
INTRODUCTION

The agricultural market environment is changing 
with unprecedented speed both locally and globally. The 
dynamic nature of market affects farm prices and thereby 
farm income. Most of the rural farmers are unable to 
understand and interpret the market and price behaviour 
to their advantages (Anjaly et al., 2010). Thus, market 
information and intelligence are crucial to enable the 
farmers and traders in making important decisions about 
what to grow, when to sell, and where to sell. Besides this, 
the price instability and uncertainty pose a restriction on 
decision and policy makers. Hence, agricultural price 
forecasting plays a vital role for both production and 
market strategy. Price forecasting controls the supply and 
demand of the commodity. Price forecasting of an 
agricultural product is a herculean task because it depends 

on too many factors which cannot be accurately predicted. 
Nonlinearity and nonstationary behaviour are crucial 
problems in agricultural price data. Traditional nonlinear 
time series models like Autoregressive Conditional 
Heteroscedastic (ARCH) models (Engle, 1982), 
Generalised ARCH (GARCH) model (Bollerslev, 1986) 
etc. fails to model the agricultural price series due to its 
inherent nonlinear and nonstationary characteristic. To 
overcome the problem, Machine learning techniques 
namely Artificial Neural Networks (ANNs) and Support 
Vector Machines (SVMs), gained significant popularity 
for economic time series forecasting by making data 
driven predictions or decisions through building a model 
from sample inputs.  SVM has generalization capacity to 
obtain a unique solution (Lu et al, 2009). The structural 
risk minimization principle of SVM enhances the model 
performance (Duan and Stanley, 2011). SVR models 
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require long time to train large dataset. To overcome the 
problem, Suykens and Vandewalle (1999) proposed least 
squares support vector regression (LSSVR) to transform 
inequality constraints into equality constraints by 
employing a squared loss function. Machine learning 
methods are usually based on the assumption that the data 
generation mechanism does not change over time. 
Dealing with non-stationarity is one of modern machine 
learning's greatest challenges (Sugiyama and Kawanabe, 
2012).

In literature several researchers have applied 
different hybrid methodologies to tackle the problem of 
nonlinearity and nonstationary. Huang et al. (1998) 
highlighted the main advantage of the EMD i.e. the lack of 
initial assumptions on the dataset i.e. stationarity or 
linearity and not use a priori determined basis functions. 
Zhang (2003) proposed a hybrid ARIMA and neural 
network (NN) model for time series forecasting. They 
concluded that a hybrid methodology has advantage of 
the unique strength of Autoregressive Integrated Moving 
Average (ARIMA) and NN models in linear and nonlinear 
modelling. Ince and Trafails (2006) proposed a hybrid 
model based on Autoregressive Integrated Moving 
Average (ARIMA) and Support vector regression (SVR) 
in order to improve forecasting accuracy. The proposed 
methodology outperformed the logit/probit models. Chen 
(2007) demonstrated that superiority of Support Vector 
Regression (SVR) over the NN and Maximum Likelihood 
estimation (MLE). Brandl et al. (2009) used genetic 
algorithm for variable selection and set their model using 
SVR methodology. The proposed model outperformed a 
NN, an Ordinary Least Squares (OLS) regression and 
ARIMA model. An et al. (2012) reported that EMD can 
reveal the hidden pattern and trends of time series which 
can effectively assist in designing forecasting models for 
various applications. Guo et al. (2012) decomposed wind 
speed series using EMD and forecasted them using a feed-
forward network. Chen et al. (2012) proposed an EMD 
approach combined with an NN model for tourism-
demand forecasting. Lama et al. (2016) explored the 
superiority of GARCH based Time Delay Neural 
networks (TDNN) for forecasting agricultural 
commodity price volatility.

It is almost universally agreed in the forecasting 
literature that no single method is best in every situation. 
This is largely since a real-world problem is often 
complex in nature and any single model may not be able to 
capture different patterns equally well. This has 
motivated to develop an ensemble model i.e. combination 
of time series model and machine learning technique 
which deals with both linear and nonlinear pattern and 
improve forecasting accuracy. In this present study, 

EMD-SVR hybrid approach has been proposed. In this 
method, EMD was used for decomposing the nonlinear 
and nonstationary series into finite and small numbers of 
sub-signals. Then these sub-signals were individually 
modelled and forecasted using SVR technique. Finally, 
all forecasted values of sub-signals were aggregated to 
make final ensemble forecast. This proposed hybrid 
model results in improved forecasting efficiency as 
compared to individual model

Figure 1: Work flow of proposed EMD-SVR 
ensemble learning paradigm

METHODOLOGY

Ensemble method is a machine learning approach 
which combined multiple base model to produce an 
optimal predictive model. The proposed EMD-SVR 
consists of three steps defined in figure 1. First step, 
original nonlinear and nonstationary dataset is 
decomposed into a finite and often small numbers of 
independent sub-series by EMD technique. This sub-
series contain m intrinsic mode functions (IMF) and a 
final residue. Secondly, these IMFs and residue are 
modelled and predicted through SVR. Then, all the 
forecasted values of the IMFs and residue are summed up 
to produce ensemble forecast for the original series 
(Huang et al., 1998).

Empirical mode decomposition (EMD)
The Empirical Mode Decomposition method was 

introduced by Huang et al., in 1998. It assumes that the 
data have many coexisting oscillatory modes of 
significantly distinct frequencies and these modes 
superimpose on each other and form an observable time 
series. EMD decomposes original non-stationary and 
nonlinear data into a finite and small number of 
independent sub-series (including intrinsic mode 
functions and a final residue). Intrinsic mode function 
(IMF) is the finite additive oscillatory component 
decomposed by EMD. For example, let x(t) is a dataset 
consisting high frequency part and low frequency part.

Data = fast oscillations superimposed to slow oscillations

( ) ( ) ( )x t d t r t= +                                                                                   … (2.1.1) 
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where W defines weight vector,  denotes mapping 
function and b is bias. LSSVR is the least square version 
SVR where set of linear equations are used to find the 
solution.

The solution of W and b in above equation can be 
obtained by solving the following minimization problem 
(Sermpinis et al., 2014)

It is a primal function and solution of the function is 
quite complex in nature. So, the dual of the function can 
be used. Its dual will be 

where                                  is kernel function. For getting 

estimated value  the dual function will be used. Thus, 
the coefficient b will be calculated as 

In the present study, ℇ-SVR, specialised form of least 

squares SVR model was used. Radial basis kernel 
function (RBF) was used for nonlinear mapping of 
dataset.

RESULTS ADN DISCUSSION 

Dataset description
In the present study, monthly Chilli Wholesale price 

index (WPI) dataset was used to evaluate the performance 
of proposed EMD-SVR model. The dataset was obtained 
from the Office of the Economic Advisor, Ministry of 
Commerce, Government of India. Figure 2 illustrated the 
monthly data of Chilli WPI from (April, 1994 to May, 
2018) contained 290 data points with base year 2005. The 
descriptive statistics of data, stationarity test and 
normality were presented in Table 1. The statistics 
obtained through augmented Dickey-Fuller (ADF) and 
Phillips-Perron (PP) test were insignificant i.e. null 
hypothsis of unit root test cannot refused. It indicated that 
the given dataset was nonstationary. Jarque-Bera test 
(Table 1) also indicated the nonnormality of data.

j

*,aa

where d (t) = high frequency part i.e. IMF and r (t) = low 1 1

frequency part.

EMD algorithm iterate on the slow oscillation component 
considered as a new signal.

After full decomposition,                                    ....(2.1.2)

Data = sum of IMFs + final residue.

Stepwise EMD algorithm procedure is mentioned below:

Step 1: Identify all extrema of x(t)

Step 2: Interpolate the local maxima to form an upper 
envelope u(x)

Step 3: Interpolate the local minima to form a lower 
envelope l(x)

Step 4: Calculate the mean envelope: m(t)=[u(x)+l(x)]/2

Step 5: Extract the mean from the signal: h(t)=x(t)-m(t)

Step 6: Check whether h(t) satisfies the IMF condition. 

     YES:  h(t) is an IMF, stop shifting.

      NO:  let x(t)=h(t), keep shifting.

Support vector regression (SVR) model
Support Vector Machine (SVM) proposed by Vapnik 

(1998), is nonlinear algorithms used in supervised 
learning frameworks for data analysis and pattern 
recognition. Vapnik (1998) proposed introduced support 
vector regression (SVR) model by incorporating loss 
function. SVR maps input vectors into a high dimensional 
space and then run linear regression in the outer space. 
The model has been built in two steps i.e. the training and 
the testing step. In the training step, the largest part of the 
dataset has been used for the estimation of the function. In 
the testing step, the generalization ability of the model has 
been evaluated by checking the model's performance in 
the small subset that was left aside during training.

For a given data set                                                           , 
SVR maps the original data into a higher or infinite 

dimensional space by nonlinear function , then seeks 
mapping function. 

The general formula for linear support vector 
regression is given as

j

1 2 2( ) ( ) ( )r t d t r t= +

1

( ) ( ) ( )
m

i i
i

x t d t r t
=

= +∑
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remaining 20 per cent used as testing set Then all 
forecasted values of IMFs and residue were summed up to 
get an ensemble forecast of the data.

Table 1: The descriptive statistics of data, stationarity 
               test and Normality test

Observations Minimum Maximum Mean Standard 
deviation

 
Skewness Kurtosis

290 136.5   
 

971.3
 

412.8
 

201.415
 

1.042 3.252

Augmented Dickey-Fuller Test  
(p value)

 

Phillips-Perron Test  
(p value)

 

Jarque-Bera test

(p value)

0.924 0.821 2.772e-12

Figure 2: Time plot of monthly Chilli WPI

Brock-Dechert-Scheinkman (Brock et al., 1996) test 
was used in the dataset for checking nonlinearity of data. 
The results of BDS test (Table 2) described that the test 
statistics were far bigger than the critical values. It 
provided an evidence to reject null hypothesis that the 
price series is linearly dependent.  Therefore, the monthly 
Chilli WPI dataset was nonlinear and nonstationary.

Table 2: Brock- Dechert-Scheinkman (BDS) test

Embedding dimension Conclusion

2 3

Statistics Probability Statistics Probability Nonlinear

66.089 ˂ 0.001 106.523 ˂  0.001

51.709 ˂

 
0.001

 
62.327 ˂

 
0.001

40.525 ˂ 0.001 42.372 ˂ 0.001

35.129 ˂ 0.001 34.132 ˂ 0.001

EMD-SVR Training and forecasting
The whole analysis was done in RStudio. The 

packages “EMD” (Kim et al., 2009) and “e1071” (Meyer 
et al., 2018) were used for EMD and SVR fitting 
respectively. Firstly, whole original dataset has been 
decomposed into 4 IMFs and one final residue, illustrated 
in figure 3. It has been observed that the frequencies and 
amplitudes of IMFs were different from each other. 

Thus, the different hidden oscillatory modes in 
original dataset were separated by EMD. Unit root test 
was also done to check stationarity of IMFs and residue. 
Table 3 described the results of the test.  IMF 4 and 
residue were nonstationary. They were transformed into 
stationary by differencing. Each individual component 
(IMFs and residue) was modelled and forecasted by SVR 
model. 80 per cent data were used as training and 

Table 3: Unit root test of decomposed components of chilli dataset

Phillips-Perron Test
(p value)

Augmented Dickey-Fuller Test 
(p value)

Remarks

<0.01 <0.01  Stationary

<0.01 <0.01  Stationary

<0.01 <0.01

 
Stationary

0.559 0.260 Non-stationary

0.99 0.985 Non-stationary

Figure 3: Decomposed components of monthly Chilli WPI

Iterative 8-step and 6-step ahead prediction was 
utilized in order to measure out-of-sample predictability 
of EMD-SVR model. The model predicted one-step 
ahead each time and for the next time step prediction 

added the current output.  In the study, ℇ-SVR with Radial 

Basis Function (RBF) as kernel function was employed. 
The optimal parameter combination was fixed using grid 
search method. 10-fold cross validation was done to 
overcome outfitting problem. Performance of the 
prediction was compared by Root Mean Square errors 
(RMSE), Mean Absolute Deviation (MAD), Mean 
Absolute Percentage Error (MAPE) and Maximum Error 
(ME). The formulas are given below

2

1

( )
N

i i
i

y F

RMSE
N

=

−

=
∑

1

N

i i
i

y F

MAD
N

−
=
∑

=

1
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i i
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MAPE
N

=

−
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=
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