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Abstract

An instance of the k-center problem consists of n points in a metric space along with a
positive integer k. The goal is to find the smallest radius r such that there exists a subset of k
centers picked among them such that every point is within distance r of at least one center.

Stuart Mentzer (Mentzer, 1988) wrote a paper showing that in the Euclidean plane, it is

NP-Hard to approximate this problem up to a factor of
√

2 +
√

3 ≈ 1.93. However, his report
is missing some details. In this note, we present details of his full construction.

1 Introduction

In the k-center problem, we are given a set of points P = {p1, p2, ...pn} and a parameter k. We
seek to choose a subset F = {f1, f2, ..., fk} ⊆ P that minimizes maxpi∈P minfj∈F d(pi, fj) where
d(pi, fj) is the metric distance between the points. The Euclidean k-center problem is when all
points are on the plane and the distance metric is the Euclidean distance.

In general metrics, it is NP-hard to achieve a better than 2-approximation of the k-center
problem (Gonzalez, 1985). But this fact is not known in the Euclidean Plane. The best result

is due to Mentzer (Mentzer, 1988), which shows a hardness of factor
√

2 +
√

3 ≈ 1.93. A better
than 2-approximation is currently unknown for the Euclidean plane. The k-supplier problem is a
generalization of the k-center problem, which has a set of facilities B that can be chosen as centers
and a set of clients K that need to be covered. The k-center problem is an instance of the k-supplier
problem where all points are facilities and clients. The best known result in the k-supplier problem
on the Euclidean plane is an approximation factor of 1 +

√
3 ≈ 2.73 (Nagarajan et al., 2013) and

best known hardness is 2.645 (Feder and Greene, 1988).
Stuart Mentzer (Mentzer, 1988) wrote a paper showing that in the Euclidean plane, it is NP-

Hard to approximate this problem up to a factor of
√

2 +
√

3 ≈ 1.93. However, his report is missing
some details. In this note, we present details of his full construction.

In the 3-SAT problem, we are given a set of variables V = {v1, v2, ..., vn} which take on True
or False values, and a set of clauses C = {c1, c2, ..., cm}. Each clause is a conjunction of three
variables, either negated or unnegated. An example of such a clause is c1 = (v1 ∨¬v2 ∨¬v3) which
is true if v1 is true, v2 is false or v3 is false. We seek to determine if there exists an assignment of
True or False values to the variables such that all clauses are satisfied.

For every instance of 3-SAT, Φ, a graph version, GΦ, can be constructed as follows. For every
variable and clause in Φ, a vertex is introduced to GΦ. And for each clause in Φ, three new edges
are introduced, one to each variable it is associated with in GΦ. If a variable is unnegated in the
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clause, we call the edge between the two unnegated. Otherwise, we call it negated. GΦ is a P3SAT
instance if and only if GΦ is planar. Figure 1 shows an example of an instance of P3SAT. P3SAT
is also NP-complete (Lichtenstein, 1982).

Figure 1: P3SAT Instance for (¬A ∨B ∨ C) ∧ (A ∨ ¬B ∨ ¬D) ∧ (B ∨ ¬C ∨ ¬D)

2 Reduction of Euclidean k-center from P3SAT

Given a P3SAT instance (Φ, GΦ) with n variables, m clauses, we construct a set of points XΦ on
the Euclidean plane and a value k. Let di be the degree of variable i, that is the number of clauses
that it is a part of either as itself or as its negation. Let Opt(XΦ) be the minimum radius such
that k centers can cover XΦ. We will prove that if Φ is satisfiable then Opt(XΦ) = 1. Otherwise,

if it is not satisfiable, then Opt(XΦ) =
√

2 +
√

3. This will show that k-centers is NP-hard to

approximate better than a factor of
√

2 +
√

3 because P3SAT is NP-hard.
In the reduction we will replace variables with cycles of points, edges with a chain of points,

clauses with points, and will label points as N,T, F,C as a mnemonic. T, F labels will imply
True and False assignments, C corresponds to clause points and N labels are points that should
never be chosen as centers. The following Truss structure forms the backbone for the reduction.
Starting with an equilateral triangle F, T,N , we seek to insert points NF , NT where d(NF , F ) =

Figure 2: Truss
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1, d(NT , T ) = 1 in such a way to maximize min(d(NF , T ), d(NT , F ), d(NF , N), d(NT , N)). This

builds the Truss in Figure 2, which has a distance of
√

2 +
√

3 for any of the above pairs. In all

figures, explicitly drawn lines are of length
√

2 +
√

3. Trusses that connect variables to edges will
be called joints and those that ‘reinforce’ variables and edges will be called knees. They will be
formally defined below.

Definition 2.1. For each clause ci, we introduce a single point in the plane. These clause points
will be connected to the variable cycles by an edge structure.

Clause points are put far enough apart so that no two edges are within distance 2 units from
one another at any pair of points. In order to ensure this condition, each clause should be at least
4 apart from one another.

Definition 2.2. A cycle is defined by two terminal points. Between these two points, the cycle
will have length ≈ J , with J − 2 intermediate points. These intermediate points will have pairwise
distance 1, while non-adjacent points will have distance ≈ 2 − ε for ε as small as you would like.
A closed cycle is a cycle with terminal points that are the same. (Same as in Feder and Greene,
1988)

Definition 2.3. For every variable vi, starting with a knee Truss, we create a closed cycle of 3L
points, with one adjacent knee point, which comes from the Truss. The distance between any two

Figure 3: Example variable cycle with (12 + 1) points

adjacent points in this cycle will be exactly 1. And for any pair of points which have one intermediate

point between them, the distance will be at least
√

2 +
√

3. There will be exactly 2(di +1) such pairs

with distance exactly
√

2 +
√

3. We can construct such a figure by increasing L, so that distances
between all other non-adjacent vertices is close to 2. At a minimum, L needs to be > 3di + 3 for
every variable i so that each variable truss does not intersect. As such, where m is the number
of clauses, a sufficient condition is L ≥ 4m (see Figure 3). Assign variables a label in the order
N,T, F clockwise.

We now highlight which non-adjacent vertices have distance exactly
√

2 +
√

3. For each edge
that the variable is part of in P3SAT instance, we introduce a joint truss to the cycle that corresponds
to the clause. For an unnegated edge, we create the truss with an N,T pair as base of equilateral
triangle. For a negated edge, we create the truss with a F,N pair as base of equilateral triangle.
These trusses must be made so that no points of separate trusses are within distance 2. See Figure
4 for an example variable with two outgoing edges.
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Figure 4: Example variable cycle with (12 + 3) points and part of an unnegated edge, negated edge

Observation 2.4. No center covers more than three of the variable cycle points, and only centers
inside the variable cycle cover exactly three. Further, the only points outside of the cycle that can
cover variable points come from joints and knees.

Observation 2.5. Only the base T and F and the knee truss itself cover the knee point of a variable

cycle with distance <
√

2 +
√

3. And they cover with distance 1.

Definition 2.6. The following describes the edge between a clause and the ”unnegated literal”
variable cycle. We begin by inserting a truss between the clause point and variable cycle as in
Figure 5. We connect this knee truss to the joint truss (with Nv, Tv as base and N1 as the joint)
that corresponds to the clause to as follows:

We create points F1, T1 by extending the perpendicular bisector of Nv, Tv through N1 at distances
1 apart. Then insert the point NF of the truss such that it forms a 150◦ angle with F1, Tv.

Figure 5: Truss connected to an unnegated variable
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Figure 6: Example of a full unnegated edge

We can then connect the Variable + Truss to a clause as follows: We create points F3, T3 such
they are parallel to N1, F1, T1 and form a 150◦ degree angle with the truss point NT . Then add
triplets in the order N,F, T along this line until you reach C.

A negated literal edge is created in the same manner, but instead starting with an F,N , pair in
the variable cycle. Just swap all instances of F and T afterwards.

Figure 7: Example of a full negated edge

Given an edge e ∈ P3SAT , let us call the set of edge points in the reduction associated with it
Ee. It consists of all points that were introduced from connecting the variable to the clause, except
for the joint N1.

Observation 2.7. For every edge e ∈ P3SAT , |Ee| = 3ej for some integer ej > 2, and all
centers cover at most three points in Ee\NK , with only centers in Ee\NK covering exactly three.
Moreover, the only points that can be covered by external centers are the two points on the ends.
For an unnegated edge, F1, Te. For a negated edge, T1, Fe.

An example of the reduction for the clause A ∨ ¬B ∨ ¬C is shown in Figure 8.
Now that we’ve constructed the reduction, let us count how many points are in each figure.
Let 3L + 1 is the number of points in the variable cycle for variable i. Then the total number

of variable points is Σn
i=1(3L+ 1 + di). Which is composed of exactly n knee points, Σn

i=13L cycle
points, and Σn

i=1di joints. Since Σn
i=1di = 3m, the total number of variable points is 3m+n+3L ·n.

And if each edge e has 3ej points, then the total number of edge points is Σe∈GΦ
3ej = 3Σe∈GΦ

ej .
There are also m clause points.
So the total number of points is 4m+ n(3L+ 1) + 3Σe∈GΦ

ej .
We will see that we require exactly k = Σn

i=1ni + Σe∈GΦ
ej centers to cover the reduction if and

only if it is satisfiable.
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Figure 8: Reduction for A ∨ ¬B ∨ ¬C from Figure 1

3 Structural Claims

Let C be an assignment of k-centers that cover XΦ with radius <
√

2 +
√

3.

Lemma 3.1. For any variable cycle i, |C ∩ i| ≥ L. In particular, if |C ∩ i| = L, need to open
exactly L number of T centers or exactly L number of F centers.

Proof. Note that this set of cycle points and joints are the only centers that can cover points in
the variable cycles, by Observation 2.4. By Observation 2.5, because each center covers at most 3
non-knee cycle points, one must open at least L centers to cover these points.

In order to cover the 3ni non-knee cycle points using just L centers, each center must cover
exactly 3 non-knee cycle points. This means that the L centers must be all type N , all type F ,
or all type T points. Otherwise, there exists some overlap between centers, so one center covers at
most 2 unique non-knee cycle points. By Observation 2.5, these centers must then be all T or all
F , since these are the only centers that can cover the knee point.

If a variable i is covered by exactly L centers in the reduction, then by Lemma 3.1 it corresponds
to a consistent assignment of T or F . Let this correspond to the assignment of T or F to the
variable in the P3SAT instance. Reciprocally, if a variable in the P3SAT instance has a true or
false assignment, then it corresponds to a consistent assignment of centers of the same truth value.
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Lemma 3.2. For any variable cycle vi, if |C ∩ vi| = L, then joints are covered by variable centers
if and only if their negation is consistent with the variable assignment in Φ.

Proof. If |C ∩ vi| = L then by Lemma 3.1, they must all be labeled T or all labeled F . If they are
all labeled with T , then edge joints are covered if and only if they are unnegated, since negated

joints are exactly
√

2 +
√

3 from the nearest T center. Similarly, if they are all labeled F , edge
joints are covered if and only if they are negated.

Lemma 3.3. For an edge Ee with 3ej points, |C ∩ E| ≥ ej.

Proof. The following proof will be for an unnegated edge, analagous results hold for a negated edge.
From Observation 2.5, the only points in the edge E that can be covered by external centers

are the two outermost points, F1, Te. Let us suppose that in the worst case, these are covered by
the variable joint N1 and clause point C centers. Then we know that C ∩ E must contain at least
two points from the set {T1, N2, F2, T2, NK} in order to cover T1 and NK . These 2 centers cover at
most 6 points total.

In which case there remain 3ej − 8 points to be covered, and each remaining center can cover
at most 3 points. So it takes at least ej − 2 centers to cover the remaining points. Thus, requiring
at least ej centers to cover the edge.

Lemma 3.4. If the joint of an edge Ee is covered by the variable cycle, then opening ej centers in
the edge will cover the clause point. Otherwise, opening ej centers will cover the joint but not the
clause point.

Proof. Once again, the proof will be for an unnegated edge, analagous results hold for a negated
edge. If the joint is covered by the variable cycle, open ej centers are T labeled points. Otherwise,
there exists a center which only covers at most two non-knee points. Then the clause will be covered
by Te.

Otherwise, if the joint is not covered, open e centers at F labeled points, since a center needs
to cover the joint. In which case, the clause point is not covered.

4 Main Theorem

Theorem 1. If (Φ, GΦ) is satisfiable then OPT(X) = 1. Otherwise, if (Φ, GΦ) is unsatisfiable then

OPT(X) ≥
√

2 +
√

3.

Theorem 2. If a P3SAT instance is satisfiable then one can cover its reduction in exactly k
centers.

Proof. Assign T and F labels to variables according to their assignments in Φ. So each variable
cycle is covered in L centers. And by Lemma 3.4 for any joint that is not covered by a variable
cycle, its edge Ee can be covered by ej centers such that they cover Ee and the joint, but not
the clause. Because it is satisfiable, for each clause, there exists a variable cycle who covers the
corresponding joint point. By Lemma 3.4, the clause point is then covered by that edge. So for
each variable cycle vi, |C ∩ vi| = L, and for each edge Ee, |C ∩Ee| = ej . And every knee, joint and
clause point is covered by these centers. So |C| = k.

Theorem 3. If a reduction can be covered in exactly k centers for radius <
√

2 +
√

3, then the
P3SAT instance is satisfiable.
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Proof. Assign a budget of N to each variable cycle vi and e to each edge Ee. Let our optimal
assignment be C. By Lemma 3.1, |C ∩ vi| = L, and |C ∩ Ee| = ej . So |C| ≥ k. If |C| = k, then it
must be true that no cycle or edge can exceed its budget.

So by Lemma 3.1, there must exist a consistent assignment of T or F to each variable cycle vi,
let us assign these to our P3SAT instance Φ. By Lemma 3.2, joints are covered by the variable
cycle if and only if their truth value is consistent with the variable assignment. So by Lemma 3.4,
for every clause, there must exist a joint which is covered by its variable cycle. Which is true if and
only if the variable cycle assignment is consistent with the clause in the P3SAT instance. Thus, for
this to hold for all clauses, it must be true that Φ is satisfied by the assignment.
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