
Vol.:(0123456789)1 3

Journal of Neuro-Oncology (2020) 146:373–380 
https://doi.org/10.1007/s11060-020-03391-1

CLINICAL STUDY

Spatial distribution of malignant transformation in patients 
with low‑grade glioma

Asgeir S. Jakola1,2,3   · David Bouget4 · Ingerid Reinertsen4 · Anne J. Skjulsvik5,6 · Lisa Millgård Sagberg7,8 · 
Hans Kristian Bø9 · Sasha Gulati1,8 · Kristin Sjåvik10 · Ole Solheim1,8

Received: 13 December 2019 / Accepted: 3 January 2020 / Published online: 9 January 2020 
© The Author(s) 2020

Abstract
Background  Malignant transformation represents the natural evolution of diffuse low-grade gliomas (LGG). This is a 
catastrophic event, causing neurocognitive symptoms, intensified treatment and premature death. However, little is known 
concerning the spatial distribution of malignant transformation in patients with LGG.
Materials and methods  Patients histopathological diagnosed with LGG and subsequent radiological malignant transforma-
tion were identified from two different institutions. We evaluated the spatial distribution of malignant transformation with 
(1) visual inspection and (2) segmentations of longitudinal tumor volumes. In (1) a radiological transformation site < 2 cm 
from the tumor on preceding MRI was defined local transformation. In (2) overlap with pretreatment volume after importa-
tion into a common space was defined as local transformation. With a centroid model we explored if there were particular 
patterns of transformations within relevant subgroups.
Results  We included 43 patients in the clinical evaluation, and 36 patients had MRIs scans available for longitudinal seg-
mentations. Prior to malignant transformation, residual radiological tumor volumes were > 10 ml in 93% of patients. The 
transformation site was considered local in 91% of patients by clinical assessment. Patients treated with radiotherapy prior to 
transformation had somewhat lower rate of local transformations (83%). Based upon the segmentations, the transformation 
was local in 92%. We did not observe any particular pattern of transformations in examined molecular subgroups.
Conclusion  Malignant transformation occurs locally and within the T2w hyperintensities in most patients. Although LGG 
is an infiltrating disease, this data conceptually strengthens the role of loco-regional treatments in patients with LGG.
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Introduction

Diffuse low-grade gliomas WHO grade 2 (LGG) remain 
a challenging entity in neuro-oncology. These are slow-
growing tumors, with a median growth rate of approximately 
4 mm/year [1, 2]. In spite of often rather well-defined mar-
gins on MRI, tumor cells are present outside the radiologi-
cally visible tumor, making this an infiltrative disease [3, 
4]. At an unpredictable point of time, LGG speed of growth 
increases due to malignant transformation [5, 6]. Malignant 
transformation is a key clinical event and leads to intensified 
treatment, increased morbidity and premature death [7–9]. 
Consequently, successful effort to delay transformation is 

expected to significantly prolong life and preserve quality 
of life [10].

Compared to studies on recurrence in high-grade gliomas, 
[11–18] there are relatively few studies concerning patterns 
of transformation in LGG [19]. The in vivo growth in high-
grade gliomas as depicted by MRI tends to follow white 
matter tracts and spread is less likely to be perpendicular to 
white matter tracts [20]. Thus, it is also very likely that the 
malignant transformation in LGG is not random. Drawbacks 
of the LGG literature concerning transformations are that 
some papers are old (i.e. from the CT era), mix adults and 
children, mix grade I and II tumors, or do not clearly dif-
ferentiate progression from transformation (i.e. “treatment 
failure”) [21–24]. Nevertheless, a study of 11 malignant 
transformations, where radiotherapy with 1–3 cm margins 
was provided, demonstrated that malignant transformation 
occurred within the irradiated volume [23]. This finding was 
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repeated by two other small studies including 16 and 20 
patients with “treatment failures” [22, 24]. A recent review 
on the topic of progression in LGG pointed out that there are 
few studies, but following more aggressive therapy there is 
an impression that atypical and non-local progressions and 
recurrences more often are seen [19].

Detailed knowledge of patterns of malignant transforma-
tion can be useful when providing local and regional treat-
ment. Question remain whether extensive or even suprato-
tal surgical resection is a scientifically sound approach. For 
instance, supratotal resections does not make much sense 
if we remove brain unlikely to undergo transformation. 
Concerning radiotherapy, better knowledge of disease pro-
gression can help draw “biological” radiation fields or even 
provide a scientific ground whether a shift from photon to 
proton beam radiotherapy is justified. Finally, do the differ-
ent molecular subgroups have different patterns of trans-
formation? With this background we wanted to study the 
radiological progression and transformation pattern in more 
detail.

The aim of this study was to provide detailed data con-
cerning the radiological pattern of malignant transformation 
in LGG.

Methods

In this retrospective study, adult patients (18 years or older) 
with histopathological verified hemispheric diffuse LGG 
without any contrast enhancement on MRI at time of diag-
nosis were eligible for inclusion. The patients were recruited 
from two different institutions, with patients from University 
Hospital of North Norway included from 1999 through 2009, 
and at St. Olavs University Hospital from 1999 through 
2015. The surgical indications differed between institutions, 
but the follow-up regimens were similar, but not identical, as 
described elsewhere [25]. Some patients lacked preoperative 
images, but in the radiological report it was clearly stated 
in all cases there was no contrast enhancement. Since the 
clinical judgement was based upon the pre-transformation 
scan (see below), we included these patients for the clini-
cal interpretation. The earlier WHO classifications used in 
the clinical setting were updated to WHO 2016, as previ-
ously reported, in all patients with tissue available [8, 26]. 
In some patients were treated with radio- or chemotherapy 
before malignant transformation, but in no cases the reason 
for treatment was new contrast enhancement.

Malignant transformation

A radiological transformation was considered in the event 
of a new significant contrast enhancement where repeated 
scans, clinical course or histopathology from reoperation 

separated this from cases of pseudoprogression, radionecro-
sis or unspecific post-treatment changes due to for instance 
ischemia. To determine the spatial transformation, we relied 
on MRI findings. Thus, malignant histology from re-oper-
ation in the absence of enhancement was despite the trans-
formation excluded from analyses of the spatial distribution 
of transformation since we had no reliable data on biopsy 
location. Also, other measures that could be taken as signs 
of malignant transformation prior to contrast enhancement, 
such as for instance FET-PET, was not used in this study 
[27]. Such information would presumably affect the tim-
ing of malignant transformation, but we believe to a lesser 
degree influence the spatial information.

Spatial distributions

In terms of spatial distribution, we used one method with 
clinical judgement (A.S.J) with visual inspection and crude 
one-dimensional measures, and one method based on tumor 
volume segmentations. A radiological transformation 
site < 2 cm from the tumor on high-intensity T2w and/or 
FLAIR signal abnormalities on the pre-transformation MRI 
scan defined local transformation. Distant malignant trans-
formation was used if clearly separated (> 2 cm) from the 
high-signal abnormalities from the pre-transformation scan.

In the method with tumor volume segmentation, semi-
automatic segmentations were performed using the open 
source medical imaging platform 3D Slicer (version 4.8.1, 
www.slice​r.org). A radiologist (H.K.B) performed preopera-
tive segmentations and the follow-up segmentations were 
performed by a neurosurgeon with extensive experience in 
radiological LGG assessment (A.S.J). First, we segmented 
the preoperative tumor volume using T2 or FLAIR MRI 
sequences. Next, we identified the scan where malignant 
transformation (i.e. new contrast enhancement) was detected 
and segmented the contrast enhancement using T1 with gad-
olinium enhancement. Then, we segmented the T2 or FLAIR 
volume from the scan prior to the scan where malignant 
transformation was detected. Together, these segmentations 
built the fundament to the processing pipeline as described 
below.

Processing pipeline

Key MRI scans being the pre-operative, pre-transforma-
tion, and transformation timepoints were selected, and to 
determine the relative locations of transformation sites they 
needed to appear in the same referential space. A process-
ing pipeline, illustrated in Fig. 1, was therefore developed 
to generate the results for each patient. As input, the pair 
of original images (i.e., pre-operative, pre-transformation, 
and transformation) and corresponding ground truth vol-
umes (original tumor, pre-transformation, transformation) 

http://www.slicer.org
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were used, shown as step 1 in Fig. 1. Then, the brain was 
automatically segmented using a neural network model pre-
trained with over 300 samples, shown as step 2 in Fig. 1. 
The neural network follows a U-Net architecture and has 
been implemented in Python using Keras and TensorFlow 
[28]. Using the brain segmentation, the skull was stripped 
before performing registration of the pre-transformation and 
transformation images (as long as the corresponding ground 
truth volumes) toward the pre-operative MRI volume. This 
process, illustrated as step 3 in Fig. 1, was performed using 
a symmetric diffeomorphic technique (named SyN) from the 
Advanced Normalization Tools [29]. In the end, the three 
volumes of interest were displayed in an overlap fashion over 
each MRI volumes, all expressed in the pre-operative MRI 
space, represented by step 4 in Fig. 1.

Statistics

In this study we provide only descriptive statistics. 
This was chosen since focus was to describe patterns of 
transformation.

Results

We included 43 patients with radiological transformation 
in this study and they are presented in Table 1 for an over-
view. All patients were used in the clinical interpretation, 

and we had 36 patients with available tumor segmentations 
where the preoperative volume served as a fundament (seven 
patients lacked preoperative digitalized MRI images and one 
patient had a pre-transformation MRI scan that was not pos-
sible to segment).

In 35/43 patients (81%) we had complete radiological his-
tory with preoperative scan, scan prior to transformation (or 
similar to preoperative scan if rapid transformation), and 
scan containing the transformation. We used this informa-
tion to visualize the progression and transformation, and we 
present a collage of patients with different types of tumor 
distributions in Fig. 2.

In Tables 2 and 3 we present characteristics relevant 
to the malignant transformation itself. We observed that 
39 patients (91%) had local recurrence according to clini-
cal interpretation. According to the segmentation overlay 
model, 33/36 patients (92%) had malignant transformation 
within the preoperative tumor T2w/FLAIR volume. These 
patients were all considered to have a local transformation 
based upon clinical judgement, however the one patient with 
combined distant and local malignant transformation in the 
clinical data was categorized as local transformation in the 
overlay model since there was an overlap of volumes. 

An overall representation of the relative location of the 
transformation inside the pre-operative tumoral volume is 
shown in Fig. 3. A simplified tumor volume is represented 
as a unitary cube, where the center of cube reflects the center 
of the tumor. The distance ratio between the centroid of the 
transformation volume (after registration) and the centroid 
of the preoperative tumor volume is computed and is repre-
sented as one colored dot in the figure. A central dot means 
a transformation happened in the middle of the pre-oper-
ative tumor, and a dot closer to the white edges means a 
transformation happening on the border of the pre-operative 
tumor. Overall, there were many transformations occurring 
in a central location with respect to the preoperative tumor 
volume. In Fig. 3, we also visualize transformation sites for 

Fig. 1   Overview of the processing pipeline to visualize all MRI vol-
umes for a same patient in the same space. The first row (P) repre-
sents the pre-operative MRI volume, the second row (PT) the pre-
transformation MRI volume, and the third row (T) the transformation 
MRI volume. The columns are describing for one patient: (1) the ini-
tial MRI volumes with manual tumor segmentation (red for pre-oper-
ative, green for pre-transformation and blue for transformation), (2) 
the automatic brain segmentation (in yellow) for skull stripping, (3) 
the results of the volume registration in the pre-operative space, (4) 
the post-registration tumor volumes overlap

Table 1   Baseline, tumor and treatment characteristics for all included 
patients (n = 43)

*n = 36 due to lack of digital preoperative MRI

Age, mean (SD) 45.2 (12.9)
Female, n (%) 18 (41)
Preoperative tumor volume in ml, median (Q1–Q3) 30 (9–61)*
Histopathology, n (%)
 Oligodendroglioma 12 (28)
 Astrocytoma IDH mut 16 (37)
 Astrocytoma IDH wt 13 (30)
 LGG, NOS 2 (5)

Surgical resection prior to transformation, n (%) 21 (49)
Chemotherapy prior to transformation, n (%) 14 (33)
Radiotherapy prior to transformation, n (%) 23 (54)
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the different molecular subgroups, but no obvious pattern 
was seen.

We further summarized the pattern of transformation 
(according to clinical judgement, n = 43) in molecular 
subgroups and in relation to therapy given. There was no 

obvious pattern in local versus distant transformation, but 
the group with radiotherapy had somewhat lower proportion 
of local transformation (83%).

Discussion

This study shows that malignant transformation of LGG 
most often occurs locally regardless of subgroups. We found 
no specific transformation patterns with respect to molecular 
subgroups or when separated by type of treatment. Although 
LGG is an infiltrative cancer and MRI is insensitive in terms 
of detecting the biological tumor volume, almost all cases 
of transformation do occur locally within or in close prox-
imity to previous areas of hyperintensities as seen in T2w 
sequences.

Tumor burden

Studies indicate an association between tumor size or size 
of tumor remnant and earlier malignant transformation [7, 
30–34]. The dose–response relationship of tumor size and 
malignant transformation in astrocytomas and oligoastrocy-
tomas was demonstrated by Shaw et al. where 28% recurred 
with < 1 cm of remnant, 88% where remnant was 1–2 cm 
and 100% if > 2 cm remnant [33]. For oligodendrogliomas, 
the dose response relationship was also present, but to lesser 
extent with 23%, 43% and 75% depending on largest diam-
eter of remnant. Of note, in the study from Shaw et al. the 
definition of progression was a clear increase in T2/FLAIR 
or contrast enhancement, and this differs from our definition 
focusing on the detrimental event of malignant transforma-
tion. Others have demonstrated that oligodendrogliomas are 
more likely to progress without malignant transformation 
[30, 35]. Since the existing literature is a mix of progression 
and transformation, the numbers would likely differ even 

Fig. 2   Different examples showcasing the pre-operative volume (in 
red), the pre-transformation volume (in green) and the transformation 
volume (in blue) on top of the pre-operative MRI volume (n = 35). 
Each row is representing a different patient, and each column is rep-
resenting a different view. First row; local transformation within pre-
operative volume. Second row; local transformation without overlap. 
Third row; local transformation with border overlap. Fourth row; dis-
tant transformation

Table 2   Characteristics of 
malignant transformation (MT) 
(n = 43)

*n = 42 due to volumetric analysis not possible in one of the pre-transformation scans
**n = 36 due to lack of digital preoperative MRI

Median volume of tumor in the pre-transformation MRI, ml (Q1–Q3) 40 (19–89)*
Tumor volume < 10 ml in pre-transformation MRI, n (%) 3/42 (7)*
Median months from pre-transformation MRI scan to MT (Q1–Q3) 5 (3–12)
Multifocal MT, n (%) 11 (26)
MT volume in ml, median (Q1–Q3) 1.4 (0.4–5.0)
Median months from first surgery until MT (Q1–Q3) 37 (13–70)
Clinical; local MT, n (%)
 Local (within 2 cm), n (%) 39 (91)
 Distant, n (%) 3 (7)
 Combined, n (%) 1 (2)

Model; MT within preoperative volume, n (%) 33/36 (92)**
Histopathological verified MT through new resection, n (%) 19 (44)
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more between astrocytomas and oligodendrogliomas if only 
malignant transformation was analyzed.

In the surgical literature several studies have reported that 
remnant less than 10–15 ml have a better prognosis [36, 37] 
although no visible postoperative remnant is clearly superior 
[38–40]. In our series, smaller residual tumor volumes than 
10 ml did not protect against transformation although it was 

seen in only 7% of cases. Also, in none of the patients trans-
formation occurred without any preceding T2 hyperintensi-
ties, albeit in almost 10% of cases the transformations were 
distant and seemingly unrelated to earlier T2w hyperintensi-
ties. This association with MRI defined volume and trans-
formation is further corroborated by a study that focused 
on recurrent surgery of a previous LGG, where in stable 
lesions being WHO grade II the median volume was 15.6 ml 
while for tumors with transformations to WHO grade III 
and grade IV the volumes were 30.9 ml and 69.7 ml volume 
respectively [34].

Spatial distribution

In perceived low-risk patients undergoing surgical resec-
tion with aim of gross-total removal, and where no adjuvant 
therapy was provided, the spatial distribution of progres-
sion was found to be within 2 cm from the resection cavity 
in 82% of cases, more than 2 cm away in 16% and 2% had 
truly distant progression [33]. In our cohort that was not a 
typical low-risk profile and being based partly upon histori-
cal data where biopsies where frequently performed [25], 
we observed a higher proportion of local progressions and 
transformations. In low-risk patients undergoing extensive 
resection the pattern of transformation may be somewhat 
different, as observed by others that more aggressive therapy 
leave room for more atypical and distant progression and 
transformation patterns in the longer-term [19]. We included 
only patients with radiological transformations, excluding 
patients with transformation based upon histopathology 
alone from reoperation without preceding change in MR 
phenotype. These surgical transformations are also local in 
origin, hence the vast majority of patients with LGG will 
present a local transformation. Overall, the patterns of dis-
tributions together with the volume associations mentioned 
above conceptually favor aggressive locoregional therapy, 
and presumably also repeated surgery whenever possible.

An early study from North et al. demonstrated that all 
treatment failures were within the radiation field when 
2–3  cm margin was used [21]. Similarly, Shaw et  al. 
described that all failures were within the radiation field 
[24]. Also, survival was not improved by more extensive 
fields such as whole brain radiotherapy [24]. We observed 
slightly more distant recurrences in the subgroup treated 
with radiotherapy prior to malignant transformation. This 
may be a survivor effect if radiotherapy to some degree pre-
vents local malignant transformation, and since there is no 
cure, transformations will therefore eventually more often be 
distant. A recent study in patients with anaplastic gliomas 
treated with intensity-modulated radiation therapy suggested 
that radiotherapy may prevent local recurrence. In that study, 
a relapse pattern with components of marginal and distant 
pattern were observed in 19% and 37%, respectively [41]. 

Table 3   Patterns of malignant transformation (MT) according to 
clinical judgement and according to the model using tumor volumes 
overlay for clinically relevant subgroups

When we used a model of malignant transformation with pre-trans-
formation images instead of pre-operative images, there were no rel-
evant differences in results (n = 43)
*MT denotes malignant transformation

Clinic: local MT Model: 
MT inside 
pre-op

Astrocytoma IDH wt, n/N (%) 13/13 (100) 13/13 (100)
Astrocytoma IDH mut, n/N (%) 14/16 (88) 10/11 (91)
Oligodendroglioma, n/N (%) 11/12 (92) 9/10 (90)
Chemotherapy prior to MT, n/N (%) 13/14 (93) 12/13 (92)
Radiotherapy prior to MT, n/N (%) 19/23 (83) 15/18 (83)
No resection prior to MT, n/N (%) 20/22 (91) 20/22 (91)
Resection prior to MT, n/N (%) 19/21 (91) 13/14 (93)

Fig. 3   Overall distribution of the relative position of the centroid 
of the transformation volume over the centroid of the pre-operative 
volume for the different molecular marker groups. The few distant 
transformations are excluded in this model (n = 3). White represents 
the borders of the unitary pre-operative volume, red represents oligo-
dendroglioma, green the IDH mut astrocytomas, and blue the IDH wt 
astrocytomas
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In our view, the majority of studies indicate that the major-
ity of progression and transformation follow a local pattern, 
and this can argue for proton-beam radiotherapy in patients 
with LGG. However, to date there is very limited clinical 
evidence [42]. It has been speculated if the more conformal 
field would create a risk for more distant recurrences. How-
ever, one very recent larger retrospective study found that 
most recurrences following proton beam-radiotherapy were 
indeed local, with only 12% being “out of field”, a com-
parable figure to our “distant” transformations [43]. Thus, 
the “dose-bath” beyond the targeted areas are perhaps not 
needed since most recurrences and transformations are local. 
That larger areas of the presumably functional brain more 
often receives no radiation based upon comparative proton 
plans, means also less risk in the longer-term for cognitive 
decline. This is potentially important as we otherwise can 
transform long-term treatment successes in terms of sur-
vival to long-term failures speaking of cognitive function 
and quality of life.

Molecular markers and patterns of radiological 
transformation

Previous studies of malignant transformation have not used 
the WHO 2016 classification, and this may affect results. 
One recent study on failures following radiotherapy in ana-
plastic gliomas demonstrated a distant pattern of failure in 
45% of IDH mutated patients compared to 25% in those with 
IDHwt [41]. In our study we had > 1/3 with IDH mutated 
astrocytomas and almost 30% molecularly defined oligo-
dendrogliomas, however we did not find any differences in 
patterns of recurrence with respect to the molecular profile 
of the tumors. However, across subgroups the most common 
pattern of transformation was local.

Limitations

Ideally all areas should have been sampled to verify malig-
nant transformation, although either new histopathology or 
the clinical course ensured that only patients with malig-
nant transformation were included (and not pseudoprogres-
sion). The T2/FLAIR volume at time of progression was 
segmented to illustrate the growth of the tumor and use this 
in relation to the newly developed contrast enhancement to 
demonstrate the tumor evolution. However, in some cases 
the T2w images showed the occurrence of gliosis follow-
ing surgery and hyperintensities in patients undergoing 
radiotherapy. In these cases, this volume is associated with 
inherent uncertainty. Also, even the intra-observer variabil-
ity in LGG segmentations can be significant [44]. The over-
lay segmentation model also holds some limitations when 
comparing with the preoperative volumes in patients under-
going resection, as the cavity may shrink/collapse causing 

areas outside the cavity to appear within the cavity perhaps 
increasing the proportion of recurrences within the preop-
erative tumor volume. Further, this study is not equipped to 
answer effectiveness of therapies and the sample size did 
not allow for comparisons for time to transformation. Also, 
the small sample limits the subgroup analyses. Finally, the 
centroid model can provide erroneous results in multifocal 
tumors.

Conclusion

We provide new data on malignant transformation in patients 
with LGG. Although the tumors are diffusely infiltrating 
brain tissue outside the radiological tumor, the catastrophic 
event of malignant transformation occurs locally in the vast 
majority of patients. Molecular subgroups exhibit the same 
patterns of transformation. Minimizing the dense tumor, 
as defined by hyperintensity in T2w images, may prolong 
time to transformation. This may explain the strong associa-
tion of extensive resections and survival, and conceptually 
strengthen the role of effective loco-regional treatments in 
patients with LGG.

Acknowledgements  Open access funding provided by University 
of Gothenburg. The study was financed by Grants from the Norwe-
gian Cancer Society (5703787), the Swedish state under the agree-
ment between the Swedish government and the country councils (the 
ALF-agreement, ALFGBG-716671) and the Swedish research council 
(2017-00944).

Funding  The study was financed by Grants from Norwegian Cancer 
Society (5703787), the Swedish state under the agreement between the 
Swedish government and the country councils (the ALF-agreement, 
ALFGBG-716671) and the Swedish research council (2017-00944).

Data availability  All data generated or analyzed during this study are 
included in this published article.

Compliance with ethical standards 

Conflict of interest  Asgeir S. Jakola has received a speaker honorarium 
from INOMED. Otherwise, the authors report no conflict of interest.

Ethical approval  All procedures performed in studies involving human 
participants were in accordance with the ethical standards of the insti-
tutional and/or national research committee and with the 1964 Helsinki 
declaration and its later amendments or comparable ethical standards. 
The study was approved by the Regional Committee for Medical 
Research and Health Research Ethics in Central Norway (Reference: 
2016/1377). The need for informed consent was waived by the com-
mittee.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 



379Journal of Neuro-Oncology (2020) 146:373–380	

1 3

were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

	 1.	 Mandonnet E et al (2003) Continuous growth of mean tumor diam-
eter in a subset of grade II gliomas. Ann Neurol 53(4):524–528

	 2.	 Pallud J et al (2006) Prognostic value of initial magnetic resonance 
imaging growth rates for World Health Organization grade II glio-
mas. Ann Neurol 60(3):380–383

	 3.	 Pallud J et al (2010) Diffuse low-grade oligodendrogliomas extend 
beyond MRI-defined abnormalities. Neurology 74(21):1724–1731

	 4.	 Zetterling M et al (2016) Extension of diffuse low-grade gliomas 
beyond radiological borders as shown by the coregistration of his-
topathological and magnetic resonance imaging data. J Neurosurg 
125(5):1155–1166

	 5.	 Rees J et al (2009) Volumes and growth rates of untreated adult 
low-grade gliomas indicate risk of early malignant transformation. 
Eur J Radiol 72(1):54–64

	 6.	 Scribner E et al (2017) Key rates for the grades and transforma-
tion ability of glioma: model simulations and clinical cases. J 
Neurooncol 133(2):377–388

	 7.	 Murphy ES et al (2018) Risk factors for malignant transformation 
of low-grade glioma. Int J Radiat Oncol Biol Phys 100(4):965–971

	 8.	 Jakola AS et al (2017) Surgical resection versus watchful waiting 
in low-grade gliomas. Ann Oncol 28(8):1942–1948

	 9.	 Buckner JC et al (2016) Radiation plus procarbazine, CCNU, and 
vincristine in low-grade glioma. N Engl J Med 374(14):1344–1355

	10.	 Mandonnet E, Duffau H, Bauchet L (2012) A new tool for grade II 
glioma studies: plotting cumulative time with quality of life versus 
time to malignant transformation. J Neurooncol 106(1):213–215

	11.	 Sherriff J et al (2013) Patterns of relapse in glioblastoma multi-
forme following concomitant chemoradiotherapy with temozolo-
mide. Br J Radiol 86(1022):20120414

	12.	 Tejada S et al (2014) Factors associated with a higher rate of dis-
tant failure after primary treatment for glioblastoma. J Neurooncol 
116(1):169–175

	13.	 Chen L et al (2015) Glioblastoma recurrence patterns near neural 
stem cell regions. Radiother Oncol 116(2):294–300

	14.	 Shibahara I et al (2013) The expression status of CD133 is associ-
ated with the pattern and timing of primary glioblastoma recur-
rence. Neuro Oncol 15(9):1151–1159

	15.	 Buglione M et al (2016) Pattern of relapse of glioblastoma mul-
tiforme treated with radical radio-chemotherapy: could a margin 
reduction be proposed? J Neurooncol 128(2):303–312

	16.	 Chan DT et al (2016) Pattern of recurrence and factors associated 
with cerebrospinal fluid dissemination of glioblastoma in Chinese 
patients. Surg Neurol Int 7:92

	17.	 Straube C et al (2017) Re-irradiation after gross total resection of 
recurrent glioblastoma: spatial pattern of recurrence and a review 
of the literature as a basis for target volume definition. Strahlen-
ther Onkol 193(11):897–909

	18.	 Cachia D et al (2017) Radiographic patterns of progression with 
associated outcomes after bevacizumab therapy in glioblastoma 
patients. J Neurooncol 135(1):75–81

	19.	 Ferracci FX, Michaud K, Duffau H (2019) The landscape of post-
surgical recurrence patterns in diffuse low-grade gliomas. Crit Rev 
Oncol Hematol 138:148–155

	20.	 Esmaeili M et al (2018) The direction of tumour growth in glio-
blastoma patients. Sci Rep 8(1):1199

	21.	 North CA et al (1990) Low-grade cerebral astrocytomas. Survival 
and quality of life after radiation therapy. Cancer 66(1):6–14

	22.	 Rudoler S et al (1998) Patterns of tumor progression after radi-
otherapy for low-grade gliomas: analysis from the computed 
tomography/magnetic resonance imaging era. Am J Clin Oncol 
21(1):23–27

	23.	 Pu AT et al (1995) Low grade gliomas: preliminary analysis of 
failure patterns among patients treated using 3D conformal exter-
nal beam irradiation. Int J Radiat Oncol Biol Phys 31(3):461–466

	24.	 Shaw EG et  al (1989) Radiation therapy in the manage-
ment of low-grade supratentorial astrocytomas. J Neurosurg 
70(6):853–861

	25.	 Jakola AS et al (2012) Comparison of a strategy favoring early 
surgical resection vs a strategy favoring watchful waiting in low-
grade gliomas. JAMA 308(18):1881–1888

	26.	 Louis DN et al (2016) The 2016 World Health Organization clas-
sification of tumors of the central nervous system: a summary. 
Acta Neuropathol 131(6):803–820

	27.	 Kunz M et al (2011) Hot spots in dynamic18FET-PET delineate 
malignant tumor parts within suspected WHO grade II gliomas. 
Neuro-Oncology 13(3):307–316

	28.	 Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional 
networks for biomedical image segmentation. In: Proceedings of 
the international conference on medical image computing and 
computer-assisted intervention. Springer

	29.	 Avants BB, Tustison N, Song G (2009) Advanced normalization 
tools (ANTS). Insight J 2:1–35

	30.	 Bobek-Billewicz B et al (2014) Anaplastic transformation of low-
grade gliomas (WHO II) on magnetic resonance imaging. Folia 
Neuropathol 52(2):128–140

	31.	 Jung T-Y et al (2011) Early prognostic factors related to progres-
sion and malignant transformation of low-grade gliomas. Clin 
Neurol Neurosurg 113(9):752–757

	32.	 Chaichana KL et al (2009) Prognostic significance of contrast-
enhancing low-grade gliomas in adults and a review of the litera-
ture. Neurol Res 31(9):931–939

	33.	 Shaw EG et  al (2008) Recurrence following neurosurgeon-
determined gross-total resection of adult supratentorial low-
grade glioma: results of a prospective clinical trial. J Neurosurg 
109(5):835–841

	34.	 Jalbert LE et al (2016) Magnetic resonance analysis of malignant 
transformation in recurrent glioma. Neuro Oncol 18(8):1169–1179

	35.	 Chaichana KL et al (2010) Recurrence and malignant degenera-
tion after resection of adult hemispheric low-grade gliomas. J 
Neurosurg 112(1):10–17

	36.	 Berger MS et al (1994) The effect of extent of resection on recur-
rence in patients with low grade cerebral hemisphere gliomas. 
Cancer 74(6):1784–1791

	37.	 Roelz R et al (2016) Residual tumor volume as best outcome pre-
dictor in low grade glioma - a nine-years near-randomized survey 
of surgery vs. biopsy. Sci Rep 6:32286

	38.	 Capelle L et al (2013) Spontaneous and therapeutic prognostic 
factors in adult hemispheric World Health Organization Grade II 
gliomas: a series of 1097 cases. J Neurosurg 118(6):1157–1168

	39.	 Smith JS et al (2008) Role of extent of resection in the long-
term outcome of low-grade hemispheric gliomas. J Clin Oncol 
26(8):1338–1345

	40.	 Wijnenga MMJ et al (2018) The impact of surgery in molecularly 
defined low-grade glioma: an integrated clinical, radiological, and 
molecular analysis. Neuro Oncol 20(1):103–112

	41.	 Back M et  al (2019) Pattern of failure in anaplastic glioma 
patients with an IDH1/2 mutation. Strahlenther Onkol. https​://
doi.org/10.1007/s0006​6-019-01467​-0

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00066-019-01467-0
https://doi.org/10.1007/s00066-019-01467-0


380	 Journal of Neuro-Oncology (2020) 146:373–380

1 3

	42.	 Thurin E et al (2018) Proton therapy for low-grade gliomas in 
adults: a systematic review. Clin Neurol Neurosurg 174:233–238

	43.	 Kamran SC et al (2019) Patterns of failure among patients with 
low-grade glioma treated with proton radiation therapy. Pract 
Radiat Oncol 9(4):e356–e361

	44.	 Bo HK et al (2017) Intra-rater variability in low-grade glioma 
segmentation. J Neurooncol 131(2):393–402

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Affiliations

Asgeir S. Jakola1,2,3   · David Bouget4 · Ingerid Reinertsen4 · Anne J. Skjulsvik5,6 · Lisa Millgård Sagberg7,8 · 
Hans Kristian Bø9 · Sasha Gulati1,8 · Kristin Sjåvik10 · Ole Solheim1,8

	 David Bouget 
	 david.bouget@ntnu.no

	 Ingerid Reinertsen 
	 Ingerid.Reinertsen@sintef.no

	 Anne J. Skjulsvik 
	 anne.j.skjulsvik@ntnu.no

	 Lisa Millgård Sagberg 
	 lisa.millgard.sagberg@ntnu.no

	 Hans Kristian Bø 
	 hans.kr.b@gmail.com

	 Sasha Gulati 
	 sasha.gulati@ntnu.no

	 Kristin Sjåvik 
	 kristin_sjaavik@yahoo.no

	 Ole Solheim 
	 ole.solheim@ntnu.no

1	 Department of Neuromedicine and Movement Science, 
NTNU, Trondheim, Norway

2	 Department of Neurosurgery, Sahlgrenska University 
Hospital, Blå Stråket 5, vån 3, 41345 Gothenburg, Sweden

3	 Department of Clinical Neuroscience, Institute 
of Neuroscience and Physiology, University of Gothenburg, 
Sahlgrenska Academy, Box 430, 40530 Gothenburg, Sweden

4	 Department of Health Research, SINTEF Digital, Trondheim, 
Norway

5	 Department of Pathology, St. Olavs University Hospital, 
Trondheim, Norway

6	 Department of Clinical and Molecular Medicine, Faculty 
of Medicine and Health Sciences, NTNU, Norwegian 
University of Science and Technology, 7491 Trondheim, 
Norway

7	 Department of Public Health and Nursing, Faculty 
of Medicine and Health Sciences, NTNU, Trondheim, 
Norway

8	 Department of Neurosurgery, St. Olavs University Hospital, 
Trondheim, Norway

9	 Department of Diagnostic Imaging, Nordland Hospital Trust, 
Bodø, Norway

10	 Department of Neurosurgery, University Hospital of North 
Norway, Tromsö, Norway

http://orcid.org/0000-0002-2860-9331

	Spatial distribution of malignant transformation in patients with low-grade glioma
	Abstract
	Background 
	Materials and methods 
	Results 
	Conclusion 

	Introduction
	Methods
	Malignant transformation
	Spatial distributions
	Processing pipeline
	Statistics

	Results
	Discussion
	Tumor burden
	Spatial distribution
	Molecular markers and patterns of radiological transformation
	Limitations

	Conclusion
	Acknowledgements 
	References




