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ABSTRACT

Since modeling and simulation are integral tools in
engineering, the question is not if they should be used
in a design process, but rather how they should be used
to deliver the best solutions. The objective of this pa-
per is to outline an approach to creating a simple Digi-
tal Twin for a small electric vehicle drivetrain utilizing
only parametric 3D CAD models, widely used simu-
lation tools and some programming libraries. First,
the concept of the Digital Twin, its benefits, then the
possibilities of using Generative Design are briefly in-
troduced, afterwards electric vehicles’ advantages are
reviewed. In an example project the properties and
opportunities of the 3D CAD- and simulation models
are demonstrated. Finally, future improvements and
automated optimization opportunities are discussed.

INTRODUCTION

Before today’s modeling and simulation technologies
have been emerged, designing a system and ensure its
proper behavior was expensive and time-consuming.
The only way to test a system in operation was to
build it physically and to subject it to effects and im-
pacts that the designers thought would be necessary
(Grieves and Vickers 2017). In the second half of the
20th-century, Computer-Aided Design (CAD) software
solutions enabled to create different variations of a sys-
tem relatively easy. Finally, with a Digital Twin, in
theory, we could analyze any product’s behavior in dif-
ferent environments without having the physical repre-
sentation itself.

With the recently available computational power and
cloud-based services, the use of complex simulations
and detailed virtual prototypes are no longer privileges
of the biggest companies, but they can be created and
also run on personal computers. In this paper, an ex-
ample is shown how a simple Digital Twin of a product

can be set up and prepared to be used for optimization,
using only open-source or student license software so-
lutions. The subject of this example is a small electric
concept car’s drivetrain; therefore, the properties of a
battery electric vehicle are briefly introduced.

Digital Twins

The term Digital Twin (DT) has many slightly differ-
ent definitions which are slowly changing through the
years. ”The Digital Twin is a set of virtual informa-
tion constructs that fully describes a potential or actual
physical manufactured product from the micro atomic
level to the macro geometrical level. At its optimum,
any information that could be obtained from inspecting
a physical manufactured product can be obtained from
its Digital Twin.” (Grieves and Vickers 2017). In that
way, a DT could exist without physical representation
and could serve as a substitute for real prototypes.

In applications like aerospace or automotive indus-
tries, any modification to the product could gener-
ate unforeseen consequences to the whole system, so
these effects should be adequately modeled and sim-
ulated before applying them to the system in oper-
ation (Goossens 2017). Not long ago, Digital Twins
have been developed in a bottom-up philosophy after
the real system was specified. The Digital Twin con-
cept was used to create a virtual environment where a
detailed simulation model is running. Based on that
model and sensor information from the real physical
world, the behavior of the real-world twin could be esti-
mated. This approach has many case studies where the
existing system is monitored, the Digital Twin could
easily detect occurring problems and practical solutions
could be calculated to solve these issues.

Traditionally in the conceptual phase, possible de-
sign alternatives were explored by engineers, which re-
quired a lot of experience and time. CAD models and
simulations were only involved in the process after the
design space was narrow enough to analyze, validate,
and fabricate the design (Khan and Awan 2018). A
detailed model for a product or process is not only ca-
pable of examining the system based on real-life data,
but it can be leveraged in the concept design phase to
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define, test, and evaluate different variants of the sys-
tem. In this method, the virtual model is not only used
for diagnosis but to find out which version of the system
should be built in the first place. It is more common
today to utilize methods that offer a more standardized
description of the models (Rodič 2017), allowing to use
optimization algorithms acting directly on the digital
model by modifying its parameters and comparing the
simulation results. The Digital Twin technology, com-
bined with novel optimization algorithms using artifi-
cial intelligence, could generate feasible systems that
not only correspond with the requirements but are op-
timal in the prescribed aspects.

Generative Design

It is usually hard to say how a specific parameter will
affect the whole system without knowing the system it-
self. In many fields during the concept design phase,
even experts are using best practices to set up the ini-
tial boundaries of the product. This method could lead
to sub-optimal solutions even if very precise optimiza-
tion takes place in later stages.

Generative Design systems are using parametric de-
sign, optimization and simulation techniques, which al-
low engineers to iterate through a large number of de-
sign alternatives. Taking a problem definition as input
Generative Design systems could create a set of opti-
mal solutions for the given problem (Khan and Awan
2018). An example is shown in Figure 1.

Commercially available Generative Design systems
are promising tools for creating complex mechanical
parts for a given load- and constraint set using artificial
intelligence and topology optimization. This method
assumes that the surroundings and functions of the el-
ement are known. However, the constraints and loads
acting on the part usually depend on other members
of the system, so these generated solutions are only
suitable for situations where all other components of
the system remain the same. Still, the idea that en-
gineers should only carefully define the functions and
coarse boundaries of a system and artificial intelligence
could do the rest of the work could create previously
unimaginable new inventions.

Fig. 1. Generated Design Variations of a Motorcycle (Khan and
Awan 2018)

Generative Design combined with Digital Twin tech-
nology could allow the system-level optimization where
components are heavily co-dependent, such as in elec-
tric vehicles.

Small Battery Electric Vehicle Concept

As the present trend suggests, electric vehicles are
likely to replace internal combustion engine (ICE) ve-
hicles in the near future (Un-Noor et al. 2017). This
trend could be explained by electric vehicles (EVs) be-
ing more environmentally friendly, quiet, easy to op-
erate, require less money for fuel and also, they pro-
vide instant torque from the startup. EVs are the
unquestionably better choice for urban transport, but
for longer journeys, two more factors come into ques-
tion: power and range. Providing a bigger range needs
more batteries; therefore, the overall mass of the vehi-
cle grows; thus, the power consumption increases, lim-
iting the achievable range of the vehicle. Finding the
right size and arrangement of the electric powertrain
components is not as evident as it is in ICE vehicles,
because power can be transmitted through electrical
wires, enabling to create very different configurations.
Moreover, most of the components’ parameters are de-
termined by other parts (Un-Noor et al. 2017); thus,
optimization becomes even more complicated.

In this paper, an approach for creating a Digital
Twin is demonstrated on a small electric vehicle con-
cept. The powertrain of an electric vehicle consists of
an electrical and a mechanical subsystem; thus, it is
necessary to accurately model and analyze them to-
gether to get a real insight into the vehicle’s dynamic
behavior (Park et al. 2014).

APPROACH TO CREATING A SIMPLE DIG-

ITAL TWIN

As mentioned before, a Digital Twin is basically a
set of information about an entity permitting to ana-
lyze it from different aspects accurately in a virtual en-
vironment. Although every area (mechanical engineer-
ing, electrical engineering, etc.) deals with the same
product, each of these areas approach the parts that
make up these components in a different way (Grieves
and Vickers 2017). At present, computers with rel-
atively high computing capacity are affordable, and
many modeling, simulating, and optimizing tools and
programs are available. Thus the opportunity of us-
ing Digital Twins is at hand for smaller businesses and
smaller projects too. The design process could be even
more improved if we could integrate the available soft-
ware solutions which we are using, allowing the data ex-
change between them. Usually, the connection within
these software products is not provided, so technically,
it requires effort to implement such complex systems.
The key to creating a consistent Digital Twin is to
persist a homogeneous perspective of the information
across functional boundaries. This can be realized by
having an application that controls and manages data
between different platforms and areas, as shown in Fig-
ure 2.
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Fig. 2. Block Diagram of the Digital Twin Environment

In the example project, the vehicle was approxi-
mately modeled, focusing more on its drivetrain. A de-
tailed, skeleton based top-down 3D model of the drive
module (electric motor, fixed gear speed reducer and
differential) was modeled and built (see in Figure 3)
for further measurements, parameter identification and
testing. A simple dynamic simulation was created, us-
ing parameters from the CAD models to analyze the
vehicle’s longitudinal behavior and to provide a basis
for optimization in the future.

Fig. 3. Drive Module of the Small Electric Vehicle Concept

Parametric 3D model

A Computer-Aided Design (CAD) model is typically
used to visualize the entity, how it will look like in
its physical form. Almost every product design starts
with an approximate 3D model after the main concept
was laid out. These 3D models represent the prod-
uct’s mechanical and physical properties, such as to-
tal mass, material properties, or geometric boundaries.
Today’s advanced CAD systems are capable of per-
forming many different tasks, such as FEM analysis,
topology optimization, motion- and dynamic simula-
tions. These integrated CAD systems provide perva-
sive solutions, but dynamic simulations usually do not
require the detailed 3D representation of a product to
deliver the desired results or, on the contrary only the
aggregated properties of a body (mass, moment of in-
ertia, center of gravity) should be taken into consider-

ation to avoid long computational time.
In the project the vehicle was modeled in PTC Creo

4.0, because it is a high-level CAD system equipped
with a wide variety of embedded modules, which can be
automated. Make use of the skeleton-based top-down
approach, all of the key parameters could be modified,
and the assembly regenerated through the managing
algorithm.

Fig. 4. Exploded View of the Drive Module

Simulation model

Using only aggregated parameters from the 3D CAD
models (not the actual 3D mesh) enables us to simu-
late the system efficiently. Even without a detailed 3D
model, simulation can be processed with approximate
parameters for estimations. For example, in the early
stages, the total mass of the vehicle is unknown, but
the drive module could be tested with different scenar-
ios. Later, when the actual vehicle model is available,
approximate parameters could be replaced with precise
ones. In the simulation model, a simplified, single mass
point representation of the vehicle was implemented,
which analyses only the longitudinal motion of the car.
In general, there are two main approaches towards the
longitudinal motion simulations of vehicles, kinematic
and dynamic simulations. In case of a kinematic sim-
ulation, the actual state of the simulation components
is calculated backward from a given driving condition,
using the gear ratios and efficiencies to determine the
required input values of the propulsion unit. In a dy-
namic simulation, where the calculations are forward-
directed, a driver model calculates the torque demand
of the vehicle from the current vehicle speed and pro-
vides the corresponding input to the propulsion unit.
In the following blocks, the states of the drivetrain com-
ponents are calculated, resulting in the vehicle’s ac-
tual speed, which is connected to the driver model to
close the simulation loop. Using MATLAB Simulink
in the project, a dynamic simulation was implemented
because this kind of model ensures a more realistic and
accurate simulation of the vehicle’s drivetrain than the
kinematic approach (Winke and Bargende 2013). The
simulation model is divided into three main blocks (see
in Figure 5):

• Driver module

• Drivetrain module

• Vehicle module
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Fig. 5. The Basic Structure of the Dynamic Simulation Model

The driver module controls the electric motor’s
throttle based on the New European Driving Cycle
(NEDC). If the current speed of the vehicle is lower
than the desired, the module raises the throttle signal,
if the opposite is true, it lowers the throttle signal, or
even initiates braking.

The drivetrain module simulates the dynamics of the
electric motor, the fixed-gear drive module, and the ve-
hicle’s wheel (see in Figure 6), using the throttle signal
and the resistances acting on the vehicle as inputs to
calculate the vehicle’s speed. Each block calculates its
inner state according to the input and output torques
and angular accelerations, assuming that the system
is totally stiff, and does not contain any non-linearity
such as backlashes.

Fig. 6. Drivetrain Simulation Module’s Block Diagram

Inside the drivetrain module, the motor block pro-
vides torque input to the motor mechanical dynamics

block based on the current motor speed, the throttle
signal (which can be between 0 and 1), and a look-up-
table (LUT) which contains the motor’s torque-speed
characteristics. The LUT determines the maximal mo-
tor torque at the given speed; finally, this value is mul-
tiplied by the throttle signal value. This method en-
ables to create the needed motor torque between zero
and the nominal maximum torque of the motor for each
motor speed. In the motor mechanical dynamics block,
the angular acceleration of the motor is calculated as

shown in Equation (1):

ϕ̈m(t) =
τmotor(t)− τgears(t)

Jmotor

(1)

where,
• ϕm is the motor’s angular position,
• τmotor is the motor torque,
• τgears is the input torque for the gearbox,
• Jmotor is the moment of inertia of the motor’s rotat-
ing parts

Integral of the angular acceleration over time gives
the motor speed, which is connected to the motor

block.
The gear dynamics block consists of the input-,

intermediate- and differential shaft assemblies, which
are connected together by gear pairs (see in Figure 7).

Fig. 7. 3D Model of the Fixed-gear Drive Module: Input- (1),
Intermediate- (2), Differential Shaft (3) Assemblies

Since the motor is connected to the input shaft as-
sembly, the angular acceleration of these two is equal.
To ensure this the input torque for the gearbox (τgears)
is calculated as shown in Equation (2):

τgears(t) = τl1 + J1 · ϕ̈m(t)+

τl2 + J2 ·
ϕ̈m(t)

i1,2
+

τl3 + J3 ·
ϕ̈m(t)

i1,2 · i2,3
+ τwheels(t)

i2,3

i1,2
(2)

where,
• τwheels is the input torque for the wheels
• τlj is an estimated torque loss (e.g. from bearings)
for the j-th shaft assembly,
• Jj is the moment of inertia of the j-th shaft assembly,
• ij,k is the gear ratio of the gear pair between the j-th
and the k-th shaft assemblies.

The wheel dynamics block represents the connec-
tion between the drivetrain’s rotational- and the ve-
hicle’s longitudinal movement. The torque transferred
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through the gearbox to the wheels is compensated by
static friction on the ground; thus, the vehicle’s center
of gravity starts to accelerate in a longitudinal direc-
tion. Assuming that the contact points of the wheels
are not sliding on the ground, the relation between the
longitudinal and rotational measures can be expressed
as shown in Equation (3) - (5):

a(t) = ϕ̈wheels(t) · r (3)

m =
Jred

r2
(4)

FP (t) =
τred(t)

r
(5)

where,

• a is the vehicle’s longitudinal acceleration,
• ϕwheels is the wheels’ angular position,
• r is the wheel radius,
• m is the vehicle’s mass,
• Jred is the reduced moment of inertia of the vehicle’s
mass,
• FP is the pulling force,
• τred is the torque that effectively accelerates the ve-
hicle in longitudinal direction.

When the vehicle is moving straight, the wheels are
rotating together at the same speed as the differential
shaft assembly. Their angular acceleration can be cal-
culated from the motor’s angular acceleration (see in
Equation (6)). Thus the torque acting on the wheels
(τwheels) is responsible for the wheels’ angular acceler-
ation, the vehicle’s longitudinal acceleration, and the
compensation of resistance torques (see in Equation
(7)).

ϕ̈wheels(t) =
ϕ̈m(t)

i1,2 · i2,3
(6)

τwheels(t) = (Jwheels + Jred) · ϕ̈wheels(t) + τres (7)

where,

• Jwheels is the moment of inertia of the wheels,
• τres is the resultant torque from resistance forces act-
ing on the vehicle.

Integral of Equation (3) over time gives the vehicle’s
longitudinal speed, which serves as an input in the ve-

hicle module to calculate resistances, and also in the
driver module to determine the throttle and brake sig-
nals.

The separation of the blocks allows us to change the
current model into more detailed versions, add more
gear stages, and to read out the inner states of each
component throughout the simulation.

In the vehicle module, the resistance forces acting on
the vehicle are simulated (see in Figure 8).

Fig. 8. Forces Acting on the Vehicle, at a Constant Velocity
Equilibrium State

• FP : pulling force from τred,
• FA : force from air resistance,
• FR : force from rolling resistance,
• FE : force from elevation on the slope,
• FB : force from braking,
• FN : normal force,
• g : gravitational acceleration,
• α : angle of slope.

For every equilibrium speed, the pulling force is equal
to the summation of the resistance and elevation forces.
If the pulling force is greater than the resistance forces,
the vehicle is accelerating; else, it is decelerating.

Using this model a wide variety of valuable infor-
mation can be extracted from the simulation results,
such as the required motor torque to meet the pre-
scribed speed profile (see in Figure 9) or the energy
consumption during the examined time. This infor-
mation can serve as input to other applications, which
can check how good the final concept is. Modification
of the parameters of mechanical parts is essential in the
design process. Changes could be propagated through
the simulation, and based on the results, optimal val-
ues could be calculated for the initial parameters. If we
manipulate data in 3D models, a managing algorithm
should keep track of the evaluated (or shared) param-
eters after the models are updated, to keep the Digital
Twin consistent across CAD systems, simulation pro-
grams, or any other platforms.

Managing algorithm

Usually, data exchange between different applica-
tions from different fields (e.g. 3D modeling, simula-
tion, optimization) is not provided. It requires some
programming skills to extract data from one in a form
that is useful to the other. Each of these software prod-
ucts rely heavily on graphic interfaces, however, if the
models are appropriately set up, both of them can be
managed from a third program. This managing pro-
gram could enable the parameter optimization of the
product; in our case, the drivetrain parameters can be
optimized to minimize energy consumption.

If access to the model and the simulation results is
provided, an optimizer algorithm could tune parame-
ters in order to reach optimal properties of the modeled
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Fig. 9. Visualization of Simulation Results: Required Motor
Output Torque to ensure the Prescribed Speed Profile for the
Vehicle

system, however such an optimizer algorithm needs to
be implemented in this project in the future. In the
project, a simple Python script is used to ensure com-
munication between Creo and Simulink.

CONCLUSIONS

The concept of the Digital Twin and Generative De-
sign was introduced with its benefits and possibilities.
Then small electric vehicles’ advantages and disadvan-
tages were reviewed. In the example project, the 3D
CAD model, the simulation model, and the drive mod-
ule’s mathematical model were detailed.

FURTHER DEVELOPMENT

The detailed 3D model of the drive module and a
simple simulation model of the powertrain is set up
and ready to be utilized for measurements and tests.
The model parameters and results could be accessed
from a Python script, through which other different
programs could be used to analyze the product from
different aspects. As this managing algorithm could
handle parameters consistently, it is capable of imple-
menting an optimization algorithm to generate various
optimal solutions for a defined problem. In the future,
implementing a sensor network on the drive module to
measure the actual torques and velocities, to identify
the estimated loss parameters accurately, to test differ-
ent scenarios and validate the simulation model is nec-
essary. Based on these corrected parameters, the driv-
etrain module could be tested in dangerous situations
virtually without damaging or breaking the physical
twin. With a proper optimization algorithm (e.g. ge-
netic algorithm), geometrical parameters could be op-
timized. Later, the model completed with the vehicle’s
suspension system could be used in a 3D physical en-
gine for further optimization and testing.
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