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Abstract 

For an ICME (Integrated Computational Material Engineering) modeling framework 

used for the age-hardening aluminum alloy design and heat treatment parameters 

optimization, it is critical to take into account the geometric shape of precipitates, as it is 

tightly related to the precipitation kinetics and particles' hardening effect. The aim of this 

paper is to present such an ICME modeling approach to describe the precipitation of 

disk-shaped hardening particles during aging treatment and predict the final yield strength. 

The classical Kampmann-Wagner Numerical (KWN) model is extended to consider the 

influence of disk-shaped particle morphology on growth kinetics. The extension consists of 

two correction factors to the growth rate equation and to the Gibbs-Thomson effect. The 

extended model, coupled with a metastable thermodynamic database, is applied to simulate 

precipitation kinetics of Al-Cu and Al-Mg-Zn alloys during aging treatment. The predicted 

microstructural features are in reasonable agreement with the reported experimental 

observations. Furthermore, a strengthening model for disk-shaped particles, which considers 

the size distributions of precipitates, is developed. The predicted yield strengths are compared 

with reported tensile test results and with predictions from other strength models. Unlike 

other models, the proposed strength model can reveal the strength contribution from 

disk-shaped precipitates without an additional tuning parameter for accounting for the impact 

of the mean particle spacing in the slip plane. 
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1. Introduction 

The shape of hardening particles in heat-treatable aluminum alloys is often 

non-spherical. Typical examples are needle-shaped     precipitates in Al-Mg-Si [1] and 

disk-shaped    precipitates in Al-Cu [2] alloys. Previously, many microstructure and 

mechanical properties models employed an assumption of spherical precipitates [3-5]. 

However, the development of models for microstructure evolution and strength for 

non-spherical particles (including needle, disk, and other complex shapes) is crucial for the 

Integrated Computational Materials Engineering (ICME) framework to optimize industrial 

alloy compositions and heat treatment processes for metallic materials [6].  

Research efforts towards microstructure modeling have been reported such as the ones 

listed in [6-10], and they can be divided into two categories: The Frequency Distribution 

Function (FDF) approaches and the Direct Detailed Numerical approaches (DDN) [11]. The 

former is represented by Kampmann-Wagner Numerical (KWN) approach and the later by 

the phase field method. The FDF approaches have been successfully applied to predict the 

as-cast grain size of inoculated multi-component aluminum alloys [12], model the 

homogenization process in Al-Mn-Fe-Si alloys [13] and Al-Mg-Si-Fe-Mn alloys [14, 15], as 

well as to simulate concurrent nucleation, growth, and coarsening of multi precipitates during 

aging treatment in Al-Mg-Si alloys [16]. One of the important features of the FDT 

approaches is that the model is able to treat the statistical distribution of a specific 

microstructure feature. When it comes to the applications within industrial alloy 

design/processing parameter optimization problems, this type of approaches are superior to 

the accurate, but computationally-expensive, phase field approach [16] in which the detailed 

spatial distributions of microstructure features are predicted. The KWN method excels at 

addressing the multi-scale and multi-component industrial problems due to its mathematical 

simplicity and convenient coupling with the CALPHAD database. Both of the two 

approaches have been applied to non-spherical particles growth [6, 8, 10]. The 

computationally expensive phase field method can even be employed to pin down the most 

important physical properties in determining the final shape of precipitates for Al-Cu alloys, 

i.e. the growth anisotropy [10]. 

Disk-shaped or plate-shaped hardening particles are encountered during aging treatment 

of many different alloy systems. Examples include disk    particles in Al-Cu [2], lath S 

particles in Al-Cu-Mg [17], platelet η' particles in Al-Zn-Mg [18], plate   
  particles in 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Mg-Zn [19], plate    particles in Mg-Y-Zn [20], disk     particles in Inconel 718 [21], and 

disk         particles in Cu-Ni-Si alloys [22]. The KWN approach needs to be extended 

to enable its application to these industrial alloys. Such an extension is straightforward 

following the methodology, earlier applied successfully to needle-shaped particles in Refs. [6, 

8].  

The extension involves a full analytical solution to the volume diffusion-controlled 

growth of the particles and approximate treatment of Gibbs–Thomson effect. The diffusion 

solution for oblate spheroids with constant aspect ratio was provided by Ham [23] and by 

Horvay and Cahn [24] (HHC). Chen and Doherty [25] applied the HHC theory to Al-Cu 

alloys and compared the predicted growth rates with the measured values. Liu et al. [26] also 

utilized the HHC theory but adapted the original equations to model the aging process of 

heat-treatable aluminum alloys containing plate/disc- or rod/needle- shaped precipitates. 

Recently, this method has been adopted by Hu et al. [27] to predict the growth process of 

disk-shaped    precipitates in Al-Cu-Cd alloys. The mathematical problem related to 

non-spherical particle growth is also of interests to the researchers in other disciplines. In a 

work considering the inorganic carbon uptake by phytoplankton, Wolf-Gladrow and 

Riebesell [28] found that the increase in the surface to volume ratio of spheroids enhances the 

potential supply of solutes per unit cell. Thus, they proposed a surface area equivalent 

concept to treat non-spherical particle’s growth. 

Recently two simple correction factors were introduced to describe the effects of the 

particle shape on growth kinetics [6, 8]. The general idea was to obtain one correction factor 

by solving the steady-state diffusion problem for the particle shape of interest. The other 

factor modifies the Gibbs–Thomson effect and can be derived from the Gibbs energy 

minimization principle for the considered particle shape. Holmedal et al. [6, 8] worked out 

correction factors for needle-shaped particles, based on the analytical solution of the diffusion 

problem by Ham [23, 29], and by numerical solution of the diffusion problem for cuboid 

shapes. The correction factors were implemented into a KWN model framework and tested 

by predicting the precipitation kinetics of needle-shaped     precipitates in Al-Mg-Si alloys 

[6, 8], where these extensions led to a better agreement with the experimental measurements 

on particle size distributions. 

The concept of applying two correction factors was later adopted in the Thermo-calc 

software [30, 31], following the methodology suggested in [6, 8]. They considered spheroid 

shapes and applied the same analytical solution of the diffusion solution by Ham [23, 29], but 

also included oblate spheroid shapes as an approximation of disk-shaped precipitates. They 

took a step further to account for shape evolution by minimizing the sum of coherent elastic 
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strain energy and interfacial energy. However, their correction factor for the Gibbs Thomson 

effect differs significantly from the one suggested by Holmedal et al. [6, 8]. Their treatment 

of the Gibbs Thomson effect follows the classical treatment in Ref. [32]. It is simply assumed 

that the particle surface will have the equilibrium shape, allowing both curvature and facets 

with corners, and that this shape is dictated by the anisotropy of the surface energy according 

to the Wulff’s solution. The surface energy must be specified only at one reference point at 

the particle surface, its further directional variation is dictated by the prescribed particle 

shape. For this treatment, it corresponds to, that the particle grows fastest in directions normal 

to particle surface parts with lowest surface energy. This is not the case when the particle has 

coherent or partly coherent surfaces that are constrained from bowing out, i.e. surface growth 

in the surface normal direction is constrained and surface curvature is restricted. For example, 

the     precipitates considered in [6, 8] are needle shaped with a higher surface energy for 

their end surfaces than for their coherent side surfaces, but they still increase their aspect ratio 

by elongating faster in their needle direction. The reason is that the surface formation is 

constrained. When a particle is forced to remain cuboid in shape and only grows in the needle 

direction, the areas of the top and bottom surfaces of the needle remain the same, and only 

new side surfaces are created. This has a low cost in terms of surface energy. When the 

needle thickens, the energy cost is mainly due to the increased areas of the needle end 

surfaces corresponding high surface energy. The treatment of Gibbs Thomson effect from 

Thermo-calc software [30, 31] has the potential to be extended to account for the growth 

constraints. 

In this paper, the same methodology as the one employed for prolate-shaped particles [6, 

8] is applied to describe the growth kinetics of disk-shaped particles. The different treatments 

mentioned above will be evaluated in Section 2.1. Such an evaluation, which is lacking in the 

literature, is useful for any further development along this research front. Finally, a 

reasonable treatment is chosen and combined with the correction factor for the 

Gibbs-Thomson effect to extend the KWN model. 

Another novelty of this work is to propose a strength model for disk-shaped particles. 

Thus, the importance of introducing particle morphology and particle size distributions in the 

whole ICME framework is further revealed. Earlier works [3, 4, 9, 26, 27, 33-36] deal with 

strength contributions from precipitates according to the theories by Friedel [37] and Kocks 

[38]. In these theories two parameters are required, i.e. the mean distance between dislocation 

obstacles in the slip plane and the mean obstacle strength. In terms of estimating the mean 

distance between dislocation obstacles in the slip plane, it is quite common to use a simplified 

model based on the mean particle spacing in the slip plane, assuming that the particles are 
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uniformly distributed and have the mean size [3, 4, 9, 26, 27, 33-36]. Note that previous 

strength models for non-spherical precipitates [3, 4, 9, 27, 34, 35] provide different models 

for strong and weak particles [9, 34, 35] or introduce an additional calibration parameter to 

treat the strength contribution from non-spherical precipitates [3, 4, 27]. For the second 

parameter, the mean obstacle strength, a common way is to make an average of the strengths 

of all precipitates [3, 4]. However, it is well known that thin, long, needle-shaped precipitates 

pierce many slip planes and therefore contribute with a higher number of dislocation 

obstacles than spherical particles [39]. It can be further improved by using an average of the 

strengths of all particle-based dislocation obstacles in the slip plane considering the size and 

shape distributions of the precipitates. This strength model has been applied to the AA6082 

alloy [39]. This current paper provides an extension of this strength model to cases of 

disk-shaped precipitates. Furthermore, an integration of the extended KWN and the strength 

model is made, using the predicted size distribution of the precipitates as input. The 

integrated framework is verified by simulating precipitation kinetics and strengthening 

responses of binary Al-Cu and ternary Al-Mg-Zn alloys during aging. 

The goal of the paper is to reveal the effects of particle shape and size distribution on 

precipitation kinetics and mechanical properties. The paper is organized as follows. Section 2 

describes the extended KWN model for disk-shaped precipitates. Section 3 concentrates on 

the novel strength model for disk-shaped precipitates. Section 4 compares the reported 

experimental data with the predicted results. A discussion is given in Section 5. 

 

2. The extension of the KWN model toward disk-shaped particles 

Previously, the KWN model for needle-shaped precipitates has been reported in [6, 8]. 

The KWN modeling framework of the current model is quite similar and not described here. 

The new extension consists of two correction factors: one is for growth rate equation and the 

other is for Gibbs-Thomson effect. They are described in the following two subsections. 

 

2.1. The correction factor for growth rate equation 

For diffusion-controlled growth, the key in deriving the growth rate is to calculate the 

diffusional transportation rate of solute to the migrating interface. Following Ham's treatment 

[23], a disk-shaped precipitate is approximated as an oblate spheroid, as shown in Figure 1, 

with a thickness of L and radius of   : 

      

  
  

   

  
   (1) 
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Here        . The aspect ratio is defined as          . The volume, V, of the oblate 

spheroid is  

   
  

 
  

   (2) 

The eccentricity e and surface area, S are given by 

   √  
  

   
  √     (3a) 

       
 (  

    

 
       ) (3b) 

It is useful to define a radius, R, of an equivalent sphere (see Figure 1), whose volume is 

identical to the spheroid: 

   √
   

 

 

 

 (4) 

As to be shown later, the precipitation kinetics of the spheroid particle and its spherical 

equivalent are closely related.  

The oblate spheroidal coordinate is employed in the following analysis. The relationship 

between oblate spheroidal coordinates and Cartesian coordinates is as follows: 

           (5a) 

           (5b) 

                   (5c) 

Here, 

   
 

 
√   

     (5d) 

Here                ]             . 

It is assumed that the compositional profile of solute i in the front of the migrating 

precipitate-matrix interface satisfies the steady-state diffusion equation, and that the boundary 

conditions at the migrating interface and at the far-field boundary are angle-independent. 

Therefore we have 

        (6) 

with the boundary conditions of      
  for    , i.e. on a sphere of infinite radius, and 

     
      on the oblate surface, i.e.          √   

    . 

According to the analytical solutions of Eq. (6) found in reference [23] for oblate 

spheroids, the compositional profile surrounding a growing spheroid with the dimension of 

   is described by: 
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     (  

                     
   

          
   

) (7) 

Eq. (7) should be contrasted with the compositional profile surrounding the equivalent 

volume spherical precipitate: 

   
               

  
   

 
√

   
 

 

 

 (8) 

Here   √        . From the compositional profiles expressed by Eq. 7 and Eq. 8, the 

following equation can be derived to calculate the flux   
       of solute i through the 

precipitate interface for the oblate spheroid, and the flux for the equivalent volume sphere, 

  
         

, respectively: 

   
       ∬       

 

 (9) 

Here   is the unit vector normal to the precipitate interface. A vector  , with opposite 

direction from  , gives the flux of solute i per unit area. 

      

 

 
√

    

     

   

  
 (10a) 

 

     √
     

    
       (10b) 

Thus, 

 
  
       

          

        
 

          

      (
 

√    
)

 
(11a) 

 

  
         

        √
 

 
   

 
 

 (11b) 

The following solute conservation law should be satisfied at the migrating interface: 

      (  
        

 )     (12) 

where   
 
 is the solute concentration (per volume) of solute i in the particle.  

The rates of the volume change of the oblate spheroid ( ̇      ) and the equivalent 

volume sphere ( ̇         ) are derived from Eqs.11a and 11b, respectively: 

 
 ̇       

          

(  
        

 )       (
 

√    
)
 

(13a) 

  ̇          
       

(  
        

 )
√

  
  

 

 

 (13b) 
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Thus,  

      
 ̇      

 ̇         
 

√    

√ 
 

       
 (14) 

where      is the correction factor for growth rate equation. In the asymptotic limit of small 

aspect ratios, it can be found as          √ 
 

 . Thus, the growth rate of the radius of the 

spherical particle with equivalent volume and the same amount of diffusion flux can be 

expressed as: 

 
  

  
 

         

(  
        

 
) 

 (15) 

  is the time. 

For multi-component systems (   ), the Eq. 15 is written as: 

 
  

  
 

         

(  
        

 
) 

 (15.1) 

 
     

(  
       

 
 
)
 

     

(  
        

 
)
 for      (15.2) 

The dependence of the proposed correction factor for growth rate equation on the aspect 

ratios is shown in Figure 2. With the aspect ratio decreasing from 1 to 0.01, the correction 

factor increases from 1 to 3. Compared with the spherical shape, the oblate shape enhances 

the solute atom transportation rate to the migrating interface, and thus increases the growth 

rate of the precipitate. The introduction of the growth rate correction factor can be regarded 

as a modification of the diffusivity   , if the precipitate shape remains unchanged.  

In addition, the correction factors reported in Ref. [25, 26, 28] are also derived (see 

Appendix A) and compared with the proposed correction factor in Figure 2. Note that Chen 

and Doherty’s correction factor is supersaturation-dependent, and a Matlab script was made 

to solve the nonlinear equation A3 iteratively, and then to derive the correction factor for 

each supersaturation. As can be seen from Figure 2, the correction factor from Chen and 

Doherty [25] increases more sharply with decreasing aspect ratio when the supersaturation 

increases. When the supersaturation is very low, results from Chen and Doherty’s [25], 

Wolf-Gladrow and Riebesell’s [28], and our proposed method are quite close. In comparison, 

Liu et al.’s result [26] is smaller than the others. Moreover, when the aspect ratio is equal to 

one, the correction factor from Ref. [26] is significantly smaller than unity, and the one from 

Ref. [25] decreases from about 1.6 at the supersaturation of 0.1 to close to 1.0 at the 

supersaturation of 0.0005. Only Wolf-Gladrow and Riebesell’s [28] and our models 

degenerate to the spherical case.  

Among these four correction factors, it is found that Liu et al.’s [26] method 

underestimates the growth rate of oblate-shaped particles and also does not degenerate to the 
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spherical one when the aspect ratio is equal to one. Wolf-Gladrow and Riebesell’s [28] 

method is based on the hypothesis that the correction factor can be estimated from the surface 

area of the non-spherical particle, so their results need to be verified by much more detailed 

mathematical solutions such as the phase field method. The correction factor from Chen and 

Doherty [25] depends on both the supersaturation and aspect ratio and may be a better choice 

in handling solute-rich alloys such as Ni-based superalloys. However, it is not straightforward 

to employ this correction factor to extend the KWN model. For the age-hardening aluminum 

alloy with low supersaturation, the model proposed can predict its microstructural evolution 

with good numerical efficiency and robustness. 

The particles sometimes are better approximated by a cuboid plate shape as shown in 

Figure 4. For this geometry, a numerical solution of the diffusion solution was carried out. 

The numerical solution is the same as reported in [8] for cases of cuboid needle-shaped 

particles, except for the choice of aspect ratio smaller than one. Hence, details about the 

simulations are not described here. For small aspect ratios, the diffusion is controlled by the 

plate area of the particle, and an asymptotic solution can be found (numerical) as      

     √ 
 

. This solution is similar as for the oblate spheroid shape with the same       

dependency, and for aspect ratios       this is a good approximation. The correction 

factor for cuboid plates from the numerical simulations is included in Figure 2 and is very 

close to the proposed method. Note that the volume of a cuboid plate particle is larger than of 

an oblate-shaped particle with the same aspect ratio.  

 

2.2. The correction factor for the Gibbs-Thomson effect 

Due to the Gibbs-Thomson effect,     is modified differently along the precipitate 

interface due to the interfacial energy anisotropy leading to a variation of local mean 

curvature,  , which is given by: 

   
 (   

  (
  

    
 )      )

   (  
  (

  

    
 )      )

   
  

 

 
   

 

 
 (16) 

Here   is the parametric latitude. As mentioned in the previous work [8], the treatment of 

the variation of solute concentration along a non-spherical particle interface is a difficult task. 

In [8], two simplified approximate methods were considered, both assuming that the shape of 

the particle is known a priori and changing slowly. Note that this type of model accounts for 

the effects induced by shape change on growth rate but cannot be applied to predict the shape 

change. One way to simplify the mathematical treatment is to apply averages of the 

interfacial energy and of the local curvature variation, i.e. to assume that the Gibbs-Thomson 
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effect to the interfacial matrix composition on the whole non-spherical surface is represented 

by the average local mean curvature of the spheroid surface,      . 

       
 

 
∫

 
 (   

  (
  

    
 )      )

   (  
  (

  

    
 )      )

 
 

  

 
 

 
 
 

 (17) 

Thus, the correction factor due to Gibbs-Thomson effect is given: 

                 (18a) 

For the case of a cuboid shape with sharp corners, the local curvature cannot be applied. 

Instead, another approach was applied in [8], taking into account the increase in free energy 

due to the presence of the particle interface. This methodology for the Gibbs-Thomson effect 

of prolate-shaped and cuboid needle-shaped particles was reported in [8]. For the oblate 

spheroid this methodology gives a correction factor: 

            
 

  
 
 

(  
  

√    
      √    ) (18b) 

For the case of the cuboid plate particle with aspect ratio   (the ratio of thickness and 

width), the correction factor is the same as given in [8] for the case of needle shaped 

particles: 

            
      

  
(
  

  
)

 
 
 (18c) 

The interfacial phase composition, both for cases of oblate-shaped or cuboid particles, 

can be calculated by applying one of the suggested correction factors: 

      
        

    (
     

 

  
 
   

) (19) 

Here   is the interfacial energy.   
 
 is the average molar volume of   phase.   and   

are the Boltzmann constant and temperature, respectively.   
 

 is the molar fraction of 

element   in the   phase. 

Figure 3 plots the dependencies of the second correction factor,  , on the aspect ratio for 

the three cases considered above. In all three cases, the correction factor increases with 

decreased aspect ratio, except for a slight decrease close to unity for the mean curvature 

approximation. This means that the Gibbs-Thomson effect will increase the interfacial solute 

content, which decreases the solute supplement to precipitates and thus lower precipitate 

growth rate. This is opposite to the effect of the first correction factor. The second correction 

factor could be regarded as a modification of the interfacial energy   if the precipitate shape 

remained spherical.  
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3. Strength model 

When building a strength model for Al-Cu alloys, the particles are the precipitates with a 

shape corresponding approximately to cuboid plates aligned with {   } aluminum matrix 

planes, see e.g. in Ref. [40]. Let the half-diagonal of the particles be denoted  . Such 

particles, aligned with on {   } planes, will interact with dislocations gliding on the {   } 

planes, provided the center of the particle is closer than √     from the {   } slip plane, 

as illustrated in Figure 4. The cross-sectional area that is intersected by the glide plane, varies 

with how close the particle is located. A statistical distribution of the particle half-diagonal is 

considered. A density      denotes the number of particles of size   per volume and per 

half-diagonal length. Hence ∫    
 

 
   , where    is the number of particles per volume. 

A small area    of the (111) slip plane is considered in Figure 4. Particles with size   

aligned not only with      , but also        or      , will pierce this glide plane if they 

are located closer than  √     away from it. Note that this is an estimate for thin particles; 

this length will change with increased thickness, towards    for spherical particles. A 

control volume        √     contains all such particles, as sketched in Figure 4. The 

expected number of such intersecting particles in this control volume, i.e. particles of size 

between        and        that intersects the slip plane area   , can be expressed 

from the statistical distribution. 

       
 √ 

 
      (20a) 

The density of particle-based pinning points per area slip plane is denoted  . The density 

of pinning points per area slip plane of size between        and        is denoted 

  . Then the number of particles of size between        and        that intersects 

the slip plane area   , can alternatively be expressed 

              
  √ 

 
      (20b) 

When the distance between the particles is significantly larger than  , each particle 

intersection of the slip plane counts as one pinning point, corresponding to    . However, 

when the particles are close to each other, which is the case close to peak hardness, the width 

of the particle matters. When the distance between the plates is of the same order of 

magnitude as  , a simple estimate would be to model the plate as four needles along its edges. 

This corresponds to    . It follows that the density of pinning points per area slip plane,  , 

i.e. the number of intersecting particles per area slip plane, equals 
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   ∫   
 

 

 ∫
  √ 

 
    

 

 

 
  √ 

 
    (21) 

Here,   is the average particle radius. The particles act as obstacles for the dislocation 

movement. Their non-dimensional obstacle strength is            , where    is the 

critical breaking angle of the dislocation. The largest particles are non-shearable with    , 

whereas the dislocations can glide through sufficiently weak, shearable particles. The energy 

required for cutting increases with increasing area of the section of the particle that the 

dislocation cuts through. Furthermore, the dislocation cuts the particle obliquely. Depending 

on the line direction of the dislocation as compared to the particle orientation, a certain length 

of the dislocation has to cut (glide) through the particle. This will be a length between the 

thickness and the width of the intersected plane of the plate type of particle. When doing so, a 

one Burgers vector step of new particle interface area is created on entering and leaving, and 

the internal structure of the particle is modified. The details are complicated and not fully 

explored. We will here make the pragmatic and simple assumption that the non-dimensional 

obstacle strength increases proportionally to the cross-sectional area of the particle that the 

dislocation has to cut. However, at a certain critical area,   , the particle will act as a strong 

particle. 

The average strength of all particles or pinning points experienced by a slip plane area 

  , can be expressed 

   
∫       

 

 

∫     
 

 

 
∫   

  √ 
 

    
 

 

∫
  √ 

 
    

 

 

 
 

   
∫       

 

 

 (22) 

Here    is the average cutting strength of a particle of half-diagonal  . Note that the average 

strength values for all particles and for pinning points are the same. 

A correlation between particle thickness   and half-diagonal   is assumed 

   
 

 
 (23) 

It is assumed that the cutting strength depends on the cut area as 

      (
 

  
  ) (24) 

The cross-sectional area   of a cuboid plate varies with where the dislocation cuts it, with a 

maximum when it glides through the particle center. One particle contributes with many 

pinning potential points, one for each slip-plane intersection. Each intersection corresponds to 

a specific cutting strength. Hence, the same particle can act as both a strong or weak pinning 

point for different slip planes cutting through. The average cutting strength of a particle of 

radius   is 
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∫    

 

 

 
 

 
∫    (

 

  
  )   

 

 

 (25) 

For the cuboid plate with max thickness   and diagonal   , the cut area through the 

particle varies linearly with the distance   between the particle center and where the glide 

plane intersects the major axis, i.e.   √     | | /2. The max area is       √     . 

When        , the critical area size will occur at      √        . The average 

pinning point strength for all glide planes being cut, is  

    

{
 
 

 
 √   

   
         

√   

 
   

  
√   

   
          

√   

 
   

 (26) 

Finally, based on discrete dislocation simulations, the strength contribution    from the 

particles can be expressed [39] 

          √   
 
 (  

 

 
 

 
) (27) 

where   is the Taylor factor.   is the aluminum shear modulus, and   is the Burgers 

vector.    ,           ,            will be used. Thus, the overall yield strength 

   is calculated by summing three contributions: 

              (28) 

where    is the intrinsic strength of Al, equal to 45 MPa [41];     is the contribution from 

solid solution strengthening, described by 

     ∑    
    

 

 (29) 

where    is a constant related to the size, modulus and electronic mismatch of a specific 

solute element. The value of 60               will be used for the Cu element, which is 

derived from the measured initial yield strength [41, 42]. A slightly smaller value of 46.4 

              has been used in [3, 4] for the solid solution effect from Cu elements. 

When building a strength model for    phases in Al-Zn-Mg alloys, the particles are the 

precipitates with a shape corresponding approximately to cuboid plates aligned with {   } 

aluminum matrix planes [18]. Correspondingly, the Eqs. 21 and 26 are modified, 

respectively: 

   ∫   
 

 

 ∫
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    {

   

  
               

                 

 (31) 
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The values of   for Mg and Zn elements are chosen as 20 and 3               , 

respectively [43]. 

4. Models application 

4.1. Experimental data 

The Al-4.62 wt.% Cu-0.65 wt.% Mg (Al-2.01 at.% Cu-0.74 at.%) alloys studied earlier 

in Ref. [26] were selected to verify the extended KWN model. As reported in Ref. [26], the 

dominant precipitates are disk-shaped    phases in the alloy, while the Mg containing 

  -Al2CuMg phase is insignificant. Hence the alloy is here in the modelling approximated as 

a binary Al-4.62 wt.% Cu (Al-2.015 at.% Cu) alloy. The reported experimental 

microstructure results for the aging at 513.15K for about 4h [26] are listed in Table 1. 

The extended KWN model is also applicable to multi-component aluminum alloys. An 

example of the Al-6.1 wt.% Zn-2.35 wt.% Mg alloys aged at 433.15K with a fast heating rate 

was used [44, 45]. Note that the considered material was undeformed, and the evolution of 

precipitate mean radius and microhardness with time was reported. The dominant precipitates 

are plate-shaped    phases in the alloy. 

4.2. Study of the extended KWN model behavior 

The extended KWN model was applied to simulate the precipitation kinetics of the 

disk-shaped    phases from the binary Al–4.62 wt.% Cu alloy during aging heat treatment. 

The classical heterogeneous nucleation law was adopted. The nucleation law has been 

described in detail in Ref. [16]. One of the important input parameters to the nucleation 

model is the number of heterogeneous nucleation sites. The parameter was assumed to 

correspond to the measured maximum particle number density, 570     , which is the 

number density close to 0.25 hours aging treatment. In addition to the number of 

heterogeneous nucleation sites, the other key input parameter to the KWN model is the 

interfacial energy,  , which affects both incubation time and coarsening rates. Based on a 

literature survey [46], the interfacial energy for the    phase ranges from 0.03 to 0.67 J/m
2
. 

The value of 0.06 J/m
2 

was chosen in the simulation. All input parameters used in the model 

are listed in Table 2.  

Two different assumptions about the precipitates shape were used: the spherical shape 

and the oblate shape with a constant aspect ratio of 0.05. Note that the measured aspect ratios 

vary from 0.03 to 0.1 [16], so the middle value of 0.05 was chosen as the one used in our 

simulation. As can be seen from Figure 3, there is a slight difference (about 1.3) using 

different treatments for the curvature effect at this aspect ratio. In this study, the novel mean 

curvature method is used to treat the curvature effect, i.e. using Eq.18a. The predicted volume 

fraction and mean volume-equivalent spherical radius of the    phase are compared with 
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experimental measurements in Figures 5 and 6, respectively. The KWN model with the 

oblate shape assumption predicts higher volume fraction and larger mean radius of the    

phase than with the spherical-shape assumption at the same aging time and agrees much 

better with the measured volume fraction and mean radius of precipitates.  

Predicted distributions of the precipitate size are shown in Figure 7. The distributions for 

spheroid and oblate precipitates can both be well fitted by log-normal distributions. It should 

be pointed out that no measured data on the size distribution of precipitates was reported in 

Ref. [26]. To further test the strength model, a measured size distribution of oblate 

precipitates of an Al-3 wt.% Cu-0.05 wt.% Sn alloys aged at 473K for 1 hour [35], as shown 

in Figure 7 (c), will also be input into the strength model. Note that the main hardening 

particles in this alloy are also    phases. 

The proposed KWN model is also applied to predict the growth process of the 

plate-shaped    phases in ternary Al-6.1 wt.% Zn-2.35 wt.% Mg alloys aged at 433.15K. 

Due to limited experimental data, the input parameters are obtained mainly by tuning with 

available experimental results. The number of heterogeneous nucleation sites and the 

interfacial energy of the    phase are chosen as 4.0×10
5
      and 0.08 J/m

2
, respectively. 

The constant aspect ratio of 0.6 is used in this simulation. The predicted mean 

volume-equivalent spherical radius of the    phase is compared with the experimental 

results from small angle scattering, as shown in Figure 8. Similarly, the KWN model with the 

oblate shape assumption well predicts the mean radius of the    phase. 

4.3 Application of the strength model 

It is commonly assumed that the critical size for the transition from shearable to 

non-shearable precipitates is close to the average size of the precipitates in the peak aged 

stage [9, 39, 47]. This is also assumed here, as input for the strength model, i.e. the value 

corresponding to the critical transition line plotted in Figure 7 is used as an input to the 

strength model below.  

The strength model was applied to predict the evolution of yield strength during the 

aging process of the considered Al–4.62 wt.% Cu alloys at 513.15K. By comparison, the 

distributions using the spherical assumption were used as input and applying the strength 

model for spherical particles reported in [39]. Predicted results for both these strength models 

are compared with the experiments and shown in Figure 9. Note that the overaged stage is not 

included, because coarsening is not considered in this study. 

As can be seen from Figure 9 (a), the proposed model with the oblate shape assumption 

predicts a smaller contribution from solid solution strengthening and a larger contribution 

from precipitation than the spherical assumption. In total, the yield strength is underestimated 
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using the spherical assumption, while the results using the oblate assumption match well with 

the measured values, as seen in Figure 9 (b). Note that the contribution from solid solution 

strengthening is relatively large in Al–4.62 wt.% Cu alloys as compared to AA6082 [39], 

which is attributed to much higher solute content in the matrix of Al–4.62 wt.% Cu alloys 

during the aging treatment. In fact, the Liu et al.’s model in Ref. [26] also exhibited a good 

prediction of the alloy’s yield strength evolution, but it was based on a constant, 

overestimated value of the solid solution strengthening. Thus, it is reasonable to assume that 

their estimate of the strength contribution from hardening particles was too small.  

To further verify the applicability of the proposed strength model, it was also applied to 

predict the yield strength of an Al-3Cu-0.05Sn alloy aged at 473K for 1 hour, using the 

measured size distribution of precipitates (Figure 7 (c)) reported in [35]. The critical 

transition size was chosen as the average size of the precipitates in the peak aged stage (4 

hours). The predicted yield strength, 200MPa, matches very well the measured value. It 

should be pointed out, that the contribution from solid solution strengthening as predicted in 

Ref. [35], was significantly underestimated to be only about 4 MPa at 1 hour, hence their 

estimate of the strength contribution from precipitates must have been overestimated. 

Recently, Colombo et al. [36] reused the same strength model and parameters as in Ref. [35] 

and the same overestimation of the particle contribution should be expected. 

The strength model was also applied to predict the evolution of yield strength during the 

aging process of ternary Al-6.1 wt.% Zn-2.35 wt.% Mg alloys at 433.15K. When the average 

size of the precipitates in the peak aged stage (        ) is chosen as the critical transition 

size, the contribution from precipitation is overestimated. Thus, a slightly higher value 

(        ) is chosen. The predicted yield strength is compared with the experiments and 

shown in Figure 10. The results using the oblate assumption match well with the measured 

values, suggesting that the proposed modeling framework is also applicable to 

multi-component system.  

5. Discussion 

An integrated microstructural and strength modeling framework for oblate-shaped 

precipitates has been proposed in this study. The entire framework is summarized in the 

flowchart as shown in Figure 11. The extended KWN model is able to predict the size 

distribution of oblate-shaped precipitates, which is used as input for the subsequent strength 

prediction. The classical CALPHAD-coupled KWN model is extended to account for the 

geometrical shape of the precipitates by the use of two correction factors (Figures 2 and 3), 

and thus it can provide reliable microstructural information (Figures 5, 6, 7, and 8) for the 

strength prediction. Note that the CALPHAD databases could be built on the base of first 
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principle calculations and thus their coupling with the KWN model is a scale-bridging feature 

[16]. The importance of the precipitates shape on the precipitation kinetics is emphasized by 

comparing the predicted results using two different assumptions, as shown in Figures 5, 6 and 

7. The spherical assumption will underestimate the growth process of the oblate-shaped 

precipitates.  

As mentioned in Section 2, the two correction factors in the extended KWN model have 

opposite effects on the growth rate of disk-shaped particles. The first one, based on the 

solution of the diffusion problem, increases the growth, because of the enhancement of the 

solute atom transportation rate to the growth interface. The second one, related to the Gibbs 

Thomson correction, decreases the growth compared to spherical particles, by suppression of 

the super-saturation for growth. As can be seen from Figures 5 and 6, the positive effect on 

the growth of the first correction factor overwhelms the negative effect of the second 

correction factor. In total, this leads to more rapid growth using the oblate shape assumption.  

Recently, another correction factor for the Gibbs-Thomson effect was given in [30, 31]. 

If applied to the coherent precipitates as the case here, their correction factor ignores the 

effect from crystallographic growth constraints as explained in the introduction. However, 

having taken the coherent elastic strain energy and interfacial energy anisotropy into account, 

the treatment in [30, 31] is interesting and worthy of further exploring. 

Some unconformities between experimental data and predicted results can be observed in 

Figures 5 and 6, especially after 2 hours. One uncertainty is attributed to the measurement 

error, which was not assessed in Ref. [26]. This error is often considerable, estimated to be up 

to 40% in [16]. It should be pointed out that it is challenging to accurately measure the size of 

non-spherical particles. Another error source is the thermodynamic database accuracy. The 

measured volume fraction of precipitates after 4 hours aging should be very close to the 

equilibrium fraction. However, the equilibrium fraction given by the database is 0.047, which 

is 30% greater than the experimental value. Moreover, the extended KWN model does not 

consider the elastic strain energy and interfacial energy anisotropy effects, which also affect 

the accuracy of prediction. 

Knowing the alloy composition, the amount of Cu in solid solution can be calculated by 

the proposed KWN model, and the contribution to the solid solution strengthening is given by 

Eq. 29. Also, the strength contribution from precipitates, obtained by Eq. 27, is based on the 

size distributions of precipitates. The proposed strength model for the oblate-shaped particles 

accurately predicts the contributions from hardening particles and solid solution 

strengthening which were underestimated or overestimated in previous works [26, 35, 36]. 

The significance of releasing the spherical assumption is further emphasized by comparing 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the strength predictions from two kinds of assumptions (Figure 9). The advantage of the 

proposed strength model comes from considering that a disk-shaped particle with the same 

volume as a spherical one pierces more slip planes, i.e. from Eq. 21. Last but not least, the 

size distributions of precipitates bridge the microstructural and strength prediction models. 

This bridging factor makes the predictions become more real and accurate.  

The importance of including the precipitate’s morphology in the modeling has been 

emphasized in this study. The proposed model is rather simple with a minimum of tuning 

parameters, making it efficient and applicable. The surface energy anisotropy of the particles 

is not considered, as it would have to be matched by a more complex diffusion solution to 

predict anisotropic particle growth. The proposed modeling framework has also been 

successfully applied to the ternary Al-Mg-Zn system, and some reasonable predictions are 

made (Figures 8 and 10). However, these are based on some assumed input parameters, like 

the number of heterogeneous nucleation sites and critical transition size. In the future, the 

framework will be adapted to more examples and more complex models, e.g. for the 

multi-phase case [16], and other metals. 

 

6. Conclusions 

A new integrated microstructural and strength prediction framework has been developed 

for disk-shaped precipitates. It has been applied to simulate the aging process of Al-Cu and 

Al-Mg-Zn alloys. The main conclusions are listed below: 

 Two correction factors for the oblate-spheroid or cuboid plate-shaped particles are 

calculated for the extended KWN microstructural model. They have opposite influences on 

the growth kinetics of oblate-shaped as compared to spheroid-shaped particles. The 

correction factor for growth rate has a positive effect on the growth kinetics, while the 

correction factor for the Gibbs-Thomson effect has a negative effect. 

 Oblate-shaped precipitates grow faster than spherical precipitates with equivalent 

volume and contribute more to the precipitation strengthening. Improved agreement with the 

reported experimental results is obtained. 

 The proposed strength model takes into account the size distributions and shape of 

harding particles. It has achieved a better prediction accuracy than the previous models 

reported in Refs. [26, 35, 36]. It can predict the strength contribution from precipitates 

without a tuning parameter for the mean particle spacing in the slip plane. The particle size 

distribution plays an important role in bridging the microstructural and strength models.  
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Appendix A 

In Chen and Doherty’s study [25], the functions of the radius,   , and the half of 

thickness,    , with time   for the oblate spheroid are given: 
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where   is the supersaturation.   is a dimensionless growth parameter. Thus, the function 

of volume with time for the oblate spheroid is given: 
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In Liu et al.’s study [26], the functions of the radius,   , and the half of thickness,    , 

with time   for the oblate spheroid are given: 
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Thus, the function of volume with time for the oblate spheroid is given: 
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The rates of the volume change of the oblate spheroid ( ̇      
   ) and the equivalent 

volume sphere ( ̇   
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Thus,  
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In Wolf-Gladrow and Riebesell’s study [28], the flux of solute i through the precipitate 

interface for the oblate spheroid,   
      , and the flux for the equivalent volume sphere, 
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where       is the radius of a hypothetical sphere with the same surface area as the spheroid. 

The rates of the volume change of the oblate spheroid ( ̇ 
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Figure captions 

 
Figure 1 Schematic diagram of the oblate spheroid and its volume-equivalent sphere. 

 
Figure 2 Dependences of correction factors of the growth rate on aspect ratios. For Chen and 

Doherty’s report [25], the correction factors depending on supersaturation (from 0.0005 to 

0.1) are shown. 
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Figure 3 Dependences of the Gibbs-Thomson correction factors on the aspect ratios for three 

cases. 

 

Figure 4 Schematic diagram of cuboid-plates particles aligned with {   } planes and 

interacting with dislocations gliding on the       plane. 
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Figure 5 Experimental and predicted evolutions of the volume fraction of    phases during 

the aging process of Al–4.62 wt.% Cu alloys at 513.15K. 

 

Figure 6 Experimental and predicted evolutions of the mean radius (equivalent volume) of 

   phases during the aging process of Al–4.62 wt.% Cu alloys at 513.15K. 
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Figure 7 Predicted precipitates size distributions during the aging process of Al–4.62 wt.% 

Cu alloys at 513.15K for 1.5 hours (peak aging) using two kinds of assumptions: (a) the 

oblate shape with a constant aspect ratio of 0.05 and (b) the spherical shape; (c) measured 

size distribution of oblate precipitates of Al-3Cu-0.05Sn alloys aging at 473K for 1 hour [35]. 

These distributions are fitted by log-normal distributions. Note that the lines for the transition 

from shearable to non-shearable precipitates are also given. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

Figure 8 Predicted evolutions of the mean radius (equivalent volume) of    phases during 

the aging process of Al-6.1 wt.% Zn-2.35 wt.% Mg alloys at 433.15K. 

 

Figure 9 Predicted strength contributions from (a) solid solution and precipitation using two 

kinds of assumptions, and (b) comparison of measured [26] and predicted yield strength 

evolutions during the aging process of Al–4.62 wt.% Cu alloys at 513.15K. 
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Figure 10 Comparison of measured [44, 45] and predicted yield strength evolutions during 

the aging process of Al-6.1 wt.% Zn-2.35 wt.% Mg alloys at 433.15K. 

 

Figure 11 Flowchart of coupled microstructural and strength predictions for the 

oblate-shaped precipitates. Please refer to Ref. [48] for the concept “Gibbs–Thomson phase 

diagram”. Note that the particle size distribution plays a crucial role in integrating different 

models. 
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Graphical Abstract 

Table captions 

Table 1 Measured average precipitate radius, half of the thickness, aspect ratio, volume 

fraction, and yield strength [26]. 

Aging 

time (h) 

Average 

radius (nm) 

Average half of 

thickness (nm) 

Aspect 

ratio 

Volume 

fraction (%) 

Yield strength 

(MPa) 

0.25 32.5 3.2 0.1 0.81 205 

0.76 59.7 4.3 0.07 1.22 260 

0.96 78 3.9 0.05 2.09 290 

1.57 90 3.0 0.03 3.22 302 

2.55 100 3.7 0.037 3.53 290 

4.14 119.48 5.2 0.04 3.56 270 

 

 

Table 2 Input parameters used in the simulation. 

Molar volume of   ,   , and FCC 

phases 

0.9×10
-5 

m
3
/mol 

Thermodynamic database TCAL4 (Thermo-Calc) 

Diffusivities in the FCC phase Diffusion constant 

(m
2
/s) 

Activation energy 

(kJ/mole) 

Cu          133.9 

Mg           120.5 

Zn           116.1 
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