
3D Mesh Animation Compression based on Adaptive
Spatio-temporal Segmentation

Guoliang Luo∗
East China Jiaotong University

Nanchang, China
luoguoliang@ecjtu.edu.cn

Zhigang Deng∗
University of Houston

Texas, USA
zdeng4@uh.edu

Xiaogang Jin
Zhejiang University
Hangzhou, China
jin@cad.zju.edu.cn

Xin Zhao
East China Jiaotong University

Nanchang, China

Wei Zeng
Jiangxi Normal University

Nanchang, China

Wenqiang Xie
Jiangxi Normal University

Nanchang, China

Hyewon Seo
Univerisity of Strasbourg

Strasbourg, France

ABSTRACT
With the recent advances of data acquisition techniques, the com-
pression of various 3D mesh animation data has become an im-
portant topic in computer graphics community. In this paper, we
present a new spatio-temporal segmentation-based approach for
the compression of 3D mesh animations. Given an input mesh se-
quence, we first compute an initial temporal cut to obtain a small
subsequence by detecting the temporal boundary of dynamic behav-
ior. Then, we apply a two-stage vertex clustering on the resulting
subsequence to classify the vertices into groups with optimal intra-
affinities. After that, we design a temporal segmentation step based
on the variations of the principle components within each vertex
group prior to performing a PCA-based compression. Our approach
can adaptively determine the temporal and spatial segmentation
boundaries in order to exploit both temporal and spatial redun-
dancies. We have conducted many experiments on different types
of 3D mesh animations with various segmentation configurations.
Our comparative studies show the competitive performance of our
approach for the compression of 3D mesh animations.

CCS CONCEPTS
• Computing methodologies → Computer graphics; Anima-
tion;

KEYWORDS
3D mesh animation, compression, adaptive spatio-temporal seg-
mentation

∗Correspondence authors, both authors contributed equally to the paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
I3D ’19, May 21–23, 2019, Montreal, QC, Canada
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6310-5/19/05. . . $15.00
https://doi.org/10.1145/3306131.3317017

ACM Reference Format:
Guoliang Luo, Zhigang Deng, Xiaogang Jin, Xin Zhao, Wei Zeng, Wenqiang
Xie, and Hyewon Seo. 2019. 3D Mesh Animation Compression based on
Adaptive Spatio-temporal Segmentation. In Symposium on Interactive 3D
Graphics and Games (I3D ’19), May 21–23, 2019, Montreal, QC, Canada. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3306131.3317017

1 INTRODUCTION
The key information of a 3D mesh animation is its dynamic behav-
ior, which drives the deformations of different mesh surface areas.
As reported in existing literature, we can achieve a better perfor-
mance on the compression of 3D mesh animations with repetitive
motions or rigid mesh segments, which contain significant redun-
dancies either temporally or spatially [Lalos et al. 2017; Stefanoski
and Ostermann 2010; Váša et al. 2014]. Therefore, it is important
to exploit the dynamic behaviors based on both spatial and tempo-
ral segmentations within a 3D mesh animation for effective data
compression. However, due to the high complexity and the large
data size, it remains a challenge to jointly explore the spatial and
temporal segmentations to further improve the performance of 3D
mesh animation compression.

In this paper, we propose an adaptive spatio-temporal segmen-
tation based model for the compression of 3D mesh animations.
Specifically, we first introduce a temporal segmentation scheme
that explores the temporal redundancy by automatically determin-
ing the optimal temporal boundaries. Then, we also introduce a
novel two-stages vertex clustering approach to explore the spatial
redundancy by automatically determining the number of the ver-
tex groups with optimal intra-affinities. As an application of the
above adaptive spatio-temporal segmentation model, we develop
a full scheme for the compression of 3D mesh animations (Figure
1). Through many experiments, we show the effectiveness and effi-
ciency of our approach, compared to the state of the art 3D mesh
animation compression algorithms.

The contributions of this work can be summarized as follows:

• an adaptive spatio-temporal segmentation approach which
explores both the spatial and temporal redundancies for 3D
mesh animations; and

https://doi.org/10.1145/3306131.3317017
https://doi.org/10.1145/3306131.3317017

I3D ’19, May 21–23, 2019, Montreal, QC, Canada G. Luo, Z. Deng, X. Jin, X. Zhao, W. Zeng, W.Xie and H. Seo

• a compression model for 3D mesh animations by coupling
the novel adaptive spatio-temporal segmentation and the
compression of 3D mesh animations.

The remainder of this paper is organized as follows. We first
review previous and related works on the compression of 3D mesh
animations in Section 2. In Section 3, we briefly give the overview
of our compression scheme. Then, we present the details of our
spatio-temporal segmentation model and its application to the com-
pression of 3D mesh animations in Section 4. The experimental
results by our model are shown in Section 5. Finally, we conclude
this work in Section 6.

2 RELATEDWORK
The compression of 3D mesh animation data has been a persistent
research topic in the past several decades [Maglo et al. 2015].Among
the existing methods, a large portion of the methods take a matrix
form of the 3D mesh animation, on which many of classical data
compression methods and algorithms can be applied, including
Principal Component Analysis (PCA) [Alexa and Müller 2000; Hou
et al. 2017; Liu et al. 2012], linear prediction encoders [Karni and
Gotsman 2004; Stefanoski et al. 2007; Stefanoski and Ostermann
2010; Yang et al. 2002], wavelet decomposition [Guskov and Kho-
dakovsky 2004; Payan and Antonini 2007], and the Moving Picture
Experts Group (MPEG) framework [Mamou et al. 2008]. PCA is a
classical method that can decompose a large matrix as the product
of two much smaller matrices, with minimal information loss. Fol-
lowing the work of [Alexa and Müller 2000], Lee et al. [2007] apply
PCA to 3D mesh animation data after removing its rigid transfor-
mations. Later, researchers have used the linear prediction theory
to further encode the resulting coefficients from PCA [Karni and
Gotsman 2004; Vasa and Skala 2009; Váša and Brunnett 2013]. Simi-
larly, researchers have proposed a Laplacian-based spatio-temporal
predictor [Váša et al. 2014] or curvature-and-torsion based analysis
[Yang et al. 2018] to encode the vertex trajectories for dynamic
meshes. However, they assume an entire sequence as the given in-
put, and do not explicitly exploit the dynamic behaviors enclosed in
the input animation. The key information of a 3Dmesh animation is
its enclosed dynamic behavior; therefore, it is important to exploit
the dynamic behavior coherence in 3D mesh animations for effec-
tive compression, using either spatial segmentation or temporal
segmentation methods.

Spatial segmentation based compression: The key of the spatial
segmentation of a 3D mesh animation is to understand its semantic
behaviors. Many previous methods have been proposed to compute
the spatial segmentations for 3D mesh animations, which can gen-
erate different spatial segmentation schemes for animations with
different motions [A Vasilakis and Fudos 2014; de Aguiar et al. 2008;
James and Twigg 2005; Kavan et al. 2010; Le and Deng 2014; Lee
et al. 2006; Wuhrer and Brunton 2010]. Hijiri et al. [2000] separately
compress the vertices of each object with the same movements
to obtain an overall optimal compression rate. In order to adapt
spatial segmentation for compression, Sattler et al. [2005] proposed
an iterative clustered PCA method to group the vertex trajecto-
ries that share similar Principal Component (PC) coefficients and
then further compress each cluster separately. Its main limitation
is its heavy computational cost. Similarly, Ramanathan et al. [2008]

compute the optimal vertex clustering for the optimal compression
ratio. However, all the above methods assume the entire animation
has been given at the beginning.

Temporal segmentation based compression: The objective of tem-
poral segmentation is mainly to chop a 3D mesh animation into
sub-sequences, each of which represents a different dynamic behav-
ior. Temporal segmentation has been exploited for the compression
of motion capture data [Gong et al. 2012; Gu et al. 2009; Sattler
et al. 2005; Zhu et al. 2012], but the efficiencies of these methods for
3D mesh animation compression may be significantly decreased
since 3D mesh surfaces typically have much more denser vertices
and additional topology than motion capture data [Luo et al. 2017].
Given a mesh sequence, Luo et al. [2013] group the meshes with
similar poses and apply PCA to compress each group to achieve the
optimal compression ratio. Recently, Lalo et al. [2017] proposed an
adaptive Singular Value Decomposition (SVD) coefficient method
for 3D mesh animation compression. They first divide a mesh se-
quence into temporal blocks of the same length and treat the first
block with SVD. Then, the following blocks are treated with the
adaptive bases from the previous block without solving the full
SVD decomposition for each block, which reduces the compute
time.

In summary, spatial and temporal segmentations can help to re-
veal the spatial and temporal redundancies within 3D mesh anima-
tions, which benefits for the development of effective compression
algorithms. The new compression scheme for 3D mesh animations,
presented in this work alternately exploits both spatial and temporal
redundancies.

3 SCHEME OVERVIEW
In general 3D mesh animations mainly have two different forms,
namely, time-varyingmeshes and deformingmeshes. A time-varying
mesh may have different numbers of vertices and different topologi-
cal connectivities at different frames, whereas a deformingmesh has
a fixed topology across frames. Note that we can always compute
the inter-frame vertex correspondences to convert a time-varying
mesh into a deforming mesh [Tevs et al. 2012]. For the sake of
simplicity, we focus on the deforming mesh data in this work.

Then, we define the trigger conditions for the two important
steps in our method. (1) Initial Temporal Cut: given the maximal
length γ init if any dynamic behavior has been detected in the mesh
sequence (with no more than γ init frames) (see Section 4.1), and
(2) Actual Temporal Segmentation: given the maximal length γact
if any dynamic behavior has been detected in any of the vertex
groups (see Section 4.2 and 4.3).

We briefly describe the pipeline of our segmentation scheme as
follows. The algorithmic description is also shown in Figure 1.

(1) We first conduct an initial temporal cut to produce a sub-
sequence S with the maximal possible length of γ init , see
Section 4.1.

(2) If no distinct behavior can be detected in S , i.e., the boundary
frame b = γ init , the subsequence S will be directly sent to
the compressor (the case (I) in Section 4.5), see Section 4.4.

(3) Otherwise (i.e., distinct behaviors are detected in S), we per-
form a 2-stages vertex clustering on S , see Section 4.2.

3D Mesh Animation Compression based on Adaptive Spatio-temporal Segmentation I3D ’19, May 21–23, 2019, Montreal, QC, Canada

Initial Temporal Cut

Animation Input

Vertex Clustering

Temporal Segmentation

Encoder

N Y

N

Y

Y

N

 𝑏 = 𝛾𝑖𝑛𝑖𝑡

𝑏 = 𝛾𝑎𝑐𝑡

𝑏 = 𝛾𝑎𝑐𝑡

(IV)
(III) (II)

(I)

Figure 1: Pipeline overview of our spatio-temporal segmen-
tation scheme for compression. (I, II, III, and IV) are the
4 types of the segmented animation blocks, which are ex-
plained in Section 4.5. Note that b denotes the length of an
initial/actual temporal segmentation, γ init and γact are the
maximal possible lengths for the Initial Temporal Cut and
the Temporal Segmentation (short for the Actual Temporal
Segmentation), respectively.

(4) Then, we continue to compute the temporal segmentation of
each vertex group (spatial segment) within next γact frames,
by analyzing the dynamic behaviors, see Section 4.3.

(5) If we have detected distinct dynamic behaviors of any vertex
group before γact is reached, the vertex trajectories of each
group up to the detected boundary frame are sent to the
compressor, separately. See Section 4.4. After the compres-
sion, we repeat the process from the step 1 (the case (II) in
Section 4.5).

(6) Otherwise (i.e., we have not detected a temporal segmen-
tation before reaching γact), we also send the data of each
vertex cluster to the compressor, separately (the case (III)
in Section 4.5). See Section 4.4. Afterwards, we reuse the
previously obtained vertex clustering and continue the anal-
ysis of the temporal segmentation in the remaining mesh
frames. That is, we repeat the process from the step 4 for the
remaining mesh frames (The case (IV) in Section 4.5).

4 SPATIO-TEMPORAL SEGMENTATION FOR
COMPRESSION

We first describe our spatio-temporal segmentation model that
consists of the initial temporal cut (Section 4.1), vertex clustering
(Section 4.2), and temporal segmentation (Section 4.3). Then, we
apply the spatio-temporal segmentation model for the compression
of 3D mesh animations in Section 4.4. Finally, we discuss different
scenarios while processing a continuous mesh sequence as the
input in Section 4.5.

4.1 Initial Temporal Cut
Let us denote amesh animation as ({Vfi }, E), where E represents the
connectivities among the vertices, and Vfi = (x fi ,y

f
i , z

f
i) represents

the 3D coordinates of the i-th vertex (i = 1, . . . ,V) at the f -th frame
(f = 1, . . . , F). Here V is the total number of vertices, and F is the
total number of frames in the animation sequence.

Given a mesh sequence, the objective of the initial temporal
cut is to determine a boundary frame V |τ | , so that the dynamic
behavior in [V1,V |τ |] is distinctive from that in [V |τ |+1,Vγ

init]. To
this end, we can formulate the initial temporal cut as the following
optimization problem:

min
b ∈[1,γ init]

I ([V1,Vb], [Vb+1,Vγ init]), (1)

whereb is a to-be-solved frame index and I (·, ·) computes the affinity
between two mesh subsequences.

Available techniques for computing I (·, ·) can be classified into
two categories: 1) front-to-end, uni-directional boundary candidate
search, and 2) bi-directional boundary candidate search. Between
them, the bi-direction search method is more robust on detecting
the temporal cut between two successive dynamic behaviors [Barbič
et al. 2004; Gong et al. 2012]. Inspired by the kernelized Canonical
Correlation Analysis (kCCA) approach [Hofmann et al. 2008; Smola
et al. 2007], and its successful application to semantic temporal cut
for motion capture data [Gong et al. 2012], we formulate the initial
temporal cut to a Maximum-Mean Discrepancy problem as follows:

min
bi ∈[1,γ init−ϵ]

−
©«

1
|T1 |2

∑ |T1 |
i, j K(vbi :bi+ϵ , vbj :bj+ϵ)

− 1
|T1 | |T2 |

∑ |T1 |
i

∑ |T2 |
j K(vbi :bi+ϵ , vbj :bj+ϵ)

+ 1
|T2 |2

∑ |T2 |
i, j K(vbi :bi+ϵ , vbj :bj+ϵ)

ª®®®¬, (2)

whereT1 is the subsequence [V1, . . . ,Vbi] andT2 is the subsequence
[Vbi+1, . . . ,Vγ

init−ϵ], and ϵ is a pre-defined parameter to ensure
smooth kernels.

The kernel function in Eq. 2 is defined as follows:

K(vbi :bi+ϵ , vbj :bj+ϵ) = exp(−λ∥vbi :bi+ϵ − vbj :bj+ϵ ∥2), (3)

where λ is the kernel parameter for K(·) [Van Vaerenbergh 2010].
Due to the symmetric property of the kCCA, i.e.,K(A,B) = K(B,A),
we obtain a symmetric kCCA matrix for the animation block.

Finally, we can obtain a boundary frame V |τ | for the initial
temporal cut by solving the objective function in (Eq. 2). Note that
|τ | = b + ϵ due to the usage of a smoothing window. Meanwhile,
we denote the detected initial temporal cut as τ . Figure 2 shows
one of the initial temporal cuts of the ‘March’ data, with γ init = 20
and ϵ = 5.

I3D ’19, May 21–23, 2019, Montreal, QC, Canada G. Luo, Z. Deng, X. Jin, X. Zhao, W. Zeng, W.Xie and H. Seo

 max

frame index

M
M

D
 c

u
rv

e

b

kC
C

A
 m

a
tr

ix

min

Figure 2: An example of the initial temporal segmentation
of the ‘March’ data, with the pairwise frame based kCCAma-
trix (Eq. 3) in the top panel and the MMN curve (Eq. 2) in the
bottom panel. b is the detected boundary frame. The color-
bar indicates the small (blue) and large (red) kernels.

The complexity of the above bi-directional search for the initial
temporal cut is O(|γ init |2), which is less efficient than the uni-
directional methods with O(|γ init |). However, in our context, we
compute the initial temporal cut within a short mesh sequence [1,
γ init], which is a small cost on the computation and thus will not
cause notable delay to the overall compression framework. The
settings of γ init for different experimental data are presented in
Table 1.

4.2 Vertex Clustering
In this section, we describe a vertex clustering (spatial segmen-
tation) algorithm based on a two-stages, bottom-up hierarchical
clustering algorithm to obtain optimal spatial affinities within seg-
ments.

4.2.1 Initial Vertex Clustering. After the initial temporal cut, τ is
obtained; we then compute the vertex clustering based on the dy-
namic behaviors of different vertices. The pipeline of our approach
is shown in Figure 3 (I,II,III).

In this initial vertex clustering stage, we first segment a dynamic
mesh based on rigidity with the following steps.

(1) Compute the MEC for all edge pairs. Similar to [Lee et al.
2006; Wuhrer and Brunton 2010], we compute the Maximal
Edge-length Change (MEC) within |τ | frames for each vertex
pair, see Figure 3(I).

(2) Binary labeling of vertices. We fit the MEC of all the edges
as an exponential distribution epd, see the top of Figure 3(I).
Then, with the aid of the inverse cumulative distribution
function of epd, we can determine a user-specified percent
of the edges as the rigid edges (ρ = 20% in our experiments).
Thus, the vertices that are connected to the rigid edges are

(Ⅰ) (Ⅱ) (Ⅲ) (Ⅳ)

‘deformed’

‘rigid’

Figure 3: Pipeline of the vertex clustering within an initial
temporal cut of the ‘March’ data: (I) Maximal Edge-length
Change (MEC) for all the edge pairs and their distributions,
(II) binary labeling of vertices, (III) the rigid clusters resulted
from the initial vertex clustering, and (IV) the rigid cluster
grouping results.

called the rigid vertices, and the remaining vertices are called
the deformed vertices in this work, see Figure 3(II).

(3) Identify the rigid regions. Based on the above binary labeling
results, we merge the topologically connected rigid vertices
into rigid regions, which become initial rigid vertex clusters.
We also compute the center of each cluster as the average
vertex trajectory of each cluster.

(4) Rigid clusters growing. Starting with the above rigid clusters,
we repeatedly merge the connected neighboring deformed
vertices into the rigid cluster with the most similar trajecto-
ries, and update the center of the corresponding rigid cluster.

The initial vertex clustering is completed till every deformed vertex
has been merged into a rigid cluster δ i (i = 1, . . . ,k , k is the total
number of the clusters), see Figure 3(III).

4.2.2 Rigid Cluster Grouping. In the second-stage vertex clustering,
we further classify the rigid clusters to ω groups with high internal
affinities. In [Sattler et al. 2005], Sattler et al. proposed an iterative
clustered PCA based model for animation sequence compression.
Inspired by this work, we design the second-stage vertex clustering
by iteratively classifying and assigning each rigid cluster to the
group with the minimal reconstruction error until the grouping
remains unchanged. Since the iterative clustered-PCA is performed
on the initial vertex cluster, it works very efficiently, unlike the case
in [Sattler et al. 2005].

The reconstruction error of a rigid cluster δ j is defined as follows:

∥δj − δ̃j ∥2 = ∥δj − (C[j] + δ̂j)∥2, (4)

where δ̃j is the reconstructed cluster using PCA, C[j] is the center
of each group (j = 1, . . . ,ω), and δ̂j is the reconstruction using
the PCA components (see Eq. 6). Note that we have C[j] in Eq. 4,
because PCA contains the centering (mean subtraction) of the input
data for the covariance matrix calculation.

Figure 3 illustrates the process of the rigid cluster grouping with
the ‘March’ data. As an example result in Figure 3(IV), the relatively
less moved rigid clusters, ‘head’, ‘chest’ and ‘right-arm’, are classi-
fied into the same group. Note that we obtain large vertex groups

3D Mesh Animation Compression based on Adaptive Spatio-temporal Segmentation I3D ’19, May 21–23, 2019, Montreal, QC, Canada

because the input mesh are smooth on the surface (see Table 1), un-
like the motion Capture data containing sparse vertex trajectories
that may lead to small groups. Moreover, the computational cost
for the initial vertex clustering presented above is relatively small
because both the number of clusters k and the number of groups ω
are small.

4.3 Temporal Segmentation
After obtaining a set of the spatio-temporal segments L(δ)j (j =
1, . . . ,ω) for the initial temporal cut τ , we further introduce a tem-
poral segmentation step as follows:

• For each vertex group, we stop observing the number of
PCs once it is changed within the current sliding window. In
this way, we can obtain a Num-of-PCs curve for each vertex
group, see the bottom of Figure 4.

• To this end, similar to [Karni and Gotsman 2004], the tempo-
ral segmentation boundary is determined as the first frame
where any Num-of-PCs curve has changes, see the bottom-
right of Figure 4.

The complexity of the temporal segmentation isO(ωγact), where
γact denotes themaximal length of temporal segments. Note that the
computational cost of the PCA decomposition increases exponen-
tially with the input data size. In order to balance the computational
cost and the effectiveness of PCA, we set an adaptive γact for each
of the input data, see Table 1.

… …

…

𝛾𝑎𝑐𝑡 𝜏

…

𝛼𝜏

frame index

n
u

m
b

er
 o

f
P

C
 w

it
h

in

sl
id

in
g

 w
in

d
o

w

Figure 4: Illustration of the temporal segmentation. The top
row shows a sampled mesh sequence, with a bounding box
as a sliding window. The size of the window is dynamically
determined as the length of the initial temporal cut, i.e., |τ |.
The bottom-left shows the vertex grouping of the initial tem-
poral segment, and the bottom-right contains the change of
the number of PCs for each vertex group in the sliding win-
dow. γact is the maximal possible delay, and |ατ | is the de-
tected temporal segmentation boundary.

Parallel computing. The temporal segmentation presented above
is designed for each vertex group (spatio-temporal segment), and
the vertex groups are independent of each other. Thus, we can
implement the temporal segmentation for each vertex group in
parallel. The computational time statistics in Table 1 show the
efficiency improvement through parallelization.

4.4 Compression
After the above spatio-temporal segmentation, we apply PCA to
compress each segment with a pre-defined threshold on the infor-
mation persistence rate, µ ∈ [0 1], which is used to determine the
number of PCs to retain after the PCA decomposition, i.e.,

k∑
i
(σi)/

|n |∑
i
(σi) ≥ µ, (5)

where k ≤ n, and {σi }(i = 1, . . . ,n) are the eigen-values of the
data block in a descending order. Therefore, we can control the
compression quality by manipulating the value of µ. In specific, by
increasing µ, we have less information loss but more storage costs
after compression; and vice-versa.

• Encoder. For a spatio-temporal segment L(δ)ij , i.e., the j-th
spatial segment within the i-th actual temporal segment ατi , we
denote its compression as follows:�Vατi

L(δ)ij

PCA≈ Aij × Bij , (6)

where Aij is the score matrix of dimensions 3|VL(δ)ij | × kij , B
i
j is

the coefficient matrix of dimensions kij × |ατi |, and X̂ denotes a
centered matrix of X by subtracting the mean vectors X, i.e.,

X̂ = X − X. (7)

• Decoder. With the score matrix and the coefficient matrix, we
can approximate each of the spatio-temporal segments using Eq. 6
and Eq. 7. Then, we can reconstruct the original animation by
concatenating the spatio-temporal segments in order.

4.5 Sequential Processing
As discussed in Section 3, our spatio-temporal segmentation scheme
generates four possible animation blocks that are further sent to
the encoder for compression (see Figure 1), which leads to four
types of sequential processing to the successive mesh sequence:

(I) |τ | = γ init . This indicates none of distinct behaviors has been
detected at the initial temporal cut step (Section 4.1). In this case,
the animation block [V1,Vγ

init]will be directly sent to the encoder.
Moreover, we need to re-compute a spatio-temporal segmentation
for the successive mesh sequence.

(II) |τ | < γ init and |ατ | < γact . This indicates the vertex clus-
tering has been conducted and a temporal segmentation boundary
has been detected at V |ατ | . In this case, each vertex group of the an-
imation block will be sent to the encoder, separately. Moreover, we
will re-compute a spatio-temporal segmentation for the successive
mesh sequence.

(III) |τ | < γ init and |ατ | = γact . This indicates the vertex cluster-
ing has been conducted and a temporal segmentation boundary has
not been detected within the range [V1,Vγ

act]. In this case, each
vertex group of the animation block will be sent to the encoder,
separately. Moreover, we will only need to re-compute the temporal
segmentation for the successive mesh sequence.

(IV) Otherwise, we can directly reuse the existing (previous)
vertex grouping results, compute the temporal segmentation, and
then perform the PCA-based compression for each vertex group.
If the new boundary |ατ | < γact , we will need to re-compute a

I3D ’19, May 21–23, 2019, Montreal, QC, Canada G. Luo, Z. Deng, X. Jin, X. Zhao, W. Zeng, W.Xie and H. Seo

Table 1: The results and performances by our model with different configurations of parameters: ϵ and γ init for the Initial
Temporal Segmentation (Section 4.1), γact for the Actual Temporal Segmentation (Section 4.3) and ω for the vertex clustering
(Section 4.2). s and sp are the timings in seconds (unit) of the single-thread and paralleled implementations, respectively, with
the last column showing the percentage of the time savings for each data.

Animations Vertex Frame Parameters Rate KGError Timing

V F ϵ γ init γact ω bpv f % s sp 100 · (s − sp)/s
March 10002 250 5 15 50 4 8.17 5.90 112 101 9.82

5 20 50 4 7.80 5.90 126 120 4.76
5 20 100 4 7.80 5.84 146 135 7.53
5 20 50 8 7.64 6.08 133 123 7.52

Jump 10002 150 5 15 50 4 13.05 6.99 104 98 5.77
5 20 50 4 11.34 7.30 103 96 6.80
5 20 100 4 11.33 7.30 102 97 4.90
5 20 50 8 11.39 6.58 106 100 5.66

Handstand 10002 175 5 15 50 4 7.66 4.33 64 59 7.81
5 20 50 4 8.18 4.43 123 114 7.32
5 20 100 4 8.18 4.43 123 115 6.50
5 20 50 8 7.82 4.62 127 119 6.30

Horse 8431 49 3 9 20 4 26.09 4.70 31 29 6.45
3 12 20 4 20.56 3.66 25 25 0.00
3 12 30 4 20.56 3.66 25 25 0.00
3 12 20 8 23.88 4.10 32 32 0.00

Flaд 2750 1001 10 30 100 4 2.60 7.82 88 67 23.86
10 40 100 4 2.49 7.87 152 123 19.08
10 40 150 4 2.32 7.92 164 132 19.51
10 40 100 8 2.49 7.85 150 126 16.00

Cloth 2750 201 10 30 100 4 1.89 2.65 12 10 16.67
10 40 100 4 1.98 1.93 26 21 19.23
10 40 150 4 1.99 1.94 31 20 35.48
10 40 100 8 1.99 1.88 25 20 20.00

spatio-temporal segmentation for the successive mesh sequence;
otherwise (i.e., |ατ | = γact), it will again become the case (IV) for
the successive mesh sequence.

5 EXPERIMENT RESULTS AND ANALYSIS
In this section, we first present the experimental data and the used
evaluation metrics in Section 5.1. Then, we describe our experimen-
tal results in Section 5.2. In addition, we conducted a comparative
study in Section 5.3. Both our model and the comparative methods
were implemented with Matlab and the experiments were per-
formed on an Intel Core i5-6500 CPU @3.2GHz (4 cells) with 12G
RAM. More results can be found in the supplemental materials.

5.1 Experimental Setup
Table 1 shows the details of our experimental data. Among them,
‘March’, ‘Jump’ and ‘Handstand’ were created by driving a 3D
template with multi-view video [Vlasic et al. 2008]. ‘Horse’ was
generated by deformation transfer [Sumner and Popović 2004].
‘Flaд’ and ‘Cloth’ are dynamic open-edge meshes [Cordier and
Magnenat-Thalmann 2005]. We applied the following two metrics
for quantitative analysis:

Bits per vertex per frame (bpvf). Similar to [Chen et al. 2017;
Stefanoski and Ostermann 2010], we also used bpvf to measure the

performance of compression methods. By assuming that the vertex
coordinates are recorded as single-precision floating numbers, the
bpvf of the original animation is 8bits/Byte×4Bytes×3 = 96. Thus,
we can estimate the bpvf of our model as follows:

bpv f = 96 ·
∑
i, j

(3 · |VL(δ)ij | × kij + k
i
j × |ατi | + |ατi |)/(3 ·V × F).

(8)
Reconstruction error. After compression, we can reconstruct the

animation with the decoder described in Section 4.4. In order to
measure the difference between the reconstructed animation and
the original animation, we use the well-known metric KGError,
proposed by Karni et al. in [Karni and Gotsman 2004]:

100 ·
∥F − F̂∥f

∥F − E(F)∥f
, (9)

where ∥ · ∥f denotes the Frobenius norm, F and F̂ are the original
animation coordinates and the reconstructed animation coordinates
of size 3V ×F , respectively. Moreover, E(F) are the averaged centers
of each frame, and thus F − E(F) indicates the centering of the
original animation.

3D Mesh Animation Compression based on Adaptive Spatio-temporal Segmentation I3D ’19, May 21–23, 2019, Montreal, QC, Canada

5.2 Experimental Results
We present and discuss both the segmentation results and the com-
pression results in this section.

Spatio-temporal segmentation results. Figure 5 shows some sam-
ples of the spatio-temporal segmentation results of our experimen-
tal data (more results can be found in our supplemental materials).
As can be seen in this figure, given the maximal number of spatial
segments (groups) ω = 4, our model is able to automatically de-
termine the optimal number of vertex groups (i.e., exploiting the
spatial redundancy) for different dynamic behaviors (i.e., exploiting
the temporal redundancy) for all the data. For example:

• The segmentation results of the ‘March’ and the ‘Jump’ data are
representatives of the local dynamic behaviors of different mesh
regions. As can be seen in Figure 5, our segmentation model can
not only automatically determine the number of segments, but
also divide the mesh based on the local movements and group
the disconnected regions with similar behaviors.

• The ‘Cloth’ animation in Figure 5(II) is firstly segmented into 4
different highly deformed regions while dropping onto the table.
Then, our approach generated 3 segments, i.e., 2 waving corner
regions with deformed wrinkles and 1 relatively static region.

• From the segmentation results of the ‘Horse’ animation in Fig-
ure 5(III), we can observe the 4 leдs are classified into the same
group when moving towards the same direction; otherwise, they
form different spatial groups. Similarly, the ‘tail’ is grouped with
the ‘trunk’ region in the case of the absence of distinct move-
ments, or it is divided into two groups if bended.

Parallel computing. As presented in Section 4.3, the actual tempo-
ral segmentation is applied to each spatial segment independently,
which can be accelerated through parallel computing. In this exper-
iment, we implement the actual temporal segmentation step with
parallel computing on 4 cells. The computational time is shown
in the column ‘sp ’ in Table 1. Compared to the single thread im-
plementation (column ‘s’ in Table 1), the average efficiency has
been improved by 10.71%, while it can be improved even up to
35.48% (‘Cloth’ data). It is noteworthy that the decompression time
is less than 0.3s for ‘March’, ‘Jump’ and ‘Handstand’, less than 0.06s
for ‘Horse’ and ‘Cloth’, and less than 0.65s for ‘Flag’. This is im-
portant for applications that require a fast decompression such as
bandwidth-limited animation rendering and display.

Compression results. Table 1 shows the different configurations
of our spatio-temporal segmentation approach for the compression
of the experimental data (µ = 0.99). For each of the data with
different parameters, we highlight the best ‘Rate’, ‘KGError’, and
‘Timing’ in bold fonts. We present and discuss the compression
results in reference to the following parameters:

• ϵ . It is a smoothing parameter for the initial temporal segmen-
tation (Section 4.1). This parameter can be empirically chosen
based on the target frame rate and the mesh complexity.

• γ init . If we increase γ init for the initial temporal segmentation,
the computing time may be significantly increased since the time
complexity of the initial temporal segmentation (Section 4.1) is
O(|γ init |2). On the other hand, its influence on KGError is limited.

Moreover, bpv f tends to decrease for most of the experimental
data (except the ‘Handstand’ data).

• γact . As can be seen in Table 1, the change of γact does not
significantly affect any of bpv f , KGError, and the computing
time. This is because most of the actual temporal segmentation
boundaries are found before reaching γact .

• ω. By increasing ω from 4 to 8, we do not observe the significant
changes of the evaluation metrics. This is because our 2-stages
spatial segmentation can automatically converge to the optimal
number of spatial segments. Moreover, the multi-thread imple-
mentation of our approach significantly improves the computa-
tional efficiency (see the ‘Timing’ column in Table 1). Therefore,
in general ω tends to be set to a small number. In fact, based on
the previous studies [Karni and Gotsman 2004; Luo et al. 2013],ω
cannot be a big number because the bit rate will increase sharply
due to the additional groups’ basis. In our experiments, we empir-
ically set ω = 4 because our experimental computer has a CPU
of 4 cells.

5.3 Comparative Studies
We also compared our method with the method in [Sattler et al.
2005] (called as and the ‘Original Simple’ method in this writing),
which is a non-sequential processing compression method. Addi-
tionally, we adopted the idea in [Lalos et al. 2017] which cuts an
animation into temporal blocks of the same size. Then, we can simu-
late the sequential processing of the existing compression methods,
including the ‘Original Soft’ in [Karni and Gotsman 2004] and the
PCA-based methods, to compress each block in order. We call the
adapted approaches as the ‘Adapted Soft’ and the ‘Adapted PCA’.
In order to make fair comparisons, the block size of the adapted
methods is approximately set to the average of |ατ | for each of the
experimental data. Note that we have not included an ‘Adapted
Simple’ method, which can be obtained by similarly adapting the
‘Original Simple’ method, into the comparison due to the extremely
high computational cost of the ‘Original Simple’ method [Sattler
et al. 2005], which is unsuitable for sequential processing.

KG Error versus bpvf. Figure 6 shows the comparisons of an ex-
ample between our method and the other methods. As can be seen
from this figure, our method shows a significantly better perfor-
mance than the adapted methods. That is, with the same bpv f
in the range of [2, 6.5], our method can always reconstruct the
‘Cloth’ animation with a much smaller KG Error. Note that the
‘Original Soft’ method has a better performance when bpv f < 2.
This is because the ‘Cloth’ data contains a large portion of nearly
static poses, which means the animation has significant temporal
redundancies. Thus, the non-sequential precessing method (‘Orig-
inal Soft’) takes this advantage by treating the entire animation.
However, our method runs much more efficiently: on average, 14.5
seconds consumed by our method, 32.5 seconds consumed by the
‘Original Soft’ method, and 4421.9 seconds consumed by the ‘Orig-
inal Simple’ method. Moreover, our method also provides a fine
option for users who prefer high qualities after compression with
slightly more storage cost, e.g., bpv f > 2.

Reconstruction errors. Figure 7 shows the heat-map visualizations
of the reconstruction errors by our method and the other methods.

I3D ’19, May 21–23, 2019, Montreal, QC, Canada G. Luo, Z. Deng, X. Jin, X. Zhao, W. Zeng, W.Xie and H. Seo

(I) (II)

(III)

(IV)

𝜀 = 5
 𝛾𝑖𝑛𝑖𝑡 = 20
𝛾𝑎𝑐𝑡 = 50

𝜀 = 5
𝛾𝑖𝑛𝑖𝑡 = 20
𝛾𝑎𝑐𝑡 = 50

𝜀 = 3
𝛾𝑖𝑛𝑖𝑡 = 12
𝛾𝑎𝑐𝑡 = 20

𝜀 = 10
𝛾𝑖𝑛𝑖𝑡 = 40
𝛾𝑎𝑐𝑡 = 100

Figure 5: The spatio-temporal segmentation results of the experimental data: (I)‘March’, (II)‘Cloth’, (III)‘Horse’, (IV)‘Jump’. Note
that colors only indicate the intra-segment (not inter-segment) disparities. See more results in the supplemental materials.

Figure 6: Comparisons on the ‘Cloth’ animation between our
model (ω = 4,γ init = 40,γact = 100) and the ‘Adapted Soft’
(block size = 100), the ‘Adapted PCA’ (block size = 100), and
the ‘Original Soft’.

Overall, our method can achieve smaller reconstruction errors with
lower bpvfs for the experimental data. We describe the comparative
results in details as follows:

• Comparisons with the adapted methods. As can be seen in the
left and the middle of Figure 7, high reconstruction errors occur
randomly on the mesh using the ‘Adapted Soft’ method, as it is
based on the linear prediction coding, which does not explicitly
constrain the spatial affinities. For the ‘Adapted PCA’ method,
high reconstruction errors occur in the regions of the vertices
with rapid movements.

• Comparisons with the non-sequential processing methods. As can
be seen in the right of Figure 7, for the ‘Cloth’ data, the ‘Original
Soft’ method behaves with similar symptoms as the ‘Adapted
Soft’ method. The ‘Original Simple’ method returns high recon-
struction errors on the table-top region because this method
groups the vertex trajectories based on the entire mesh sequence,

which constrains neither the temporal affinities in the local tem-
poral subsequences nor the local spatial affinities. In addition,
our method is significantly faster than the ‘Original Soft’ method
and the ‘Original Simple’ method: our method consumed 17.78
seconds, the ‘Original Soft’ consumed 36.88 seconds, and the
‘Original Simple’ consumed 4622.36 seconds.

• Our method. Based on the above findings, our method avoids
local extreme reconstruction errors using the specially-designed
spatio-temporal segmentation to exploit both the spatial and the
temporal redundancies. This advantage becomes more signif-
icant when periodically dynamic behaviors either spatially or
temporally occur in the animation. In addition, our method runs
much more efficiently, compared to the non-sequential methods
(i.e., ‘Original Soft’ and ‘Original Simple’).

5.4 Limitations
The main limitation of our current model is the configuration of the
parameters needed for the spatio-temporal segmentation scheme.
To investigate this issue, we have conducted experimental analysis
on the parameters in Section 5.2. Based on our analysis, the tuning
of the parameters only has limited influence on the compression
results. Using the ‘Horse’ data in Table 1 as an example, the com-
pression does not change when we modify γact from 20 to 30. This
is because our approach often detects a temporal segmentation
boundary before reaching γact , case (II) in Section 4.5.

Another limitation of our model is the computational cost. Al-
though we have implemented some parts of our spatio-temporal
segmentation model through parallel computing and its compu-
tational time is superior to those of the existing non-sequential
processing based compression methods, it requires further design
for a frame-by-frame segmentation update scheme towards the
real-time compression of 3D mesh animations in the future.

3D Mesh Animation Compression based on Adaptive Spatio-temporal Segmentation I3D ’19, May 21–23, 2019, Montreal, QC, Canada

‘Our method’

‘Adapted Soft’ ‘Original Soft’

‘Original Simple’ ‘Adapted PCA’

‘Cloth’ ‘Horse’ ‘March’

max

min

bpvf=5.03

KG Error=3.62

bpvf=10.66

KG Error=2.62

bpvf=9.66

KG Error=1.88

bpvf=7.69

KG Error=5.86

bpvf=5.24

KG Error=3.77

bpvf=4.62

KG Error=0.51

bpvf=10.02

KG Error=2.56

bpvf=4.63

KG Error=1.26

bpvf=4.96

KG Error=0.84

Figure 7: The reconstruction errors of the compression by using our method, ‘Adapted Soft’, ‘Adapted PCA’, ‘Original
Soft’ [Karni and Gotsman 2004] and the ‘Original Simple’ [Sattler et al. 2005]. The colorbar indicates the reconstruction er-
rors from low (blue) to high (red).

6 CONCLUSION
In this paper, we present a new 3D mesh animation compression
model based on spatio-temporal segmentations. Our segmentation
scheme utilizes a two-stages temporal segmentation and a two-
stages vertex clustering, which are greedy processes to exploit the
temporal and spatial redundancies, respectively. The main advan-
tage of our scheme is the automatic determination of the optimal
number of temporal segments and the optimal number of vertex
groups based on global motions and the local movements of in-
put 3D mesh animations. That is, our segmentation scheme can
automatically optimize the temporal redundancies and the spatial
redundancies for compression. Our experiments on various anima-
tions demonstrated the effectiveness of our compression scheme.
In the future, we would like to extend our spatio-temporal segmen-
tation scheme to handle various motion representations, which can
be potentially used for various motion-based animation searching,
motion editing, and so on.

ACKNOWLEDGMENTS
This work has been in part supported by the National Natural
Science Foundation of China (No.61602222, 61732015, 61762050,
61602221), the Natural Science Foundation of Jiangxi Province
(No.20171BAB212011) and the Key Research and the Development
Program of Zhejiang Province (No. 2018C01090), and US NSF IIS-
1524782.

REFERENCES
Andreas A Vasilakis and Ioannis Fudos. 2014. Pose partitioning for multi-resolution

segmentation of arbitrary mesh animations. Computer Graphics Forum 33, 2 (2014),
293–302.

Marc Alexa and Wolfgang Müller. 2000. Representing Animations by Principal Com-
ponents. Computer Graphics Forum 19, 3 (2000), 411–418.

Jernej Barbič, Alla Safonova, Jia-Yu Pan, Christos Faloutsos, Jessica K. Hodgins, and
Nancy S. Pollard. 2004. Segmenting Motion Capture Data into Distinct Behaviors.
In Proceedings of Graphics Interface 2004 (GI ’04). Canadian Human-Computer
Communications Society, School of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada, 185–194.

Jiong Chen, Yicun Zheng, Ying Song, Hanqiu Sun, Hujun Bao, and Jin Huang. 2017.
Cloth compression using local cylindrical coordinates. The Visual Computer 33, 6-8
(2017), 801–810.

Frederic Cordier and Nadia Magnenat-Thalmann. 2005. A Data-Driven Approach for
Real-Time Clothes Simulation. Computer Graphics Forum 24, 2 (2005), 173–183.

Edilson de Aguiar, Christian Theobalt, Sebastian Thrun, and Hans-Peter Seidel. 2008.
Automatic Conversion of Mesh Animations into Skeleton-based Animations. Com-
puter Graphics Forum 27, 2 (2008), 389–397.

Dian Gong, Gérard Medioni, Sikai Zhu, and Xuemei Zhao. 2012. Kernelized tempo-
ral cut for online temporal segmentation and recognition. In Proc. of European
Conference on Computer Vision. Springer, 229–243.

Qin Gu, Jingliang Peng, and Zhigang Deng. 2009. Compression of human motion
capture data using motion pattern indexing. Computer Graphics Forum 28, 1 (2009),
1–12.

Igor Guskov and Andrei Khodakovsky. 2004. Wavelet Compression of Parametrically
Coherent Mesh Sequences. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA ’04). Eurographics Association, Goslar
Germany, Germany, 183–192.

Toshiki Hijiri, Kazuhiro Nishitani, Tim Cornish, Toshiya Naka, and Shigeo Asahara.
2000. A spatial hierarchical compression method for 3D streaming animation. In
Proc. of Symposium on Virtual Reality Modeling Language. 95–101.

Thomas Hofmann, Bernhard Scholkopf, and Alexander J Smola. 2008. Kernel methods
in machine learning. Annals of Statistics 36, 3 (2008), 1171–1220.

Junhui Hou, Lap Pui Chau, Nadia Magnenat-Thalmann, and Ying He. 2017. Sparse
Low-Rank Matrix Approximation for Data Compression. IEEE Transactions on
Circuits & Systems for Video Technology 27, 5 (2017), 1043–1054.

I3D ’19, May 21–23, 2019, Montreal, QC, Canada G. Luo, Z. Deng, X. Jin, X. Zhao, W. Zeng, W.Xie and H. Seo

Doug L. James and Christopher D. Twigg. 2005. Skinning Mesh Animations. ACM
Trans. Graph. 24, 3 (July 2005), 399–407.

Zachi Karni and Craig Gotsman. 2004. Compression of soft-body animation sequences.
Computers & Graphics 28, 1 (2004), 25–34.

Ladislav Kavan, Peter-Pike J. Sloan, and Carol O’Sullivan. 2010. Fast and Efficient
Skinning of Animated Meshes. Computer Graphics Forum 29, 2 (2010), 327–336.

Aris S. Lalos, Andreas A. Vasilakis, Anastasios Dimas, and Konstantinos Moustakas.
2017. Adaptive compression of animatedmeshes by exploiting orthogonal iterations.
The Visual Computer 33, 6-8 (2017), 1–11.

Binh Huy Le and Zhigang Deng. 2014. Robust and accurate skeletal rigging from mesh
sequences. ACM Transactions on Graphics 33, 4 (2014), 1–10.

Pai-Feng Lee, Chi-Kang Kao, Juin-Ling Tseng, Bin-Shyan Jong, and Tsong-Wuu Lin.
2007. 3D animation compression using affine transformation matrix and principal
component analysis. IEICE Transactions on Information and Systems 90, 7 (2007),
1073–1084.

Tong Yee Lee, Yu Shuen Wang, and Tai Guang Chen. 2006. Segmenting a deforming
mesh into near-rigid components. The Visual Computer 22, 9-11 (2006), 729.

Xin Liu, Zaiwen Wen, and Yin Zhang. 2012. Limited Memory Block Krylov Subspace
Optimization for Computing Dominant Singular Value Decompositions. SIAM
Journal on Scientific Computing 35, 3 (2012), A1641–A1668.

Guoliang Luo, Frederic Cordier, and Hyewon Seo. 2013. Compression of 3D mesh
sequences by temporal segmentation. Computer Animation & Virtual Worlds 24,
3-4 (2013), 365–375.

Guoliang Luo, Gang Lei, Yuanlong Cao, Qinghua Liu, and Hyewon Seo. 2017. Joint
entropy-based motion segmentation for 3D animations. The Visual Computer 33,
10 (2017), 1279–1289.

Adrien Maglo, Guillaume Lavoué, Florent Dupont, and Céline Hudelot. 2015. 3D Mesh
Compression: Survey, Comparisons, and Emerging Trends. ACM Comput. Surv. 47,
3, Article 44 (Feb. 2015), 41 pages.

K. Mamou, T. Zaharia, F. Preteux, N. Stefanoski, and J. Ostermann. 2008. Frame-
based compression of animated meshes in MPEG-4. In Proc. of IEEE International
Conference on Multimedia and Expo. 1121–1124.

Frédéric Payan and Marc Antonini. 2007. Temporal wavelet-based compression for 3D
animated models. Computers & Graphics 31, 1 (2007), 77–88.

Subramanian Ramanathan, Ashraf A. Kassim, and Tiow Seng Tan. 2008. Impact of
vertex clustering on registration-based 3D dynamic mesh coding. Image & Vision
Computing 26, 7 (2008), 1012–1026.

Mirko Sattler, Ralf Sarlette, and Reinhard Klein. 2005. Simple and efficient compression
of animation sequences. In Proc. of ACM SIGGRAPH/Eurographics Symposium on
Computer Animation. 209–217.

Alex Smola, Arthur Gretton, Le Song, and Bernhard Schölkopf. 2007. A Hilbert
space embedding for distributions. In Proceeding of 18th International Conference
on Algorithmic Learning Theory. Springer-Verlag, 13–31.

Nikolce Stefanoski, Xiaoliang Liu, Patrick Klie, and Jorn Ostermann. 2007. Scalable
Linear Predictive Coding of Time-Consistent 3DMesh Sequences. In 3dtv Conference.
1–4.

Nikolče Stefanoski and Jörn Ostermann. 2010. SPC: fast and efficient scalable predictive
coding of animated meshes. Computer Graphics Forum 29, 1 (2010), 101–116.

Robert W. Sumner and Jovan Popović. 2004. Deformation Transfer for Triangle Meshes.
ACM Trans. Graph. 23, 3 (Aug. 2004), 399–405.

Art Tevs, Alexander Berner, Michael Wand, Ivo Ihrke, Martin Bokeloh, Jens Kerber,
and Hans-Peter Seidel. 2012. Animation Cartography - Intrinsic Reconstruction of
Shape and Motion. ACM Trans. Graph. 31, 2, Article 12 (April 2012), 15 pages.

Steven Van Vaerenbergh. 2010. Kernel methods for nonlinear identification, equalization
and separation of signals. Ph.D. Dissertation. University of Cantabria. Software
available at https://github.com/steven2358/kmbox.

Libor Vasa and Vaclav Skala. 2009. COBRA: Compression of the Basis for PCA Repre-
sented Animations. Computer Graphics Forum 28, 6 (2009), 1529–1540.

Libor Váša and Guido Brunnett. 2013. Exploiting Connectivity to Improve the Tangen-
tial Part of Geometry Prediction. IEEE Transactions on Visualization and Computer
Graphics 19, 9 (2013), 1467–1475.

Libor Váša, Stefano Marras, Kai Hormann, and Guido Brunnett. 2014. Compressing
dynamic meshes with geometric laplacians. Computer Graphics Forum 33, 2 (2014),
145–154.

Daniel Vlasic, Ilya Baran, Wojciech Matusik, and Jovan Popović. 2008. Articulated
Mesh Animation from Multi-view Silhouettes. ACM Trans. Graph. 27, 3, Article 97
(Aug. 2008), 9 pages.

Stefanie Wuhrer and Alan Brunton. 2010. Segmenting animated objects into near-rigid
components. The Visual Computer 26, 2 (2010), 147–155.

Bailin Yang, Luhong Zhang, W.B. Frederick Li, Xiaoheng Jiang, Zhigang Deng, Meng
Wang, and Mingliang Xu. 2018. Motion-aware Compression and Transmission of
Mesh Animation Sequences. ACM Transactions on Intelligent Systems and Technolo-
gies (2018), (accepted in December 2018).

Jeong Hyu Yang, Chang Su Kim, and Sang Uk Lee. 2002. Compression of 3-D triangle
mesh sequences based on vertex-wise motion vector prediction. IEEE Transactions
on Circuits & Systems for Video Technology 12, 12 (2002), 1178–1184.

Mingyang Zhu, Huaijiang Sun, and Zhigang Deng. 2012. Quaternion space sparse
decomposition for motion compression and retrieval. In Proceedings of the 11th

ACM SIGGRAPH/Eurographics conference on Computer Animation. Eurographics
Association, 183–192.

https://github.com/steven2358/kmbox

	Abstract
	1 Introduction
	2 Related Work
	3 Scheme Overview
	4 Spatio-temporal Segmentation for Compression
	4.1 Initial Temporal Cut
	4.2 Vertex Clustering
	4.3 Temporal Segmentation
	4.4 Compression
	4.5 Sequential Processing

	5 Experiment Results and Analysis
	5.1 Experimental Setup
	5.2 Experimental Results
	5.3 Comparative Studies
	5.4 Limitations

	6 Conclusion
	Acknowledgments
	References

