values  from 100X100  similarity scores and alignment position between pair of 

structures from MCL Graph partitioning method. 

Protein-1 Protein-2 Similarity Aligned position 

1DLW.pdb   1DLW.pdb  1 1 

1DLW.pdb   1S69.pdb  0.5097 133 

1DLW.pdb   1NGK.pdb  0.539 243 

1DLW.pdb   1UX8.pdb  0.47 135 

1DLW.pdb   1B0B.pdb  0.531 215 

1DLW.pdb   1H97.pdb  0.4697 336 

1DLW.pdb   1A6M.pdb  0.4043 500 

1DLW.pdb   1MBA.pdb  0.5133 247 

1DLW.pdb   1ASH.pdb  0.5 403 

1DLW.pdb   1JBO.pdb  0.5435 409 

1DLW.pdb   1ALL.pdb  0.4792 363 

1DLW.pdb   1B8D.pdb  0.5364 405 

1DLW.pdb   1XG0.pdb  0.4819 268 

1DLW.pdb   1XBL.pdb  0.498 213 

 

Table 3. Performance metrics obtained from proposed method and CE and jFATCAT. 

Method Time (hrs) Metric Values 

CE 126.18 Precision 0.9600 

Recall 0.9333 

F measure 0.9465 1 

R-index 0.9694 

jFACTCAT 019.14 Precision 0.6653 

Recall 0.6043 

F measure 0.63333 

R-index 0.8554 

GT Method 

(proposed 

method) 

500.00 Precision 0.7252         

Recall 0.7979         

F measure 0.7598 2        

R-index 0.9054 
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CONCLUSIONS 

 

In this study, a novel methodology/algorithm has been developed based on graph partitioning 

technique by including 3D co-ordinates of all atoms of protein.  The proposed algorithm has been 

implemented in MATLAB to assess the performance of the algorithm. The methods encompass 

converting 3D structure to 2D graph, partitioning of the graph into sub-graph and alignment of sub-

graphs. Prime notion of the method is the decomposition of structure to clusters than single residues 

and SSE. There could be a base interaction of non-bonded residues in the arrangement of structure 

elements within a structure. These interaction leads protein fold space and arrangement of SSE 

elements in 3D space. The aligned structures are based on atoms positions and association with other 

atoms within clusters and between clusters to identify similar geometry and similarity of the two 

structures. The proposed method performed better in terms of classification accuracy due to inclusion 

of all atoms but CE and jFATCAT uses only backbone C-α atoms and non-bonded atoms. This may 

play an important role in inclusion of folding information of protein while comparing the 3D 

structures.   
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CHAPTER –III: GRAPH PROPERTIES AND MACHINE LEARNING TECHNIQUES. 
 

INTRODUCTION 

 

Construction of graph, database of graph, graph mining, pattern recognition are rich fields of 

computational techniques to study structures, topologies and properties of graphs. These techniques 

provide a good asset in bioinformatics for transforming biological data into graphs and decipher 

biological knowledge hidden in biological structure data. In this chapter, we have demonstrated the way 

of converting a protein 3D structure into graphs using various graph properties such as total degree, 

maximum degree, no of adjacencies, average number of degree, cluster coefficient, graph energy, 

spectrum and number of components etc. Further, we have exploited the graph properties and data mining 

technique to perform complex studies on protein 3D structure. The proposed method is fast in terms of 

computational time complexity. As far as accuracy is concerned, there is an improved in proposed method 

over jFATCAT method. In spite of gaining a small amount of improvement in accuracy, his method has 

further scope to improve accuracy by including more graph properties.   

 

MATERIAL AND METHODS 

 

Basic Graph Definition  

 

A graph is a symbolic representation of a network or connected components. It implies an 

abstraction of the reality so it can be simplified as a set of linked nodes or components.  

Graph theory is a branch of mathematics concerned about how networks can be encoded and their 

properties are measured. It has been enriched in the last decades by growing influences of social networks 

and other complex networks. 

The origins of graph theory can be traced to Leonhard Euler who devised it in 1735 as a problem 

that known as the "Seven Bridges of Konigsberg". In this problem, someone had to cross all the bridges 

by visiting each bridge only once in a continuous sequence, a problem the Euler proved to have no 

solution by representing it as a set of nodes and links. This led the foundation of graph theory and its 

subsequent improvements. Initially, graph theory applications on most networks have spatial basic, 

namely road, transit and rail networks.  This it is not necessarily the case for all transportation networks. 

Later, this has been extended to telecommunication system  such as Mobile telephone networks or the 

Internet. In the current time, this is being extended in bioinformatics to study the hidden phenomenon of 

gene regulatory network, gene interaction, protein-protein interactions, and etc.  

 

 

The transformation of protein 3D structures into graphs 2D model, it is straight forward to consider the 

relevant chemical interactions of the proteins. Chemical interactions are the electrostatic forces that hold 

atoms and residues together, stabilizing proteins and forming molecules that give them their 3D 

confirmation. These interactions are mainly: 

 Covalent bonds between two atoms sharing a pair of valence electrons. 

 Ionic bonds between oppositely charged components. 

 Hydrogen bonds between two partially negative charged atoms sharing partially positive charged 

hydrogen. 
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 Hydrophobic interactions where hydrophobic amino acids in the protein closely link their side 

chains together. 

 Van der Waals forces that represent transient and weak electrical attraction of one atom for 

another when electrons are fluctuating. 

The 2D graph model is abstraction of these properties and indeed these properties are transferred 

into graph properties (Holm and Sander 1993). 

A novel method has been developed to study complexity of 3D structure of protein and calculate 

the similarity between two protein structures using graph properties of protein 3D structures. Figure 1 

represents the workflow for the proposed method consisting of four steps namely,  i) Representing 3D 

protein structure into 2D graph model,  ii) Calculating graph properties iii) Calculate similarity and iv) 

Evaluation by cluster/classification.    

 

 
Fig. 1: Workflow of proposed method 

 

All functions regarding reading PDB file, selection of module, selection of chain and  reading of 

X, Y and Z coordinates, converting 3D (X, Y and Z) co-ordinates to 2D graph model, calculating all 

above mentioned properties and final calculation of similarity measures are implemented in MATLAB. 

For evaluating the proposed 3D structure comparison method, we have taken 100 proteins benchmark 

SCOP dataset (as mentioned in Chapter-I).   

 

Construction of Graph models 

 

In PDB file, all atoms are labelled with coordinates and these coordinates are based on Ångström. 

The 2D graph and corresponding distance matrix is derived from the distance (in Ångström) between all 
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pair wise atoms in the conformation. This 2D graph is fully connected weighted graph and weight is 

denoted as distance between pair of atoms. This fully connected graph intricate all bonded and non-

bonded interactions. If a structure contains N atoms, the matrix will have size N×N. In graph-theoretic 

applications, the atoms are referred to as vertices and weighted connections are referred as edges.  

D NxN = dij = (|xi-xj| + |yi-yj| + |zi-zj|) for i,j= 1 to  N or 

DNxN=dij =  ‖𝑥𝑖 − 𝑥𝑗‖
2
2

 = √(𝑥𝑖 −  𝑥𝑗 )
2 +    (𝑦𝑖 −  𝑦𝑗 )

2 +  (𝑧𝑖 −  𝑧𝑗 )
2   

 

 The entries of diagonal are all zero, i.e. dii = 0 for all  i=1 to N. 

 All the off-diagonal entries are positive (dij > 0 if i ≠ j), 

 The matrix is a symmetric matrix (dij = dji), and 

 dij ≤ dik + dkj for all i, j, k. 

 Adjacency matrix  dij<threshold aij=1 otherwise aij=0 

The distance matrix represents all atoms as weighted connectedness of graph. In this graph, each 

vertex is a representation of an atom (all atoms except hydrogen atoms). The graph thus represents the 

mathematical relation of spatial proximity for all atoms pairs in 3D space. The distance function used in 

the study is simple Euclidean distance by considering its real values. 

For a typical protein of length 200 amino acids, these 200 amino acids of protein 3D structure is 

converted to corresponding distance matrix. This conversion using MATLAB usually takes less than one 

second. A visualization of a protein distance matrix is shown in Figure 2. A visualization of adjacency 

matrix shown in Figure 3.  

 

Fig. 2: Example distance matrix 
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Figure 3: Example adjacency matrix 

Graph properties 

 

We have considered both above graph matrices for calculation of following properties to study 

the complexity of 3D structure 

 

1. Average degree deg(G): Minimum and maximum by degrees of all nodes. 

deg (𝐺) =
1

𝑛
∑(deg (𝑢𝑖)

𝑛

𝑖=1

) 

deg(ui) is degree of node ui and n is total number of nodes in the graph G. Similarly, 

minimum and maximum degree in the graph G can also be calculated 

2. Algebraic connectivity of a graph: the second smallest eigenvalue of the Laplacian. 

3. Average path length for a network (The average shortest path): Calculate length of the shortest 

paths between u and every other node v in G and then calculate average path by summation of all 

shortest path and divide by nxn. 

4. Clustering coefficient: This is based on triangle motifs count and local clustering. 

𝑐(𝑢) =
2𝑒𝑢

𝑘𝑢(𝑘𝑢 − 1)
 

 

𝐶(𝐺) =
1

𝑛
∑ 𝑐(𝑢𝑖)

𝑛

𝑖=1

 

where ku is the number of neighbors of u and eu is the number of connected pairs of neighbors 

5. The i
th
 component of the eigenvector corresponding to the greatest eigen value.  

6. Graph energy defined as: the sum of the absolute values of the real components of the 

eigenvalues. 

7. The eigenvalues of the Laplacian of the graph (2
nd

 to 6
th
 eigenvalues). 

8. Closeness centrality: Tracks how close a given node is to any other node. The closeness centrality 

measures how fast information spreads from a given node to other reachable nodes in the graph. 

For a node u, it represents the reciprocal of the average shortest path length between u and every 

other reachable node in the graph. 
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𝐶𝑐(𝑢) =
(𝑛 − 1)

∑ 𝑑(𝑢, 𝑣)𝑣𝑠(𝑉|𝑢)
 

where d(u, v) is the length of the shortest path between the  nodes u  and v. 

𝐶𝑐(𝐺) =
1

𝑛
∑ 𝑐(𝑢𝑖)

𝑛

𝑖=1

 𝐶𝑐(𝐺) =
1

𝑛
∑ 𝐶𝑐(𝑢𝑘)

𝑛

𝑘=1

 

9. Pi Index: The relationship between the total length of the graph L(G) and the distance along its 

diameter, an indicator of the shape of a graph. 

10. Beta Index: Measures the level of connectivity in a graph and is expressed by the relationship 

between the number of links (e) over the number of nodes (v). =e/v 

11. Graph Density: A “potential connection” is a connection that could potentially exist between two 

“nodes”, regardless of whether or not it actually does. GD=Actual connection/potential 

connection.  

12. Synchronizability (S) describes the graph’s capacity to synchronize and is calculated from the 

eigen values of the graph’s Laplacian matrix L, L = D -A, where D represents a diagonal matrix 

containing the nodal degrees. The synchronizability is defined as the ratio between the first non-

zero eigenvalue and the largest eigenvalue (S= EV_2/EV_max) 

 

Using above properties a features table for all benchmark proteins has been prepared (example 

table- Table-1). All graph properties mentioned in above are calculated and represented in the table 

(Table-2).  In this calculation, all properties are not significantly different. Based on visual screening and 

manual selection, we have dropped some of properties which are not important to differentiate 

characteristics of proteins. Results shown in table (Table-3) are based on selected properties which are 

ominously influence to measure similarity between pair of proteins. 

 

Table -1:Example protein graph features/properties table. 

 

 

 

 

 

 

 

 

 

 

 

 

 

.  

 

 Features  F1,  F2,  ……  Fj …………. Fk 

P1 

P2 

: 

Pi 

: 

Pn 
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Table 2. All graph properties as described above of all benchmark data 

 

Total 

deg 

 

Max 

deg 

 Min 

deg 

 no of 

adjanc

es 

  

algebric 

connecti

vity 

  Ave_no 

Deg 

totaldeg1 

 Max 

deg1 

 Min 

deg1 

 Ave 

path 

length 

 Ave 

degree 

  cluster 

coeff1 

 

cluster 

coeff 

  

dia

mete

r 

 max 

eigence

ntrality 

 Graph 

energy 

 

Radi

us 

 

spectru

m 

 no of 

conne

ct 

comps 

1BRF.pdb 1836 8 3 1424 0.0002 1447.411 5.6667 2.3333 56.6069 4.4563 1.2422 

0.850

2 161 0.4672 578.9776 81 7.1221 1 

1BC9.pdb 23500 14 4 20239 0.0018 20938.04 8.8 3.5 21.3405 7.2064 0.5711 0.763 64 0.2707 5733.5 33 13.2302 1 

1DI1.pdb 20886 7 3 16195 0 16460.73 5.5 2.3333 Inf 4.4524 1.2867 

0.853

9 Inf 0.4462 6540.889 Inf 6.4555 5 

1dly.pdb 4148 7 3 3214 0 3269.469 5.5 2.3333 122.39 4.4411 1.2834 

0.854

8 366 0.4462 1301.86 183 6.3701 1 

1ecd.pdb 4698 8 3 3651 0 3706.316 5.6667 2.3333 

137.424

5 4.4871 1.2611 

0.851

3 410 0 1471.192 205 7.1221 1 

1EHS.pdb 6360 14 3 5313 0.0001 5524.963 7.875 2.3333 45.8564 6.0745 0.6806 

0.816

1 156 0.2386 1648.759 78 13.0974 1 

1FQT.pdb 8226 11 3 6469 0 6587.333 8.3333 2.3333 Inf 4.6818 1.1123 0.852 Inf 0.372 2481.342 Inf 10.3512 2 

1gvh.pdb 13794 7 3 10698 0 10871.88 5.5 2.3333 

399.970

4 4.4554 1.2859 

0.853

2 

119

1 0.4462 4329.277 596 6.2547 2 

1H3E.pdb 23494 8 3 18414 0 18884.76 6 2.3333 Inf 4.6248 1.0919 

0.847

1 Inf 0.4265 7295.912 Inf 7.6006 5 

1hbi.pdb 23428 9 3 18348 0 18804.33 6.4286 2.3333 Inf 4.6118 1.0863 

0.845

9 Inf 0 7301.391 Inf 8.3593 6 

1IAA.pdb 23470 8 3 18390 0 18847.25 6.25 2.3333 Inf 4.6201 1.0897 

0.845

8 Inf 0.4163 7296.313 Inf 7.7878 5 

1IAB.pdb 23462 8 3 18382 0 18837.55 6.25 2.3333 Inf 4.6185 1.0898 

0.845

7 Inf 0.4163 7297.86 Inf 7.7878 5 

1IAC.pdb 23488 8 3 18408 0 18868.05 6.25 2.3333 Inf 4.6236 1.0867 

0.845

7 Inf 0.4163 7302.569 Inf 7.7878 5 

1IQW.pdb 23334 8 3 18254 0 18713.54 6 2.3333 Inf 4.5933 1.0737 

0.843

6 Inf 0.4265 7318.565 Inf 7.6006 5 

1JHK.pdb 23380 8 3 18300 0 18765.76 6 2.3333 Inf 4.6024 1.0746 

0.844

2 Inf 0.4265 7315.21 Inf 7.6006 7 

1K9O.pdb 22720 8 3 17640 0 17978.15 6 2.3333 Inf 4.4724 1.207 

0.851

1 Inf 0.4294 7160.792 Inf 7.5995 5 

1KA8.pdb 22632 8 3 17552 0 17863.14 6 2.3333 Inf 4.4551 1.2209 

0.847

9 Inf 0 7173.011 Inf 7.5995 3 

1mbd.pdb 22776 8 3 17696 0 18017.1 6 2.3333 Inf 4.4835 1.2228 

0.849

7 Inf 0 7173.021 Inf 7.5995 3 
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1MCN.pd

b 22622 8 3 17542 0 17854.57 6 2.3333 Inf 4.4531 1.2195 

0.848

7 Inf 0 7162.108 Inf 7.5995 4 

1MLB.pd

b 22874 12 3 17794 0 18123.94 9.3333 2.3333 Inf 4.5028 1.1939 

0.848

8 Inf 0 7180.06 Inf 11.0926 4 

1MN8.pd

b 23158 9 3 18078 0 18437.33 6.1667 2.3333 Inf 4.5587 1.1957 

0.850

3 Inf 0.4304 7182.738 Inf 8.1749 4 

  

Table 3. Selected graph properties as described  above of all benchmark data 

 

 

Total Degree 

 Max 

Degree 

 No. of 

adjances 

  Aveerage 

No. of deg 

(totaldeg1) 

 Maximum 

Degree 

(maxdeg1) 

 Average 

degree 

  cluster 

coeff1 

 cluster 

coeff2 

 max 

eigen 

centrality 

 Graph 

energy  spectrum 

 no of 

connect 

comps 

1BRF.pdb 1836 8 1424 1447.411 5.6667 4.4563 1.2422 0.8502 0.4672 578.9776 7.1221 1 

1BC9.pdb 23500 14 20239 20938.04 8.8 7.2064 0.5711 0.763 0.2707 5733.5 13.2302 1 

1DI1.pdb 20886 7 16195 16460.73 5.5 4.4524 1.2867 0.8539 0.4462 6540.889 6.4555 5 

1dly.pdb 4148 7 3214 3269.469 5.5 4.4411 1.2834 0.8548 0.4462 1301.86 6.3701 1 

1ecd.pdb 4698 8 3651 3706.316 5.6667 4.4871 1.2611 0.8513 0 1471.192 7.1221 1 

1EHS.pdb 6360 14 5313 5524.963 7.875 6.0745 0.6806 0.8161 0.2386 1648.759 13.0974 1 

1FQT.pdb 8226 11 6469 6587.333 8.3333 4.6818 1.1123 0.852 0.372 2481.342 10.3512 2 

1gvh.pdb 13794 7 10698 10871.88 5.5 4.4554 1.2859 0.8532 0.4462 4329.277 6.2547 2 

1H3E.pdb 23494 8 18414 18884.76 6 4.6248 1.0919 0.8471 0.4265 7295.912 7.6006 5 

1hbi.pdb 23428 9 18348 18804.33 6.4286 4.6118 1.0863 0.8459 0 7301.391 8.3593 6 

1IAA.pdb 23470 8 18390 18847.25 6.25 4.6201 1.0897 0.8458 0.4163 7296.313 7.7878 5 

1IAB.pdb 23462 8 18382 18837.55 6.25 4.6185 1.0898 0.8457 0.4163 7297.86 7.7878 5 

1IAC.pdb 23488 8 18408 18868.05 6.25 4.6236 1.0867 0.8457 0.4163 7302.569 7.7878 5 

1IQW.pdb 23334 8 18254 18713.54 6 4.5933 1.0737 0.8436 0.4265 7318.565 7.6006 5 

1JHK.pdb 23380 8 18300 18765.76 6 4.6024 1.0746 0.8442 0.4265 7315.21 7.6006 7 

1K9O.pdb 22720 8 17640 17978.15 6 4.4724 1.207 0.8511 0.4294 7160.792 7.5995 5 

1KA8.pdb 22632 8 17552 17863.14 6 4.4551 1.2209 0.8479 0 7173.011 7.5995 3 

1mbd.pdb 22776 8 17696 18017.1 6 4.4835 1.2228 0.8497 0 7173.021 7.5995 3 
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1MCN.pdb 22622 8 17542 17854.57 6 4.4531 1.2195 0.8487 0 7162.108 7.5995 4 

1MLB.pdb 22874 12 17794 18123.94 9.3333 4.5028 1.1939 0.8488 0 7180.06 11.0926 4 

1MN8.pdb 23158 9 18078 18437.33 6.1667 4.5587 1.1957 0.8503 0.4304 7182.738 8.1749 4 

1oj6.pdb 22708 8 17628 17944.05 6 4.4701 1.2457 0.8516 0 7131.944 7.5995 3 

1P4X.pdb 22644 8 17564 17868.16 6 4.4575 1.2574 0.8522 0 7119.181 7.5995 3 

1PSR.pdb 22922 9 17842 18147.06 6.75 4.5122 1.2386 0.8521 0.4215 7132.165 8.5654 3 

1PZ8.pdb 24598 8 19114 19446.47 5.8333 4.4854 1.2856 0.8567 0 7638.606 7.3923 8 

1PZ9.pdb 24696 8 19212 19549.95 5.8333 4.5033 1.2779 0.857 0 7644.012 7.3923 6 

1QGJ.pdb 25724 10 20240 20625.08 7.7778 4.6907 1.0913 0.8532 0.3357 7660.732 10.144 3 

1QN2.pdb 25176 10 19692 20051.9 7.7778 4.5908 1.142 0.8527 0.3357 7677.794 10.144 4 

1QUU.pdb 25300 10 19816 20165.28 7.7778 4.6134 1.1622 0.8551 0.3357 7643.699 10.144 3 

1RIE.pdb 25298 10 19814 20168.53 7.7778 4.6131 1.1525 0.854 0.3357 7658.223 10.144 2 

1RQI.pdb 24518 9 19034 19351.2 6.4286 4.4708 1.2866 0.8565 0.4088 7635.934 8.4238 3 

1rte.pdb 24916 11 19432 19773.44 7.9 4.5434 1.2082 0.8555 0.3576 7657.405 10.2365 3 

1TOS.pdb 25208 12 19724 20093.07 7.9 4.5966 1.1552 0.8544 0.3576 7688.755 11.2812 3 

1urv.pdb 25080 12 19596 19939.4 9.7273 4.5733 1.1554 0.8537 0.302 7690.002 12.2145 3 

1ux8.pdb 25168 12 19684 20032.65 9.7273 4.5894 1.1512 0.8537 0.302 7692.64 12.2145 3 

1VCK.pdb 25102 12 19618 19967.82 9.7273 4.5773 1.1526 0.8538 0.302 7691.909 12.2145 3 

1WOV.pdb 24474 8 18990 19308.61 5.8333 4.4628 1.2808 0.855 0 7655.166 7.3923 4 

1WOW.pdb 24390 8 18906 19230.68 5.8333 4.4475 1.2902 0.8555 0 7642.503 7.3923 5 

1WOX.pdb 24404 8 18920 19244.7 5.8333 4.45 1.2893 0.8555 0 7640.233 7.3923 5 

1X3A.pdb 28568 14 23084 23674.4 8.5 5.2093 0.7899 0.8321 0.3108 8163.846 7.3923 5 

1XG7.pdb 17234 8 13352 13578.19 5.5 4.4395 1.2667 0.8526 0 5430.895 7.0947 11 

1Y2O.pdb 17054 7 13172 13379.18 5.5 4.3931 1.3228 0.8557 0.4462 5392.577 6.3078 16 

1YLL.pdb 28898 11 22788 23214.12 8.4 4.7296 1.1276 0.8557 0.3538 8548.02 10.7331 12 

1YV0.pdb 28120 10 22010 22388.49 7.7778 4.6023 1.1933 0.8549 0.3844 8541.531 9.6247 8 

1Z77.pdb 28012 10 21902 22284.98 7.7778 4.5846 1.1902 0.8542 0.3844 8547.656 9.6247 14 

2A1K.pdb 27852 10 21742 22120.06 7.7778 4.5584 1.1969 0.8535 0.3844 8544.077 9.6247 6 
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2B0Z.pdb 27982 10 21872 22250.99 7.7778 4.5797 1.2034 0.8543 0.3844 8534.36 9.6247 6 

2BBA.pdb 28058 10 21948 22340.2 7.7778 4.5921 1.1906 0.8541 0.3844 8549.307 9.6247 6 

2CJ8.pdb 27876 10 21766 22157.26 7.7778 4.5624 1.1937 0.8544 0.3844 8546.543 9.6247 6 

2EFK.pdb 27892 10 21782 22149.08 7.7778 4.565 1.2185 0.8555 0.3844 8511.593 9.6247 11 

2gdm.pdb 28000 10 21890 22274.18 7.7778 4.5827 1.2009 0.855 0.3844 8535.311 9.6247 9 

2GH2.pdb 27992 10 21882 22263.11 7.7778 4.5813 1.2082 0.8551 0.3844 8525.556 9.6247 8 

2H6B.pdb 27886 10 21776 22160.51 7.7778 4.564 1.185 0.8531 0.3844 8558.437 9.6247 5 

2A1K.pdb 15184 7 11751 11938.99 5.5 4.423 1.2689 0.8515 0.4461 4803.38 6.4339 2 

2B0Z.pdb 15314 8 11881 12069.92 5.5 4.4608 1.2807 0.8529 0.4461 4793.663 7.1148 3 

2BBA.pdb 15390 10 11957 12159.13 7 4.483 1.2517 0.8525 0 4808.609 9.5105 3 

2CJ8.pdb 15208 8 11775 11976.19 5.7143 4.4299 1.2612 0.8531 0.4003 4805.846 7.2328 3 

2EFK.pdb 15224 8 11791 11968.01 5.5 4.4346 1.3161 0.855 0.4461 4770.896 7.0862 8 

2gdm.pdb 15332 9 11899 12093.11 7 4.4661 1.2748 0.8541 0.4104 4794.614 8.2818 6 

2GH2.pdb 15324 8 11891 12082.05 5.5 4.4637 1.2909 0.8543 0 4784.858 7.0862 5 

2H6B.pdb 16850 10 13052 13267.75 6.8571 4.4365 1.2486 0.8513 0.4181 5324.909 9.4636 3 

2H6B.pdb 16850 10 13052 13267.75 6.8571 4.4365 1.2486 0.8513 0.4181 5324.909 9.4636 3 

2HVC.pdb 16910 10 13112 13328.32 6.8571 4.4523 1.2574 0.8521 0.4181 5310.174 9.4636 2 

2HYJ.pdb 16922 10 13124 13345.5 6.8571 4.4555 1.2651 0.8536 0.4181 5304.897 9.4636 2 

2IBN.pdb 17234 10 13432 13667.17 7.1111 4.5329 1.23 0.8526 0.4084 5320.878 9.6136 26 

2IEK.pdb 17012 9 13210 13432.41 7.1111 4.4745 1.2545 0.8526 0.2989 5315.439 9.3568 23 

2IOL.pdb 17014 9 13212 13437.02 7.1111 4.475 1.2753 0.8544 0.3733 5305.335 9.3568 20 

2J0N.pdb 16892 9 13090 13310.06 7.1111 4.4429 1.256 0.8524 0.3733 5327.032 9.3568 9 

2NXN.pdb 17070 9 13268 13511.13 7.1111 4.4897 1.2468 0.853 0.3733 5338.253 9.3568 10 

2P8T.pdb 16924 9 13122 13351.98 7.1111 4.4513 1.2578 0.853 0.3733 5325.32 9.3568 10 

2Q0A.pdb 17086 9 13284 13497.2 7.1111 4.494 1.2387 0.8514 0.3733 5324.444 9.3568 5 

2RD6.pdb 16928 9 13126 13346.42 7.1111 4.4524 1.2606 0.8528 0.3733 5316.998 9.3568 5 

2VOD.pdb 16956 9 13154 13392.57 7.1111 4.4598 1.2226 0.8505 0.3733 5345.501 9.3568 5 

2ZP0.pdb 20270 8 15726 16002.89 5.5 4.4608 1.2629 0.8533 0.4462 6357.017 7.1113 11 
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3BGE.pdb 20358 10 15814 16097.03 7.1111 4.4802 1.2227 0.8517 0 6369.463 9.5143 7 

3CJR.pdb 20224 8 15680 15968.26 5.5 4.4507 1.2522 0.8527 0 6373.501 7.0807 7 

3ELN.pdb 20614 13 16070 16361.93 9.8 4.5365 1.1919 0.8521 0.3526 6380.827 12.0674 6 

3MDS.pdb 20374 8 15830 16102.99 5.6667 4.4837 1.2674 0.8531 0 6363.934 7.1221 5 

3SGO.pdb 20362 8 15818 16091.1 5.6667 4.4811 1.2698 0.8534 0 6360.107 7.1221 5 

4hhb.pdb 21670 9 17126 17583.55 5.7143 4.7689 1.0598 0.8544 0 6553.378 8.2732 23 

1GMI.pdb 4716 7 3660 3725.217 5.5 4.4659 1.2582 0.8541 0 1476.916 6.5457 2 

2ZKM.pdb 25242 7 19539 19856.47 5.5 4.4261 1.2742 0.8517 0.4462 7972.134 6.3099 7 

1RSY.pdb 25256 8 19553 19871.47 5.5 4.4285 1.2734 0.8518 0 7974.414 7.1561 6 

1UOW.pdb 25304 8 19601 19924.36 5.5 4.437 1.2705 0.8522 0 7973.845 7.2531 6 

1UGK.pdb 31614 14 25911 26556.5 8.8889 5.5434 0.689 0.8142 0.344 8808.687 13.2684 4 

1RH8.pdb 31854 14 26151 26851.56 9.1818 5.5855 0.6804 0.8136 0.2372 8834.991 13.2903 4 

1A25.pdb 25770 14 20067 20414.55 7.9 4.5187 1.166 0.8496 0.3717 8027.881 13.1192 4 

2JHF.pdb 27464 14 21599 22015.97 10 4.6827 1.0677 0.8503 0.3476 8295.283 13.7352 4 

1JVB.pdb 26620 12 20755 21136.9 8.6364 4.5388 1.1673 0.8525 0.3416 8240.255 11.8887 10 

1H2B.pdb 26238 9 20373 20727.43 6.8889 4.4737 1.2739 0.8553 0.4071 8185.585 8.6772 4 

1RJW.pdb 45296 7 35081 35698.71 5.5 4.4343 1.2692 0.8541 0 14279.89 6.4567 8 

1VJ0.pdb 50438 9 39137 39800.71 7.125 4.4631 1.2746 0.8545 0 15780.67 8.663 8 

1DJQ.pdb 51504 8 40025 40701.35 5.5 4.4868 1.2819 0.855 -0.2714 20343.8 7.9181 20 

1ONF.pdb 15348 8 11892 12087.11 5.1667 4.441 1.2742 0.8538 0.4627 4828.047 7.0854 3 

1GES.pdb 30514 11 23683 24101.5 7.7778 4.467 1.2565 0.8542 0.372 9571.008 10.4101 4 

1FEC.pdb 33466 10 26014 26463.28 8.3333 4.4909 1.2497 0.8548 0.3033 10406.25 10.3194 6 
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Similarity measures  

A similarity matrix has been generated by 1/ (1+e-dist), is an n×n matrix representing the spacing of a 

set of n points in Euclidean space.  where e-dist is an Euclidean distance and the points are defined 

on m-dimensional proteins graph properties.  

 

e-dist (i,j)= ‖𝑝𝑖 − 𝑝𝑗‖
2
2

 = √(𝑝𝑖1 −  𝑝𝑗1 )
2 +    (𝑝𝑖2 − 𝑝𝑗2 )

2 +  (𝑝𝑖3 −  𝑝𝑗3 )
2 … . (𝑝𝑖𝑘 −  𝑝𝑗𝑘 )

2   

WHERE PI1, PI2, PI3 …..PIK  ARE PROPERTY 1, 2 ,3 … K OF ITH PROTEIN  AND 
SIMILARLY PJ1, PJ2, PJ3 …..PJK  ARE PROPERTY 1, 2 ,3 … K OF JTH PROTEIN   

 

Cluster analysis 

In this, the proposed method is compared with commonly used best available techniques.  Cluster 

analysis has been done to evaluate the performance of the proposed method. Cluster analysis requires 

calculation of similarity matrix of NxN by calculating the pair wise similarity measure where N is 

number proteins as mentioned in the above paragraph. The clustering technique has been applied for 

this similarity matrix and clustering results compared with original SCOP classes. Number of 

clustering techniques such as K-Means, C-Means, Spectral K-Means clustering techniques have been 

tried with respect to commonly used clustering accuracy measures such as Random Index (RI), Recall 

(r), Precision (p) and F-measure. Result of these cluster analysis clearly indicates that the K-Means 

clustering technique is found better and hence K-mean clustering has been further taken for evaluation 

of the proposed method. The percentage of the precise clusters indicates the performance of the 

proposed protein 3D structure comparison algorithms. 

 

Table 3. Precision, recall and F-measure results obtained from proposed method and CE and 

jFATCAT. 
Method Time (hrs) Metric Values 

CE 126.18 Precision 0.9600 

Recall 0.9333 

F measure 0.9465 1 

R-index 0.9694 

jFACTCAT 019.14 Precision 0.6653 

Recall 0.6043 

F measure 0.63334 

R-index 0.8554 

Graph properties 

Method 

(threshold =0.1) 

51.25 Precision 0.5416 

Recall 0.6069 

F measure 0.5724 

R-index 0.8300 

Graph properties 

Method 

(threshold =0.2) 

13.50 Precision 0.5464 

Recall 0.6507 

F measure 0.5940 

R-index 0.8332 

Graph properties 

Method 

(threshold =0.3) 

03.03 Precision 0.5886 

Recall 0.6853 

F measure 0.6333 

R-index 0.8512 

Graph properties 

Method 

03.10 Precision 0.5967 

Recall 0.7259 
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(threshold =0.4) F measure 0.6550 

R-index 0.8566 

Graph properties 

Method 

(threshold =0.5) 

03.00 Precision 0.5967 

Recall 0.7259 

F measure 0.6550 

R-index 0.8566 

 

 

Results and Discussion 

 

In this study, the proposed method resulted with accuracy level of 65.50 % for the benchmark 

dataset. The analysis was performed using various combinations of threshold values to consider a 

connectivity of pairs between atoms distance less than 0.1, 0.2, 0.3, 0.4 and 0.5.  The f-measure is 

found as  57.24 %, 59.40%, 63.33 %, 65.50 % and 65.50 % respectively at each class level clustering 

with values as 0.1, 0.2, 0.3, 0.4 and 0.5 respectively(Table 3). The comparative values of f-measure 

for proposed method (Best value has been taken with respect to various threshold levels), CE and 

jFATCAT are 65.50, 94.50, 63.33 respectably (Table-3). 

These methods were also evaluated with respect to proposed algorithm in terms of 

computational running time in performing the analysis of protein structure comparison (Table 3). The 

earlier methods, CE and jFATCAT consumed 126 hours and 19 hours respectively to perform the 

experiment of 100 protein structures comparison was recorded on a desktop computer of 8 GB RAM 

having 64-bit Windows 7 OS and MATLAB version 2010.  Under the same setup, the proposed 

algorithm takes 51 hours, 13 hours, 3 hours and 3 hours for distance threshold 0.1, 0.2, 0.3, 0.4 and 

0.5   respectively.   The proposed method in this article performed better in terms of classification 

accuracy over jFATCAT and in terms of computation time over CE and jFATCAT.  

 

Conclusion 

 

Comparison of protein structures has fundamental of tasks in structural biology to understand 

the evolutionary and functional relationships among proteins. With the advent of high-throughput 

methods for generation of 3D protein structure by X-ray, NMR and even in-silico, the availability of 

structural information of proteins is increasing at a much accelerated pace. Hence, there is a 

requirement of automatic annotation and classification of proteins using 3D structural information in 

order to save resources in terms of time. Therefore, the development of fast and efficient algorithm is 

required to find out best identity and similarity between two protein structures.  

 

In this study, an efficient methodology/algorithm has been developed in terms of accuracy 

and computational running time for comparing protein structures based on graph properties. The 3D 

coordinates of protein with all atoms have been used to build graph models and then exploited to 

graph properties for comparison. The proposed method has been implemented MATLAB programs 

for protein structure comparison. The proposed method in this project performed better in terms of 

classification accuracy over jFATCAT and in terms of computation time over both i.e., CE and 

jFATCAT.  In future, this work can be extended to include more number of graph properties and more 

research can be done to find out the best structural identity or similarity amount protein structures. 
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CHAPTER- IV: SUMMERY AND CONCLUSION 

 

 

We have illustrated in detail about two novel methods for comparison of 3D structure using 1) graph 

partition and 2) graph properties.  The both proposed methods have been implemented in MATLAB 

by writing codes for various functions. The performance of the developed methodologies are tested 

with two existing best methods such as CE and jFATCAT on 100 proteins benchmark dataset with 

SCOP (Structural Classification Of Proteins) database.   

First method “graph partitioning” method is comprises conversion of 3D graph into 2D graph, 

partitioning of 2D graph into sub-graphs and then aligning sub-graphs.   Finally structure similarity 

has been calculated by identify local structural similarities between sub-graphs to global similarity of 

the whole graph. The proposed method has shown significant improvement over jFATCAT and 

accuracy has increased up to 12-15%.  Prime notion of the method is the decomposition of structure to 

clusters than single residues and SSE, this could be basic interaction of non-bonded residues in the 

arrangement of structure elements within a structure.  These interaction leads protein fold space and 

arrangement of SSE elements in 3D space. Then, aligned the structures based on atoms positions and 

association with other atoms within clusters and between clusters to identify similar geometry and 

similarity of the two structures. The proposed method performed better in terms of classification 

accuracy   due to the inclusion of all atoms but CE and jFATCAT uses only backbone C-α atoms and 

non-bonded atoms in a cluster may plays important role to inclusion of folding information of protein 

while comparing the 3D structures.   

In second method, is based on concepts of construction of graph from real world problems, 

database for graph and graph mining, pattern recognition are rich fields of computational techniques 

to study structures, topologies and properties of graphs.  In this method, we have demonstrated that 

converting protein 3Dstructures into graphs and into properties such as total degree, maximum degree, 

no of adjacencies, average number of degree, cluster coefficient, graph energy, spectrum and number 

of components etc. Exploitation of  the graph properties and data mining technique to perform 

complex studies on protein 3D structure. The proposed method is fast in terms of computation time 

complexity. Regarding accuracy is little improved over jFATCAT method. In future, this work can be 

extended for including more number of graph properties and more research can be done to find out the 

best structural identity or similarity among protein structures. 
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lkjka'k  

 

geus bl ifj;kstuk ds varxZr nks ubZ fof/k;ksa dk fodkl fd;k gS A ;g fof/k;ka 1½ xzkQ foHkktu vkSj 2½ 

xzkQ xq.kksa dk mi;ksx djds çksVhu ds 3 Mh lajpuk dh rqyuk djus ds fy, cukbZ xbZ gSa A bu fof/k;ksa dks  

MATLAB esa dksM fy[kdj ykxw fd;k x;k gS A  fodflr rjhdksa dks nks ekStwnk loksZÙke rjhdksa (CE 

vkSj jFACTCAT) ds lkFk 100 çksVhu csapekdZ MkVklsV ij SCOP ¼LVªDpjy oxhZdj.k v‚Q çksVhal½ 

MkVkcsl ds lkFk rqyu Hkh dh x;h gS A bl fjiksVZ esa bu fof/k;ksa dks ,d ljy rjhds ls ifjHkkf"kr dj 

mngkj.k ds ek/;e ls le>us dk ç;kl Hkh fd;k x;k gS A 

 

xzkQ foHkktu fof/k esa 3&Mh xzkQ dk 2 &Mh xzkQ esa :ikarj.k] 2 Mh xzkQ dk mi&xzkQksa esa foHkktu vkSj 

fQj bu mi&xzkQksa dks lajsf[kr djrk gSA rRi'pkr iwjs xzkQ dks mi&xzkQksa esa oSf'od lekurk vkSj 

LFkkuh; lajpukRed lekurkvksa ds vk/kkj ij lekurk dh x.kuk dh xbZ gSA çLrkfor fof/k us jFATCAT 

dh rqyuk esa egRoiw.kZ lq/kkj fn[kk;k gS vkSj lVhdrk 12&15% rd c<+h gSA ;g fof/k ç/kku fopkj] ,dy 

vo'ks"kksa vkSj ,l,lbZ (SSE) dh rqyuk esa lewgksa ds fy, lajpuk dk ,d vax  gS A ;g lajpuk ds rRoksa 

dh O;oLFkk esa u‚uc‚.MsM vo'ks"kksa dh cqfu;knh fj'rksa dks [kkstus esa lgk;d fl) gks ldrk gSA ijek.kqvksa 

dh fLFkfr;ksa vkSj lewgksa ds chp vU; ijek.kqvksa ds lkFk muds laca/kksa vkSj lewgksa ds chp fLFkfr;ksa vkSj nks 

lajpukvksa dh lekurk dh igpku djus ds fy, Hkh fd;k x;k gS A çLrkfor fof/k lHkh ijek.kqvksa dks 

'kkfey djus ds dkj.k oxhZdj.k dh lVhdrk ds ekeys esa csgrj çn'kZu djrh gS] ysfdu lhbZ ¼CE½ vkSj 

ts,Q,Vh,lh,Vh ¼jFATCAT½ dsoy lh&vYQk ¼Cα½ ijek.kqvksa dk mi;ksx djrh gS vkSj ,d DyLVj esa 

xSj&caf/kr ijek.kqvksa dh rqyuk djrs gq, çksVhu dh tkudkjh dks 'kkfey djus dh egRoiw.kZ Hkwfedk fuHkk 

ldrh gS A 

 

nwljh fof/k xzkQ ds fofHkUu xq.kksa ij vk/kkfjr gS A xzkQ fuekZ.k vkSj xzkQ [kuu ds fy, MsVkcsl] iSVuZ 

ekU;rk lajpukvksa] Vksiksy‚th vkSj vkys[kksa ds xq.kksa dk v/;;u djus ds fy, dEI;wVs'kuy rduhdksa ds 

le`) {ks=ksa  esa çpfyr gSaA bl i)fr esa geus çksVhu 3 Mh LVªDpj dks xzkQ esa cnyus]  xzkQ ds fofHkUu 

xq.kksa tSls dqy fMxzh] vf/kdre fMxzh] dksbZ vkSlr la[;k] DyLVj xq.kkad] xzkQ ÅtkZ] LisDVªe vkSj ?kVdksa 

dh la[;k vkfn ds xq.kksa esa ifjorZu dk ç;ksx fd;k gS A çksVhu 3 Mh lajpuk ij tfVy v/;;u djus ds 

fy, xq.k vkSj MsVk [kuu rduhd dk ç;ksx ls iqjkuh fof/k;ksa ls le; dh rqyuk esa Js"B lkfcr gqbZ gS 

tcfd lVhdrk ds ckjs esa ts,Q,Vhlh,Vh ¼jFATCAT½ fof/k ls FkksM+k lq/kkj gqvk gSA Hkfo"; esa ;g dk;Z 

vkSj vf/kd xzkQ xq.kksa dks 'kkfey djus ds fy, fd;k tk ldrk gS vkSj çksVhu lajpukvksa esa lcls vPNh 

lajpukRed igpku ;k lekurk tkuus ds fy, vf/kd 'kks/k fd;k tk ldrk gSA 
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Annexure – I : MATLAB codes of all functions used in the proposed methods 

 

Converting protein 3D structure to graph model 

 
function [B,t,xy, yx]=pdb_model_to_cord_matrix(pdbmodel,  cutoffdist) 

  
[m1,n1]=size(pdbmodel.Model(1,1).Atom); 
j=1; 
k=1; 

  
for i=1 : n1-1 
    if strcmp(pdbmodel.Model(1,1).Atom(1,i).chainID,'A') 
    if strcmp(pdbmodel.Model(1,1).Atom(1,i).AtomName,'CA') 
      k=k+1;  
    %  t1(k)=i; 
    end 
        x(j)= pdbmodel.Model(1,1).Atom(1,i).X;   
        y(j)= pdbmodel.Model(1,1).Atom(1,i).Y;   
        z(j)= pdbmodel.Model(1,1).Atom(1,i).Z;   
        xy(j,1)=y(j); 
        xy(j,2)=z(j); 
        yx(k,1)=y(j); 
        yx(k,2)=z(j); 
        j=j+1; 
        t(i)=k; 
    end 
end 
n2=j; 
for i=1:n2-1 
    for j=1:n2-1 
    %m(i,j)= abs(x(i)-x(j))+abs(y(i)-y(j))+abs(z(i)-z(j)) ;   
    m(i,j)= sqrt((x(i)-x(j))^2+(y(i)-y(j))^2+(z(i)-z(j))^2) ;    
   if((1/(1+m(i,j))) >cutoffdist) 
    % m(i,j)= (1/(1+m(i,j))); 
      B(i,j)=1; 
   else 
       B(i,j)=0; 
   end 

    
    end 

     
end 
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Similarity measure calculation of 100 protein (100x100) using spectral clustering  
 

clc 
 clear all; 
 close all; 
i=1; 
  fid=fopen('ce1.csv'); 
        while 1 
            tline = fgetl(fid); 
            if ~ischar(tline), break, end 
            filename(i,:)=tline; 
            i=i+1; 
        end 
        fclose(fid); 

         
  fid = fopen('BMData_fvalue100','a'); 

  
  for fi=1 : 100 
    filename1=strcat('E:/work/benchmark/',filename(fi,:)); 
    PDBStruct1 = pdbread(filename1); 
    [x1,t1]=pdb_madel_to_cord_matrix(PDBStruct1,.2); 
    [e1, nc1] =SpectralClusterAuto(x1, .005,100); 

     
      for fi1=1:100 
          disp( [' fi=' num2str(fi), ' fj=' num2str(fi1)]); 
          t11=now(); 
          filename2=strcat('E:/work/benchmark/',filename(fi1,:)); 
          PDBStruct2 = pdbread(filename2); 
          [x2,t2]=pdb_madel_to_cord_matrix(PDBStruct2,.2); 
          [e2, nc2] =SpectralClusterAuto(x2, .05,  20); 
            [p,r,f,pos] =f_measure_two_graphs(e1,e2); 
            t22=now()-t11; 
            fprintf(fid,'%s \t%d \t %s \t %d \t %10.4f \t %d \t %10.5f 

\n',filename(fi,:), nc1, filename(fi1,:), nc2, f, pos, t22); 
      end 
  end 
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Cluster analysis code for C-means,K-means, spectral K-means 
% reading data from file  
% format %d %d  %e 
  clc; 
 clear all; 
 close all; 
 filename1= 'ESA100_ESAO.csv'; 
 filename2='ClassSCP100C3.txt'; 
i=1; 
j=1; 
 fid = fopen(filename1,'r'); 
  s = textscan(fid, '%f'); 
  [n,m]=size(s{1}) 
  n=sqrt(n); 
 cnt=1; 
      for i=1: n 
          for j=1:n 
         B(i,j)=1/(1+ s{1}(cnt)); 
         cnt=cnt+1; 
          end 
      end 

       
        fclose(fid); 

   
  for i=1:n 
     B(i,i)=1; 
     for j=1:m 
       if B(i,j)>B(j,i); 
       B(j,i)=B(i,j); 
       else 
       B(i,j)=B(j,i); 
       end 
     end 
 end 

   
 fid = fopen(filename2,'r'); 
        while 1 
            tline = fgetl(fid); 
            if ~ischar(tline), break, end 
            % disp(tline); 
            ls=size(tline); 
            Qlabel=str2num(tline(1:8)); 
            Slabel=str2num(tline(9:ls(2))); 
            t(Qlabel)=Slabel; 
        end 
 fclose(fid); 

  

  
 ac=[0 45 85 100]; 
 ac=[0 14 20 30 45 65 75 85 90 100]; 
 ac=[0 5 10 14 20 30 35 41 45 52 59 65 70 75 80 85 90 94 100]; 
maxdim=3; 
noc=3; 

  
t0=clock; 
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D = (sum(B,2)); 
L = inv(diag(sqrt(D)))*(B/diag(sqrt(D))); 

  

  
OPTS.disp = 0; 
[u, eigvals] = eig(L); 
[eigvals, eigvalIndices] = dsort(diag(eigvals)); 
%  eigvalIndices 
eigvalindex=eigvalIndices(1:maxdim); 
u = u(:,eigvalindex); 
ui=sum(u.^2,2); 

  
for i=1:n 
y(i,:)=u(i,:)/sqrt(ui(i)); 
end 

  
% for j=1:maxdim 
%     [cv,ci]=max(y(:,j)); 
%      disp(['val=' num2str(cv) '  indx=' int2str(ci)]); 
% end 

  

  
[cidx, ctrs] = kmeans(B, noc); 
PcEig=u; 
disp(['Time = ' num2str(etime(clock,t0))]); 

  

  
[n,m]=size(u); 
  x1=1:.0001:1.1; 
  rtold=1; 
%   figure(1);  
% hold on; 
% for i=1:21-1 
%      rt=abs(eigvals(i)/eigvals(i+1)); 
%      uy(i)=rt; 
%      irt=1/100; 
%      jrt=abs(rtold-rt)/100.; 
%      xi=i:irt:i+1; 
%         if rtold<rt 
%         xj=rtold:jrt:rt; 
%         else 
%         xj=rtold:-jrt:rt; 
%         end 
%      % plot(i,rt, 'r+'); 
%      plot(i,x1, 'b-'); 
%      plot(xi, xj, 'g.'); 
%      rtold=rt; 
% %      disp(['i=' num2str(i) ' gap = ' num2str(rt)]); 
% end 
% ux=[1:1:20]; 
% line(ux, uy); 

  
figure(2); 
for i=1:noc 
 index1 = find(cidx==i); 
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 disp(['Cluster-' int2str(i) ' = ' int2str(index1')]); 
 m(index1')=i; 
[um,un]=size(index1); 
if(un>0) 
  plot(index1,i, 'r+'); 
end 
hold on; 
end 
grid; 
ylabel('Clusters'); 
xlabel('Sequences'); 
x1=0:.01:noc; 

  
r=n; 
nac=size(ac);          
for i=2:nac(2) 
 plot(ac(i),x1,'g-'); 
end 

  
mm=zeros(r,r); 
tt=zeros(r,r); 
cm=0; 
ct=0; 
for i=1:r-1 
    for j=i+1:r 
        if m(i)==m(j) 
            mm(i,j)=1; 
            cm=cm+1; 
        end 
        if t(i)==t(j) 
            tt(i,j)=1; 
            ct=ct+1; 
        end 
    end 
end 
aa=0; 
bb=0; 
cc=0; 
dd=0; 
for i=1:r 
    for j=1:r 
     if mm(i,j)==1 & tt(i,j)==1 
         aa=aa+1; 
     end 
     if mm(i,j)==0 & tt(i,j)==1 
         bb=bb+1; 
     end 
     if mm(i,j)==1 & tt(i,j)==0 
         cc=cc+1; 
     end 
     if mm(i,j)==0 & tt(i,j)==0 
         dd=dd+1; 
         %    disp( [num2str(i) ',' num2str(j) '= d']); 
     end 

      
 end 
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end 
 disp( ['a=' num2str(aa) ',b=' num2str(bb) 'c=' num2str(cc)  'd=' 

num2str(dd)]); 
  disp( ['cm=' num2str(cm) ',ct=' num2str(ct)]) 

  
pp=aa/(aa+cc); 
rr=aa/(aa+bb); 
ff=2*rr*pp/(rr+pp); 

  
disp([' p=' num2str(pp) ' r1=' num2str(rr) ' f=' num2str(ff)]) 
fid = fopen('pscresult010716-fcm.txt','a'); 
fprintf(fid,'%s %12.4f  %12.4f  %12.4f  %12.4f %12.8f\n',filename1,pp,rr,ff, 

noc); 
fclose(fid); 

  
color = ['k', 'r', 'g', 'b', 'm']; 
sym = ['>', 'o', '+', 'x', 's', 'd', 'v', '^', '<']; 
symbol = zeros(noc, 2); 
for i = 1:noc; 
    symbol(i, :) = [color(mod(i, length(color))+1) sym(mod(i, 

length(sym))+1)]; 
end 

  
nac=size(ac); 
for i=2:nac(2) 
    plot(ac(i),x1,'g-'); 
end 
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Alignment and comparison of two graph models 
 

function [pp,rr,maxf, maxpos,am] = f_measure_two_graphs(e,t) 
[r1,q1]=size(e); 
[r2,q2]=size(t); 
maxf=0; 

  
rr=0; 
pp=0; 
ff=0; 

  
if (r1<r2) 
    r=r1; 
    e1=e; 
    t1=t; 
else 
    r=r2; 
    e1=t; 
    t1=e; 
end 

  
mm=zeros(r,r); 
tt=zeros(r,r); 

  

  
for i=1:r-1 
    for j=i+1:r 
        if e1(i)==e1(j) 
            mm(i,j)=1; 
        end 

         
    end 
end 

  
for d=1:abs(r1-r2)+1 
    maxf=0; 
    maxpos=0; 
    tt=zeros(r,r); 
    i1=1; 
for i=d:r+d-1 
    j1=i-d+2; 
    for j=i+1:r+d-1 
         if t1(i)==t1(j) 
            tt(i1,j1)=1; 
         end 
        j1=j1+1; 
    end 
    i1=i1+1; 
end 

  
aa=0; 
bb=0; 
cc=0; 
dd=0; 
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for i=1:r 
    for j=1:r 
     if mm(i,j)==1 & tt(i,j)==1 
         aa=aa+1; 
     end 
     if mm(i,j)==0 & tt(i,j)==1 
         bb=bb+1; 
     end 
     if mm(i,j)==1 & tt(i,j)==0 
         cc=cc+1; 
     end 
     if mm(i,j)==0 & tt(i,j)==0 
         dd=dd+1; 
     end 
    end 

  
end 
pp=aa/(aa+cc); 
rr=aa/(aa+bb); 
ff=2*rr*pp/(rr+pp); 
ri=(aa+dd)/(aa+bb+cc+dd); 
am=(aa+dd)/(aa+bb+cc+dd); 

  
%disp( [' r1=' num2str(r1) ', r2=' num2str(r2) ', d=' num2str(d)  ', r=' 

num2str(r)]); 
%disp( [' a=' num2str(aa) ', b=' num2str(bb) ', c= ' num2str(cc)  ', d=' 

num2str(dd)]); 
%disp([' p=' num2str(pp) ' r=' num2str(rr) ', f=' num2str(ff) ', ri=' 

num2str(ri)]) 

    
if (maxf<ff) 
    maxf=ff; 
    maxpos=d; 
end 

  
end 
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MCL clustering of a Graph 
 

function [ma]=mcl_cluster(B) 
% gplot (mm,xy,'r-'); 
%  
% figure(2); 
 mm=mcl(B); 
[n2,m2]=size(B) 
k1=1; 
for i=1:m2 
 index1 = find(mm(i,:)>=1); 
     k=mod(i,6)+1; 
     [um,un]=size(index1); 
    if(un>0) 
   %  disp(['Cluster-' int2str(k1) ' = ' int2str(index1)]);    
     ma(index1')=k1; 
    % plot(index1,k1, 'r+'); 
     k1=k1+1; 
    end 
  %  hold on; 
end 
ma=ma'; 
end 
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MLC clustering algorithm 
 

function m = mcl(m) 
% test the explanations in stijn van dongens thesis. 
% @author gregor :: arbylon . net 

  
if nargin < 1 
    % m contains T(G3 + I) as stochastic matrix 
    load -ascii m.txt 
end 

   
p = 2; 
minval = 0.0000001; 
e = 1; 
emax = 0.0000001; 
i=1; 
while e > emax 
    fprintf('iteration %i before expansion:\n', i); 
    fprintf('iteration %i after expansion/before inflation:\n', i); 
    m2 = expand(m); 
    fprintf('inflation:\n') 
    [m, e] = inflate(m2, p, minval); 
    fprintf('residual energy: %f\n', e); 
    i=i+1; 
end % while e 
end % mcl 

  
% expand by multiplying m * m 
% this preserves column (or row) normalisation 
function m2 = expand(m) 
    m2 = m * m; 
end 

  
% inflate by Hadamard potentiation 
% and column re-normalisation 
% prune elements of m that are below minval 
function [m2, energy] = inflate(m, p, minval) 
    % inflation 
    m2 = m .^ p; 
    % pruning 
    m2(find(m2 < minval)) = 0; 
    % normalisation 
%     if sum(m2)>0  
     dinv = diag(1./sum(m2)); 
%      else 
%      dinv=1; 
%     end 
    m2 = m2 * dinv; 
    % calculate residual energy 
    maxs = max(m2); 
    sqsums = sum(m2 .^ 2); 
    energy = max(maxs - sqsums); 
end 
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Spectral clustering Algorithm 
 

function [elist, noc, PcEig, Centres] = SpectralClusterAuto(x, sigma, numk) 

  
% SPECTRALCLUSTER Clusters a dataset automatically determining the number of 

clusters. 
% 
% [labels, PcEig, Centres] = SpectralCluster(x, sigma) 

  
% Copyright (c) 2005 Guido Sanguinetti and Jonathan Laidler 
% SPECTRAL toolbox version 0.1 
% 
% Clusters an arbitrary dataset using the spectral clustering algorithm 
% outlined in "Automatic Determination of the Number of Clusters using 
% Spectral Algorithms" by Sanguinetti, Lawrence and Laidler. 
%  
% SPECTRALCLUSTER(x, sigma, lambda) 
% x is the input data.  
% sigma is the variance measure used when computing the affinity matrix. 
% lambda is a measure of the elongation of a centre's variance when doing 
% a Mahalanobis k-means clustering. i.e. Lambda = 1 gives a circular 
% covariance, Lambda < 1 gives preference to points lying along the vector 
% normal between the centre and the origin. 
% 
% Written by Guido Sanguinetti and Jonathan Laidler, April 2005 

  
% initialisations 
npts=size(x,1); 
options=foptions; 
ExtraCluster=0; 
Dim=numk; 
lambda = 0.2; 

  
% compute the similarity matrix A and the matrix L 
A=x; 
% A=zeros(npts,npts); 
% for i=1:npts 
%     for j=1:npts 
%         A(i,j) = exp(-norm(x(i,:)-x(j,:))^2/sigma); 
%     end 
% end 
D = (sum(A,2)); 
L = inv(diag(sqrt(D)))*(A/diag(sqrt(D))); 

  
maxdim=numk; 
% find the eigenvectors associated with the 10 largest eigenvalues of L 
OPTS.disp = 0; 
 % [Y, eigvals] = eigs(L, 50, 'LM', OPTS); 
   [Y, eigvals] = eig(L); 
 % [void,Y,eigvals]= ppca(L,10); %ppca gives an alternative eigen-

decomposition 
 % [u, eigvals, v]=svd(L); 

  
[eigvals, eigvalIndices] = dsort(diag(eigvals)); 
% eigvals 
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eigvalindex=eigvalIndices(1:maxdim); 
u = Y(:,eigvalindex); 

  
clear Y; 
ui=sum(u.^2,2); 
[n,m]=size(u); 
for i=1:n 
Y(i,:)=u(i,:)/sqrt(ui(i)); 
end 

  
for j=1:maxdim 
    [cv,ci]=max(Y(:,j)); 
     %disp(['val=' num2str(cv) '  indx=' int2str(ci)]); 
     % disp(ci) 
end 

  
PcEig = Y(:,(1:Dim)); 

  
% the first Centre is initialised 
norms = diag(PcEig*PcEig'); 
[void, index(1)] =  max(PcEig(:,1));  % max(norms); 
Centres = PcEig(index(1), :); 

  
% the second Centre is initialised 
S = ((PcEig*Centres(1, :)').^2)./(norms); 
for ii=1:Dim 
[void, index(ii)] =  max(PcEig(:,ii));  % min(S);  
end 
Centres = [PcEig(index, :)]; 

  
% [void, index3] = max(PcEig(:,Dim+1)); 

  
while  ExtraCluster<=3  %& Dim <=maxdim 
sumdist=0; 
    % introduce a new centre at the origin and do k-means 

     
%     Centres = [Centres; PcEig(index3,:)]; 
    [Centres, options, labels] = mahKmeans(Centres, PcEig, lambda, options, 

.05); 
   % [W,iter,Sw,Sb,Cova]=kmeansf(PcEig,Centres,.01,100,0) 
    for i = 1:Dim 
        for j = 1:npts 
            CentrDist(i,j) = norm(PcEig(j,:)-Centres(i,:)); 
            sumdist=sumdist+CentrDist(i,j); 
        end 
    end 
%     sumdist 
    % Centres 
    % if anything is assigned to this new centre, there is an extra cluster 
%     if max(labels(:,Dim)) == 1 
%         ExtraCluster = 0; 
%         Dim = Dim+1; 
%         % take the next eigenvector from Y 
%         PcEig = Y(:,(1:Dim)); 
%         % re-initialise the centres 
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        Centres=zeros(Dim,Dim); 
        for i=1:Dim 
            [void,point] = min(CentrDist(i,:)); 
            Centres(i,:)=PcEig(point,:); 
        end 
%     else 
        ExtraCluster = ExtraCluster+1; 
%     end 
end 

  
% erase the last column of labels, as it is empty 
labels = labels(:,1:Dim); 

  
[r,noc]=size(labels); 
elist(1)=0; 
for i=1:noc 
    for j=1:r 
     if labels(j,i)==1    
         elist(j)=i; 
     end 
   end 
end 
elist=elist'; 
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Mahalanobis distance calculation for spectral K-means algorithm 
 

function [centres, options, post, errlog] = mahKmeans(centres, data, lambda, 

options, egv) 
% MAHKMEANS Trains a k means cluster model, using Mahalanobis distance (based 

on Netlab k-means). 
% 
% [centres, options, post, errlog] = mahKmeans(centres, data, lambda, 

options) 

  
% Copyright (c) 2005 Guido Sanguinetti and Jonathan Laidler 
% SPECTRAL toolbox version 0.1 

  
% Additional Copyright (c) Ian T Nabney (1996-2001) 

  

  
[ndata, data_dim] = size(data); 
[ncentres, dim] = size(centres); 

  
if dim ~= data_dim 
  error('Data dimension does not match dimension of centres') 
end 

  
if (ncentres > ndata) 
  error('More centres than data') 
end 

  
% Sort out the options 
if (options(14)) 
 niters = options(14); 
else 
  niters = 100; 
 end 

  
store = 0; 
if (nargout > 3) 
  store = 1; 
  errlog = zeros(1, niters); 
end 

  
% Check if centres and posteriors need to be initialised from data 
 if (options(5) == 1) 
  % Do the initialisation 
  perm = randperm(ndata); 
  perm = perm(1:ncentres); 

  
  % Assign first ncentres (permuted) data points as centres 
  centres = data(perm, :); 
 end 
% Matrix to make unit vectors easy to construct 
id = eye(ncentres); 

  
% Main loop of algorithm 

  



xv 
 

for n = 1:niters 

  
  % Save old centres to check for termination 
  old_centres = centres; 

   
  % Calculate posteriors based on Mahalanobis distance from the existing 
  % centres. (GS) 
  d2 = mahDist2(data, centres, lambda, egv); 
  % Assign each point to nearest centre 
  [minvals, index] = min(d2', [], 1); 
  post = id(index,:); 

   

     
  num_points = sum(post, 1); 
  % Adjust the centres based on new posteriors 
  for j = 1:ncentres 
    if (num_points(j) > 0) 
      centres(j,:) = sum(data(find(post(:,j)),:), 1)/num_points(j); 
    end 
  end 

  
  % Error value is total squared distance from cluster centres 
  e = sum(minvals); 
  if store 
    errlog(n) = e; 
  end 
  if options(1) > 0 
    fprintf(1, 'Cycle %4d  Error %11.6f\n', n, e); 
  end 

  
  if n > 1 
    % Test for termination 
    if max(max(abs(centres - old_centres))) < options(2) & ... 
        abs(old_e - e) < options(3) 
      options(8) = e; 
      return; 
    end 
  end 
  old_e = e; 
end 

  
% If we get here, then we haven't terminated in the given number of  
% iterations. 
options(8) = e; 
if (options(1) >= 0) 
  %disp(maxitmess); 
end 
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Codes for Calculation of graph properties   

 
clc 
 clear all; 
 close all; 
 fi=9; 
 filename=char('1A0F.pdb', '1AR4.pdb', '1AST.pdb', '1AUE.pdb', '1AVX.pdb' ,   

'1BC9.pdb',    '1BP3.pdb' ,   '1BRF.pdb' ,    '1DGP.pdb', '1DI1.pdb' ,   

'1dly.pdb',    '1ecd.pdb' ,   '1EHS.pdb' ,   '1FQT.pdb',    '1gvh.pdb', 

'1H3E.pdb' ,   '1hbi.pdb' ,   '1IAA.pdb' ,   '1IAB.pdb' ,   '1IAC.pdb' ,   

'1IQW.pdb' ,   '1JHK.pdb',    '1K9O.pdb' ,   '1KA8.pdb' ,   '1mbd.pdb',    

'1MCN.pdb', '1MLB.pdb',    '1MN8.pdb' ,   '1oj6.pdb',    '1P4X.pdb',    

'1PSR.pdb',    '1PZ8.pdb', '1PZ9.pdb',    '1QGJ.pdb',    '1QN2.pdb',    

'1QUU.pdb' ,   '1RIE.pdb' , '1RQI.pdb',    '1rte.pdb' ,   '1TOS.pdb',    

'1urv.pdb'  ,  '1ux8.pdb',    '1VCK.pdb', '1WOV.pdb',    '1WOW.pdb',    

'1WOX.pdb' ,   '1X3A.pdb' ,   '1XG7.pdb' ,   '1Y2O.pdb' , '1YLL.pdb',    

'1YV0.pdb',    '1Z77.pdb' ,  '2A1K.pdb' ,   '2B0Z.pdb' ,   '2BBA.pdb', 

'2CJ8.pdb' ,   '2EFK.pdb',    '2gdm.pdb' ,   '2GH2.pdb' ,      '2H6B.pdb', 

'2HVC.pdb',    '2HYJ.pdb' ,   '2IBN.pdb',    '2IEK.pdb',    '2IOL.pdb' ,   

'2J0N.pdb',    '2NXN.pdb',    '2P8T.pdb',    '2Q0A.pdb',    '2RD6.pdb',    

'2VOD.pdb',    '2ZP0.pdb',    '3BGE.pdb' ,  '3CJR.pdb', '3ELN.pdb' ,   

'3MDS.pdb' ,   '3SGO.pdb' ,   '4hhb.pdb'); 
% filename1='1EHS.PDB' % '1tos.PDB' %'1h3e.pdb', '1C7M.pdb',  '1Q5W.pdb', 

'2GTT.pdb' , '2JA7.pdb',    '2LFB.pdb',    '2MLI.pdb', '2Q4S.pdb' ,; 
  % PDBStruct2 = pdbread(filename1); 
  filename1=strcat('E:/work/pdbs/',filename(fi,:)) 
  PDBStruct2 = pdbread(filename1); 
PDBStruct2.Model  
% atoms = fastPDBRead('1TOS.pdb') 
% plot3(atoms.X, atoms.Y, atoms.Z, '.'); 
% atoms.atomNum 
[m1,n1]=size(PDBStruct2.Model(1,1).Atom); 
%x=zeros(100); 
j=1; 
k=0; 
for i=1 : n1-1 
    if strcmp(PDBStruct2.Model(1,1).Atom(1,i).AtomName,'CA') 
      k=k+1;  
      t1(k)=i; 
    end 
        x(j)= PDBStruct2.Model(1,1).Atom(1,i).X;   
        y(j)= PDBStruct2.Model(1,1).Atom(1,i).Y;   
        z(j)= PDBStruct2.Model(1,1).Atom(1,i).Z;   
        j=j+1; 
        t(i)=k; 
  %  end 
end 
n2=j; 
m=zeros(j-1); 
for i=1:n2-1 
    for j=1:n2-1 
    %m(i,j)= abs(x(i)-x(j))+abs(y(i)-y(j))+abs(z(i)-z(j)) ;   
    m(i,j)= sqrt((x(i)-x(j))^2+(y(i)-y(j))^2+(z(i)-z(j))^2) ;    
   if((1/(1+m(i,j))) >.3) 
    % m(i,j)= (1/(1+m(i,j))); 
    B(i,j)=1; 
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   else 
       B(i,j)=0; 
   end 
    end 

     
end 
% B=m; 
[n,m]=size(B); 
k=20; 
% C:\Program Files\MATLAB\R2010a\toolbox\mnr 
fid = fopen('structparm1-2-16.txt','a'); 
fid1 = fopen('structparm_header.txt','a'); 
fprintf(fid,'%s ',filename(fi,:)); 

  
%1 calculate degrees of all nodes 
[deg, ideg,odeg]=degrees(B); 
totaldeg=sum(deg); 
maxdeg=max(deg); 
mindeg=min(deg); 
fprintf(fid,'%12.4f %12.4f %12.4f ',totaldeg, maxdeg, mindeg); 
fprintf(fid1,'%s %s %s ','totaldeg,', 'maxdeg,', 'mindeg,'); 

  
%2 List out all connected nodes to all nodes 
% L1 = adj2adjL(B); 

  
%3 Converts an adjacency graph representation to an adjacency list 
% L = adj2adjL(B); 

  
%4 function to convert adjacency matrix to UCINET dl format 
% adj2dl(B,'filename.UCINET'); 

  
%5 adjacency matrix to edges list; 
el=adj2edgeL(B); 
[n1,n2]=size(el); 

  
fprintf(fid,'%12.4f  ',n1); 
fprintf(fid1,'%s  ','no of adjances,'); 

  
%6 Convert adjacency matrix to an incidence matrix 
% inc = adj2inc(B); 

  
%7 Converts an adjacency matrix representation to a Pajek .net read format 
% adj2pajek(B,'filename.txt',x,y,z); 

  
%8 The algebraic connectivity of a graph: the second smallest eigenvalue of 

the Laplacian 
 a=algebraic_connectivity(B); 
fprintf(fid,'%12.4f  ',a); 
fprintf(fid1,'%s  ','algebric connectivity,'); 

  
%9 Computes the average degree of neighboring nodes for every vertex 
 ave_n_deg=ave_neighbor_deg(B); 

  
totaldeg1=sum( ave_n_deg); 
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maxdeg1=max( ave_n_deg); 
mindeg1=min( ave_n_deg); 
fprintf(fid,'%12.4f %12.4f %12.4f ',totaldeg1, maxdeg1, mindeg1); 
fprintf(fid1,'%s %s %s ','ave_n_deg totaldeg1,','maxdeg1,', 'mindeg1,'); 

  
 %10 Compute average path length for a network - the average shortest path 
 ll = ave_path_length(B); 

  
fprintf(fid,'%12.4f ',ll); 
fprintf(fid1,'%s ','ave path length,'); 

  
 %11 Computes the average degree of a node in a graph, defined as 2*num_edges  
k=average_degree(B); 

  
fprintf(fid,'%12.4f ',k); 
fprintf(fid1,'%s ','ave degree,'); 

  
%12 Implementation of breadth-first-search of a graph 
%T=BFS(L,1); 
%T 
%13 Computes clustering coefficient, based on triangle motifs count and local 

clustering 
 [C1,C2,C] = clust_coeff(B); 
fprintf(fid,'%12.4f %12.4f  ',C1, C2); 
fprintf(fid1,'%s %s  ',' cluster coeff1,','cluster coeff,'); 

  
% The longest shortest path between any two nodes nodes in the network 
diam = diameter(B); 
fprintf(fid,'%12.4f ', diam); 
fprintf(fid1,'%s ', 'diameter,'); 

  
%15 Draws the matrix as a column/row sorted square dot-matrix pattern 
%dot_matrix_plot(B) 
% model1=simple_spectral_partitioning(B,k); 

  
%16 Draw a circular graph with links and nodes in order of degree 
%draw_circ_graph(B) 

  
% 17 The ith component of the eigenvector corresponding to the greatest  
 x=eigencentrality(B); 
 fprintf(fid,'%12.4f ', max(x)); 
 fprintf(fid1,'%s ', 'max eigencentrality,'); 

  
 % Plot geometry based on extended edgelist 
% el2geom(el) 

  
%18 Algorithm for finding connected components in a graph but I got no 

meaning  
%comp_mat = find_conn_comp(B); 

  
%19 Graph energy defined as: the sum of the absolute values of the real 

components of the eigenvalues 
 G=graph_energy(B); 
 fprintf(fid,'%12.4f ', G); 
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 fprintf(fid1,'%s ', 'Graph energy,'); 

  
 %20 The minimum vertex eccentricity is the graph radius 
 Rg=graph_radius(B); 
 fprintf(fid,'%12.4f ', Rg); 
 fprintf(fid1,'%s ', 'Radius,'); 

  
 %21 Computes the similarity matrix between two graphs 
 %S=graph_similarity(B,B); 

  
 %22 The eigenvalues of the Laplacian of the graph 
 s=graph_spectrum(B); 
 fprintf(fid,'%12.4f ', max(s)); 
 fprintf(fid1,'%s ', 'spectrum, '); 

  
 %23 Test whether a graph is bipartite, if yes, return the two vertex sets 
 L = adj2adjL(B); 
 [isit,A1,B2]=isbipartite(L); 
 fprintf(fid,'%12.4f ', isit); 
 fprintf(fid1,'%s ', 'isbiparate,'); 

  
  %24 Check if a graph is Eulerian, i.e. it has an Eulerian circuit 
% "A connected undirected graph is Eulerian if and only if every graph vertex 

has an even degree." 
% "A connected directed graph is Eulerian if and only if every graph vertex 

has equal in- and out- degree." 
 S=iseulerian(B); 
fprintf(fid,'%12.4f ', S); 
fprintf(fid1,'%s ', 'is eulerian,'); 

  
 %25 Checks whether a graph is regular, i.e. every node has the same degree. 
 Sr=isregular(B); 
 fprintf(fid,'%12.4f ', Sr); 
 fprintf(fid1,'%s ', 'is regular,'); 

  
 %26 Find the "optimal" number of communities given a network using an 

eigenvector method 
 modules=newman_eigenvector_method(B); 
 [n2,m2]=size(modules); 
 fprintf(fid,'%12.4f ', m2); 
 fprintf(fid1,'%s ', 'no of modules,'); 

  
 %27 Calculate the number of connected components using the Laplacian 
% eigenvalues - counting the number of zeros 
 nc=num_conn_comp(B); 
fprintf(fid,'%12.4f \n', nc); 
fprintf(fid1,'%s \n', 'no of connect comps,'); 

  
 %28 Uses the fiedler vector to assign nodes to groups 
% modules = simple_spectral_partitioning(B,10) 

  
% 29 Weighted clustering coefficient  
 % wc=weighted_clust_coeff(B); 
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%30  Number of hubs (NHUBS) as hubs when their nodal degree exceeded the 

average degree of the graph 

  
%31 Degree centrality: for node i =di(g)/n -1 

  
%32  Closeness centrality: Tracks how close a given node is to any other 

node: for node i, one such measure is =n – 1/dij  j<>i 

  
%33 Betweenness centrality (or shortest-path between-ness). A measure of 

accessibility that is the number of times a node is crossed by shortest paths 

in the graph.  

  
%34 Pi Index: The relationship between the total length of the graph L(G) and 

the distance along its diameter, an indicator of the shape of a graph. 

  
%35 Alpha Index: A measure of connectivity which evaluates the number of 
% cycles in a graph in comparison with the maximum number of cycles 

  
%36 Eta Index: Average length per link. Adding new nodes will cause a 

decrease of Eta as the average length per link declines. 

  
%37 Beta Index: Measures the level of connectivity in a graph and is 

expressed by the relationship between the number of links (e) over the number 

of nodes (v). =e/v 

  
%38 Theta Index: Measures the function of a node, which is the average amount 

of traffic per intersection. The measure can also be applied to the number of 

links (edges). 

  
%39 Graph Density 

  
%40  Synchronizability (S) describes the graph’s capacity to synchronize and 

is calculated from the eigen values of the graph’s Laplacian matrix L 
% L = D -A , where D represents a diagonal matrix containing the nodal 

degrees. The synchronizability is defined as the ratio between the first non-

zero eigenvalue and the largest eigenvalue (S= EV_2/EV_max) 

  
fclose(fid); 
fclose(fid1); 

 


