
Holistic Performance Analysis of Multi-layer I/O
in Parallel Scientific Applications

Dissertation

zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von

Dipl.-Inf. Ronny Tschüter
geboren am 21. Dezember 1983 in Görlitz

Betreuender Hochschullehrer: Prof. Dr. rer. nat. Wolfgang E. Nagel

Tag der Abgabe: 06. Oktober 2020
Tag der Verteidigung: 16. Februar 2021

Acknowledgments

I want to thank Prof. Dr. Wolfgang E. Nagel for giving me the opportunity to work on this thesis. Also,
I would like to thank my reviewer Prof. Dr. Thomas Ludwig for his advise and feedback.

Furthermore, special thanks go to Christian Herold, Sebastian Oeste, Bill Williams, and Robert Di-
etrich for their valuable feedback, support, and ideas. Especially, I am grateful to Matthias Weber and
Franziska Kasielke for their encouraging, their time and effort spent in reviewing my dissertation, and
for providing valuable criticisms and suggestions.

Finally, very special thanks go to my family for their unconditional long term support.

Abstract

Efficient usage of file systems poses a major challenge for highly scalable parallel applications. The
performance of even the most sophisticated I/O subsystems lags behind the compute capabilities of cur-
rent processors. To improve the utilization of I/O subsystems, several libraries, such as HDF5, facilitate
the implementation of parallel I/O operations. These libraries abstract from low-level I/O interfaces
(for instance, POSIX I/O) and may internally interact with additional I/O libraries. While improving
usability, I/O libraries also add complexity and impede the analysis and optimization of application I/O
performance.

This thesis proposes a methodology to investigate application I/O behavior in detail. In contrast to ex-
isting approaches, this methodology captures I/O activities on multiple layers of the I/O software stack,
correlates these activities across all layers explicitly, and identifies interactions between multiple lay-
ers of the I/O software stack. This allows users to identify inefficiencies at individual layers of the I/O
software stack as well as to detect possible conflicts in the interplay between these layers. Therefor,
a monitoring infrastructure observes an application and records information about I/O activities of the
application during its execution. This work describes options to monitor applications and generate event
logs reflecting their behavior. Additionally, it introduces concepts to store information about I/O activi-
ties in event logs that preserve hierarchical relations between I/O operations across all layers of the I/O
software stack.

In combination with the introduced methodology for multi-layer I/O performance analysis, this work
provides the foundation for application I/O tuning by exposing patterns in the usage of I/O routines.
This contribution includes the definition of I/O access patterns observable in the event logs of parallel
scientific applications. These access patterns originate either directly from the application or from uti-
lized I/O libraries. The introduced patterns reflect inefficiencies in the usage of I/O routines or reveal
optimization strategies for I/O accesses. Software developers can use these patterns as a guideline for
performance analysis to investigate the I/O behavior of their applications and verify the effectiveness of
internal optimizations applied by high-level I/O libraries.

After focusing on the analysis of individual applications, this work widens the scope to investigations
of coordinated sequences of applications by introducing a top-down approach for performance analysis of
entire scientific workflows. The approach provides summarized performance metrics covering different
workflow perspectives, from general overview to individual jobs and their job steps. These summaries
allow users to identify inefficiencies and determine the responsible job steps. In addition, the approach
utilizes the methodology for performance analysis of applications using multi-layer I/O to record detailed
performance data about job steps, enabling a fine-grained analysis of the associated execution to exactly
pinpoint performance issues. The introduced top-down performance analysis methodology presents a
powerful tool for comprehensive performance analysis of complex workflows.

On top of their theoretical formulation, this thesis provides implementations of all proposed method-
ologies. For this purpose, an established performance monitoring infrastructure is enhanced by features
to record I/O activities. These contributions complement existing functionality and provide a holistic per-
formance analysis for parallel scientific applications covering computation, communication, and I/O op-
erations. Evaluations with synthetic case studies, benchmarks, and real-world applications demonstrate
the effectiveness of the proposed methodologies. The results of this work are distributed as open-source
software. For instance, the measurement infrastructure including improvements introduced in this thesis
is available for download and used in computing centers world-wide. Furthermore, research projects
already employ the outcomes of this work.

1

Contents

1 Introduction 3
1.1 High Performance Computing . 3
1.2 Performance Analysis and Optimization . 4
1.3 Challenges for Performance Analysis of Multi-layered I/O 5
1.4 Contributions of This Thesis . 8

1.4.1 A Methodology for Performance Analysis of Applications Using Multi-layer I/O 8
1.4.2 Definition of Multi-layer I/O Access Patterns 8
1.4.3 A Top-Down Performance Analysis Methodology for Workflows 8
1.4.4 Implementation of the Proposed Methodologies 9

1.5 Thesis Organization . 9

2 State-of-the-art and Related Work 11
2.1 The I/O Subsystem in High Performance Computing Machines 12

2.1.1 Concepts of Parallel File Systems . 12
2.1.2 I/O Strategies of Parallel Applications . 14

2.2 Performance Analysis . 17
2.2.1 Data Acquisition . 18
2.2.2 Data Recording . 21
2.2.3 Data Analysis . 22

2.3 Performance Analysis Tools for I/O Monitoring . 23

3 Methodology for a Holistic Performance Analysis of Multi-layer I/O in Parallel
Scientific Applications 35
3.1 Data Acquisition . 35

3.1.1 Intercepting Calls to Library Functions at Link-Time 36
3.1.2 Intercepting Calls to Library Functions at Execution-Time 36
3.1.3 Intercepting Calls to Library Functions via Tool Interface 37

3.2 Data Recording . 40
3.2.1 Design of Definition Records to Represent I/O Resources 40
3.2.2 Design of Event Records to Represent I/O Activities 43

3.3 Data Analysis . 48
3.3.1 Definition of Multi-layer I/O Access Patterns in Applications 48
3.3.2 Analysis of Scientific Workflows . 52

4 Implementation of the Methodology for a Holistic Performance Analysis of Multi-
layer I/O in Parallel Scientific Applications 55
4.1 Realization of the Methodology Within a Monitoring Infrastructure 55
4.2 Implementation of the Data Acquisition Methods . 56
4.3 Implementation of Data Recording Methods Within a Trace Format 58
4.4 Implementation of a Toolset for Analysis of Scientific Workflows 59

4.4.1 Data Processing at the Job Step Level . 60
4.4.2 Data Processing at the Job Level . 60
4.4.3 Data Processing at the Workflow Level . 61

2

5 Evaluation 67
5.1 Experiment Design . 67
5.2 Theoretical and Synthetic Evaluation . 68
5.3 Holistic Performance Analysis of Multi-layer I/O Applications 74
5.4 Top-Down Performance Analysis of Scientific Workflows 88

5.4.1 Demonstration of the Top-Down Performance Analysis Process 88
5.4.2 Integration of Performance Data Recording into Workflow Management Systems 89
5.4.3 Optimization of a GROMACS Workflow . 91
5.4.4 Performance Discussion . 92

6 Conclusion and Outlook 95
6.1 Summary and Conclusion . 95
6.2 Outlook . 96

Bibliography 97

List of Figures 107

List of Tables 109

A Appendix 111
A.1 Definition Records . 111

A.1.1 Definition of I/O Resources . 111
A.1.2 Definition of I/O Handles . 112

A.2 Event Records . 113
A.2.1 Metadata Operations . 113
A.2.2 Data Transfer Operations . 114
A.2.3 Locking Operations . 115

3

1 Introduction

This chapter provides an introduction to the field of High Performance Computing (HPC) and motivates
the relevance of performance analysis and optimization within this context. The chapter identifies open
challenges for performance analysis of highly-parallel input/output (I/O) intensive applications and out-
lines the contributions of this thesis. Finally, it gives an overview of subsequent chapters.

This thesis proposes contributions to the holistic performance analysis of multi-layer I/O in parallel
scientific applications, in particular in the field of High Performance Computing (HPC). The contribu-
tions complement established analysis techniques and therefore support users in holistic performance
engineering. I/O operations are a major bottleneck with respect to performance of data intensive ap-
plications [87]. Therefore, performance analysis and optimization is critical in this field to identify
inefficiencies and improve the utilization of available HPC resources. Scientific applications often em-
ploy a complex software stack including I/O libraries. Especially high-level I/O libraries abstract from
details of complex storage hardware architectures, thereby facilitate the software development process,
but make I/O performance analysis more challenging. Software developers require tool support to inves-
tigate complex interactions between I/O libraries and user code. This work describes methods to capture
performance data related to I/O activities on multiple layers of the I/O software stack, correlate these ac-
tivities across all layers explicitly, and identify interactions between multiple layers of the I/O software
stack. This thesis demonstrates that the presented methods allow users to investigate the I/O behavior of
individual scientific applications. Furthermore, this work proposes an approach to study multiple appli-
cations that are arranged in a workflow and coupled via their I/O activities and thereby shows that the
illustrated methods lay the foundation of more complex analyses.

This chapter starts with a brief introduction to HPC and performance analysis. After describing open
challenges in the analysis and optimization of the I/O performance of parallel scientific applications, the
chapter lists contributions of this work and concludes with an overview of subsequent chapters.

1.1 High Performance Computing

Computing has become a substantial part of science and industry to gain knowledge, drive innovation,
and preserve competitiveness [95]. Simulations based on mathematical models allow researchers of
various disciplines to study effects of alternative conditions. For example, scientists build entire simu-
lated universes, study molecular dynamics, and investigate materials designs. The complexity of such
simulations demands significant computing power.

Supercomputers deliver this high level of performance. These computing machines earn their title of a
supercomputer by providing significantly more processing power in comparison with the fastest personal
computer or workstation at the time. The field of supercomputing has a long history. The Control Data
Corporation (CDC) 6600 is often considered as the first supercomputer. In 1964 Seymour Cray and his
colleagues completed the CDC 6600. In the early days of supercomputing, custom hardware was the
norm to realize these machines. However by the mid-1990s, the trend had shifted towards commodity
hardware as the performance of general-purpose devices such as Central Processing Units (CPUs) had
improved. Nowadays, supercomputers feature tens of thousands of CPUs, often equipped with special-
ized accelerator hardware such as Graphic Processing Units (GPUs). On the one hand, advancements in
digital electronics drive the superior performance of supercomputers. In the past decades, the number of
transistors in integrated circuit chips increased according to Moore’s Law [70] which also resulted in a
growing computational performance. On the other hand, supercomputers provide their immense perfor-

4 1. INTRODUCTION

mance by delivering a large number of compute resources. Consequently, users have to parallelize their
applications in order to leverage the full potential of supercomputers.

Supercomputing, also referred to as High Performance Computing (HPC), is not only about providing
powerful computing capabilities but also represents an independent research area. Among others, this
field of science covers innovative methods to provide energy efficient compute infrastructures, the design
of high-speed interconnects to form a powerful system based on multiple individual components, the
design of reliable high-performance storage solutions to archive large data volumes, the implementation
of efficient computational simulations, as well as the performance analysis and optimization of scientific
parallel applications. In general, computational science profits from synergies between hardware and
software development. Advances in hardware result in increased compute power and allow scientists to
implement more high-fidelity simulation techniques.

1.2 Performance Analysis and Optimization

Performance analysis and optimization are essential aspects of computational science. Since the begin-
ning of computer engineering humans have striven towards analyzing and optimizing the performance of
these machines. The quote of Charles Babbage about the design of the Difference Engine, an automatic
mechanical calculator designed to tabulate polynomial functions, confirms this statement.

The most constant difficulty in contriving the engine has arisen from the desire to reduce the
time in which the calculations were executed to the shortest which is possible.

(Charles Babbage (1791 - 1871))

The task of performance analysis and optimization often splits into two phases. The first phase, the
performance analysis, includes measurements and delivers readings of performance relevant metrics,
such as execution time or number of function calls. These readings allow users to compare performance
values with their expectations and identify performance relevant components of a program, e.g., functions
where most execution time is spent in. Furthermore, performance analysis assists users in detecting
causes of performance insufficiencies and thereby revealing options for optimization.

In the second phase, the performance optimization, users adapt their applications based on the knowl-
edge gained by the analysis. In general, the goal of performance analysis is to improve the efficiency of
resource utilization.

In addition to traditional performance factors such as the choice of appropriate algorithms and com-
piler flags, parallel applications offer further aspects that represent potential candidates for tuning. Paral-
lel programs apply a domain decomposition to distribute data across multiple processing elements such
as processes or threads. The method used to achieve this partitioning is a performance critical factor.
Furthermore, during their execution parallel applications have to communicate, e.g., to exchange inter-
mediate results between individual processes/threads. On shared memory systems, parallel programs can
transfer data between processing elements such as threads directly via memory. OpenMP [80] is the de
facto standard application programming interface (API) for shared memory parallel computing [16, 42].
On distributed memory architectures, processing elements can use the message passing paradigm to com-
municate. The Message Passing Interface (MPI) [71] is a de facto standard API for distributed memory
programming [38, 27]. Further performance relevant aspects of parallel applications are synchronization
and lock operations to coordinate the execution of code on different processes/threads and protect the
access to shared resources.

Due to the increasing complexity of software and hardware architectures, performance analysis and
optimization on state-of-the-art systems is not trivial [48, 83]. Consequently, tools exist that assist users
in both tasks. These tools aid users in conducting measurements, analyzing their applications, identifying
inefficiencies in current implementations, and making decision about tuning options.

1.3. CHALLENGES FOR PERFORMANCE ANALYSIS OF MULTI-LAYERED I/O 5

Figure 1.1: The TOP500 list ranks HPC systems by their computational performance and thereby reports
general trends in the field of supercomputing. The graph illustrates a slow down in the per-
formance development of systems ranked 500th (June 2008) resp. 1st (June 2013). (Taken
from [109])

1.3 Challenges for Performance Analysis of The Multi-layered I/O
Software Stack

Section 1.2 introduced the field of performance analysis and optimization in general. Software developers
often optimize their applications with a focus on the computational performance. However, as scientific
applications often process large volumes of data, the I/O behavior also represents a performance critical
aspect for this kind of applications. This section discusses current trends in compute and I/O capabilities
of HPC systems and thereby illustrates the importance of tuning the I/O behavior of applications. Addi-
tionally, this paragraph presents challenges in analyzing I/O operations of parallel scientific applications
and motivates a holistic performance engineering approach incorporating a wide range of performance
relevant aspects such as I/O activities, computation, and communication.

Based on the results of the LINPACK [85] benchmark, the TOP500 list [110] ranks general purpose
computing systems and documents the trend towards exascale computing. First systems with computa-
tional capabilities of at least one exaflops (1018 double-precision floating point operations per second) are
expected to arrive in 2020/21 [77, 76]. Figure 1.1 shows two drops in the general trend of performance
development in the TOP500 list over the years. In 2008, the performance increase of the system ranked
last in the list started to slow down compared with previous years. Since 2013 the same trend has applied
to the system ranked 1st. Consequently, there are factors that limit the performance increase. Operations
to read/write data from/to storage systems are one of these limiting factors. Increasing computational
capabilities of modern High Performance Computing (HPC) systems enable fine-granular simulations.
The more fine-granular simulations are the more they tend to generate increasing data volumes. This
fact put more pressure on I/O subsystems rendering the I/O behavior of scientific applications crucial
for optimal performance. Present research topics, such as Machine Learning and Big Data, increase the
trend of processing large data volumes. In 2008, the ExaScale Computing Study [11] identified four ma-
jor challenges in order to realize exascale supercomputers. According to this study, the need to improve
performance of Memory and Storage is one of these challenges.

6 1. INTRODUCTION

The Memory and Storage Challenge concerns the lack of currently available technology
to retain data at high enough capacities, and access it at high enough rates, to support the
desired application suites at the desired computational rate, and still fit within an acceptable
power envelope. This information storage challenge lies in both main memory (DRAM
today) and in secondary storage (rotating disks today).

([11, p. 2])

A comparison of the last two HPC systems installed at the Oak Ridge Leadership Computing Facility
(OLCF) illustrates this trend. Titan [31] debuted in the TOP500 list in November 2012 as the world
fastest supercomputer. Its successor Summit [30] ranked 1st in the TOP500 list from June 2018 to June
2020. Table 1.1 shows that the maximum bandwidth to the file system increased by a much lower rate in
comparison to compute capabilities and storage capacities. Highly optimized benchmarks evaluate the
practical I/O peak performance which in best case scenarios comes close to the theoretical maximum.
However, real-world applications often achieve even less I/O performance, e.g., due to sub-optimal file
access patterns. Figure 1.2 depicts the Titan and Summit supercomputers.

Achieving high I/O performance is no trivial task for program developers. To leverage the potential
of parallel I/O subsystems, scientific applications have to parallelize their I/O operations. I/O libraries,
such as HDF5 [108], NetCDF [114], and MPI I/O [72, Chapter 13] have evolved to support software
developers in implementing parallel I/O operations. On the one hand, these I/O libraries abstract from
low-level I/O interfaces and, thereby, simplify the integration of parallel I/O. On the other hand, uti-
lizing I/O libraries does not automatically guarantee efficient I/O resource utilization. Additionally, the
enhanced usability accomplished by abstraction also impedes an I/O performance analysis as complex
interactions between I/O libraries and user code impact each other.

Figure 1.3 illustrates the interaction of an application and multiple I/O libraries. In this example,
the application directly calls NetCDF, MPI I/O, and POSIX I/O routines. Additionally, the NetCDF
library issues HDF5 function calls. HDF5 in turn utilizes MPI I/O and POSIX I/O routines. Calls to I/O
routines of a high-level library will also cause I/O operations at lower levels. For example, in case of
writing data each I/O layer may rearrange operations. Gathering information from all involved I/O layers
is essential to evaluate the effectiveness of the resulting I/O operations. Performance analysis becomes
even more challenging with the increasing complexity of I/O subsystems, e.g., additional layers in the
storage hierarchy like Non-Volatile Memory (NVMe) storage devices. In 2019, the Report for the DOE
ASCR Workshop on Storage Systems and I/O [87] confirmed that I/O is still a major bottleneck with
respect to application performance.

In fact, I/O is now widely recognized as a severe performance bottleneck for both simulation
and data analysis, and this bottleneck is expected to worsen with an order of magnitude
increase in the disparity between computation and I/O capacity on future exascale machines.

([87, p. 19])

Table 1.1: Key features of the HPC systems Titan and Summit illustrating the widening gap between
compute and I/O capabilities.

Feature Titan Performance Summit

(Debut in 2012) Increase (Debut in 2018)

Peak Flops (double-precision) 27 PF 7× 200 PF

Total System Memory 710 TB 14× 10 PB

File System Capacity 32 PB 8× 250 PB

Maximum Bandwidth to File System 1 TB/s 2.5× 2.5 TB/s

1.3. CHALLENGES FOR PERFORMANCE ANALYSIS OF MULTI-LAYERED I/O 7

(a) The Titan supercomputer (Cray XK7 system
equipped with AMD Opteron processors and
NVIDIA Kepler K20X GPUs, theoretical peak per-
formance of 27 petaflops). (Taken from [31])

(b) The Summit supercomputer (IBM system equipped
with IBM POWER9 processors and NVIDIA Volta
V100 GPUs, theoretical peak performance of 200
petaflops). (Photo by OLCF at ORNL / CC BY 2.0)

Figure 1.2: Illustration of the (a) Titan [31] and (b) Summit [30] supercomputers installed at the Oak
Ridge Leadership Computing Facility (OLCF). Titan debuted in 2012 and Summit in 2018. In
comparison with its predecessor, Summit provides an significant increase in compute perfor-
mance as well as available memory and storage volume. However, the maximum bandwidth
to the file system did not increase to the same extend.

Application

NetCDF

HDF5

MPI I/O

POSIX I/O

File System

Storage Hardware

Figure 1.3: Example of an application interacting with multiple I/O libraries. Black arrows indicate calls
from the application to the I/O libraries NetCDF, MPI I/O, and POSIX I/O. Grey arrows
illustrate internal dependencies between the I/O libraries.

https://www.flickr.com/photos/olcf/
https://creativecommons.org/licenses/by/2.0/

8 1. INTRODUCTION

Currently, there is a deficiency in tools supporting software developers in tuning their applications for
optimal I/O performance. Performance analysis cannot only focus on specific aspects of an application,
e.g., communication, as this won’t provide full insights. Limiting investigation to specific aspects may
show an effect but often does not reveal the root cause of a performance problem. Thus, I/O performance
analysis has to incorporate aspects of computation, communication, and synchronization. Therefore, this
thesis proposes a methodology for holistic performance analysis of multi-layer I/O in parallel scientific
applications.

1.4 Contributions of This Thesis

This thesis presents a contribution to the performance analysis of parallel scientific applications based on
event logs gathering input/output (I/O) operations of these applications. It focuses on application-centric
collection of runtime performance information within the scope of High Performance Computing (HPC).
This work provides missing functionalities for recording and correlating activities across the entire I/O
software stack. Results of this work guide software developers in identifying inefficiencies at individual
layers of the I/O stack and detecting possible conflicts in the interplay between layers. Furthermore, this
thesis proposes a methodology for holistic performance analysis of multi-layer I/O in parallel scientific
applications. This methodology incorporates other performance relevant aspects such as computation,
communication, and synchronization in the process of I/O analysis. The following contributions are
made.

1.4.1 A Methodology for Performance Analysis of Applications Using
Multi-layer I/O

This work proposes a methodology to investigate application I/O behavior in detail [111]. In contrast
to existing approaches, this methodology captures I/O activities on multiple layers of the I/O software
stack, correlates these activities across all layers explicitly, and identifies interactions between multiple
layers of the I/O software stack. This allows users to identify inefficiencies at individual layers of the
I/O software stack as well as to detect possible conflicts in the interplay between these layers. Therefore,
a monitoring infrastructure observes an application and records information about I/O activities of the
application during its execution. This work describes options to monitor applications and generate event
logs reflecting the application behavior. Additionally, this thesis introduces concepts to store information
about I/O activities in event logs that preserve hierarchical relations between I/O operations across all
layers of the I/O software stack.

1.4.2 Definition of Multi-layer I/O Access Patterns

In combination with the methodology for multi-layer I/O performance analysis, this work provides the
foundation for application I/O tuning by exposing patterns in the usage of I/O routines. This thesis
defines I/O access patterns observable in the event logs of parallel scientific applications. These access
patterns originate either directly from the application or from utilized I/O libraries. On the one hand,
there are patterns reflecting inefficiencies in the usage of I/O routines. On the other hand, this work
defines patterns that reveal optimization strategies of I/O accesses. Software developers can use these
patterns as a guideline for performance analysis to investigate the I/O behavior of their applications and
verify the effectiveness of internal optimizations applied by high-level I/O libraries.

1.4.3 A Top-Down Performance Analysis Methodology for Workflows

After focusing on the analysis of individual applications, this work widens the scope to investigations
of coordinated sequences of applications. This work introduces a top-down approach for performance
analysis of entire scientific workflows [112]. The approach provides summarized performance metrics

1.5. THESIS ORGANIZATION 9

covering different workflow perspectives, from general overview to individual jobs and their job steps.
These summaries allow users to identify inefficiencies and determine the responsible job steps. In addi-
tion, the approach utilizes the methodology for performance analysis of applications using multi-layer
I/O to record detailed performance data about job steps, enabling a fine-grained analysis of the associ-
ated execution to exactly pinpoint performance issues. The introduced top-down performance analysis
methodology provides a powerful tool for comprehensive performance analysis of complex workflows.

1.4.4 Implementation of the Proposed Methodologies

Additionally to their theoretical introduction, this thesis describes implementations of all proposed method-
ologies and thereby demonstrates their effectiveness. For this purpose, this work enhances an established
performance monitoring infrastructure and realizes features to record I/O activities in this monitoring
system. In this way, contributions of this thesis complement existing functionality and provide a holistic
performance analysis for parallel scientific applications covering computation, communication, and I/O
operations. Event logs recorded by the enhanced performance monitoring infrastructure are the founda-
tion for the implementation of the top-down performance analysis methodology for scientific workflows.
The chosen performance monitoring infrastructure Score-P is publicly available as open-source software
and is used in computing centers world-wide. Since version 6.0 the official Score-P release includes fea-
tures of this thesis. In addition, results of this work are already used in research projects such as “Next
Generation I/O for the Exascale” (NEXTGenIO) within the European Union’s Horizon 2020 Research
and Innovation programme and “Advanced Data Placement via Ad-hoc File Systems at Extreme Scales”
(ADA-FS) within the German Priority Programme 1648 Software for Exascale Computing (SPPEXA).

1.5 Thesis Organization

The chapters of this thesis are organized as follows: Chapter 2 provides an introduction into the process
of performance analysis as well as techniques to acquire, record, and analyze performance data of par-
allel applications. Additionally, this chapter presents related work in the field of application monitoring
with a special focus on I/O analysis tools. Chapter 3 introduces methodologies for performance analysis
of applications using multi-layer I/O activities. First, this chapter provides solutions to monitor paral-
lel applications and acquire performance relevant information about their I/O operations. Afterwards,
the chapter introduces concepts to store recorded information while preserving hierarchical relations be-
tween observed I/O activities. Finally, this chapter describes analyses based on recorded performance
data. It defines detectable I/O access patterns of parallel applications and presents a methodology for a
top-down performance analysis of multiple applications forming a scientific workflow. Chapter 4 details
the implementation of all methodologies described in Chapter 3. Chapter 5 uses synthetic stress tests and
benchmarks to evaluate the applicability of the multi-layer I/O activity recording and workflow analysis
approaches. Chapter 6 summarizes this work and shows possible directions for further developments.

10 1. INTRODUCTION

11

2 State-of-the-art and Related Work

This chapter introduces fundamental concepts of performance analysis. It provides an overview of re-
lated work and established tools in the field of I/O performance analysis. The chapter concludes with an
analysis of existing work and outlines missing functionality required for a holistic performance analysis
of multi-layer I/O in parallel scientific applications.

Software development of scientific applications is challenging. The software development process
includes mathematical modeling of problems, converting these models into statements of a program-
ming language, as well as generating, visualizing, and interpreting result data [49]. Especially, software
developers have to ensure correctness of their simulations and need to parallelize as well as optimize
their software in order to leverage resources of modern High Performance Computing (HPC) systems
efficiently. Fortunately, a wide range of tools support developers in these tasks. This work briefly covers
aspects of software correctness and details on performance analysis of parallel scientific applications
with a special focus on their I/O behavior. Consequently, results of this thesis support developers of
parallel scientific applications in performance analysis and optimization (Figure 2.1).

Debugging

Performance
Analysis

Mathematical
Modeling

Programming
Result

Interpretation

Figure 2.1: This thesis assists developers of parallel scientific applications in their programming tasks.
Results of this work especially support software developers in performance analysis and op-
timization.

Debuggers aid software developers in testing applications and examining errors. It is not trivial to
ensure correctness of software, not even for serial applications. Debuggers such as GNU debugger
(gdb) [33] and LLDB [102] proofed as valuable tools in this regard. Parallel-programming paradigms
introduce additional challenges. The concurrent execution of multiple threads and/or processes result in
non-deterministic behavior. Parallel debuggers such as Arm DDT [5] and Rogue Wave TotalView [96]
support users in debugging parallel applications. The Stack Trace Analysis Tool (STAT) [7] facilitates
debugging of highly parallel applications by recording stack traces of multiple processes and identifying
groups with similar behavior. Subsequently, software developers need to analyze only representatives of
each group instead of each process individually. There are also more specialized tools such as Thread-
Sanitizer [101], Intel Inspector [24], and Archer [9] focusing on detection of data races and deadlocks in
multi-threaded applications, or MUST [44] validating the correct usage of the MPI parallel-programming
paradigms.

Performance analysis and optimization is another important aspect of the software development pro-
cess. Because performance optimization is not feasible for faulty programs, this work assumes observed
applications to be correct. Otherwise, developers can investigate errors in their applications using the de-
bugging tools mentioned above. Parallel scientific applications have to utilize resources of HPC systems

12 2. STATE-OF-THE-ART AND RELATED WORK

efficiently to leverage their potential. This thesis focuses on performance analysis and optimization of
parallel scientific applications.

The remainder of this chapter starts with an overview of the I/O subsystem of supercomputers (Sec-
tion 2.1) and presents challenges for applications to efficiently utilize available I/O resources. After-
wards, an introduction to performance analysis (Section 2.2) provides the fundamental concepts of this
thesis. The chapter details on the individual steps involved in the process of performance analysis.
Section 2.2.1 presents methods to capture performance data from a running application. Section 2.2.2
describes data formats of the recorded performance data. Section 2.2.3 illustrates options to analyze and
visualize performance data. Finally, Section 2.3 provides an overview of related work in the field of I/O
performance analysis.

2.1 The I/O Subsystem in High Performance Computing Machines

Current HPC systems provide sophisticated compute and storage hardware. Modern supercomputers
consist of thousands of compute nodes connected via a high performance network. To utilize these re-
sources scientific applications parallelize their computations and distribute the workload across multiple
compute nodes.

As shown in Figure 2.2a, also the I/O subsystem of typical HPC systems consists of a complex hard-
ware stack. On some HPC systems I/O nodes collect and rearrange I/O requests of the applications
running on the compute nodes. Afterwards, the I/O nodes forward the requests via a storage network to
the storage nodes. Storage nodes manage the access to the storage devices. Supercomputers offer a multi-
tude of storage devices, often of different kinds such as disk drives (HDD) or flash drives (SSD). In order
to leverage the potential of these storage devices, e.g., gaining maximum bandwidth for data transfers,
data must be distributed across the available devices. Therefore, similar to handling their computations,
applications have to parallelize their I/O operations to utilize I/O resources efficiently. Section 2.1.2
describes common I/O strategies used by parallel applications.

At several levels software assists applications in using the I/O subsystem and thereby also constitutes
a complex stack. Figure 2.2b depicts the I/O software stack and its relations to the components of the
I/O hardware stack. For instance, I/O libraries offer applications an interface for data transfer opera-
tions. Some libraries focus on basic I/O operations, e.g., POSIX I/O, other libraries address challenges
in implementing efficient parallel I/O routines. As already mentioned in Section 1.3 (see Figure 1.3) I/O
libraries can depend on each other and form complex interactions. Parallel file systems handle the distri-
bution of data across storage devices. Section 2.1.1 describes the concepts of parallel file systems. The
implementation of parallel file systems can follow different approaches. On the one hand, some parallel
file systems are entirely implemented as a module of the operating system running on the compute nodes.
On the other hand, parallel file systems can employ a client-server architecture. This kind of parallel file
systems split their service into distinguished components. A module of the operating system implements
the client. The server-side components run on the I/O subsystem. Clients and servers communicate via
network. Therefore, Figure 2.2b shows two boxes representing parallel file systems.

Each layer of the I/O hardware and software stack affects the I/O performance of applications. For
instance, routing algorithms and packet sizes used by the storage network, block sizes of the physical
storage devices, or the efficient mapping of high-level I/O APIs onto low-level I/O library routines are
critical aspects for achieving best I/O performance. This thesis focuses on the analysis at the application
and library level. However, this work also shows that the proposed methodology allows users to integrate
information obtained from the other levels.

2.1.1 Concepts of Parallel File Systems

A file system controls how data is stored on physical devices. Therefore, the file system manages data
placement on the storage devices. Furthermore, it provides an API that abstracts from details about phys-
ical storage information and allows users to intuitively access their data. Via this API users keep their

2.1. THE I/O SUBSYSTEM IN HIGH PERFORMANCE COMPUTING MACHINES 13

Storage Network

Compute Nodes

Login Nodes I/O Nodes

Storage Nodes

Storage Devices

(a) Hardware stack

Application
I/O Libraries

Serial
I/O Libraries

Parallel
I/O Libraries

MPI I/O
POSIX I/O

Parallel File System
(Client)

Storage Network

Parallel File System
(Server)

Storage Devices

(b) Software stack

Figure 2.2: This figure illustrates the (a) hardware and (b) software stack of typical HPC systems focusing
on components related to I/O operations.

data in files, assign names to files in order to facilitate their handling, and organize files within hierar-
chical directories. The next paragraphs introduce the terminology used in this thesis as the nomenclature
with respect to file system techniques is ambiguous.

Distributed File Systems The development of distributed file systems (also referred to as Network
File Systems) dates back to the 1980s. At this time, networks of workstations were popular and created
needs to share data among these clients. Distributed file systems follow a client/server based architecture.
The server hosts a local file system and offers it to clients connected via a network. An individual file
is stored on a single server. Consequently, the network bandwidth of this server limits the peak I/O
bandwidth for accessing the corresponding file.

Parallel File Systems In contrast to distributed file systems, parallel file systems incorporate mul-
tiple storage devices potentially located on different servers. This enables a parallel file system to split
a single file up and write its portions across multiple servers. This mechanism is called striping and
represents an important feature of parallel file systems to scale storage bandwidth and capacity. The next
section takes Lustre as an example and explains the concept of a parallel file system.

Lustre The open-source parallel file system Lustre [64] is widely used on HPC systems and employs
a client-server network architecture. Figure 2.3 illustrates the major components of a Lustre file system
cluster.

Both clients and servers are implemented as loadable modules within the Linux kernel. Clients and
servers communicate via network using the Lustre Network protocol (LNet). The servers provide a
POSIX-compliant file system which is mounted by the Lustre Clients. Applications running on the
clients use Lustre I/O features via standard POSIX system calls. However, the Lustre client forwards

14 2. STATE-OF-THE-ART AND RELATED WORK

Figure 2.3: Architecture of the Lustre storage platform. (Taken from [63])

the I/O requests to the servers via network. Therefore, the client translates the POSIX system calls into
Remote Procedure Calls (RPCs). The servers process the requests and send their responses to the clients.

The server components are responsible for three major tasks: general service management, metadata
handling, and payload storage. Management Servers (MGS) maintain a registry of active Lustre servers
and clients. Management Targets (MGT) store associated configuration information.

Metadata Servers (MDS) provide the file system name space and handle metadata operations of
the clients. For instance, whenever a client creates, opens, closes, or deletes a file or manipulates its
permissions, a MDS handles the associated request. Metadata Targets (MDT) store information with
respect to metadata management. Lustre allows users to install multiple Management Servers and Targets
and thereby scale the metadata management service.

Object Storage Servers (OSS) handle data transfer operations and manage data storage. Object
Storage Targets (OST) represent physical devices providing storage space. Lustre supports striping of
files. A file is split into several stripes and these stripes are distributed across multiple OSTs. Hence,
users can adjust throughput and capacity of the Lustre file system by scaling the number of Object
Storage Servers and Targets.

2.1.2 I/O Strategies of Parallel Applications

Parallel applications may apply different strategies to perform their I/O operations. This section intro-
duces two common strategies: performing I/O operations in serial or in parallel.

The Serial I/O Strategy As shown in Figure 2.4, in the serial I/O strategy a single process acts as
proxy for all I/O operations of an application. For instance, if a parallel application wants to write its
results to a file, only the proxy process opens the file. As the proxy process is responsible for all file
operations, it has to collect data from the remaining processes. Either the proxy process has direct access
to the data in memory or the data needs to be exchanged, e.g., via message transfers. Dotted lines in
Figure 2.4 illustrate this data exchange from Process 1−3 to Process 0. Afterwards, the proxy process
starts writing results to the I/O subsystem. Therefore, the proxy interacts with the parallel file system via
API routines.

In the serial I/O strategy, the capabilities of the single proxy process limit the I/O performance. For
instance, as the proxy process runs on a single compute node, the bandwidth of data transfers is limited
by the network bandwidth of this node. Consequently, this strategy does not scale for highly parallel

2.1. THE I/O SUBSYSTEM IN HIGH PERFORMANCE COMPUTING MACHINES 15

Application

Process 0 Process 1 Process 2 Process 3

Parallel File System

Figure 2.4: A parallel application performing its I/O operations in serial. A single process collects the
I/O requests of an application and forwards them to the I/O subsystem.

applications. In order to handle large data volumes and leverage full potential of HPC systems, scalable
applications not only have to parallelize their computations but also their I/O activities. However, the
serial I/O strategy is often used by applications due to its ease of use.

The Parallel I/O Strategy Figure 2.5 illustrates the concept of a parallel I/O strategy. Multiple
processes of an application issue their I/O requests in parallel to the the file system. With this strategy
an application profits from improved resource utilization and performance and leverages the potential of
parallel I/O subsystems. For instance, an application can increase its bandwidth to the I/O subsystem by
utilizing multiple links to the storage backend.

During program execution an application keeps its data structures in main memory. From time to time
the application may transfer data to the I/O subsystem for persistent storage. However, on storage devices
data is typically organized as a stream of bytes. Therefore, the application has to map its data layout in
main memory and the file layout on the storage devices while writing/reading data to/from the I/O sub-
system. Furthermore, in a parallel application data is distributed across multiple processes. Therefore, a
parallel application has also several options to collate data into a file representation. Figure 2.6 illustrates
two common approaches to address both tasks.

Figure 2.6a shows the file-per-process approach. Each process of a parallel application operates on its
individual file. Therefore, each process can perform its I/O operations independent of other processes.
However, the number of files scale with the number of processes which increases the demands on the
I/O subsystem. For instance, as each process opens/closes its corresponding file the parallel file system
has to handle a large number of metadata operations. The file-per-process approach often involves a
post-processing step to merge multiple files for later analysis.

In contrast, Figure 2.6b depicts the shared-file approach. Multiple processes work on a single logical
file. On the one hand, this approach reduces the number of used files. On the other hand, processes of a
parallel application have to coordinate their I/O operations. For instance, when multiple processes write
to a single file, each process has to determine its individual offset within the file. Otherwise, a process
might overwrite data written by another one.

16 2. STATE-OF-THE-ART AND RELATED WORK

Application

Process 0 Process 1 Process 2 Process 3

Parallel File System

Figure 2.5: A parallel application performing its I/O operations in parallel. Multiple processes of an
application issue I/O requests to the I/O subsystem.

Process 0 Process 1

Memory Layout

File Layout

(a) File-per-process

Process 0 Process 1

Memory Layout

File Layout

(b) Shared-file

Figure 2.6: This figure illustrates two approaches to manage file accesses in parallel applications: the
(a) file-per-process and (b) shared-file approach. In the file-per-process approach each pro-
cess of a parallel application operates on its own file. In contrast, in the shared-file approach
multiple processes work on a single logical file. Parallel applications often use both ap-
proaches during their execution.

2.2. PERFORMANCE ANALYSIS 17

2.2 Performance Analysis

Performance analysis is an essential part of the software development process. This analysis builds upon
information about the behavior of an application and allows users to identify performance critical aspects
of their programs. Therefore, performance analysis of parallel scientific applications includes a monitor
software component that observes activities of the application during its execution. Figure 2.7 illustrates
typical steps of the performance analysis process.

Preparation

Measurement

Analysis

Optimization

Figure 2.7: An illustration of the performance analysis workflow. First, a monitor prepares the applica-
tion for observation. Then, the user executes the application and the monitor records appli-
cation’s performance data. Analysis of performance data is the foundation for subsequent
application optimization.

Preparation This first step prepares the application for observation by inserting additional instruc-
tions to each event of interest. These instructions will invoke the monitor whenever such an event occurs
during application execution. Section 2.2.1 details on methods to prepare an application for monitoring.

Measurement This step executes the prepared application. Whenever an event of interest occurs
(e.g., function entries and exits), the monitor is triggered. Then, the monitor acquires information about
the event, current application status, and collects performance data. Section 2.2.2 presents methods used
to record collected performance data.

Analysis The analysis step uses the collected performance data and calculates metrics (e.g., rates de-
rived from recorded counts). Intuitive presentations of the results facilitate identification of performance
problems. Section 2.2.3 gives an overview on analysis methods for performance data.

Optimization Based on the knowledge gained from the previous step, developers make decisions
about changes to eliminate or at least reduce performance issues. Typically, the optimization step in-
cludes source code modifications, e.g., to increase data locality of computationally intensive parts of
a program, or changes to the execution setup such as improved process placement to arrange com-
munication partners close to each other. After each optimization, software developers should conduct
measurements to validate the effectiveness of applied modifications.

18 2. STATE-OF-THE-ART AND RELATED WORK

2.2.1 Data Acquisition

This section describes methods used to prepare an application for performance monitoring. There are
two major methods to gather information about an application run: sampling and instrumentation. Sec-
tion 2.2.1.1 describes sampling in more detail. Section 2.2.1.2 explains the instrumentation-based ap-
proach. The following examples describe how a monitor can collect information about function entries
and exits. Without limiting the generality of the shown example, the principles also apply to other types
of events.

2.2.1.1 Sampling

Performance analysis implies a monitoring infrastructure observing an application during its execution.
With sampling, the monitor periodically interrupts the application during its execution. An interrupt is
triggered whenever a threshold is reached. Common performance monitors allow users to select inter-
rupts from various sources such as timers or cache misses and specify a threshold value.

Listing 2.1 shows the unmodified version of a source code example. Figure 2.8 illustrates corre-
sponding function calls during the execution of this unmodified application. Figure 2.9 depicts the same
sequence of function calls with a performance monitor attached that samples the application execution.
In this example, the monitor interrupts the application in equal time intervals and records its current
status (e.g., function call stack). Additional workload induced by monitor activities result in a runtime
prolongation. As the figure indicates, this runtime overhead depends on the sampling interval and, there-
fore, is adjustable by the user. However, the figure also illustrates that the sampling method does not
record all function invocations. Sampling does not recognize changes to the application status between
sampling points. Additionally, sampling cannot provide exact timing information for function entries
and exits.

Time [s]10 20 30 40 50 60 70 80 90 100 110 120

.

main func1 func2 func3

Figure 2.8: This figure depicts function calls during the execution of an unmodified application. The
illustrated sequence of function calls corresponds to the pseudo code shown in Listing 2.1.

Time [s]10 20 30 40 50 60 70 80 90 100 110 120

.

Sampling interval

main func1 func2 func3 monitor

Figure 2.9: This figure depicts function calls and monitor activities executed while sampling the execu-
tion of an application. It illustrates the same sequence of function calls as shown in Figure 2.8.
However, in this figure a performance monitor is attached to the application and samples its
execution.

2.2. PERFORMANCE ANALYSIS 19

Listing 2.1: Original source code

int main()
{

func1();
func2();
func3();

return 0;
}

void func1()
{

...

}

void func2()
{

...
func1();

}

void func3()
{

...
func2();

}

Listing 2.2: Annotated source code

int main()
{

ENTER("main");
func1();
func2();
func3();
EXIT("main");
return 0;

}

void func1()
{

ENTER("func1");
...
EXIT("func1");

}

void func2()
{

ENTER("func2");
...
func1();
EXIT("func2");

}

void func3()
{

ENTER("func3");
...
func2();
EXIT("func3");

}

20 2. STATE-OF-THE-ART AND RELATED WORK

2.2.1.2 Instrumentation

With this method, the monitor annotates the source code with hooks (sometimes also called probes or
tracepoints) to record activities such as function entries and exits. These hooks invoke the monitor
whenever such an event occurs. This process is called instrumentation. Listings 2.1 and 2.2 demonstrate
the concept of instrumentation. Listing 2.1 shows the unmodified version of the source code. Listing 2.2
illustrates the annotated version. This example contains calls (hooks) to the monitor after each function
entry and before each function exit. The monitor has to implement the corresponding functions ENTER
and EXIT. During application execution, the monitor is invoked whenever the application enters or leaves
an annotated function. The control flow passes to the monitor which records relevant information such
as timestamp and function name. Afterwards the monitor returns the control flow back to the application
and program execution continues. Different strategies exist to insert hooks into source code.

Manual source code modification to insert these hooks is a labor-intensive and error-prone task. Hence,
manual instrumentation of real-world applications with thousands of lines of code is not feasible. Fur-
thermore, humans often base their decision whether to instrument a function or not on assumptions
instead of profound knowledge. Consequently, a manual instrumentation tends to be biased.

Automatic instrumentation represents another option. Almost all current compilers such as GNU,
IBM, Intel, LLVM/Clang, and PGI provide flags to enable automatic code instrumentation during com-
pilation. In addition, some compilers (e.g., LLVM/Clang and GNU) also support a plug-in interface to
dynamically extend compiler features. Monitors can utilize this interface and provide their own plug-ins
to realize automatic code instrumentation at compile-time [113].

Figure 2.10 depicts the event sequence of Listing 2.2 with function instrumentation and an attached
monitor. Similar to sampling, additional instructions induced by function instrumentation cause a run-
time prolongation. In contrast to sampling, this runtime overhead depends on the frequency of instru-
mented events. As the figure shows, the instrumentation method ensures recording of each instrumented
event during application execution. With instrumentation, the performance monitor can correlate exact
timing information with events because the monitor is immediately called when an event occurs.

Time [s]10 20 30 40 50 60 70 80 90 100 110 120

.

main func1 func2 func3 monitor

Figure 2.10: This figure depicts function calls and monitor activities executed during the execution of
an instrumented application. It illustrates the same sequence of function calls as shown in
Figure 2.8. However, the executed application was prepared with instrumentation hooks
(see Listing 2.2).

2.2. PERFORMANCE ANALYSIS 21

2.2.2 Data Recording

The previous section introduced methods to acquire performance data. This section describes options to
store the obtained information. This thesis distinguishes the two approaches profiling (Section 2.2.2.1)
and tracing (Section 2.2.2.2).

2.2.2.1 Profiling

Profiles represent a statistical overview of an application’s runtime behavior by summarizing information
from individual events. Various kinds of profiles exist, differing in the way data is aggregated [43].
Flat profiles summarize data for each function ignoring its context, e.g., the callee of the function. For
example, they collect number of invocations of or time spent within a specific function. Listing 2.3 shows
a flat profile derived from the example shown in Figure 2.10. In contrast, callpath profiles maintain
separate statistics with respect to the call stack of a function. Further aggregation is possible for parallel
applications, e.g., across threads and processes. On the one hand, data aggregation reduces the storage
space required to save profiles. On the other hand, information about individual function calls get lost
due to this aggregation. Consequently, performance issues that evolve during runtime are hard to identify
with profiles.

Listing 2.3: Example of flat profile data (data derived from Figure 2.10)

F u n c t i o n Count E x c l u s i v e Time [s] I n c l u s i v e Time [s]
main 1 50 110
func1 3 30 30
func2 2 20 40
func3 1 10 30

2.2.2.2 Tracing

Trace data represents a log of individual events. Consequently, the term event log is often used as a
synonym for trace data. For each event, the trace records the time when the event occurred, the pro-
cess/thread where the event was triggered, the event type (e.g., function entry or exit), and meta infor-
mation such as function names or additional performance metrics. Therefore, event logs retain temporal
information about the application behavior. This enables detection of performance problems with chang-
ing characteristics over application runtime. Listing 2.4 illustrates an example of event log data. Traces
can demand a significant amount of storage space because each event needs to be stored.

Listing 2.4: Example of event log data (data derived from Figure 2.10)

Timestamp P r o c e s s O p e r a t i o n
. . .
87 2 ENTER func3
93 2 ENTER func2
99 2 ENTER func1
109 2 EXIT func1
115 2 EXIT func2
121 2 EXIT func3
. . .

22 2. STATE-OF-THE-ART AND RELATED WORK

2.2.3 Data Analysis

An intuitive presentation of collected performance data allows users to gain knowledge about the be-
havior of their applications, detect performance bottlenecks, and decide about possible improvements.
In general, analysis tools can be distinguished into two categories focusing on either visualization or
automatic analysis.

Tools of the first category provide sophisticated visualizations of result data to facilitate their interpre-
tation. Profile data is usually shown as statistical charts such as bar plots or histograms. Based on the
profile data shown in Listing 2.3, Figure 2.11 illustrates a bar chart visualization of the exclusive function
time.

Timeline charts are commonly used to visualize event log data. This kind of chart depicts application
activities (e.g., function entries and exits) with processes/threads on one axis and time on the other axis.
Figure 2.12 depicts a timeline visualization of the event log data shown in Listing 2.4.

Tools of the second category perform automatic analysis on result data to detect and mark poten-
tial issues. For instance, analysis methods exist to identify I/O intensive phases (I/O bursts) or critical
I/O access patterns of an application execution. Based on the result of these automatic analyses some
tools also tune parameters (e.g., compiler optimization flags or number of threads) to improve applica-
tion performance. Thereby, these kind of tools guide users in the process of performance analysis and
optimization.

main func1 func2 func3

10

20

30

40

50
50

30

20

10

Ti
m

e
[s

]

Figure 2.11: This figure illustrates a bar chart visualization of profile data. It depicts exclusive function
times as shown in Listing 2.3.

Time [s]80 90 100 110 120

main func1 func2 func3

Process 2

Figure 2.12: This figure illustrates a timeline visualization of event log data. The depicted event sequence
is derived from Listing 2.4.

2.3. PERFORMANCE ANALYSIS TOOLS FOR I/O MONITORING 23

2.3 Performance Analysis Tools for I/O Monitoring

This sections provides an overview of established I/O analysis tools. Table 2.1 provides an overview of
monitoring tools and their scope of data acquisition. Table 2.2 focuses especially on tools appropriate
for application monitoring. Tools relevant for the subsequent analysis of recorded data are shown in
Table 2.3.

OS Monitoring Linux and Unix-like variants are the de-facto standard operating systems (OS) on
HPC systems. A wide range of monitoring tools exist for these operating systems. iotop [47], iostat [46],
and sar [88] especially focus on monitoring of I/O resource utilization. These tools use a sampling-
based approach to obtain data and collect statistics per device, partition, or network file system as well
as a global view of the whole system.

In contrast, blktrace [12], Extended Berkeley Packet Filter (eBPF) [32], ftrace [35], ltrace [60],
strace [97], sysdig [98], SystemTap [99], Tracefs [4] use instrumentation and record event logs. blk-
trace interacts with the OS kernel and generates event logs of the I/O traffic on block devices. Using
the eBPF subsystem in the Linux kernel users can attach their own routines to hooks in order to collect
information about I/O on block devices, I/O functions of the C standard library, and other operations
related to file systems. SystemTap and sysdig follow similar approaches to analyze Linux kernel events.
ftrace, ltrace, and strace monitor calls to functions, routines of shared libraries, and system calls. Tracefs
works as a layer between the Virtual File System (VFS) and any other file system. Thereby, it records
event logs of activities on file systems.

In comparison with the tools mentioned above, perf is a flexible framework. It supports sampling as
well as instrumentation and records performance data as statistics or event logs. The perf toolset collects
information from hardware features (e.g., Performance Monitoring Unit (PMU) of recent processors) as
well as software features (software counters, hooks). For example, perf can monitor syscalls invoked by
I/O operations.

All these tools focus on monitoring an individual OS instance. Scientific parallel applications typically
spawn processes among multiple compute nodes, where each node runs its own OS instance. However,
performance analysis of parallel applications has to allow correlations between processes by adding
information about communication and synchronization between processes running on different nodes.
OS monitoring tools do not include this kind of information and, therefore, lack support for parallel
applications. In addition, some of the mentioned OS monitoring tools collect their data on the kernel
level. This usually requires root privileges which is prohibitive for common users of HPC systems.

File System Monitoring Tools of this category specialize on observing the behavior of file systems.
Established parallel file systems such as IBM Spectrum Scale (formerly known as GPFS) [45] and Lustre
provide dedicated monitoring tools. The following paragraph lists corresponding tools for the Lustre file
system as an example.

LIOProf [126] instruments I/O activities on the file servers, whereas Lustre Monitoring Tools (LMT) [1]
use sampling to observe the status of Lustre file system servers. Both tools record statistics (e.g., I/O op-
erations count, bytes read/written, server CPU load) to characterize file system activities.

This kind of tools focus investigations on file systems and servers. Consequently, details about appli-
cations are missing in the collected information.

Application Monitoring Table 2.2 provides an overview of tools for monitoring individual applica-
tions. Besides events, such as function entries and exits, these tools also record information about I/O
activities.

Arm MAP [6] and HPCToolkit [3] use sampling to monitor application behavior. In order to acquire
exact information such as timestamps of I/O operations, both tools additionally instrument this kind
of operations. Arm MAP intercepts calls to POSIX I/O functions as well as system calls and records

24 2. STATE-OF-THE-ART AND RELATED WORK

Table 2.1: Overview of monitoring levels and corresponding tools

Data Acquisition Data Recording
Support for

Parallel
Applications

Sampling
Instrumen-

tation
Statistics Event Logs

OS Monitoring

iotop [47],
iostat [46],
sar [88]

✓ ✗ ✓ ✗ ✗

blktrace [12],
ftrace [35],
ltrace [60],
strace [97],
eBPF [32],
sysdig [98],
SystemTap [99],
TraceFS [4]

✗ ✓ ✗ ✓ ✗

perf [84] ✓ ✓ ✓ ✓ ✗

File Server
Monitoring

LIOProf [126] ✗ ✓ ✓ ✗ ✗

Lustre Monitoring
Tool (LMT) [1]

✓ ✗ ✓ ✗ ✗

Application
Monitoring

see Table 2.2

System Monitoring

collectl [22],
collectd [21],
Nagios [73]

✓ ✗ ✓ ✗ ✗

✓ Supported
✗ Not supported

2.3. PERFORMANCE ANALYSIS TOOLS FOR I/O MONITORING 25

Table 2.2: Overview of application monitoring tools

Data Acquisition Data Recording
Recorded I/O
Activities

Sampling
Instrumen-

tation
Statistics Event Logs

Application
Monitoring

IOPin [50] ✗ ✓ ✗ ✓
PVFS,
MPI I/O

LTTng [61] ✗ ✓ ✗ ✓

Subject to
available
hooks

Arm MAP [6] ✓ ✓ ✓ ✗
System calls,
POSIX I/O

HPCToolkit [3] ✓ ✓ ✓ ✓ POSIX I/O1

//Trace [69] ✗ ✓ ✗ ✓ POSIX I/O

DUMPI [55] ✗ ✓ ✗ ✓ MPI I/O

mpiP [118] ✗ ✓ ✓ ✗ MPI I/O

IPM [115] ✗ ✓ ✓ ✗
POSIX I/O,
MPI I/O

Extrae [14],
PIOM-PX, [41]
RIOT [124],
ScalaTrace [75,
120, 125],
VampirTrace [52]

✗ ✓ ✗ ✓
POSIX I/O,
MPI I/O

TAU [92] ✗ ✓ ✓ ✓
POSIX I/O,
MPI I/O

Recorder [65, 10] ✗ ✓ ✗ ✓

POSIX I/O,
MPI I/O,
HDF5

Darshan [18, 17] ✗ ✓ ✓ ✓

POSIX I/O,
MPI I/O,
HDF51,
PNetCDF1

Score-P [53] ✓ ✓ ✓ ✓

POSIX I/O2,
MPI I/O2,
HDF52,
(P)NetCDF2

✓ Supported
✓,1 Partially supported
✗ Not supported
2 Implemented in this thesis

26 2. STATE-OF-THE-ART AND RELATED WORK

Lustre [64] counters. HPCToolkit wraps only a set of specific POSIX I/O functions (read, write,
fread and fwrite) [67]. Both tools present statistics of their collected performance data to users.

All other tools shown in Table 2.2 use instrumentation to acquire performance data of parallel appli-
cations.

IOPin [50] captures information about MPI I/O operations of the observed application. In addition,
IOPin instruments the Parallel Virtual File System (PVFS) [19] client and server. The combination of
MPI I/O and PVFS logs allows users to investigate how I/O operations of their applications are mapped
onto the Parallel Virtual File System. This work does not consider high-level I/O libraries such as HDF5
and PnetCDF. The Linux Trace Toolkit: next generation (LTTng) monitors applications and libraries
in user space. Additionally, LTTng supports Linux kernel tracing which requires root privileges. The
LTTng framework includes pre-built hooks to instrument function entries and exits, memory and POSIX
threads functions of the C standard library, and activities of the dynamic linker. Users can extend LTTng
by implementing their own tracepoints, e.g., to mark I/O operations of the application.

Many tools record event logs for a later replay. A trace replay allows users to investigate the behavior
of their applications under varying conditions, such as increased bandwidth or reduced latency to the
I/O subsystem. //Trace [69] intercepts calls to POSIX I/O functions and identifies data dependencies. In
order to detect these dependencies, //Trace executes the observed application multiple times with varying
delays added to the I/O operations. The DUMPI trace library records event logs of MPI parallel appli-
cations. Traces recorded by DUMPI contain information about MPI I/O events. DUMPI does not track
I/O on any other level of the I/O software stack such as POSIX I/O. ScalaTrace [75], PIOM-PX [41],
and RIOT I/OToolkit (RIOT) [124] record POSIX I/O and MPI I/O activities. ScalaTrace captures event
logs of the MPI communication from parallel applications. In order to reduce the data size of the event
log, ScalaTrace exploits the redundancy of repetitive event sequences. In scientific applications these
repetitive event sequences originate from iterative or recursive algorithms or Single Program Multiple
Data (SPMD) parallelization. ScalaTrace can compress repetitive event sequences within one MPI pro-
cess (e.g., multiple iterations of a loop) as well as among processes (e.g., homogeneous behavior of
multiple MPI processes). ScalaTrace records delta times between events instead of absolute timestamps.
Histogram bins store statistical timing information. Otherwise, minimal differences in delta times could
impede data compression. Resulting concise event logs preserve the application’s communication struc-
ture and build the input of a trace replay tool. Vijayakumar et al. [120] extend ScalaTrace’s functionality
by tracing calls to MPI I/O and POSIX I/O. They employ the same data compression techniques. Wu
et al. [125] implement a more aggressive compression with a user-tunable precision level. The authors
apply the histogram-based compression also to iteration counts and function parameters. The choice of
the precision level represents a trade-off between accuracy and gain in compression ratio. PIOM-PX also
exploits the repetitive behavior of most parallel applications. The tool tracks parameters of I/O opera-
tions, and generates a model of the application’s I/O behavior based on global spatial and temporal file
access patterns. This model allows users to identify I/O intensive phases of the application execution, to
investigate the effect of varying configurations on I/O phases and the I/O subsystem, and to reproduce
the I/O behavior of an application on a different HPC platform. RIOT captures I/O activities of parallel
applications. In contrast to the latter tools, it focus its analysis on presenting statistics and visualizations
of the recorded performance data. RIOT tracks MPI I/O calls from the application. Additionally, the
tool intercepts POSIX I/O function calls issued by the MPI I/O library. This allows users to investigate
relations between MPI I/O and subsequent POSIX I/O operations. However, the recorded event logs do
not explicitly correlate these I/O operations. Users can only identify relations by examining the timing
information of operations stored in the logs.

Recorder [65] captures calls to POSIX I/O, MPI I/O, and HDF5. The tool does not correlate events
across layers of the I/O software stack. According to [65] there is a lack of trace analysis tools for
Recorder. The authors plan to implement a trace replay engine. Behzad et al. [10] use Recorder to
record HDF5 operations of an application and generate I/O kernels reflecting its I/O behavior.

The Darshan tool focuses on characterization of applications’ I/O behavior. It enables monitoring of
large scale HPC applications with less overhead and reasonable memory demands. To keep performance

2.3. PERFORMANCE ANALYSIS TOOLS FOR I/O MONITORING 27

data of the observed application in a memory buffer of a fixed size, Darshan collects compact statistics
instead of detailed information about each individual I/O operation. Darshan maintains the statistics for
each opened file in a separate record. By default Darshan tracks up to 1024 files, however, users can
adjust this limit. If the limit is exceeded, Darshan aggregates the statistics into a single record. The
Darshan tool comes with software modules supporting the instrumentation of MPI I/O, POSIX I/O, and
standard I/O library function calls. For these I/O libraries, Darshan collects information, for example,
about access patterns within files, access sizes, time spent within I/O operations, or the number of bytes
read and written. Additional software modules provide basic information about HDF5 and PnetCDF
library function calls, including the number of open operations (for PnetCDF differentiated between
collective and independent operations) as well as the timestamps of the first and the last open/close
operation. Further software modules collect Lustre file system information or trace calls to MPI I/O and
POSIX I/O library functions (Darshan eXtended Tracing (DXT)).

In contrast to the tools mentioned above, there are monitoring infrastructures focusing on traditional
aspects of performance analysis such as computation, communication, and synchronization. In addi-
tion, these monitors also record information about I/O operations. mpiP [118] assists users in profiling
their MPI applications. The mpiP tool intercepts MPI library calls via the PMPI interface and captures
statistics per process. Although mpiP does not focus on I/O analysis, the tool collects information about
MPI I/O routines including the number of invocations as well as the maximum, mean, and minimum
number of bytes transferred. mpiP does not capture any information about POSIX I/O. The Integrated
Performance Monitoring (IPM) [115] infrastructure provides a similar feature set. In contrast to mpiP,
IPM also records POSIX I/O operations of an application. The Tuning and Analysis Utilities (TAU) [92]
are a versatile toolkit for performance analysis of parallel applications. The TAU framework instruments
applications and records profiles and traces. TAU captures POSIX I/O and MPI I/O operations of the
monitored program. Extrae [14] and VampirTrace [52] instrument parallel applications and capture their
POSIX I/O as well as MPI I/O activities. VampirTrace is no longer supported. Score-P [53], the suc-
cessor of VampirTrace and the common measurement infrastructure of analysis tools such as Scalasca
and Vampir, utilizes sampling and instrumentation to acquire performance data of parallel applications.
However, prior to this thesis Score-P did not support I/O monitoring. This work implements its proposed
methodology in Score-P and thereby extends this measurement infrastructure by sophisticated capabili-
ties for I/O activity recording.

There are many more vendor specific tools, e.g., Intel VTune Profiler [26], Intel Trace Analyzer and
Collector [25], CrayPat [28], and IBM HPCT-IO [23]. Because these tools share their approach with one
of the tools described in this paragraph, they are not covered separately.

System Monitoring Tools such as collectl [22], collectd [21] or Nagios [73] regularly check system
characteristics and collect statistics describing the current status. These tools report the system health
and alert administrators in case of service degradation. Due to their scope these tools are less suitable for
application performance analysis.

Analysis of Performance Data Table 2.3 lists established tools and their field of analysis. This
paragraph starts with the presentation of analysis tools focusing on intuitive visualizations of collected
performance data. Cube [37] and ParaProf [92] use charts to visualize profile data. Both tools are
designed for general performance analysis, presenting information such as number of function invoca-
tions or time spent in individual functions. Figure 2.13 shows a visualization of profile data in Cube.
Figure 2.14 to Figure 2.16 give an impression of ParaProf’s visualization features. In contrast, Dar-
shan [18, 17] focuses on I/O characterization of applications. Therefore, Darshan shows specialized
graphs, e.g., bar charts for I/O operation counts split by the operation type. Figure 2.17 exemplifies a
Darshan report.

Jumpshot [56], Paraver [15], and Vampir [52] visualize event logs as timeline charts. As shown
in Figure 2.18 this kind of chart illustrates the dynamic behavior of observed applications. Additionally,
Vampir provides charts that highlight utilization of I/O resources.

28 2. STATE-OF-THE-ART AND RELATED WORK

Table 2.3: Overview of performance analysis tools

Data Analysis

Visualization Automatic Analysis

Statistics Event Logs
Wait State
Detection

Replay

Cube [37], ParaProf [92] ✓ ✗ ✗ ✗

Jumpshot [56], Paraver [15],
Vampir [52]

✗ ✓ ✗ ✗

Scalasca [37] ✗ ✗ ✓ ✗

DUMPI [55], //Trace [69],
ScalaTrace [75, 120, 125]

✗ ✓ ✗ ✓

Another set of tools apply automatic analyses on recorded performance data. Scalasca [37] processes
event logs of MPI/OpenMP parallel applications, analyzes their communication and synchronization,
and detects patterns that represent potential performance bottlenecks. Figure 2.19 illustrates the event
sequence of typical inefficiency patterns observable in MPI parallel applications. For instance, Fig-
ure 2.19b depicts the Late Sender pattern. One process sends a message to another process. In this
example, both processes use blocking operations to communicate (e.g., MPI_Send/MPI_Recv). The
receiver has to wait until the sender actually starts the message transfer. The Scalasca analysis reveals
such wait states based on event logs. The concept of detecting critical patterns in event logs is applicable
to other characteristics of an application. This work defines inefficiency patterns for I/O operations of
parallel applications in Section 3.3.1.

DUMPI [55], //Trace [69], and ScalaTrace [75, 120, 125] assist users in replaying the event logs with
varying parameters and examining the effects.

Research Projects Many more research projects address I/O analysis in the field of HPC such as
LANL-Trace and SIOX [54]. These projects will not be covered separately in this section, as they follow
the same principles as one of the presented tools or lack robustness and portability.

Similar to this work, the “Total Knowledge of I/O” (TOKIO) [58] and “Unified Monitoring and Met-
rics Interface” (UMAMI) [59] projects emphasize the need for a holistic approach to characterize com-
plex HPC I/O subsystems. TOKIO provides a framework that collects data on various levels of the HPC
I/O hardware stack. Therefore, the framework manages data of different formats, resolutions, and scopes.
UMAMI presents an approach to integrate metrics from different I/O components in order to enhance
understanding of I/O performance variations. This thesis complements the work of TOKIO and UMAMI
by focusing on the HPC I/O software stack, especially on the analysis of scientific parallel applications.

The Virtual Institute for I/O (VI4IO) [119] provides a collaboration platform for research groups in the
field of HPC I/O. This organization informs about I/O middleware, benchmarks, and tools. In addition,
VI4IO maintains the IO-500 list that ranks HPC systems based on their storage systems performance.

Summary Event logs enable detailed analysis of applications’ I/O behavior including temporal infor-
mation. I/O analysis in general needs to incorporate further aspects of parallel programming (computa-
tion, communication, synchronization). Existing tools focus on either traditional performance analysis
providing only limited support for I/O analysis or vice versa. None of the presented tools provides a
holistic view on the application. In addition, none of the tools is able to record hierarchical relations
between individual layers of the HPC I/O software stack.

2.3. PERFORMANCE ANALYSIS TOOLS FOR I/O MONITORING 29

Figure 2.13: The Cube GUI provides users with an interactive visualization of performance profile data.
The left pane shows recorded metrics. In this example, execution time is selected. The
middle pane depicts functions with their current metric values arranged in a call tree. Color
coded boxes guide users to the hotspots with respect to the currently selected metric. In this
figure, the user choose an OpenMP parallelized loop for further investigations. The right
pane maps metric values of the currently selected function to the system topology such as
compute nodes, MPI processes, and OpenMP threads.

Figure 2.14: This figure depicts a visualization of profile data as a (stacked) bar graph in ParaProf. Bars
represent processes and colors illustrate individual functions. The length of the colored
boxes correspond to the exclusive execution time of individual functions. In this display
mode ParaProf combines all functions executed by a process in one bar. (Taken from [82].)

30 2. STATE-OF-THE-ART AND RELATED WORK

Figure 2.15: This figure depicts a visualization of profile data as a (unstacked) bar graph in ParaProf. In
contrast to Figure 2.14 each function is depicted separately. This display mode facilitates
comparison of individual functions across processes. (Taken from [82].)

Figure 2.16: ParaProf also supports three-dimensional visualization of profile data. This example depicts
the exclusive execution time of different functions across all threads. (Taken from [82].)

2.3. PERFORMANCE ANALYSIS TOOLS FOR I/O MONITORING 31
bt.C.x.mpi io full (10/2/2019) 1 of 3

jobid: 14807506 uid: 26466 nprocs: 9 runtime: 496 seconds

I/O performance estimate (at the MPI-IO layer): transferred 12974.6 MiB at 719.64 MiB/s

 0

 20

 40

 60

 80

 100

PO
SIX

M
PI-IO

P
e

rc
e
n
ta

g
e
 o

f
ru

n
 t
im

e

Average I/O cost per process

Read
Write

Metadata
Other (including application compute)

-50

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

Read Write Open Stat Seek Mmap Fsync

O
p
s
 (

T
o
ta

l,
 A

ll
P

ro
c
e
s
s
e
s
)

I/O Operation Counts

POSIX
MPI-IO Indep.

MPI-IO Coll.

 0

 50

 100

 150

 200

 250

 300

 350

 400

0-100

101-1K

1K-10K

10K-100K

100K-1M

1M
-4M

4M
-10M

10M
-100M

100M
-1G

1G
+

C
o
u

n
t

(T
o
ta

l,
 A

ll
P

ro
c
s
)

POSIX Access Sizes

Read Write

 0

 50

 100

 150

 200

 250

 300

 350

 400

0-100

101-1K

1K-10K

10K-100K

100K-1M

1M
-4M

4M
-10M

10M
-100M

100M
-1G

1G
+

C
o
u

n
t

(T
o
ta

l,
 A

ll
P

ro
c
s
)

MPI-IO Access Sizes ‡

Read Write

Most Common Access Sizes
(POSIX or MPI-IO)

access size count

POSIX
16777216 800

2288960 80
MPI-IO ‡ 18895680 720
‡ NOTE: MPI-IO accesses are given in

terms of aggregate datatype size.

File Count Summary
(estimated by POSIX I/O access offsets)

type number of files avg. size max size
total opened 1 6.4G 6.4G

read-only files 0 0 0
write-only files 0 0 0
read/write files 1 6.4G 6.4G

created files 1 6.4G 6.4G

/lustre/ssd/ws/tschuet-nasbt-io/./bt.C.x.mpi io full
Figure 2.17: In this example Darshan recorded statistics about POSIX I/O and MPI I/O activities of an

application. Aggregated metrics inform users about the number of specific I/O operations
(top right) and the time spent in these routines (top left). Additional charts categorize read-
/write operations by their I/O paradigm and access sizes (middle). Finally, summaries report
common access sizes and list accessed files.

32 2. STATE-OF-THE-ART AND RELATED WORK

Figure 2.18: This figure illustrates the visualization of event logs in Vampir. The display in the top right
corner presents an overview of the entire application run. The statistics display (top right)
lists the exclusive time per function group. Different colors indicate individual function
groups. The red color represents MPI functions. According to the statistics display, the
application spent a lot of time in MPI routines. However, temporal information contained
in trace files and timeline based visualizations reveal that the performance issue of this
application evolves during its execution. The top left display illustrates the share of individ-
ual function groups (x-axis) during execution time (y-axis). The middle left display shows
processes (x-axis) and execution time (y-axis). Colors indicate the group of the currently ex-
ecuted function. Both timeline charts depict an increase of the time spent in MPI functions
over the application runtime. The metric display (bottom left) shows processes on the x-axis
and time on the y-axis. The current number of floating point operations is color-coded from
low (blue) to high (red) values. The display highlights processes 44, 45, 54, 55, 64, and 65,
that show an increased computational load. Due to this imbalance affected processes enter
MPI communication late which causes MPI wait time on other participants. In addition, the
right bottom display shows the average message data rate in a communication matrix of all
MPI processes.

2.3. PERFORMANCE ANALYSIS TOOLS FOR I/O MONITORING 33

Figure 2.19: The figure illustrates typical inefficiency patterns in MPI communication: (a) Late Sender,
(b) Late Receiver, (c) Late Sender/Wrong Order, and (d) Wait at N × N. For instance, the
Late Sender pattern describes an inefficiency in the communication between two processes.
The receiver has to wait until the sender actually starts the message transfer. In contrast, in
the Late Receiver pattern the sender is blocked and waits until the receiver becomes ready
to receive. The Late Sender/Wrong Order pattern illustrates a wait state where messages
are sent in a different order than the receiver expect them to receive. As the Wait at N × N
pattern shows, wait states can also occur in collective operations. One process enters late in
the collective operation and thereby causes waiting time on the other participants. (Taken
from [36])

34 2. STATE-OF-THE-ART AND RELATED WORK

35

3 Methodology for a Holistic Performance Analysis of
Multi-layer I/O in Parallel Scientific Applications

This chapter introduces a methodology for holistic performance analysis of multi-layer I/O in parallel
scientific applications. It presents options to acquire performance relevant information about I/O oper-
ations as well as the design of data structures to store this information as event logs and model relations
between observed operations. Furthermore, this chapter describes sophisticated analysis techniques
based on the collected data.

The proposed methodology utilizes information about activities of an application collected during its
execution. The particular focus lies on information about I/O operations of applications. Therefore,
Section 3.1 explains methods used to monitor a parallel application during its execution and obtain data
about its I/O operations.

After obtaining data, information needs to be stored to make it available for later analysis. Section 3.2
describes concepts developed in this thesis to store information about I/O resources and operations.

Performance data obtained and stored with the shown methodology is the foundation for enhanced
analysis techniques. Section 3.3 starts with the analysis of individual applications. For example, this
section specifies I/O inefficiency patterns detectable with the methodology presented in this work. Then,
the scope of analysis is widen from individual applications to entire scientific workflows.

3.1 Data Acquisition

This section covers aspects of acquiring data relevant for performance analysis of parallel applications
during their execution. In this work, calls to I/O libraries are a matter of particular interest. Holistic
performance analysis of multi-layer I/O operations in parallel scientific applications requires accurate
information, especially timing data, to detect patterns in or calculate transfer rates for these operations.
Therefore, this work utilizes instrumentation (see Section 2.2.1.2) to gather information about calls from
the application to I/O libraries. This section presents different methods to intercept calls to routines of a
library.

Intercepting Calls to Library Functions A performance monitor can employ different techniques
to obtain information about an application’s behavior while it is executed. This paragraph provides an
overview of options how a monitoring tool can intercept calls from an application to library functions.
The process of intercepting function calls is also called wrapping. Although the focus of this work is on
calls to I/O libraries, the presented approaches can be used for any kind of library functions.

Figure 3.1 shows the process of compiling and linking an application. An application developer writes
the program logic in one or more source code files. The compiler takes source code files as input and
generates an object file for each individual source code file. These object files represent a transforma-
tion of source code statements into corresponding machine instructions. Within object files, variables
and functions are referenced as symbols. Modern software design splits complex functionality in sep-
arate modules and functions. Furthermore, code can be bundled as a library to make its functionality
usable for other software components. For example, application developers include libraries providing
implementations of mathematical routines, basic I/O operations or inter-process communication. As a
consequence, an object file can also include references to symbols of other object files or libraries. The
linker resolves these symbols, i.e., it maps symbols to memory addresses. There are two types of linking:
static and dynamic linking. With static linking the linker copies necessary code to the executable and

36 3. METHODOLOGY FOR A HOLISTIC PERFORMANCE ANALYSIS OF MULTI-LAYER I/O

ExecutionExecutable

Dynamic Library

Object

Static Library

Object

Source Code

Source Code

Dynamic LinkerLinkerCompiler

Figure 3.1: Overview of the process of compiling and linking an application. The compiler transforms
source code files into object files. The linker combines these object files and additional
static libraries into an executable binary. Consequently, the linked static libraries form part
of the binary. Nevertheless, the resulting binary can still exhibit unresolved references to
external symbols. The dynamic linker resolves these symbols at binary startup using dynamic
libraries. Dynamic libraries are separate components. They are also known as shared objects
or shared libraries because dynamic libraries can be used by multiple binaries individually.

resolves symbols accordingly at link-time. In addition, modern operating systems also support dynamic
linking which defers the resolution of undefined symbols until application execution. At execution-time
the dynamic linker inspects the executable, determines required shared libraries, loads them, and resolves
undefined symbols. According to the different approaches presented above, this work distinguishes be-
tween interception of library calls at link-time (Section 3.1.1), at execution-time (Section 3.1.2), and via
specific tool interfaces provided by the libraries (Section 3.1.3).

3.1.1 Intercepting Calls to Library Functions at Link-Time

This approach relies on linker capabilities to realize a name-shifting of function symbols. For exam-
ple, the GNU linker provides the --wrap option for this purpose. A name-shifting for the function
read takes effect, if --wrap read is specified in the link command. With this option set, the GNU
linker resolves undefined references to read by shifting the name to __wrap_read while linking an
application. A monitor has to provide an implementation of the function __wrap_read. Within the
__wrap_read function the monitor can collect performance relevant information and call the original
function via __real_read. The linker takes care of resolving __real_read to read. Figure 3.2
illustrates the process of intercepting a call to a library using capabilities of the linker. This approach
utilizes the linker (vertical bar in the middle of Figure 3.1) and requires modifications to the link com-
mand. Consequently, the approach does not work for wrapping function symbols that are resolved by the
dynamic linker at execution-time (vertical bar at the right hand side of Figure 3.1), e.g., functions called
from a dynamic library.

3.1.2 Intercepting Calls to Library Functions at Execution-Time

This approach relies on capabilities of the dynamic linker to modify the order of linked libraries. In order
to wrap the function read, a monitor provides its own implementation of the function read with the
same signature in a shared library myLibrary. While resolving references to read, the dynamic linker
has to consider the monitor implementation of read before the original one. Therefore, it is necessary to
specify the path of the shared library myLibrary in the environment variable LD_PRELOAD. Libraries
mentioned in LD_PRELOAD take precedence over other libraries in standard library paths. This ensures
that the dynamic linker redirects calls to read from the application to the own implementation. As

3.1. DATA ACQUISITION 37

Application Library

MonitormyFunction myFunction

__wrap_myFunction
__wrap_myFunction __real_myFunction

Figure 3.2: The concept of intercepting calls to library functions at link-time requires appropriate fea-
tures of the linker. The linker applies a name-shifting while resolving function symbols.
This mechanism allows third-party tools such as performance monitors to provide their own
wrappers for selected functions.

Application Library

MonitormyFunction myFunction

myFunction

Figure 3.3: The concept of intercepting calls to library functions at execution-time is based on modifying
the order of linked libraries. The dynamic linker redirects a function call if the correspond-
ing wrapper function, e.g., provided by a performance monitor, takes precedence over other
libraries.

a result, calls to read from the application invoke the monitor that can collect performance relevant
information. In order to call the original function, the monitor uses dlsym to search the address of the
original function symbol read and calls the respective implementation. Figure 3.3 depicts the process
of intercepting a call to a library using capabilities of the dynamic linker. Consequently, this approach is
not able to intercept function calls that were already resolved by static linkage.

3.1.3 Intercepting Calls to Library Functions via Tool Interface

Some libraries directly provide support for performance analysis tools. This section describes two estab-
lished methods to implement such tool interfaces in libraries: callback-based and via weak symbols.

Callback-based Interception There are several APIs supporting callback-based interfaces for tools,
e.g., OpenACC [78] (OpenACC Profiling Interface [79, Chapter 5]) or OpenMP [80] (OMPT [81, Chap-
ter 4]). Without loss of generality the following paragraph explains the mechanism of callback-based
tool interfaces using the example of OMPT.

Figure 3.4 shows the event sequence between an OpenMP parallel application, the OpenMP runtime,
and a performance monitor attaching to the OpenMP library via a callback-based interface. The OpenMP
runtime and the performance monitor coordinate via a defined API. This interface contains an entry point.
In the example of OMPT the function ompt_start_tool represents this entry point. In order to make
use of OMPT the performance monitor provides an implementation of this function. On the one hand,
this function can be statically linked into the application. On the other hand, a separate shared library
can contain this function. In this case the path to the corresponding shared library needs to be speci-
fied in the environment variable LD_PRELOAD or OMP_TOOL_LIBRARIES. During its initialization
the OpenMP runtime checks for an implementation of ompt_start_tool. If an implementation of
this function is found, it is called. Thereby, the control flow passes to the monitor. The monitor cre-
ates a ompt_start_tool_result_t data structure, specifies the function pointer initialize
and finalize of this structure, and returns the data structure to the OpenMP runtime. After com-
pleting its own initialization the OpenMP runtime calls the initialize function of the monitor. The
initialize function has a lookup argument. It provides a pointer to a lookup function. The mon-
itor uses this lookup function in order to determine pointers to OMPT interface runtime entry points,

38 3. METHODOLOGY FOR A HOLISTIC PERFORMANCE ANALYSIS OF MULTI-LAYER I/O

Application Library Monitor

ompt_start_tool()

ompt_start_tool_result_t* result

result->initialize()

ompt_set_callback()

ompt_set_callback()

#pragma omp parallel {

callback_parallel_begin()

}

callback_parallel_end()

result->finalize()

Figure 3.4: The concept of a callback-based interception of library function calls. A monitor registers its
callback functions. The observed library invokes the appropriate callback function whenever
a corresponding event occurs during application execution.

3.1. DATA ACQUISITION 39

Application Library

MPI_File_read MPI_File_read PMPI_File_read

(a) Without monitor attached

Application Library

MonitorMPI_File_read MPI_File_read PMPI_File_read

MPI_File_read

(b) With monitor attached

Figure 3.5: The concept of intercepting calls to library functions via weak symbols. The monitor
provides its own implementation of an observed function with its weak symbol name
(MPI_File_read). In addition, the monitor has to ensure that this version is linked
prior to the original one. The original function is accessible by its strong symbol name
(PMPI_File_read).

e.g., a pointer to the ompt_set_callback function. Within the initialize function, the monitor
registers all callbacks of interest using ompt_set_callback. Afterwards, the monitor returns to the
OpenMP runtime and application execution continues. During execution the application might trigger
the OpenMP runtime. Then, the OpenMP runtime checks whether a monitor has registered a callback for
this specific event. If so, the OpenMP runtime invokes the callback and thereby triggers the monitor. The
monitor collects performance relevant information and returns the control flow to the OpenMP runtime.
When the application ends its execution, the OpenMP runtime stops. In this case, the OpenMP runtime
informs the monitor about this event using the finalize function pointer. The monitor registered this
function in the initialization phase. This function invocation allows the monitor to shut down gracefully,
e.g., the monitor can free its allocated resources.

Interception via Weak Symbols Another option to implement a name-shifting of symbols is the
use of strong and weak symbols. This concept requires support by the compiler and linker. For example,
MPI and OpenSHMEM provide a profiling tool interface based on weak symbols. Figure 3.5 depicts
the concept of using weak symbols to provide an alternative function implementation. Without loss of
generality the following paragraph explains the mechanism of tool interfaces based on weak symbols
using the example of MPI.

The MPI standard defines the MPI profiling interface [72, Chapter 14.2]. It allows performance anal-
ysis and debugger tools to intercept calls into the MPI library by providing their own implementation of
MPI functions. According to the standard specification a compliant MPI implementation has to provide
an alternative entry point (PMPI name prefix) for each MPI function (MPI name prefix). This name-
shifting can be realized using weak symbols. For example, the MPI library implements the function
PMPI_File_read and declares the symbol MPI_File_read as a weak alias of this implementa-
tion. If no other software component provides an implementation of MPI_File_read, the linker will
use the weak definition and resolve references to PMPI_File_read. However, a performance monitor
can provide its own implementation of MPI_File_read and has to ensure that it is linked before the
MPI library. With this mechanism, the monitor can interpose MPI function calls from the application.
The performance monitor itself calls the corresponding PMPI function to invoke the original implemen-
tation of the MPI library.

40 3. METHODOLOGY FOR A HOLISTIC PERFORMANCE ANALYSIS OF MULTI-LAYER I/O

3.2 Data Recording

This section describes the concept to record performance data acquired by the methodology presented in
Section 3.1. This recorded data is the foundation for subsequent analyses.

The shown concept handles I/O resources and activities. For instance, I/O resources reflect files,
while I/O activities represent operations such as read and write. Consequently, the concept distinguishes
between definitions, that provide detailed information about I/O resources, and events, that describe I/O
activities during application runtime. Section 3.2.1 presents the design of definition records. Details of
the event records are shown in Section 3.2.2.

3.2.1 Design of Definition Records to Represent I/O Resources

Definitions characterize resources of I/O operations. Typically, most operations of I/O APIs do not work
directly on I/O resources. Instead, I/O APIs provide abstract indicators (handles) for I/O resources that
are used by subsequent operations. The example of reading a file with POSIX I/O operations illustrates
this idea. The file represents an I/O resource. First, the source code developer needs to open the file. This
can be done via the int open(const char *pathname, int flags) routine. Therefore, the
developer specifies the path to the file (pathname) and the access mode (flags). In this example, the
file will be opened in read-only mode (O_RDONLY). Listing 3.1 illustrate a corresponding source code
fragment.

Listing 3.1: POSIX I/O operation to open a file in read-only mode.

int fd = open("log.txt", O_RDONLY);

In case of a successful operation, open returns a new file descriptor. This file descriptor acts as an
abstract handle of the I/O resource and is used by subsequent data operations. The file descriptor holds
status information such as the current positioning (offset) within the file. This method allows multiple
processes/threads to access the same file independently. The design of definition records follows this
principle and distinguishes between I/O resources and file descriptors. Figure 3.6 depicts the design and
interactions of its components. The IoFile definition characterizes I/O resources, whereas the IoHandle
definition represents file descriptors. The next paragraphs describe each definition in detail.

IoFile

IoRegularFile
name
scope

IoDirectory
name
scope

IoFileProperty
file
property-name
type
value

IoHandle
file
name
paradigm
group
parent

IoPreCreatedHandleState
handle
mode
flags

IoParadigm
identification
name
class
flags
numberOfProperties
propertySemantics
propertyTypes
propertyValues

Figure 3.6: Overview of definitions to reflect I/O resources and their relations.

3.2. DATA RECORDING 41

Machine

File
System
fsglobal

filex

File System
fs local

filey

File System
fs local

filey

nodea

nodeb

(a) Hardware topology

Machine

nodea nodeb

filex

filey filey

(b) System tree representation

Figure 3.7: The storage location of a file determines its scope. For example, all processes can access
a file stored in a global file system (e.g., filex). However, a file stored in a node-local file
system, such as filey, can be accessed only by processes running on the same node.

Definition of I/O Resources Linux is the de-facto standard operating system on HPC machines.
As a Unix-like operating system, Linux adheres to the “Everything is a file” philosophy. The operating
systems treats a wide range of I/O resources as a file. Not only files but also directories and sockets
are handled this way. The polymorphic IoFile definition reflects this philosophy. It provides a common
namespace for objects used by I/O operations. In its current version, the design provides definitions for
files (IoRegularFile) and directories (IoDirectory). The extensible design facilitates additions within
this namespace. Each IoRegularFile and IoDirectory definition records the name of a file or directory.
However, the name or path of a file or directory does not represent a unique identifier for the I/O resource.
Typical HPC machines mount several file systems concurrently. These file systems differ in their acces-
sibility. In principle, two categories of file systems can be distinguished: a) local file systems available
only on a single compute node, and b) global file systems shared via network on the whole machine. Fig-
ure 3.7 shows an example. Figure 3.7a illustrates the hardware topology of a system with two compute
nodes nodea and nodeb. Each node mounts two different file systems. First, both nodes use a shared
network file system fsglobal. Second, each node mounts a local scratch file system fs local. The file filex
in the global file system fsglobal is accessible on the whole machine. In contrast, the file filey resides in
a local file system fs local. As a result, two processes, one running on nodea and the other executed on
nodeb, work on distinct physical files if they access filey. The scope attribute of the IoRegularFile and
IoDirectory definition records mark the physical scope with regard to the system topology. Figure 3.7b
shows the system tree representation of this example. The definitions of filey (local file system) refer-
ence the corresponding compute node in the system tree. Accordingly, the definition of filex (global file
system) refers to the machine node.

In addition, the IoFileProperty definition enriches an IoFile definition by user-defined attributes. An
IoFileProperty references an IoFile definition (file), has a specific property-name, declares its
the data type, and holds the value of the property. The unique tuple (file,property-name)
identifies a specific property. For example, this mechanism allows users to attach mount point or Lustre
stripe policy data to an IoFile definition.

Definition of I/O Handles This thesis presents a methodology to analyze parallel scientific appli-
cations using multiple I/O libraries concurrently such as MPI I/O, HDF5, and NetCDF. This kind of
analysis requires information about each I/O library. I/O operations initiated by the application propa-
gate through the I/O software stack. For example, an open call will also cause open operations in lower
levels of the I/O software stack. As a result, each level of the I/O software stack maintains own file
descriptors to manage I/O resources. Figure 3.8 showcases an application utilizing MPI. In this example,
the MPI I/O implementation maps its functionality on POSIX I/O. In case of writing data, each layer of
the I/O software stack may rearrange operations or add additional meta information to the actual raw data.

42 3. METHODOLOGY FOR A HOLISTIC PERFORMANCE ANALYSIS OF MULTI-LAYER I/O

Application

MPI_File_open()

MPI I/O

open()

POSIX I/O

File System

IoHandle
parent

IoHandle
parent

Figure 3.8: Illustration of the hierarchical relation between I/O handles. In this example, the
MPI_File_open routine internally uses the POSIX I/O open function. The parent re-
lation connects both corresponding I/O handles.

Consequently, the methodology presented in this work has to capture information about individual I/O
libraries and assign individual operations to corresponding I/O libraries. An IoParadigm definition de-
scribes an I/O library utilized by the observed application during its execution. The identification
attribute categorizes an IoParadigm, while the name distinguishes specific implementations. For exam-
ple, Open MPI is an open-source implementation of Message Passing Interface (MPI). The MPI 2.0 stan-
dard defines an API for parallel I/O (MPI I/O). Open MPI provides two modules to implement MPI I/O:
OMPIO [20] and ROMIO [107]). In this case, the identification attribute is set to “MPI I/O” and
the name contains either “OMPIO” or “ROMIO”. The class attribute of the IoParadigm definition
specifies whether it is a serial or parallel I/O paradigm. Only parallel I/O paradigms permit collective
I/O operations within a group of multiple processes/threads. The flags attribute describes further
boolean characteristics for the I/O paradigm. For example, users can specify whether an I/O paradigm
directly accesses the operating system or is a high-level library, i.e., it maps its functionality to other
I/O paradigms such as HDF5 or NetCDF. Properties represent an extensible mechanism to specify fur-
ther information of an IoParadigm definition. numberOfProperties specifies the number of stored
properties. Three arrays, each with a size of numberOfProperties elements, contain the actual in-
formation of each property. The array propertySemantics describes how to interpret each property,
propertyTypes defines the data type of each property, and propertyValues stores the value of
each property. The following example of adding library version information to an IoParadigm illustrates
the concept. In this case numberOfProperties is 1 and each array consists of one element. The
element propertySemantics[0] contains “version information”, propertyTypes[0] defines
“string”, and propertyValues[0] stores “7.0-alpha”.

The IoHandle definition reflects a file descriptor. The definition is based on a prior I/O resource
definition which is referenced by the file attribute. A human-readable name facilitates users in identi-
fying an IoHandle. If the associated paradigm supports collective I/O operations, the group attribute
specifies the set of participating processes/threads. Explicit modeling of hierarchical relations between
I/O handles and thereby reflecting the stratified nature of the I/O software stack is an important feature
of the presented methodology. The parent attribute of an IoHandle expresses these relations between
I/O handles. This mechanism directly connects associated I/O handles across individual layers of the
I/O software stack and enables correlation of affected operations. Considering the example shown in
Figure 3.8, an MPI_File_open results in a POSIX I/O open function call. Both layers define their
own IoHandle definitions. First, the MPI operation produces an IoHandle definition on the MPI I/O
layer. Then, it calls the POSIX I/O operation that defines its own IoHandle. The POSIX I/O IoHandle
references the MPI I/O IoHandle as its parent.

The IoPreCreatedHandleState definition associates special characteristics to a previously defined
handle. This kind of definition marks symbolic handles (e.g., stdin, stdout, stderr) or handles

3.2. DATA RECORDING 43

Active Inactive
precreated destroy

create

Figure 3.9: During the execution of an application runtime events record the creation and destruction of
I/O handles. An I/O handle is active from its creation until its destruction. Commands to
duplicate handles build a special case. The original handle remains in the active state. The
newly created handle changes from the inactive to the active state.

that were inherited from a parent process/thread. In addition, the definition contains the access mode
(e.g., read or write) and status flags of such a special I/O handle.

3.2.2 Design of Event Records to Represent I/O Activities

Events represent I/O activities during the execution of an application. As explained in Section 2, this
thesis focuses on events relevant for performance analysis and assumes that monitored I/O operations
finish successfully. Nevertheless, the presented methodology is not limited to performance analysis.
Section 6.2 introduces ideas to extend the methodology, handle unsuccessful I/O operations, and thereby
widens the scope of this work from performance analysis to debugging.

This work distinguishes events into two categories: metadata and data transfer operations. Metadata
operations, such as open/create and close, create, manipulate, or close I/O handles. Data transfer
operations comprise read and write activities. Irrespective of their type, all events record an accurate
timestamp and information about the issuing process/thread. Additional information depends on the
specific event type. The next paragraphs introduce individual events and explain their semantics using
the example of corresponding POSIX I/O operations.

Event Records for Metadata Operations Events of this category indicate the creation, destruc-
tion, or manipulation of file descriptors. Especially, the creation and destruction events define the life
span of an I/O handle. An I/O handle is active after its creation and before its destruction. Figure 3.9
illustrates the life cycle of tracked I/O handles.

The IoCreateHandle event marks the creation of a new file descriptor. For example, an open opera-
tion triggers this event. The event references the handle and records the access mode to the file descrip-
tor such as read-only, write-only, or read-write in its mode attribute. Furthermore, the IoCreateHandle
event reports optional creationFlags and statusFlags. The concept of these two attributes cor-
responds to the file creation and file status flags of the POSIX I/O API. For example, creationFlags
indicate whether a file will be created if it does not already exist. The statusFlags mark when a file
is opened in append mode. In addition, I/O APIs provide operations to duplicate an existing file descrip-
tor, e.g., the POSIX I/O dup function. The IoDuplicateHandle event represents such a duplication. The
event references the original file descriptor (oldHandle) and the newly created one (newHandle).
The IoDuplicateHandle activates the newHandle. The oldHandle remains active. There are two op-
tions to handle status flags of the new I/O handle. Either the new I/O handle inherits status flags from the
old handle or the IoDuplicateHandle event explicitly records the status flags of the new new I/O handle.
In the first option, analysis tools would have to maintain current status flags of all I/O handles to obtain
exact status information in case of a duplication event. Therefore, the design of the IoDuplicateHandle
event records the status flags explicitly and frees analysis tools of tracking status flags on their own. An
IoDestroyHandle marks the end of an active I/O handle’s lifetime. For example, a POSIX I/O close
operation triggers this event. A pair of consecutive IoCreateHandle and IoDestroyHandle events defines
the life span of an I/O handle. Within its life span a handle is active and can be used by other events.

IoSeek and IoChangeStatusFlags events record changes to the status of active I/O handles. Routines
such as POSIX I/O lseek adjust the offset of read/write operations within an opened file. An IoSeek

44 3. METHODOLOGY FOR A HOLISTIC PERFORMANCE ANALYSIS OF MULTI-LAYER I/O

E Enter Du IoDuplicateHandle Be IoOperationBegin Ca IoOperationCancelled

L Leave Se IoSeek Co IoOperationComplete Ac IoAcquireLock

Cr IoCreateHandle Ch IoChangeStatusFlags Is IoOperationIssued T IoTryLock

Ds IoDestroyHandle Dl IoDeleteFile Te IoOperationTest R IoReleaseLock

Figure 3.10: This figure gives an overview of event types and their representation in timeline charts. The
two events shown as green circles describe function entries and exits. Red boxes depict
events for I/O metadata operations and dark green circles illustrate I/O data transfer opera-
tions. Orange boxes represent events for file locking operations.

event reflects changes to the current positioning. The event reports the offset requested by the user in the
offsetRequest attribute. The whence attribute defines how to interpret this offset. For instance,
the offset can be applied as an absolute displacement from the start or end of the file or relative to the
current position within the file. The offsetResult attribute reports the resulting offset relative to
the beginning of the file. An IoChangeStatusFlags event tracks changes to the status flags of an active
handle and records current status information in the statusFlags attribute.

Figure 3.10 illustrates the list of I/O events and their representations in the following timeline charts.
The timeline chart shown in Figure 3.11 depicts a sequence of metadata operations. Enter and Leave
events mark the entry and exit of each I/O routine. In this example, the sequence starts with an open
operation that creates a new file descriptor. The IoCreateHandle event reflects this activity and activates a
new I/O handle accordingly. Afterwards, the lseek operation uses and manipulates the file descriptor.
Consequently, the corresponding IoSeek event references the active I/O handle, indicated by a dotted
line, and records changes to the read/write file offset. The close operation finalizes this sequence of
I/O operations. Thus, the IoDestroyHandle event marks the deactivation of the affected I/O handle.

I/O APIs also offer routines to delete file or directory names from the file system. For instance,
POSIX I/O provides the int unlink(const char *pathname) routine. It deletes pathname
from the file system. Additionally, if pathname was the last link to a file and no processes have the
corresponding file open, the file associated with pathname will also be deleted. Consequently, a call
to unlink might result in the deletion of an I/O resource. The IoDeleteFile event represents this kind
of activity. In contrast to the previous events, it operates on an I/O resource referenced by the file
attribute. The event record also logs the paradigm that issued the deletion.

Event Records for Data Transfer Operations Events of this category reflect data transfer oper-
ations. A complete data transfer operation consists of basic events. These events need an identifier to
correlate all parts composing a complete data transfer operation. Therefore, these kind of events contain
a matchingId attribute. This attribute identifies an I/O operation in-flight and is valid for a process
including all its threads.

Time

Process 0 open lseek closeE LCr E LSe E LDs

Figure 3.11: Example of a sequence of metadata operations. Blue bars represent function calls of the
application. Green circles and red boxes illustrate the recorded events for this sequence of
operations. The IoCreateHandle (Cr) and IoDestroyHandle (Ds) events define the life span
in which the corresponding I/O handle can be used by other I/O events, such as an IoSeek
(Se) event. The dotted line indicates that all three I/O events reference the same I/O handle.

3.2. DATA RECORDING 45

IoOperationBegin IoOperationComplete

(a) Event sequence of blocking I/O operations.

IoOperationBegin IoOperationIssued IoOperationTest

IoOperationComplete

IoOperationCancelled

XX

XX

(b) Event sequence of non-blocking I/O operations.

Figure 3.12: State diagram illustrating event sequences for (a) blocking and (b) non-blocking I/O opera-
tions.

The recorded event sequence depends on the characteristics of the observed data transfer operation.
This paragraph first introduces two basic events to start and finalize a data transfer operation. Then, this
paragraph details different characteristics of data transfer operations and their effect on the generated
event sequences.

The IoOperationBegin record marks the begin of a data transfer operation. The event lists the affected
handle, the operation mode (e.g., reading or writing), and operationFlags. The last attribute
provides additional semantic information. In particular, the operationFlags attribute determines
two distinct characteristics of an operation. It specifies whether a data transfer operation is a) collective
or non-collective, and b) blocking or non-blocking. The bytesRequest attribute logs the user defined
maximum number of transferred bytes. The matchingId attribute defines the identifier also used by
subsequent events of this data transfer operation. An IoOperationComplete event marks the end of a
data transfer operation. It references the affected handle. The bytesResult attribute stores the
actual number of transferred bytes. The matchingId attribute represents the identifier to correlate all
associated events of an data transfer operation.

IoOperationBegin and IoOperationComplete records constitute basic elements of an event sequence.
The difference of timestamps from corresponding IoOperationComplete and IoOperationBegin events
defines the duration of the transfer operation.

The specific event sequence generated by a data transfer operation depends on whether the operation
is blocking or non-blocking. Figure 3.12a illustrates the event sequence generated by blocking I/O data
transfer operations. For instance, monitoring a blocking POSIX I/O read operation results in two I/O
event records. One record represents the start of the operation and the other one represents its completion.
The “blocking” bit of operationFlags in the IoOperationBegin event is set accordingly. Due to the
semantics of a blocking operation, a pair of matching IoOperationBegin and IoOperationComplete events
occurs within the event stream of the same thread. Figure 3.13a shows a blocking I/O operation and its
corresponding events.

Time

Process 0 readE LBe Co

(a) Event sequence of a blocking I/O operation.

Time

Process 0 aio write aio error aio error aio returnE LBe Is E LTe E LCo E L

(b) Event sequence of non-blocking I/O operations.

Figure 3.13: Example of (a) blocking and (b) non-blocking I/O operations and their corresponding event
sequences. A common matchingId attribute correlates the IoOperationBegin (Be) and
IoOperationComplete (Co) events.

46 3. METHODOLOGY FOR A HOLISTIC PERFORMANCE ANALYSIS OF MULTI-LAYER I/O

In contrast, Figure 3.12b depicts the event sequence of a non-blocking I/O data transfer operation.
A characteristic of non-blocking operations is the decoupling of issuing and completing the operation.
For example, an application may use asynchronous POSIX I/O operations such as aio_write. The
function call to initiate the operation enqueues the operation for later processing and directly returns.
Even after the return of the function, the application cannot assume that the data transfer is complete.
Consequently, the application has to test for completion of the operation. This arrangement can be-
come more complex. For example, one thread might start the operation but another thread of the same
process might complete it. The recorded event sequence of a non-blocking data transfer operation also
starts with an IoOperationBegin event. According to Figure 3.12b, the remaining event sequence di-
verges depending on the result of the IoOperationBegin event. In case of a successful initiation an
IoOperationIssued event follows. The IoOperationIssued event references the affected handle and
matchingId. IoOperationBegin and its corresponding IoOperationIssued event must occur on the
same thread. Next, applications can test active non-blocking operations to ensure their completion. If
the I/O operation was not finished, the test returns without success. An IoOperationTest event rep-
resents such an unsuccessful test. This event references the affected handle and matchingId. In
contrast, an IoOperationComplete event indicates a successful test, i.e., the I/O operation has finished.
The IoOperationCancelled event records the successful cancellation of a non-blocking I/O operation.
The event references the affected handle and matchingId. Any thread of the same process can test,
cancel, or complete a non-blocking I/O operation in-flight.

Figure 3.13b shows a sequence of non-blocking I/O operations and its corresponding events. In
this example, the application starts a non-blocking I/O data transfer via the aio_write routine. The
IoOperationBegin (Be) event reflects the begin of the operation. The IoOperationIssued (Is) event marks
when the operation is enqueued, i.e., handed over to the operating system to be processed. Afterwards,
the application can test the operation for its completion. In Figure 3.13b, the first call to aio_error re-
turns with the exit code EINPROGRESS to signal that the operation has not completed yet. Consequently,
the recorded event sequence contains an IoOperationTest (Te) event. The second call to aio_error
reports a successful completion of the asynchronous data transfer, reflected by an IoOperationComplete
(Co) event. Subsequently, the applications calls aio_return to check the return status of the opera-
tion.

Another important characteristic of data transfer operations is their collective or non-collective nature.
I/O operations are called collective if they involve a group of processes/threads. The “collective” bit
in the operationFlags attribute of the IoOperationBegin event marks the special semantic of such
operations. The handle referenced by the I/O operation defines a group of processes/threads.

Figure 3.14 shows four MPI ranks (Process 0 - Process 3) performing a collective blocking I/O oper-
ation. The dotted line indicates two distinct types of correlation between the recorded I/O events. First,
the IoOperationBegin (Be) and IoOperationComplete (Co) events on each process are correlated by a

Time

Process 0

Process 1

Process 2

Process 3

MPI File read at all

MPI File read at all

MPI File read at all

MPI File read at all

E LBe Co

E LBe Co

E LBe Co

E LBe Co

Figure 3.14: Illustration of four processes executing a collective blocking I/O operation. The
matchingId correlates the IoOperationBegin (Be) and IoOperationComplete (Co) events
on each process. The group information of the I/O handle associates the I/O data transfers
across the four processes.

3.2. DATA RECORDING 47

common matchingId. Second, the I/O handle referenced by the shown I/O events contains group
information that associates the I/O data transfers across the four processes.

Event Records for Locking Operations Events of this category deal with obtaining, testing and
releasing locks on I/O resources. The event sequence starts with a process requesting a lock. The
recorded event depends on the kind and result of this operation. On the one hand, lock operations can
block until the requested lock is granted. On the other hand, non-blocking lock operations return imme-
diately and report about the status of the operation. The return code of a non-blocking lock operation
informs whether the lock was granted or not, e.g., because the lock was held by another process. An
IoAcquireLock event marks the acquisition of an I/O lock, whereas IoTryLock indicates that the lock
was not granted. An IoReleaseLock event marks the release of a previously granted lock. All events of
this category reference the affected handle and specify the type of the lock. A lock is either shared
or exclusive. Multiple processes may hold a shared lock at the same time. For instance, several processes
can concurrently acquire a read lock for a file without the risk of mutual data corruption. Only one
process can hold an exclusive lock at a time, e.g., to protect write operations on a shared file.

Figure 3.15 shows an example of locking operations. In the first call to flock the requested lock is
not granted. Therefore, the event sequence contains an IoTryLock (T) event. Afterwards, the application
executes a second call to flock and requests another lock. In this case, the lock is granted and an
IoAcquireLock (Ac) event is recorded. Finally, the application releases this lock in the third call to
flock. This results in the recording of an IoReleaseLock event.

Time

Process 0 flock flock flockE LT E LAc E LR

Figure 3.15: Example of a sequence of file locking operations and their corresponding I/O events.

48 3. METHODOLOGY FOR A HOLISTIC PERFORMANCE ANALYSIS OF MULTI-LAYER I/O

3.3 Data Analysis

Section 3.2 introduced the methodology to record performance data including hierarchical relations be-
tween I/O operations. This data is the foundation for analysis techniques as described in this section.
The captured trace data contains event sequences of I/O operations that reflect access patterns of the
observed application. Analyses of these patterns identify potential inefficiencies in the I/O behavior of
applications and guide users in the process of I/O performance optimization.

Section 3.3.1 focuses on the analysis of an individual application. It introduces access patterns de-
tectable with the multi-layer I/O analysis approach presented in this work.

Nowadays, scientific applications are often embedded in complex workflows. Therefore, Section 3.3.2
widens the scope and presents an approach to analyze entire scientific workflows.

3.3.1 Definition of Multi-layer I/O Access Patterns in Applications

In order to leverage the potential of sophisticated parallel I/O subsystems applications have to access their
data in an appropriate manner. As several studies [66, 17] revealed this is not the case for many current
applications. Often applications perform a lot of accesses to small, non-contiguous chunks of data. This
kind of access pattern induces a high load on the I/O subsystem. In addition, parallel applications issue
I/O requests by multiple processes. For strong scaling experiments, where the problem size stays constant
while the number of processes increases, the average data size of an I/O request tends to decrease. These
trends intensify contention of I/O subsystems and result in suboptimal I/O performance of applications.

Therefore, best practices recommend to perform I/O operations in few and large chunks [68]. For
instance, an aggregation of multiple small I/O requests into few larger ones will minimize the number
of requests and thereby reduce the load on the I/O subsystem. I/O libraries such as MPI I/O or HDF5
provide users options to specify hints about the file layout and data access. Based on this information
the libraries apply internal optimizations, e.g, data prefetching and aggregation. Because these internal
optimizations are not directly visible to users, but influence the I/O performance of an application, an-
alysts need information about both I/O access patterns of applications and internal optimizations of I/O
libraries to successfully evaluate application performance.

This work is designed to observe operations across individual layers of the I/O software stack. As
a consequence, it offers the potential to reveal effects of internal optimizations, e.g., applied by I/O li-
braries. Section 3.3.1.1 showcases how internal optimizations alter I/O characteristics from the user’s
API perspective. In addition, two techniques to reduce the number of requests to the parallel file system
are discussed: Data Sieving (Section 3.3.1.1) and Collective Buffering (Section 3.3.1.2). The identifica-
tion of these patterns allows analysts to prove the effectiveness of internal optimizations in I/O libraries.

3.3.1.1 I/O Access Patterns On Individual Processes/Threads

This section introduces I/O access patterns observable in the event log of an individual process or thread.

Varying Number of Function Calls Within the complex I/O software stack, high-level libraries
map their functionality to low-level libraries. Often this is not a direct mapping. In some cases, a single
function call to the high-level library results in multiple calls to a low-level library.

In the example shown in Figure 3.16 an application writes a large portion of data to the file system.
Therefore, the application uses an appropriate API call provided by a high-level I/O library (hl_write,
blue bar). The high-level library realizes the data transfer by utilizing a low-level I/O library (ll_write,
light red bars). Additionally, the high-level library splits the operation into multiple write calls to the low-
level library each with a block size of 10 MB. Such an effect is not directly visible from a user’s per-
spective and requires information collected across multiple layers of the software stack. The increased
number of I/O requests might stress the I/O subsystem. Therefore, this pattern guides developers and
users of high-level I/O libraries in investigating inefficiencies in the usage of high-level I/O libraries.

3.3. DATA ANALYSIS 49

Time

Process 0 hl write(20 MB) ll write(10 MB) ll write(10 MB)E LBe CoE LBe Co E LBe Co

Figure 3.16: Illustration of a high-level I/O library mapping its functionality to a low-level library. In
this example, a single function call to the high-level library (hl_write) results in multiple
calls to the low-level library (ll_write).

Varying Number of Transferred Bytes Similar to a varying number of function calls across the
software stack, internal optimizations within the I/O libraries might alter the number of transferred bytes.
A well-known optimization is data sieving, where an I/O library rearranges I/O requests internally [105,
106].

Data Sieving The concept of data sieving aims at combining small I/O accesses made by an applica-
tion into larger ones. For instance, ROMIO, an implementation of MPI I/O, realizes data sieving. MPI
provides developers the option to create file views [72, Chapter 13.3] assigning regions of a file to indi-
vidual processes. However, a file view might assign non-contiguous portions of data to a process. Fig-
ure 3.17 illustrates an example where a MPI process reads data from a file using MPI_File_read().
Due to the process’ file view, the read request maps to six independent, non-contiguous chunks of data
within the file. The top chart of Figure 3.17 depicts the file layout. As a consequence, the MPI imple-
mentation has to gather data from the individual chunks. A naive approach would generate six requests
to the I/O subsystem, one for each chunk. Data sieving combines these I/O request into a single request
ranging from the first requested to the last requested byte. As a result, it reads a contiguous chunk of
data into an intermediate buffer (middle chart of Figure 3.17). The intermediate buffer may hold more
data than requested by the user. Afterwards, only requested chunks of data are copied to the application’s
buffer.

On the one hand, data sieving reduces the number of requests to and thereby the load on the I/O
subsystem due to the combination of I/O accesses. Because I/O requests are high latency operations,
applications also benefit from a decreased number of these operations. On the other hand, data sieving
transfers more data than requested by the user.

Effects of optimization strategies such as data sieving manifest in recorded event logs. Comparing
correlated I/O events from a high-level (e.g., MPI I/O) and a low-level library (e.g., POSIX I/O) reveals
that the amount of transferred data differs on the individual layers. Figure 3.18 shows an illustration.

File Layout

Intermediate Buffer

Memory Layout

MPI_File_read

Process 1

Figure 3.17: Data sieving combines multiple small I/O accesses of a process into one larger request.
This technique reads a large contiguous portion of data, including the requested chunks
(top), into an intermediate buffer (middle). Only requested chunks are moved to process’
memory (bottom).

50 3. METHODOLOGY FOR A HOLISTIC PERFORMANCE ANALYSIS OF MULTI-LAYER I/O

Time

Process 0 hl read(32MB) ll read(40MB)E LBe CoE LBe Co

Figure 3.18: Illustration of a high-level I/O library mapping its functionality to a low-level library. In this
example, the high-level library applies optimizations such as data sieving. Consequently, the
total amount of transferred data differs on the individual layers of the I/O software stack.
From the high-level perspective (hl_read), the user reads 32 MB. However, from the
low-level perspective (ll_read) a total of 40MB is read.

3.3.1.2 I/O Access Patterns Across Multiple Processes/Threads

In contrast to Section 3.3.1.1, this sections presents I/O access patterns involving multiple process-
es/threads.

Collective Buffering Collective buffering is a strategy for optimized handling of I/O requests made
by several clients [104, 106]. It can be accomplished by storage devices, servers, or directly by clients
themselves. This section explains collective buffering at the client level which is also known as two-phase
I/O.

Figure 3.19 depicts an example where three processes read chunks of data from a file. The top chart
illustrates the file layout and the distribution of data blocks to processes. While all processes together
read the entire file, data blocks for individual processes are scattered across the file. If each process
would read its data chunks individually, a lot of small non-contiguous I/O requests would be generated
which results in an inefficient I/O behavior. In such situations collective buffering can improve the
efficiency of I/O accesses. Therefore, collective buffering collects access information from all processes,
rearranges I/O requests in a way that each process accesses a large contiguous data block, and splits the
data transfer into two phases. Irrespective of the distribution of data chunks the file is segmented into
domains and each process is responsible for a specific domain of the file (top chart Figure 3.19). The
domain represents a large contiguous block within the file. In the first phase, each process reads data of
its domain into an intermediate buffer (middle chart). In the second phase, processes communicate and
redistribute data to corresponding destinations (bottom chart).

The concept of collective buffering prefers the I/O access to a large contiguous block of data over
multiple accesses to small non-contiguous blocks. This idea assumes that a large contiguous file access
reduces time spent in I/O operations and amortizes communication costs.

Aggregation Based on the concept of collective buffering aggregation utilizes some processes as
proxies (aggregators) for I/O requests. As shown in Figure 3.20, instead of all processes accessing the
I/O subsystem individually, Process 0 acts as a representative for all three processes and issues a large
I/O requests to the I/O subsystem. Process 0 reads a large chunk of data into its intermediate buffer.
After retrieving the data Process 0 redistributes data to all other processes. This concept reduces the
number of requests to and lowers the load on the I/O subsystem.

Figure 3.21 showcases the concept of aggregation and its effect on event logs using MPI I/O as an
example. For all processes the event log contains a call to the routine MPI_File_write_at_all.
In this example, the high-level MPI I/O library internally uses POSIX I/O to realize data transfers. As
the figure shows, Process 0 acts as an aggregator for I/O requests. Only the event stream of Process 0
reports a call to the POSIX I/O routine pwrite.

3.3. DATA ANALYSIS 51

File
Domain

Process 1

File
Domain

Process 2

File
Domain

Process 3

read

communication

Process 1 Process 2 Process 3

File Layout

Intermediate Buffer

Memory Layout

Figure 3.19: Collective buffering reorganizes I/O requests to generate accesses to large contiguous
chunks of data (top). Participating processes communicate data from their intermediate
buffer (middle) to achieve final distribution of data (bottom).

File Domain Process 0

read

communication

Process 0 Process 1 Process 2

File Layout

Intermediate Buffer

Memory Layout

Figure 3.20: Aggregation utilizes selected processes as proxies for requests to the I/O subsystem. In this
example, Process 0 acts as an aggregator. Communication between processes realizes the
final data distribution.

Time

Process 0

Process 1

Process 2

Process 3

MPI File write at all pwrite

MPI File write at all

MPI File write at all

MPI File write at all

E LBe CoE LBe Co

E LBe Co

E LBe Co

E LBe Co

Figure 3.21: Illustration of an event log highlighting the effect of aggregation. Despite all processes
making function calls to the high-level I/O library (MPI_File_write_at_all), only
Process 0 issues an I/O request via a call to the low-level pwrite routine.

52 3. METHODOLOGY FOR A HOLISTIC PERFORMANCE ANALYSIS OF MULTI-LAYER I/O

3.3.2 Analysis of Scientific Workflows

The previous section focused on the analysis of individual parallel scientific applications. This section
widens the scope and presents an approach to analyze entire scientific workflows. Current research
is usually characterized by collaborations of scientists from various domains, large-scale simulations
on parallel and distributed platforms as well as analysis of large data volumes (data analytics). This
composes multiple applications and requires well-defined coordination to configure appropriate series
of operations. Scientific workflows have been established for this task [8]. Within a workflow scientists
systematically describe tasks, express dependencies between tasks, allocate compute resources to execute
tasks, and manage data. Workflow Management Systems (WMS) control task executions on distributed
hardware resources.

In this thesis a workflow represents a coordinated sequence of interdependent applications. A Workflow
consists of one or more Jobs. For example, a Job reflects a single submission to the scheduling system.
Each Job comprises one or more Job Steps. For instance, a Job Step executes a single application.
Figure 3.22 shows an example of a workflow with three individual jobs. Jobs and Job Steps can depend
on each other, e.g., if a Job Step reads the output of another preceding one (data dependency) or if
users specify a “happens-before” relation between Jobs or Job Steps in their workflow configuration
(control dependency). In Figure 3.22 arrows illustrate control dependencies. In this example Job Step
JA.2 of Job JA depends on Job Step JA.1 of the same job, i.e., JA.2 can start its execution only after
JA.1 has finished. The same applies to Job JB . In addition, Job JC depends on Job JA and Job JB .
Consequently, inefficiencies of a Job Step do not only delay the affected Job Step but also propagate to
depending Job Steps and delay execution of dependent Jobs. As a result, the overall workflow runtime
increases. Identification of bottlenecks within a complex workflow requires tool support. Subsequent
performance optimization necessitates detailed information about the workflow configuration and the
runtime behavior of its components. Event logs provide this level of detail and characterize the behavior
of applications. The presented features to observe I/O activities enhance the event logs and allow users
to track data dependencies between Jobs or Job Steps. Therefore, based on the presented methods for
data acquisition and recording, this thesis proposes a top-down approach for performance analysis of
scientific workflows. This section presents the conceptual overview. Section 4.4 focuses on details of the
implementation.

Methodology of the Workflow Analysis Following Shneiderman’s Visual Information Seeking
Mantra [93], the approach scales performance data from a global (the entire workflow) to a detailed
(application level) view. For each level of the workflow the proposed approach provides relevant perfor-
mance information at a suitable level of detail. Figure 3.23 illustrates the typical hierarchical structure
of a workflow. The Workflow W1 of this example consists of the two Jobs JX and JY . Each Job com-

Workflow W0

Job JA

Job JB

Job JC

Job Step
JA.1

Job Step
JA.2

Job Step
JB.1

Job Step
JB.2

Job Step
JC.1

Figure 3.22: Example of a Workflow consisting of three Jobs. Each Job Step represents command execu-
tions, e.g., mpirun. Arrows indicate control dependencies.

3.3. DATA ANALYSIS 53

Workflow W1

Job JX Job JY

Job Step
JX.1

Job Step
JX.2

Job Step
JY.1

Job Step
JY.2

Workflow Job Job Step

Figure 3.23: The typical hierarchical structure of a Workflow includes Jobs and Job Steps.

prises two Job Steps (JX.1, JX.2, JY.1, and JY.2). As shown in Figure 3.24, the analysis starts with an
overview of the entire workflow. In accordance with the hierarchical structure of workflows, the analysis
increases the level of detail while progressing to fine granular levels of a workflow. In the initial analysis
view users investigate aggregated performance metrics to get an overview of the entire workflow. Addi-
tionally, users inspect the workflow graph illustrating job dependencies and the order of job executions.
These information directs users to problematic Jobs. The job level analysis provides detailed perfor-
mance information which precisely characterizes the Job. The increased level of detail enables users to
identify the performance critical parts of the workflow. Finally, users examine individual Job Steps of
the selected Job. This last analysis step provides fully detailed event logs for Job Steps to facilitate users
in revealing the root cause of any performance issues detected.

The next paragraphs describe the workflow analysis procedure in detail by following the individual
analysis levels.

3.3.2.1 Workflow Level

The goal of this initial level of workflow analysis is to give users a general overview of the entire Work-
flow, illustrate dependencies between Jobs, and thereby expose inefficiencies as well as unused paral-
lelization potential.

Therefore, the proposed approach presents performance summaries of all Jobs. Additional runtime
statistics categorize workflow time into three groups: computation, communication, and I/O. The analy-
sis at this level assists users in diagnosing performance problems within the workflow, localizing affected
Jobs and Job Steps, and assessing general performance characteristics. For instance, users can verify
whether a workflow is communication bound, if particular Jobs dominate the workflow’s time to com-
pletion, and estimate the impact of performance problems on the entire workflow. Section 4.4.3 details
on the implementation of the Workflow analysis level.

At the end of this analysis level, users identify particular jobs that appear to contain performance
issues. With these selected Jobs users continue to the next analysis level, the Job level.

Job Step
Job

Workflow

Overview

Analysis

Insight

Coarse

Level of Detail

Fine

Figure 3.24: Corresponding to the hierarchical structure of workflows the top-down workflow analysis
approach starts with a general overview of the entire Workflow. Subsequent levels provide
more detailed information about individual parts of a workflow.

54 3. METHODOLOGY FOR A HOLISTIC PERFORMANCE ANALYSIS OF MULTI-LAYER I/O

3.3.2.2 Job Level

In contrast to the Workflow level, analysis at the Job level provides statistics characterizing individual
Jobs and their Job Steps. A categorization of the statistics into computation, communication/synchro-
nization, and I/O guides users through the analysis process. Job Step statistics are the foundation for
derived summaries about the total Runtime Share of a Job. The Runtime Share indicates the contribution
of individual Job Steps and categories to the overall execution time of a Job. An overview of accessed I/O
resources amends analysis options at the Job level. Section 4.4.2 introduces the tools used to generate
these statistics.

At the end of this analysis level, users identify the most time consuming Job Steps or function cate-
gories. Based on this knowledge, users select individual Job Steps for further analysis in the next level,
the Job Step level.

3.3.2.3 Job Step Level

This level features the most detailed performance information. Based on event logs the Job Step level
analysis provides statistics about individual events such as function calls or communication operations. A
performance monitor instruments applications and records event logs. Users can adjust the measurement
process and thereby control the type of recorded events. For instance, users can decide to record function
calls, parallelization constructs, and calls to I/O routines. With this configuration the analysis can pro-
vide a detailed outline about the computation, communication, and I/O behavior of a specific Job Step.
Because event logs preserve the temporal application behavior, timeline views complement statistics.
This allows users to ultimately diagnose root causes of performance bottlenecks, such as inefficiencies
in inter-process communication or synchronization. Section 4.4.1 discusses the implementation of per-
formance monitoring at the Job Step level.

55

4 Implementation of the Methodology for a Holistic
Performance Analysis of Multi-layer I/O in Parallel
Scientific Applications

The previous chapter formally introduced the methodology for recording information about multi-layer
I/O operations. This chapter is dedicated to the realization of the proposed methodology. It shows
the integration into a monitoring infrastructure, highlights the extensions to the trace data format, and
presents the implementation of an analysis toolset.

4.1 Realization of the Methodology Within a Monitoring
Infrastructure

This work does not start the development of a completely new monitoring infrastructure. Instead, this
thesis provides extensions to established performance monitors, data formats, and analysis tools. This
decision allows continued use of existing functionality. The thesis enhances the established perfor-
mance measurement infrastructure Scalable Performance Measurement Infrastructure for Parallel Codes
(Score-P) [53]. Score-P provides a measurement infrastructure for profiling, event trace recording, and
online analysis of highly parallel applications. Figure 4.1 depicts Score-P’s modular software architec-
ture. Adapter components interact with the application and record information about the behavior of the
application during execution time. There are adapters supporting instrumentation of process-level par-
allelism (MPI, SHMEM), thread-level parallelism (OpenMP, Pthreads), accelerator-based parallelism
(CUDA, OpenCL, OpenACC), and source code (automatic compiler instrumentation, manual user in-
strumentation, PDT). In addition to instrumentation, Score-P supports sampling as an alternative method
for data acquisition. After collecting information from the application, adapters provide their data to the
measurement core. The Score-P measurement core provides internal buffers for common data manage-
ment and holds collected performance data in main memory during application execution. Furthermore,
the measurement core can augment the data with metric information, e.g., collected from hardware per-
formance counters. The online interface allows users to access performance data while the application is
running. Score-P writes collected performance data to permanent storage when the application finishes

Application

Sc
or

e-
P

I/O
instrumentation

adapter

Process-level
parallelism

adapter

Thread-level
parallelism

adapter

Accelerator-
based

parallelism
adapter

Source code
instrumentation

adapter

Sampling
adapter

Measurement core

Instrumentation wrapper

Hardware
counter

Online interfaceEvent traces Call-path profiles

Figure 4.1: Software architecture of the Score-P measurement infrastructure. Components implemented
or enhanced in this thesis are highlighted in blue.

56 4. IMPLEMENTATION OF THE METHODOLOGY

its execution or if internal buffers are fully utilized. The Open Trace Format Version 2 (OTF2) [29] is the
persistent data format for event logs and Cube4 [89] for profiling data. Several analysis tools work with
these data formats and interfaces. For example, Periscope [94] uses the online interface for auto-tuning
by investigating different parameter settings for, e.g., compilers flags or number of OpenMP threads. The
Cube report explorer tool provides an intuitive graphical user interface to visualize profile data. Scalasca
and Vampir use event log data for automatic identification of common inefficiency patterns and scalable
visualization of the application behavior.

The following sections detail on the individual aspects of the enhancements of the Score-P measure-
ment infrastructure implemented in this thesis. Section 4.2 describes the additional adapters responsible
for the instrumentation of calls to the I/O libraries NetCDF, HDF5, MPI I/O, and POSIX I/O. This
work also enhances the Score-P measurement core to efficiently manage I/O definitions and events (Sec-
tion 4.2). Furthermore, the thesis realizes options to record the collected I/O performance data persis-
tently. Therefore, it integrates I/O records in the profile and trace data formats (Section 4.3). Figure 4.1
highlights affected components of the Score-P measurement system in blue color.

4.2 Implementation of the Data Acquisition Methods

In order to identify I/O bottlenecks in the application behavior, the data acquisition method has to provide
detailed information about I/O operations, e.g., exact timings. Each individual operation might be of
interest to users, especially independently of its duration. A sampling-based approach cannot guarantee
to capture all I/O operations of an application, especially short-running instances (Section 2.2.1.1 on
page 18). Therefore, the implementation presented in this thesis uses an instrumentation-based approach
(Section 2.2.1.2 on page 20). Figure 4.2 demonstrates the interception of calls from an application to
an I/O library by Score-P. Score-P acts as an additional layer interposing the call from an application
to a library. This thesis implements adapters that realize the instrumentation of calls to the I/O libraries
NetCDF, HDF5, MPI I/O, and POSIX I/O.

Intercepting Calls to Library Functions The interception of MPI library calls builds upon the
existing MPI profiling interface (PMPI) [72, Section 14.2]. This interface is typically implemented using
weak symbols (Section 3.1.3 on page 39).

The interception of calls to NetCDF, HDF5, and POSIX I/O uses a generic interception method [13].
This method parses the header files of a library in order to obtain functions provided by the library,
generates wrapper source code for each function, and builds wrapper libraries. The generated wrapper
libraries support both interception at link-time (Section 3.1.1 on page 36) as well as interception at
execution-time (Section 3.1.2 on page 36).

When an application issues an I/O function call, Score-P intercepts this call. As a consequence, the
control flow passes to the Score-P measurement system. The measurement system has access to function
parameters, records performance relevant data, and calls the original function. After the original function
returns, the control flow passes back to the application and the program continues its execution.

A
pp

lic
at

io
n

I/
O

L
ib

ra
ry

(a) Original function call sequence

A
pp

lic
at

io
n

Score-P

I/
O

L
ib

ra
ry

(b) Interception of function calls by Score-P

Figure 4.2: The figure illustrates the principle of library call interception with Score-P. Black arrows
show the original function calls of an application into an I/O library. Red arrows illustrate the
function call interception by Score-P.

4.2. IMPLEMENTATION OF THE DATA ACQUISITION METHODS 57

Internal Data Management This work enhances Score-P by adapters for NetCDF, HDF5, MPI I/O,
and POSIX I/O. According to the presented methodology, recording interactions between these adapters,
e.g., if a high-level I/O paradigm realizes its functionality by utilizing another I/O paradigm, is a funda-
mental requirement. Furthermore, extensions of the Score-P measurement core to manage I/O definitions
and events should not be limited to specific I/O paradigms. Instead, the implementation introduced in
this work has to support a flexible list of I/O paradigms. This requires a generic handling of interac-
tions between I/O adapters. A shared per-thread I/O management stack in Score-P maintains the status
of current I/O operations and allows I/O adapters to communicate. The example of MPI I/O imple-
mented on-top of ISO-C illustrates this approach. If the MPI I/O adapter of Score-P intercepts a call to
MPI_File_open, it creates a new IoHandle (handle1) and pushes it to the I/O management stack.
Afterwards, the PMPI_File_open function is invoked via the MPI profiling interface. The MPI im-
plementation may than call fopen, which is subsequently intercepted by Score-P as well. Score-P’s
ISO-C adapter inspects the top element of the I/O management stack to determine whether a potential
higher-level I/O paradigm is active. If a handle is available on the stack, such as handle1 in this ex-
ample, this handle is used as parent for the newly created IoHandle (handle2). After leaving fopen
and MPI_File_open, the top element from the I/O management stack is removed for each involved
paradigm.

In summary, a priori it is unknown whether lower-level paradigms will create new IoHandles. There-
fore, each I/O component must push and pop its current active handle onto the I/O management stack.
This ensures appropriate references to controlling higher-level I/O paradigms in individual handles. As
a result, all occurring IoHandles create a root-directed tree. This generic approach offers an extendable
mechanism to support I/O paradigms in Score-P.

Capturing Supplementary Information Metadata information complements recorded events of
the observed application and assists users in a holistic performance analysis. Score-P already provides
several options to amend recorded event data. For instance, users can configure Score-P to record per-
formance counters using the Performance Application Programming Interface (PAPI) [103] or perf [84].
PAPI and perf provide an interface to access performance counters implemented in hardware or software.
Hardware performance counters read registers of a device that count the number of specific events exe-
cuted by the hardware. For instance, many modern CPUs provide performance counters reporting about
the number of executed floating point operations, cache misses, or reference cycles when a processor
core is not in a halt state. The number of page faults or context switches are examples of performance
counters implemented in software. Furthermore, Score-P provides a metric plugin API [90]. This inter-
face allows users to load software modules that implement additional performance counters. A variety
of plugins is available for download at the Score-P repository [91].

In addition to recording I/O events, this work provides complementary file system information for later
analysis. For instance, on Lustre file systems users can include information about the file system type,
the mount point and source, as well as the stripe count and size of a file in their event logs. The mount
point and source information is retrieved from the Linux process information pseudo-filesystem [86]. For
reasons of portability, the implementation queries /proc/self/mounts to get the mount informa-
tion. However, recent Linux versions also provide the /proc/self/mountinfo file. In comparison
with /proc/self/mounts, this file supplies additional information and can also be used to obtain
the information about mount points and sources. Furthermore, the implementation presented in this work
uses the llapi library [62] to obtain stripe count and size information. This library allows applications to
request or set Lustre properties of a file or directory. For instance, the llapi_file_get_stripe
routine returns striping information for a given file or directory.

58 4. IMPLEMENTATION OF THE METHODOLOGY

Anchor File
(e.g., traces.otf2)

Global Definition File
(e.g., traces.def)

Local Event File
(e.g., 0.evt)

Local Definition File
(e.g., 0.def)

(a) Structure of an OTF2 archive

<ArchiveName>

traces.otf2

traces.def

traces

0.def

0.evt

1.def

1.evt

4294967296.def

4294967296.evt
...

(b) File system representation of an OTF2 archive

Figure 4.3: The figure depicts (a) the structure of an OTF2 archive and (b) its corresponding file system
representation.

4.3 Implementation of the Data Recording Methods Within a Trace
Format

This thesis implements the methodology presented in Section 3.2 on page 40 as an extension of the Open
Trace Format Version 2 (OTF2) [29]. OTF2 is a memory efficient event trace data format. With its
compact binary format and internal compression techniques, OTF2 is able to record event logs of highly
scalable applications. The OTF2 library provides interfaces for reading and writing trace data. According
to the OTF2 file format specification an event log always consists of an anchor file, a global definition
file, and one or more local definition as well as local event files. The number of local definition and local
event files depends on the number of event streams. An event stream is the basic entity of recording and
represents a unit of execution such as a process or thread. OTF2 also uses the term location to refer to an
event stream. The entire set of files is also called an OTF2 archive. The following paragraphs describe
the purpose of individual file types.

Anchor file The anchor file provides metadata about the event log such as the OTF2 version used to
create this archive or an unique trace identifier.

Global definition file The global definition file contains all definitions that are equal among all
locations.

Local definition file In contrast to the global definition file, a local definition file contains only
definitions that apply to a certain location.

Local event file The local event file stores all events recorded on a location. Within this local log file
all events are stored in chronological order.

4.4. IMPLEMENTATION OF A TOOLSET FOR ANALYSIS OF SCIENTIFIC WORKFLOWS 59

Job Step A.1

Job Step A.2

Job Step B.1

Job Step B.2

JobLog

JobLog

Score-P

Score-P

Score-P

Score-P

Slurm

OTF2-Profile

OTF2-Profile

OTF2-Profile

OTF2-Profile

Workflow Output Workflow Visualizer

Job A

Job B

Trace A.1

Trace A.2

Job log A

Trace B.1

Trace B.2

Job log B

Profile A.1

Profile A.2

Profile B.1

Profile B.2

Figure 4.4: The figure depicts the workflow measurement infrastructure and illustrates interactions be-
tween individual tools. Measurements record event logs and scheduling information. A
conversion of the event logs to profile data provides a statistical overview. A graphical user
interface presents a user-friendly visualization of the collected data.

OTF2 already supported events for function entry and exit, parallelization constructs, and communi-
cation. This thesis extends OTF2 with definitions and events to represent I/O operations. The record
design of OTF2 also distinguishes between definitions and events. Therefore, the proposed methodology
translates almost identically to the implementation in OTF2. Appendix A.1 (page 111) details new OTF2
I/O definition records, Appendix A.2 (page 113) lists OTF2 I/O event records.

OTF2 maintains enumerated types to represent various categories. For example, the list of paralleliza-
tion paradigms such as MPI, OpenMP, or Pthreads is implemented as a C-enumeration in the OTF2
application programming interface. Adding support for new parallelization paradigms requires an exten-
sion of the corresponding enumeration. Preserving compatibility of API versions is challenging in the
presence of such extensions. As a result, inconsistencies due to unknown enumeration members would
occur if older OTF2 versions read event logs written by a newer OTF2 version. There is a wide range
of available I/O interfaces and an recording of I/O operations should not be limited to a fixed list of
representatives. Therefore, reflecting I/O paradigms as enumeration types in OTF2 is unsuitable. This
work implements the IoParadigm definition record using a self-describing mechanism. For the sake
of convenience, the OTF2 library textually describes common I/O paradigms such as HDF5, MPI I/O,
or POSIX I/O and their expected definition. Users are encouraged to follow these suggestions when
generating their own event logs.

4.4 Implementation of a Toolset for the Analysis of Scientific
Workflows

This section explains the implementation of the top-down workflow analysis approach presented in Sec-
tion 3.3.2. It details on implementation aspects at each individual level of the workflow hierarchy.

Recording trace data at the Job Step level is a crucial aspect of the methodology. Detailed event logs
are the foundation for the entire analysis process. Aggregated statistics are always derived from more de-

60 4. IMPLEMENTATION OF THE METHODOLOGY

tailed information provided by the level below. Therefore, contrary to the methodology, data processing
internally operates in a bottom-up fashion. Accordingly, this section initially presents implementation
details at the Job Step level (Section 4.4.1), continues with the Job level (Section 4.4.2), and concludes
with the Workflow level (Section 4.4.3).

The implementation incorporates several independent tools that acquire and process performance data
at the different analysis levels. Figure 4.4 gives an overview of the implementation and its associated
tools using the example of Figure 3.23.

4.4.1 Data Processing at the Job Step Level

The current implementation conducts performance measurements at the Job Step level. As shown in Fig-
ure 4.4, Score-P is used to instrument each Job Step, monitor the execution of individual Job Steps, and
collect detailed performance data. The implementation configures Score-P to store obtained performance
data as event logs in the OTF2 format. Established tools such as Vampir or Scalasca assist users with
scalable visualizations or automatic analyses of OTF2 traces. Each Job Step of the observed workflow
produces an individual trace. For instance, in Figure 4.4 Job Step A.1 of Job A creates Trace.A.1. Fully
detailed event logs include all information necessary to diagnose performance problems in affected Job
Steps. Furthermore, event logs are the foundation for all aggregated statistics at the Job and Workflow
level.

4.4.2 Data Processing at the Job Level

At this level, the implementation of the top-down workflow analysis provides a general performance
overview of entire Jobs. Therefore, combined statistics are derived from associated Job Step traces.
The tool OTF2-Profile [40] processes recorded event logs and generates statistics for each trace file.
A subsequent procedure combines the values for all Job Steps belonging to one Job. The following
paragraph presents OTF2-Profile in detail.

Job dependencies are another performance relevant aspect of the analysis at the Job level. These de-
pendencies express relations between Job Steps such as “happens-before” and therefore affect Job Step
ordering and execution. For example, a data dependency between two Job Steps results in a serialized
execution of these Job Steps. The analysis of performance data of a single Job Step alone is insufficient
and would not reveal this kind of inefficiency. Therefore, methods to study dependencies between Job
Steps complement options to inspect performance details at the Job level. The implementation utilizes
additional sources of information such as the scheduling system to provide insight into the workflow com-
position. This work showcases an implementation of the proposed methodology for the Slurm Workload
Manager [127] that is commonly used on HPC systems worldwide. However, according to this exam-
ple users can conveniently apply the methodology to other scheduling system. The paragraph after next
details on querying scheduling information.

OTF2-Profile The command-line tool OTF2-Profile reads OTF/OTF2 trace files and produces statis-
tics based on the information contained in the event logs. Because trace files can become large in size,
OTF2-Profile processes traces in parallel. With this parallel execution feature users can run OTF2-Profile
as a post-processing step of their workflows reusing already allocated resources.

Figure 4.4 depicts OTF2-Profile reading recorded traces and generating corresponding profiles. Each
event log of a Job Step results in its own profile, see Profile.A.1, Profile.A.2, Profile.B.1, and Profile.B.2
in Figure 4.4. OTF2-Profile already supported the output of profiles in the Cube data format suitable
for the Scalasca framework and other compatible tools. Cube profiles focus on performance data of an
individual application. However, this work requires additional information about characteristics of a job.
Therefore, this work extends OTF2-Profile by a new high-level JSON output format. This JSON format
comprises four main parts: a) metadata about the monitored job, b) a breakdown of the job’s Runtime
Share, c) a summary of function call information, and d) a summary of I/O handles accessed by the job.

4.4. IMPLEMENTATION OF A TOOLSET FOR ANALYSIS OF SCIENTIFIC WORKFLOWS 61

In addition to the Cube data format, the JSON output includes additional Job information, such as the
job ID, the number of nodes, processes and threads present in the trace, the path to the trace file, and the
measurement clock resolution.

The JSON format classifies the time share of each Job Step into the categories I/O, communication,
and computation. In accordance with the OTF2 data format, the category I/O comprises all I/O oper-
ations recorded in the event logs, i.e., the current implementation considers the I/O paradigms ISO C,
POSIX I/O, MPI I/O, NetCDF, and HDF5. Each I/O paradigm maintains its individual statistics. Com-
munication consists of MPI [71] and OpenMP [80] routines. Again, each paradigm is listed separately
in the statistics. All remaining CPU time is attributed to the computation category. The JSON output
additionally lists the serial (only one thread of execution) and parallel (more than one thread or process
active) time share of the Job. The current implementation does not distinguish between single-node and
multi-node parallelism. Based on I/O operations contained in the event log OTF2-Profile generates an
additional summary about I/O handles and a list of accessed files. Each I/O handle entry includes details,
such as accessing process, associated I/O paradigms, access modes, and the name of the parent file. For
instance POSIX I/O file entries may point to an associated HDF5 parent file. Subsequent analysis steps
utilize this information to reconstruct data dependencies.

Although OTF2-Profile produces one JSON profile for each Job Step, the Workflow Visualizer (see
Section 4.4.3) aggregates Job Step profiles to generate summarized Job statistics at analysis time. This
allows users to investigate dependencies and identify parallelization potential.

JobLog In addition to performance data, the implementation of the workflow analysis includes job
scheduling information. For instance, information obtained from the job scheduling system captures the
execution order of Jobs and their Job Steps. This work demonstrates an implementation for the Slurm
Workload Manager. However, this approach can be easily adapted to other job scheduling systems.

A python script, called JobLog [39], queries job-specific information from the Slurm job scheduler.
JobLog collects information about a Job after all its Job Steps have finished and stores the result in a
JSON file. For example in Figure 4.4, JobLog creates two job log files, one file (Job log A) for Job
A and another one (Job log B) for Job B.

Table 4.1 lists metrics that JobLog queries once for a running job. Since this information is defined
once per job, it applies to all Job Steps within the job. In contrast, Job Step related information is queried
for each job step individually. Table 4.2 lists metrics recorded for individual Job Steps. If a Job consists
of various Job Steps, Job Step related information may occur multiple times in one job log file.

At this point, the collected scheduling information along with recorded data dependencies are suffi-
cient to exactly reconstruct the execution of the workflow.

4.4.3 Data Processing at the Workflow Level

The analysis at the Workflow level combines all information gathered on the other levels. The Workflow
Visualizer GUI provides an intuitive visualization of the data. It processes the job log files created by
JobLog and the JSON profiles created by OTF2-Profile. The GUI guides users through the analysis of
their workflows, starting with an overview of the entire workflow, then diving into details by selecting
individual jobs and job steps.

Workflow Visualizer The graphical user interface of the Workflow Visualizer allows users to analyze
individual jobs or entire workflows. Depending on that choice, users open a single job log file or a folder
that contains all workflow job log and profile data files. Figure 4.5 illustrates the graphical user interface.
Initially, the GUI displays the Workflow View main window consisting of the Workflow Graph (top) and
the Info View (bottom). The Info View provides different displays focusing on individual analysis aspects.
The next paragraphs introduce the Workflow Graph and the Info View in more detail.

62 4. IMPLEMENTATION OF THE METHODOLOGY

Table 4.1: Job metrics queried from the scheduling system.

Field Description

JobId Job identifier

JobName Name of the job

StartTime Time the job starts running

EndTime Time the job terminates

SubmitTime Time of the job submission

NumNodes Number of allocated nodes

NumCPUs Number of allocated CPUs

NumTasks Number of running tasks

Dependency A list of jobs referenced by ids which must be finished before the current job can run

ExitCode Job’s exit code

Table 4.2: Job Step metrics queried from the scheduling system.

Field Description

JobID Job step identifier

NNodes Number of nodes allocated for the step

NCPUS Number of CPUs allocated for the step

Start Start time of step

End End time of the step

Elapsed Duration in seconds of the step

JobName Name of the executable

NodeList List of nodes that were used

ExitCode Exit code of the command

State State of the step

Workflow Graph The Workflow Graph depicts jobs, job steps, and accessed files arranged in a graph
to visualize job dependencies.

A Job Box with an unique background color represents an individual job. Each Job Box is labeled
with its corresponding job identifier (Job <job id>). The upper part of a Job Box contains Job
Step Boxes for associated job steps. The background coloring of a Job Step Box indicates the Runtime
Share of executed function groups. For example, the almost exclusively red-colored Job Step Box (Job
483507, Step 3) in Figure 4.6 indicates that this job step spent most of its time in MPI functions. File
Boxes in the bottom part of a Job Step Box present information about the I/O operations of a job step.
There is one box for each access mode (read-only, read/write, write-only; from left to right).

Additionally, the Workflow Graph illustrates dependencies between jobs as arrows. Solid arrows
represent job dependencies as deduced from the scheduling system. This information is included in the
job log files. For example, the job log in Figure 4.6 lists that Job 483507 depends on Job 483506.
Therefore, a solid arrow between both jobs visualizes this dependency. Dotted arrows represent job
dependencies derived from job start and end times. Additionally, dashed arrows indicate dependencies
based on file access information.

4.4. IMPLEMENTATION OF A TOOLSET FOR ANALYSIS OF SCIENTIFIC WORKFLOWS 63

Figure 4.5: The Workflow Visualizer main window presents the Workflow Graph (A) at the top and
the Info View at the bottom. In the Info View section users can switch between tabs to
select information on the entire workflow, individual jobs and job steps, or accessed files.
In this figure, the Info View illustrates workflow statistics. Job Runtimes (B1) and Function
Runtimes (B2) are visualized as pie charts. Furthermore, an Info Table (B3) lists general
workflow information.

In order to facilitate different analysis goals, the Workflow Graph offers various display modes to
arrange Job (Step) Boxes. Figure 4.7 illustrates each of the three modes. The display modes are:

• Dependency Graph: In this mode all Job (Step) Boxes are equally sized and arranged at fixed
grid positions. This kind of visualization represents the default mode and facilitates dependency
analyses (Figure 4.7 A).

• Duration Scaled Dependency Graph: This mode adjusts the width of Job (Step) Boxes proportional
to the duration of corresponding jobs and job steps. Similar to the Dependency Graph display
mode, the Duration Scaled Dependency Graph places boxes using fixed size horizontal gaps. This
display mode intuitively visualizes the execution time of jobs and job steps while ignoring waiting
times within the batch scheduling system (Figure 4.7 B).

• Timeline: This mode scales widths and positions of Job (Step) Boxes based on their start and
end times. The horizontal positioning of boxes follows a time axis. Consequently, multiple rows
indicate parallel running jobs. This display mode is useful for performance analysis (Figure 4.7 C).

64 4. IMPLEMENTATION OF THE METHODOLOGY

Figure 4.6: Zoom to a Job Box in the Workflow Graph. The Info View shows summaries about the
selected Job 483507.

Info View The Info View (Figure 4.5, bottom) shows statistics for the item currently selected in the
Workflow Graph. This display visualizes profile data for each level of the workflow. Users can choose
statistics about the entire workflow, a job, a job step, or file operations by selecting the respective tab.

Figure 4.5 shows an activated Workflow Info tab. Therefore, this figure depicts statistics for the work-
flow. In this example, the Info View shows runtimes of jobs and function categories as well as scheduling
information. In addition to absolute values for runtimes, pie charts visualize their respective share of the
overall runtime.

The Job Info tab as depicted in Figure 4.6 visualizes statistics derived from the performance data of
an individual job. For instance, users can investigate the share of each job step in the overall runtime of
a job, the function runtimes spent in the individual categories, start/end time of the selected job, details
of the job configuration, and the list of files accessed by the job.

The Job Step Info tab allows the user to open related trace data in Vampir (if available on the system)
to visualize the fully detailed event log.

The Files Info tab lists access information for the currently selected file. Based on file access infor-
mation, the tool derives dependencies. For example, users can easily determine all jobs which opened a
particular file for writing previously, or which will open the file later for reading or writing.

4.4. IMPLEMENTATION OF A TOOLSET FOR ANALYSIS OF SCIENTIFIC WORKFLOWS 65

(a) Dependency Graph

(b) Duration Scaled Dependency Graph

(c) Timeline

Figure 4.7: Different modes to arrange Job (Step) Boxes in the Workflow Graph: (a) Dependency Graph,
(b) Duration Scaled Dependency Graph, (c) Timeline.

66 4. IMPLEMENTATION OF THE METHODOLOGY

67

5 Evaluation

This chapter presents a theoretical and practical evaluation of both methodologies presented in this
thesis: the multi-layer I/O monitoring of parallel applications and the analysis of scientific workflows.
First, the chapter introduces the experiment design. The theoretical part contains a discussion of the
overhead induced by instrumentation and presents options to control this overhead. Furthermore, results
obtained from synthetic experiments evaluate specific overheads of the I/O monitoring approach with
respect to execution time and memory consumption. Finally, experiments with real-world applications
and benchmarks prove the applicability of this work.

5.1 Experiment Design

All experiments (except the MONC test case) shown in this chapter were conducted on the Taurus HPC
cluster [100] at Technische Univerität Dresden.

Compute Resources The Taurus system consists of 2,117 compute nodes. The Slurm batch system
is responsible for allocating and scheduling compute resources to users. Slurm groups these nodes into
logical sets (partitions) depending on the micro-architecture of installed Intel Xeon processors. Experi-
ments shown in this chapter use partitions equipped with Intel Haswell processors. Figure 5.1 illustrates
the design of these compute nodes. They feature two sockets with each socket hosting a 12-core Intel
Xeon E5-2680 v3 processor.

Node

Socket 1 Socket 2

Cores 0− 11 Cores 12− 23

Figure 5.1: Schematic diagram of a Haswell compute node on Taurus.

In all tests the processors run without hyper-threading. The batch scripts submitted to the Slurm job
scheduler use the option --cpu-bind=cores of the srun command to bind each compute task such
as an OpenMP thread or MPI process to an individual core of the processors. Figure 5.2 illustrates the
resulting task bindings. Furthermore, the use of srun’s --cpu-freq option ensures that all processor
cores run at a fixed frequency of 2.50 GHz during experiments.

Task
0

Task
1

Task
2

Task
3

Task
4

Task
5

Task
6

Task
7

Task
8

Task
9

Task
10

Task
11

Task
12

Task
13

Task
14

Task
15

Task
16

Task
17

Task
18

Task
19

Task
20

Task
21

Task
22

Task
23

Node

Socket 1 Socket 2

Cores 0− 11 Cores 12− 23

Figure 5.2: Task bindings according to the bind-to-core allocation method.

Software Environment Taurus uses a Bullx Linux operating system based on Red Hat Enterprise
Linux Server release 7.4. The list of software modules loaded for all experiments is shown in Listing 5.1.

68 5. EVALUATION

Listing 5.1: List of loaded software modules

Currently Loaded Modules:
1) modenv/scs5
2) GCCcore/8.2.0
3) binutils/2.31.1-GCCcore-8.2.0
4) GCC/8.2.0-2.31.1
5) zlib/1.2.11-GCCcore-8.2.0
6) numactl/2.0.12-GCCcore-8.2.0
7) XZ/5.2.4-GCCcore-8.2.0
8) libxml2/2.9.8-GCCcore-8.2.0
9) libpciaccess/0.14-GCCcore-8.2.0

10) hwloc/1.11.11-GCCcore-8.2.0
11) OpenMPI/3.1.3-GCC-8.2.0-2.31.1
12) OpenBLAS/0.3.5-GCC-8.2.0-2.31.1
13) gompi/2019a
14) FFTW/3.3.8-gompi-2019a
15) ScaLAPACK/2.0.2-gompi-2019a-OpenBLAS-0.3.5
16) foss/2019a
17) Szip/2.1.1-GCCcore-8.2.0
18) HDF5/1.10.5-foss-2019a
19) ScoreP/try-io

File Systems Taurus provides home and project directories to store source code, share data within a
group of researchers, or archive experiment results. However, compute nodes mount these directories in
read-only mode. Therefore, two additional file systems host working directories.

Scratch file system This global Lustre file system provides a capacity of 4 PB and is designed to
provide storage space for large amounts of data. It is available under /lustre/scratch.

SSD file system This global Lustre file system is designed to serve a large number of small I/O
requests issued by large parallel applications. It is available under /lustre/ssd and provides a capacity of
40 TB.

5.2 Theoretical and Synthetic Evaluation

Instrumentation is a critical aspect with respect to overhead as it might prolong the execution time of
observed applications and generate large amounts of event log data. Depending on the type of the sub-
sequent performance analysis, users might also pay attention to further aspects such as disturbance of
the cache behavior of an application due to instrumentation. This section studies the execution time and
memory overhead of the I/O instrumentation capabilities introduced to the Score-P measurement infras-
tructure in this work. Overhead induced by instrumentation highly depends on the kind of instrumented
events and the frequency of their occurrence. Score-P already provided several options to instrument
applications such as manual source code annotation, automatic compiler instrumentation, or interception
of calls to the MPI library. The measurement system addresses overhead by offering users the possibility
to selectively instrument applications. Users can select categories of recorded events by adjusting the
measurement process, e.g., only enabling instrumentation of MPI routines and disabling manual as well
as compiler instrumentation. In addition, Score-P supports filtering options to further refine the set of
recorded events within a category. The implementation of I/O instrumentation capabilities in Score-P

5.2. THEORETICAL AND SYNTHETIC EVALUATION 69

adheres to this philosophy. Users can individually instrument each I/O paradigm (POSIX I/O, MPI I/O,
NetCDF, and HDF5).

To efficiently use I/O operations in large-scale applications developers are recommended to avoid un-
necessary output such as printing debug information to the prompt, organize their I/O operations to ac-
cess data in few and large chunks, and avoid excessive calls to metadata operations such as open/text
routines [68]. As a result of this recommendations, I/O operations should not appear as high-frequent
operations within an application. Instrumentation benefits from this characteristic. The overhead in-
duced by I/O instrumentation can be expected to be lower than for frequently called functions such as
getter/setter routines.

There is no general rule for an acceptable overhead as this threshold depends on the goal of the anal-
ysis. For instance, 10% runtime overhead might be acceptable in order to obtain results reasonable for
performance analysis and identify most time consuming parts of an application. However, users may
want to decrease overhead to study fine-granular synchronization between threads.

The following results of synthetic experiments evaluate the execution time overhead and memory
demands of the I/O instrumentation approach. Therefore, these experiments instrument POSIX I/O op-
erations with Score-P.

Execution Time Overhead A worst-case scenario experiment examines the execution time prolon-
gation caused by the I/O instrumentation. This experiment calls a pair of open/close operations within
a loop. In contrast to real-world applications, it issues I/O operations frequently without using the file
to perform useful work such as reading input data from or writing results to disk. Listing 5.2 shows a
pseudo code skeleton of the main loop.

Listing 5.2: Pseudo code of the worst-case scenario experiment examining metadata operations.

int i, ret;
for (i = 0; i < NUM_ITERATIONS; ++i)
{

ret = open(MY_FILE, O_RDONLY|O_CREAT, S_IRUSR|S_IWUSR);
ret = close(ret);

}

The evaluation comprises experiments with 10i (i = 2, . . . , 6) iterations. For each number of iterations
the measurement is repeated 10 times. The storage target of these experiments is Taurus’ SSD file system.
The accessed file has a stripe size of 1 MB and the stripe count is 1. Figure 5.3 contrasts execution
times of two experiment setups: running an uninstrumented and an instrumented binary of the same
application. The blue bars represent results obtained from experiments without any instrumentation.
The yellow bars depict execution times of experiments executed with I/O instrumentation. Black errors
bars indicate variability of the measurement results due to fluctuations in the execution times. In the
experiments the execution times are relatively stable showing only single outliers. The figure illustrates
that in both experiment setups the execution time scales linearly with the number of executed iterations,
i.e., the number of executed I/O operations. Table 5.1 presents the exact measured values and thereby
facilitates the interpretation of the results. According to the values shown in this table, the relative
overhead in execution time is independent of the number of recorded operations. The I/O instrumentation
increases the median execution time by a maximum of 11%.

Because metadata operations such as open and close are latency bound, additional experiments
slightly vary the kind of I/O operations and examine the behavior of data transfers such as read/write
routines. Listing 5.3 illustrates a pseudo code skeleton for the read test case. The write test follows
an analog approach and substitutes the data transfer operation.

70 5. EVALUATION

Table 5.1: Instrumentation of open/close operations within a loop and the corresponding prolongation
of execution times.

It
er

at
io

ns
1 Runtime [ms]

O
ve

rh
ea

d
[%

]2

Without Instrumentation With Instrumentation

Minimum
Lower

Quartile
Median

Upper
Quartile

Maximum Minimum
Lower

Quartile
Median

Upper
Quartile

Maximum

102 3.20×101 3.30×101 3.40×101 3.50×101 3.70×101 3.50×101 3.60×101 3.70×101 3.70×101 3.80×101 9.48

103 3.52×102 3.55×102 3.62×102 3.63×102 3.66×102 3.78×102 3.81×102 3.86×102 3.94×102 4.03×102 6.51

104 3.58×103 3.59×103 3.61×103 3.61×103 3.62×103 3.93×103 3.96×103 3.97×103 3.99×103 4.06×103 10.17

105 3.59×104 3.60×104 3.61×104 3.65×104 3.75×104 3.94×104 3.98×104 3.99×104 4.02×104 4.08×104 10.48

106 3.62×105 3.63×105 3.64×105 3.66×105 3.67×105 4.00×105 4.01×105 4.05×105 4.07×105 4.09×105 11.04

1 Number of recorded events = 4×number of iterations.
2 Increase (in percent) based on the comparison of the median execution times without and with instrumentation.

Table 5.2: Instrumentation of read operations within a loop and the corresponding prolongation of ex-
ecution times.

It
er

at
io

ns
1 Runtime [ms]

O
ve

rh
ea

d
[%

]2

Without Instrumentation With Instrumentation

Minimum
Lower

Quartile
Median

Upper
Quartile

Maximum Minimum
Lower

Quartile
Median

Upper
Quartile

Maximum

102 1.90×101 1.90×101 1.90×101 1.90×101 1.62×102 1.90×101 1.90×101 1.90×101 1.90×101 2.30×101 0.47

103 1.82×102 1.83×102 1.83×102 1.83×102 6.85×102 1.82×102 1.83×102 1.83×102 1.84×102 2.10×102 0.16

104 1.80×103 1.80×103 1.81×103 1.81×103 5.44×103 1.80×103 1.81×103 1.81×103 1.82×103 2.02×103 0.17

105 3.72×103 3.73×103 3.73×103 3.74×103 3.93×103 3.78×103 3.79×103 3.79×103 3.81×103 3.85×103 1.66

106 2.24×104 2.25×104 2.25×104 2.26×104 2.26×104 2.30×104 2.30×104 2.31×104 2.32×104 2.33×104 2.72

1 Number of recorded events = 2×number of iterations.
2 Increase (in percent) based on the comparison of the median execution times without and with instrumentation.

Table 5.3: Instrumentation of write operations within a loop and the corresponding prolongation of
execution times.

It
er

at
io

ns
1 Runtime [ms]

O
ve

rh
ea

d
[%

]2

Without Instrumentation With Instrumentation

Minimum
Lower

Quartile
Median

Upper
Quartile

Maximum Minimum
Lower

Quartile
Median

Upper
Quartile

Maximum

102 8.10×101 8.20×101 8.20×101 8.30×101 1.17×102 8.30×101 8.30×101 8.40×101 8.40×101 8.60×101 2.63

103 8.24×102 8.27×102 8.31×102 8.36×102 8.79×102 8.51×102 8.52×102 8.59×102 8.63×102 1.05×103 3.36

104 8.38×103 8.42×103 8.50×103 8.53×103 8.57×103 8.50×103 8.63×103 8.68×103 8.70×103 1.14×104 2.07

105 8.93×104 9.23×104 9.29×104 9.68×104 9.99×104 8.94×104 9.06×104 9.45×104 9.65×104 1.12×105 1.71

106 1.30×106 1.31×106 1.31×106 1.41×106 1.58×106 1.29×106 1.30×106 1.31×106 1.36×106 1.55×106 0.15

1 Number of recorded events = 2×number of iterations.
2 Increase (in percent) based on the comparison of the median execution times without and with instrumentation.

5.2. THEORETICAL AND SYNTHETIC EVALUATION 71

w
/o

in
st

10
2

w
/o

in
st

10
3

w
/o

in
st

10
4

w
/o

in
st

10
5

w
/o

in
st

10
6

w
/

in
st

10
2

w
/

in
st

10
3

w
/

in
st

10
4

w
/

in
st

10
5

w
/

in
st

10
6

Experiment

102

103

104

105

R
u

n
ti

m
e

[m
s]

Figure 5.3: The figure shows the execution times obtained from experiments investigating open/close
operations within a loop. The number of executed loop iterations varies from 102 to 106.
The results shown in this figure are obtained from experiments without (blue bars) and with
I/O instrumentation (yellow bars). In both setups the execution time scales linearly with the
number of executed iterations . The error bars document relatively stable execution times in
the experiments. The results from the experiments with I/O instrumentation applied show a
prolongation of the execution time by a maximum of 11%.

Listing 5.3: Pseudo code of the worst-case scenario experiment examining data transfer operations.

int i, ret, bytes;
void* buffer;
ret = open(MY_FILE, O_RDONLY|O_CREAT, S_IRUSR|S_IWUSR);
for (i = 0; i < NUM_ITERATIONS; ++i)
{

bytes = read(ret, buffer, CHUNK_SIZE);
}
ret = close(ret);

Table 5.2 lists the overhead results of the read test case. Measurement results of the write test case
are shown in Table 5.3. Both read and write test cases show a smaller overhead in comparison with
the open/close experiment. The median execution time increases by less than 3% in the results of the
read as well as the write experiment.

These evaluations prove that the presented approach for I/O instrumentation induces an acceptable
execution time overhead. Even in the worst-case scenario I/O instrumentation increases the median
execution time by a maximum of 11%. Therefore, event logs collected by this approach preserve the
application behavior and represent valuable input for subsequent performance analyses.

72 5. EVALUATION

Size of Event Logs In addition to the execution time overhead, the amount of memory required to
store event logs during application execution is an important aspect of monitoring solutions. If events
cannot be stored in memory during an application run, collected data needs to be flushed to disk. This
data transfer potentially disturbs the observed application and renders acquired performance data use-
less for later analysis. OTF2 stores event traces in a compact binary format and uses several efficient
encoding strategies to reduce the size of event logs. For instance, it automatically compresses leading
zeros. Additionally, if multiple events of a sequence have an identical time stamp, OTF2 combines this
chronological information and stores the corresponding time stamp only once. The size of event logs
correlates with the number of recorded events. Especially for I/O recording, it is important to note that
the actual size of event logs is independent of the payload of the monitored I/O operations. The event
record of an I/O data transfer operation contains an attribute informing about the number of transferred
bytes. However, the record does not hold the actual data of the transfer operation. Consequently, the size
of the event record does not scale with the amount of data transferred by the observed I/O operation.

Varying the Amount of Transferred Data in a Fixed Sequence of Observed I/O Operations
The first experiment investigates an application that transfers a varying amount of data. This test instru-
ments the POSIX I/O operations of an application, executes this application, and records the resulting
OTF2 event log. During its execution the application opens a file and reads data from this file. Individual
experiment setups vary the amount of requested data (2j MiB, j = 0, . . . , 10). Measurements for each
individual data volume comprises 10 repetitions. The subsequent experiment evaluation examines the
recorded event logs. For instance, Listing 5.4 exemplifies information contained in the event log of the
test case reading 1 GiB of data from the file. As the event sequence does not change while scaling the
amount of transferred data, the instrumented binary generates event logs of constant size in all setups.
Table 5.4 lists the memory requirements of the individual components of the OTF2 archive. Because this
test executes a serial application, the OTF2 archive consists of a global definition, a local definition, and
a local event file. Slight differences in the timing and the binary name account for minor fluctuations of
the event log size.

Listing 5.4: Excerpt of the information contained in the event log of the test case reading 1 GiB of data
from a file.

Event Location Timestamp Attributes
--
ENTER 0 1060692936 Region: "open"
IO_CREATE_HANDLE 0 1062528600 Handle: "[POSIX I/O] my_file.txt",

Access Mode: READ_ONLY,
Creation Flags: {CREATE},
Status Flags: NONE

LEAVE 0 1062537696 Region: "open" <15>
ENTER 0 1062559280 Region: "read" <25>
IO_OPERATION_BEGIN 0 1062566800 Handle: "[POSIX I/O] my_file.txt",

Mode: READ,
Operation Flags: NONE,
Bytes Request: 1073741824,
Matching Id: 5

IO_OPERATION_COMPLETE 0 2761088896 Handle: "[POSIX I/O] my_file.txt",
Bytes Result: 1073741824,
Matching Id: 5

LEAVE 0 2761106856 Region: "read"
ENTER 0 2761117928 Region: "close"
IO_DESTROY_HANDLE 0 2761149992 Handle: "[POSIX I/O] my_file.txt"
LEAVE 0 2761155528 Region: "close"

5.2. THEORETICAL AND SYNTHETIC EVALUATION 73

Table 5.4: Size of the event log obtained from an application reading 1 MiB to 1 GiB of data (10
repetitions for each data volume). The size of the event log is independent of the payload of
data transfers and therefore stays constant in this experiment.

Entity Size [B]

Global Definition File 3729 - 3735a

Local Definition File 58

Local Event File 254 - 256b

a Varying size due to differences in
ticks per second, global offset, du-
ration, binary name.

b Varying size due to differences in
timestamps.

Scaling the Number of Observed I/O Operations A second experiment investigates how the
size of OTF2 event logs scales with the number of recorded I/O events. Similar to the first experiment,
this test instruments the POSIX I/O operations of an application, executes this application, and records
the resulting OTF2 event log. During its execution the application opens a file and issues read calls to
a file within a loop. Individual experiment configurations vary the number of loop iterations and com-
prise experiments with 10i (i = 2, . . . , 6) iterations. For each number of iterations the measurement is
repeated 10 times. The subsequent evaluation examines the recorded event logs. As shown in Listing 5.5
each loop iteration creates 4 events. The begin and end of the execution as well as operations to open
and close the file add another 12 events to the trace. Table 5.5 depicts the size of the event logs for
different numbers of recorded events. The results confirm the expected behavior of the implementation
in the OTF2 format. Definitions contain information about clock properties, the name of the executable,
and the number of events per location. This information slightly differs between individual experiment
setups as listed in Table 5.5. Therefore, the size of the global as well as the local definition files stays
almost constant, except for the aspects mentioned above. The memory demand of the event file scales
linearly with the number of events.

Literature documents approaches that could further reduce memory demands of event logs. Wag-
ner [122] proposes enhanced encoding techniques to increase memory efficiency of trace data formats.
Knüpfer [51] presents an advanced memory data structures that exploits redundancies in the program
structure for compression. Noeth et al. [75] focuses on preserving the communication structure of MPI
programs while relaxing the chronological level of detail.

Listing 5.5: The event sequence generated by a POSIX I/O read operation.
Event Location Timestamp Attributes
--
ENTER 0 3616830259 Region: "read"
IO_OPERATION_BEGIN 0 3616837583 Handle: "[POSIX I/O] my_file.txt",

Mode: READ,
Operation Flags: NONE,
Bytes Request: 1048576,
Matching Id: 5

IO_OPERATION_COMPLETE 0 3618806647 Handle: "[POSIX I/O] my_file.txt"
Bytes Result: 1048576,
Matching Id: 5

LEAVE 0 3618811715 Region: "read"

74 5. EVALUATION

Table 5.5: Size of the event log obtained from an application reading 1 MiB of data per loop iteration
(10 repetitions for each number of iterations). The size of the local and global definition file is
almost constant. The size of the local event file increases linearly with the number of recorded
events.

Number of Iterations 100 1000 10000 100000 1000000

Number of Events 412 4012 40012 400012 4000012

Size of Global Definition File [B]a 3739 3741 3744 3747 3749

Size of Local Definition File [B] 58 58 58 58 58

Size of Local Event File [B] 6591 64191 640191 6131143 61033634

a Varying size due to differences in ticks per second, global offset, length, binary
name.

5.3 Holistic Performance Analysis of Real World Multi-layer I/O
Applications

After investigating the I/O instrumentation approach in synthetic test cases, this section focuses on the
performance analysis of real world applications. Therefore, event logs recorded in this section are not
limited to I/O operations. Besides highlighting performance issues related to I/O activities, the following
case studies demonstrate a holistic performance analysis taking computation, communication, and I/O
activities into account. This section comprises three case studies. The case study of a heat transfer
simulation introduces into I/O performance analysis and optimization. In addition, the NAS BT-IO and
MONC experiments describe the holistic performance analysis of multi-layer I/O in parallel scientific
applications in detail. NAS BT-IO and MONC use different strategies to realize efficient I/O operations.
The NAS BT-IO benchmark utilizes libraries such as MPI I/O to transfer data to/from the I/O subsystem.
The MONC application implements a client-server-architecture to manage its I/O operations. An event
log analysis conducted for both case studies reveals the effects of these different strategies.

Heat Transfer Simulation This case study illustrates a basic performance analysis and optimization
utilizing enhanced I/O recording options introduced in this work. The application observed in this ex-
periment simulates heat transfer in a two-dimensional space. The following parabolic partial differential
equation describes the propagation of thermal energy in this case

∂

∂t
u(x, y, t) = a ·

(︃
∂2

∂x2
u(x, y, t) +

∂2

∂y2
u(x, y, t)

)︃
, (5.1)

where a denotes the thermal diffusivity. Figure 5.4 depicts a visualization of the heat distribution in a
two-dimensional space with a source of heat located in the center of the region.

The numerical solution of Equation 5.1 uses finite difference methods (FDM). These numerical meth-
ods approximate a continuous partial differential equation with a discrete equation. The heat distribu-
tion u is determined on a grid Ω = {(xi, yj , tk)}, with xi := i · ∆x (i = 1, . . . , nx), yj := j · ∆y
(j = 1, . . . , ny), and tk := k · ∆t (k = 1, . . . , nt), where ∆x, ∆y, and ∆t denote the increments in
x-, y-, and t-direction. The heat distribution in a given cell (xi, yj) of the grid at a given time step tk is
denoted as u(xi, yj , tk) := u|ki,j . Approximating the time derivative by the forward differencing scheme
and the space derivatives by the 2nd order central differencing scheme yields

u|t+1
i,j − u|ti,j

∆t
= a ·

(︄
u|ti+1,j − 2u|ti,j + u|ti−1,j

∆x2
+

u|ti,j+1 − 2u|ti,j + u|ti,j−1

∆y2

)︄
. (5.2)

5.3. HOLISTIC PERFORMANCE ANALYSIS OF MULTI-LAYER I/O APPLICATIONS 75

(a) Initial state of the simulation (b) Intermediate state of the simulation

Figure 5.4: Illustration of the heat distribution in a two-dimensional space. The heat source is located in
the center of the region. (Taken from [49].)

The solution of Equation 5.2 requires the specification of boundary conditions. These experiments use
periodic boundary conditions, given by

u|t0,j = u|tnx,j , u|tnx+1,j = u|t1,j (∀j = 1, . . . , ny),

u|ti,0 = u|ti,ny
, u|ti,ny+1 = u|ti,1 (∀i = 1, . . . , nx). (5.3)

The implementation in the C programming language uses MPI for parallelization and I/O operations.
Listing 5.6 illustrates the basic program structure. As shown in this code fragment, every 20 iterations
the heat simulation writes its intermediate results (snapshot) to a file. The final result is also stored in the
file at the end of the program execution.

Listing 5.6: Pseudo code illustrating the basic components of the heat distribution simulation

/* initialize grid from file */
loadGridFromFile();

/* initialize temporary grid */
initializeTempGrid();

/* heat distribution calculation phase */
for (count = 0; count < max_steps; count++)
{

/* save intermediate result to file */
if (count % 20)
{

saveGridToFile();
}
heatCalculation();

}

/* save result to file */
saveGridToFile();

In the experiments the application runs with 24 MPI processes on one Taurus node. All processes write
to the same shared file. During the application execution, all processes generate an entire data volume of
about 550MiB. An examination of the execution times recorded during 10 repetitions of the experiment
reveals large deviations. Individual program executions of the unmodified application run between 47 s
and 78 s. The following performance analysis reveals the causes of these deviations. Therefore, the
application is instrumented with Score-P. Vampir visualizes the trace data collected during the execution

76 5. EVALUATION

Figure 5.5: The figure depicts summary information about the accumulated time per function group. MPI
function calls (red bar) consume about 73% of the execution time within the computation
phase. I/O routines (yellow and brown bars) account for about 24%. Only about 3% of the
time is spent within user functions (green bar).

of the instrumented application. The experiments with the instrumented version of the application show
the same behavior with respect to execution time and its deviations.

Similar to other MPI programs, the heat simulation consists of an initialization (MPI_Init), com-
putation, and finalization phase (MPI_Finalize). The performance analysis reveals that most of the
execution time is spent in MPI routines. As depicted in Figure 5.5, MPI function calls consume about
73% of the execution time within the computation phase. Therefore, further analysis examines applica-
tion’s MPI usage in detail. Figure 5.6 shows the exclusive time of individual MPI functions accumulated
over all processes. Especially, MPI_File_open has a large share in the execution time.

On the one hand, this performance issue stems from inefficient usage of MPI routines. For each
snapshot, the application opens the result file, determines the overall number of processes as well as
the rank of each process, and creates a corresponding MPI data type. Consequently, some functions are
called very often, such as MPI_File_[open|close], MPI_Dims_create, MPI_Cart_shift,
MPI_Type_[free|commit|vector|create_subarray], and MPI_Comm_[rank|size].

MPI_File_open and MPI_File_close include metadata handling of the file system and there-
fore represent expensive operations. Event logs enhanced by multi-layer I/O events introduced in this
thesis, clearly document this performance issue. At the beginning of writing a snapshot, all processes
issue an MPI_File_open call. This behavior results in a burst of requests and induces load on the
file system that cannot handle all requests at the same time. Consequently, some processes have to wait
until their request is processed. As shown in Figure 5.7, MPI internally uses the open64 POSIX I/O
function. The figure also depicts the described imbalance in the execution time of open64 calls across
all processes. MPI_File_close shows an analog behavior.

Insights provided by the presented performance analysis result in recommendations for optimizations.
Program developers should focus on improving the I/O performance as this aspect of the application is
critical. For example, the result file is opened and closed for each snapshot. Developers might change the
code to open the result file once at the beginning and close the file at the end of the application execution.
Such a behavior diminishes the number of requests to the file system and thereby reduces the load on the
file system. Furthermore, users can check whether the HPC system has access to multiple file systems.
Users should select a file system that fits their needs best. In this example, the application would benefit
from a file system that is able to handle a large amount of I/O requests efficiently. In addition to I/O
related optimizations, the performance analysis identifies further potential for improvement. The ratio
between communication and computation can be improved as well. As mentioned above, the current
version of the application uses some MPI routines inefficiently. Functions to determine the number of
processes and the own rank identifier are called unnecessarily often. However, this information does not
change during the execution of this heat transfer simulation. Consequently, information about the number
of processes and the own rank identifier should be queried once and reused later on. Additionally, the
handling of MPI data types can be optimized similarly.

5.3. HOLISTIC PERFORMANCE ANALYSIS OF MULTI-LAYER I/O APPLICATIONS 77

Figure 5.6: The figure shows time spent exclusively in individual MPI functions accumulated over all
processes. The share of MPI_File_open (top bar) dominates the statistic.

Figure 5.7: This figure illustrates the application behavior during the time interval of writing a snapshot
to the result file. The upper chart gives an overview of current activities across all pro-
cesses. Red bars represent MPI routines, yellow bars indicate I/O operations, and green
bars reflect user functions. The middle and lower chart depict the sequence of function
calls for MPI Rank 0 (Master thread:0, top) and 14 (Master thread:14, bottom). The
saveGrid routine (green bar, call stack level 2) generates a snapshot. This routine utilizes
MPI I/O to transfer data to the result file, e.g., MPI_File_open, MPI_File_write, and
MPI_File_close (red bars, call stack level 3). The call stack visualization reveals inter-
nal I/O library calls within the MPI I/O routines. For instance, the middle chart depicting
Master thread:0 shows that MPI_File_open calls the POSIX I/O routines open64 and
lseek64 (yellow bars, call stack level 4). Additionally, the upper chart indicates an im-
balance in the execution time of open64 calls across all processes (variable length of the
yellow bars).

78 5. EVALUATION

Figure 5.8: This figure compares the I/O modes in NAS BT-IO (problem size Class A, 16 processes).
It contrasts all four modes from top to bottom: epio (white background), full (purple back-
ground), fortran (green background), and simple (azure background).

NAS BT-IO This case study investigates event logs including I/O records as proposed by this thesis and
thereby demonstrates the value of such event logs for a comprehensive performance analysis. Tracking
the multi-level I/O behavior of applications reveals internals of I/O libraries in use.

The NASA Advanced Supercomputing Division (NAS) offers a benchmark suite to evaluate the per-
formance of HPC machines. Kernels of the NAS Parallel Benchmarks (NPB) 1 reflect computation and
data movement in Computational Fluid Dynamics (CFD) applications. This paragraph studies the Block-
Tridiagonal (BT) benchmark, especially the BT-IO version [123] to analyze parallel I/O. The BT-IO
benchmark applies a domain decomposition (diagonal multi-partitioning [117]) to distribute work across
all MPI processes. Regulations of the benchmark require that intermediate results are written to one or
more files after every five time steps. However, at the end of the benchmark, snapshot data of a single
time step has to be stored in the same file. Users can chose between several problem sizes that scale the
grid size in each dimension and the volume of written data. Additionally, users can select different modes
to realize I/O operations. Available I/O modes are simple (blocking noncollective MPI I/O operations),
full (blocking collective MPI I/O operations), fortran (Fortran file operations), and epio (each process
writes its data to an individual file). The epio mode does not comply with the benchmark requirements.
Snapshot data of a single time step is scattered across files of all processes. Therefore, a post-processing
step is necessary to rearrange data. However, this step is not part of the benchmark. Furthermore, the
execution of the BT-IO benchmark requires a square number of processes. At the end of each run, the
NAS benchmarks provide a summary listing information about the experiment setup, execution time,
and the status of the result verification.

The analysis starts with a comparison of individual I/O modes at small scale. The first set of ex-
periments runs BT-IO with problem size Class A and 16 processes on one node. Configured with this
problem size, NAS BT-IO calculates 200 time steps and writes about 420 MB of data. Figure 5.8 visu-
alizes event logs for each I/O mode. The modes epio (white background) and full (purple background)
perform best. The modes fortran (green background) and simple (azure background) perform poorly. As
the statistic chart on the right hand side of this figure shows, both modes spent most of their execution

1https://www.nas.nasa.gov/publications/npb.html

5.3. HOLISTIC PERFORMANCE ANALYSIS OF MULTI-LAYER I/O APPLICATIONS 79

time in write operations. As the mode epio represents a special case and fortran does not perform well,
further analysis focuses on identifying differences between the two modes using MPI I/O full and simple.

Figure 5.9 illustrates the writing of a snapshot in detail. Corresponding to Figure 5.8, the event se-
quence of the full mode is depicted with a purple background (top) and the simple mode with an azure
background (bottom). Within the interval shown in Figure 5.9 the full mode writes two snapshots whereas
the creation of a snapshot takes considerably longer in the simple mode. The simple mode writes only one
snapshot within this interval. Both modes utilize different strategies in the output_timestep rou-
tine to realize snapshots. Figure 5.9 illustrates invocations of the output_timestep routine as black
horizontal bars. In the simple mode (bottom of Figure 5.9) the implementation of output_timestep
calls the MPI_File_write_at routine within a loop. On each MPI rank one instance of the routine
output_timestep issues 1024 calls to the MPI_File_write_at routine (red horizontal bars on
call stack level 3). MPI_File_write_at is a blocking, noncollective MPI I/O operation that uses an
explicit offset to write data at the specified position of a file. The application writes 640 B with each
call to the MPI_File_write_at routine. As the figure shows, MPI_File_write_at internally
invokes the pwrite64 routine (yellow horizontal bars on call stack level 4). This routine writes data
(640 B) to the snapshot file. In the simple mode the call stack of all MPI processes is similar. The figure
exemplifies this fact using the example of MPI Rank 0 (Master thread:0) and Rank 1 (Master thread:1).
In summary, the simple mode realizes its data transfers by a series of multiple small I/O operations. As
this example shows, such a behavior often results in poor I/O performance.

The event log recorded for the full mode (top of Figure 5.9) reveals major differences in handling
I/O operations. First, in contrast to the simple mode, an invocation of output_timestep in the full
mode makes a single call to MPI_File_write_at_all (red horizontal bars on call stack level 3).
MPI_File_write_at_all is a blocking, collective MPI I/O operation that uses an explicit offset
to write data at the specified position of a file. Second, the call stack differs between individual MPI
processes. Figure 5.9 shows that MPI_File_write_at_all internally uses pwrite64 on MPI
Rank 0 (Master thread:0). However, this internal function call is missing on MPI Rank 1 (Master
thread:1). Third, the data volume differs between the MPI I/O and POSIX I/O layers of the software
stack. According to the event logs, the MPI I/O operation transfers 640 KiB of data. This data volume
corresponds to the sum of 1024 transfers of 640 B each as observed in the simple mode. However, the
pwrite64 routine transfers 10MiB of data per instance.

An analysis of BT-IO experiments run at a larger scale facilitates the case study of the differing data
volume between the MPI I/O and POSIX I/O layers. The next test case examines the problem size Class
D in which BT-IO calculates 250 time steps and writes about 126.5 GiB of data. Figure 5.10 depicts
an overview of the application behavior during its execution. The application runs about 423 s with 144
MPI processes distributed across 6 nodes. MPI processes Master thread:0 to Master thread:23 run on
node taurusi4145, Master thread:24 to Master thread:47 on taurusi4147, Master thread:48 to Master
thread:71 on taurusi4150, Master thread:72 to Master thread:95 on taurusi4151, Master thread:96 to
Master thread:119 on taurusi4157, and Master thread:120 to Master thread:143 on taurusi4158. Fur-
thermore, Figure 5.10 exhibits three phases within the execution: program initialization, calculation, and
result validation. MPI_Init dominates the first phase (0 − 4 s). In the calculation phase (4 − 320 s)
BT-IO executes user code depicted in green color to solve the BT problem. This phase also contains
MPI communications (red color) and MPI I/O operations to write snapshots (purple). The third phase
(320−423 s) uses MPI I/O operations to read all previously written snapshots (blue) and validate results.
Additionally, the figure also confirms that some processes behave differently (six yellow horizontal bars).
In accordance with Figure 5.9 these yellow bars represent POSIX I/O operations that often appear during
MPI I/O operations. The performance analysis of multi-layer I/O operations in the recorded event logs
reveals effects of collective buffering within MPI I/O routines. MPI I/O applies this technique to improve
the I/O performance. The analysis of the trace data clearly shows that the first MPI process of each node
(Master thread:0, Master thread:24, Master thread:48, Master thread:96, and Master thread:120) acts
as a proxy for data transfers. In contrast to other MPI ranks of a node, these processes map their MPI I/O
routine to actual POSIX I/O data transfers. Figure 5.11 illustrates this behavior using Master thread:0

80 5. EVALUATION

Figure 5.9: This figure illustrates a detailed comparison of the functions executed by MPI Rank 0 (Master
thread:0) and 1 (Master thread:0) while writing a snapshot in the full (purple background)
versus simple (azure background) I/O mode of NAS BT-IO (problem size Class A, 16 pro-
cesses in total). The figure depicts the interval of one output_timestep function call in
the simple I/O mode. Calls to the output_timestep routine are shown as black horizon-
tal bars on the call stack level 2 of each MPI rank. As shown in the two charts at the top, the
application writes two snapshots in the full mode within the depicted interval. The two charts
at the bottom illustrate that the creation of a snapshot takes considerably longer in the sim-
ple mode and the application writes only one snapshot within the same interval. Both modes
show a varying behavior because they utilize different strategies in the output_timestep
routine to realize snapshots. The bar charts on the right hand side of this figure contrast the
number of function calls in both modes within the selected interval. In the full mode, a call
to output_timestep maps to one call to MPI_File_write_at_all (red horizontal
bar at call stack level 3). Furthermore, only selected MPI ranks issue calls to POSIX I/O
functions (yellow horizontal bar at call stack level 4) within the MPI I/O routine (e.g., Mas-
ter thread:0). In the simple mode, a call to output_timestep maps to 1024 calls to
MPI_File_write_at and each MPI rank calls a POSIX I/O function within this MPI I/O
routine.

5.3. HOLISTIC PERFORMANCE ANALYSIS OF MULTI-LAYER I/O APPLICATIONS 81

Figure 5.10: Overview of the NAS BT-IO run with 144 MPI ranks. The figure depicts three phases within
the execution: program initialization, calculation, and result validation. The initialization
phase at the beginning of the application execution is characterized by reading configuration
and input data (yellow). In the calculation phase, the application executes user functions
(green), writes intermediate results (purple), and transfers data between MPI ranks (red).
After finishing its calculation, the application reads in result data and performs validation
checks (blue). Furthermore, the figure illustrates differing behavior across all MPI ranks.
Yellow horizontal bars indicate I/O intensive workloads on six MPI ranks (Master thread:0,
Master thread:24, Master thread:48, Master thread:96, and Master thread:120).

82 5. EVALUATION

Figure 5.11: This figure compares the two MPI ranks Master thread:0 (top) and Master thread:1 (bot-
tom) and their internal calls to I/O routines. Both ranks call the output_timestamp rou-
tine (green, call stack level 2). This routine invokes MPI_File_write_at_all (purple,
call stack level 3). As the figure shows, only on Master thread:0 MPI internally makes a
call to the pwrite64 POSIX I/O routine (yellow, call stack level 4).

and Master thread:1 as representatives of the node taurusi4145. As shown in this figure, both processes
call the output_timestamp routine which invokes MPI_File_write_at_all. However, MPI
internally calls the pwrite64 POSIX I/O routine only on Master thread:0. Figure 5.12 focuses on one
call to MPI_File_write_at_all on process Master thread:0. Additionally, this figure highlights
the invocation of pwrite64 routines. Statistics on the right hand side of the figure illustrate that one
call to MPI_File_write_at_all internally issues 27 calls to the pwrite64 routine. Data of the
other processes on the same node is transferred via MPI communication to the proxy that handles actual
I/O data transfers. These effects of the collective buffering technique are the root cause of the differing
data volume between the MPI I/O and POSIX I/O layers.

Figure 5.12: This figure illustrates effects of collective buffering within MPI_File_write_at_all.
Process Master thread:0 acts as a proxy for I/O requests of all MPI ranks running on the
same node. Data of the other ranks is transferred via MPI communication to the proxy
that handles actual I/O data transfers. Therefore, one call to MPI_File_write_at_all
internally comprises of 27 calls to the pwrite64 routine as the bar chart on the right hand
side of the figure shows. Additionally, invocations of the pwrite64 routine are highlighted
in the left hand side of the figure.

5.3. HOLISTIC PERFORMANCE ANALYSIS OF MULTI-LAYER I/O APPLICATIONS 83

Table 5.6: This table presents an overview of NAS BT-IO execution times (problem size Class D, 50
iterations) with an increasing number of MPI processes. The table reports the minimum, mean,
average, and maximum execution times based on 10 repetitions of each measurement. The
instrumentation overhead is within the execution time variation of the observed application.

Setup Time [s]
Number of Processes 144 576 1296

Uninstrumented

Minimum 62.49 26.16 17.90

Mean 65.44 26.93 19.00

Average 65.30 27.40 18.88

Maximum 69.20 29.80 20.14

Instrumented

Minimum 62.41 25.19 17.94

Mean 63.71 27.67 18.34

Average 63.93 27.49 18.38

Maximum 66.58 29.59 19.16

Scalability Study Many parallel scientific applications run at large scale, e.g., to realize detailed
simulations. Often, performance problems appear or become significant at large scale. Therefore, appli-
cations cannot be analyzed only at small scale. As a consequence, performance analysis methods also
have to scale. This paragraph uses the NAS BT-IO benchmark to evaluate the scalability of the proposed
I/O performance analysis approach.

This experiment consists of two sets of measurements. The first set runs the unmodified binary with
a varying number of MPI processes, i.e., with 144, 576, and 1296 processes. NAS BT-IO’s internal
timers report the corresponding execution time. The second set repeats these measurements with the
performance monitor attached to the application. Based on the approach presented in this thesis, the
monitor records MPI events including MPI I/O operations and stores this information in an event log.
Comparing the execution times of both measurement sets reveals the overhead introduced by monitoring
the application. Additionally, the experiment slightly modifies the setup used in the last analysis. In
this study, BT-IO also runs with problem size Class D. However, the number of iterations is reduced to
50 to avoid excessive resource allocation by the measurements. The execution of the iterations shows
repetitive characteristics. Consequently, the results of this scalability study report a general trend that is
independent of the specific number of executed iterations.

Table 5.6 presents the execution times of the NAS BT-IO application run with 144, 576, and 1296
MPI processes. Each setup was executed in both the uninstrumented (top) and instrumented (bottom)
variant. NAS BT-IO is an I/O intensive application and heavily utilizes the I/O subsystem. However, the
I/O subsystem represents a resource that is shared among all users of an HPC system. As a result, the I/O
workload induced by other users of the HPC system affects the performance of the observed application.
The execution time of an (I/O intensive) application is expected to exhibit variations. Therefore, Table 5.6
lists the minimum, mean, average, and maximum execution times calculated from 10 repetitions of
each measurement. The results show that in all test scenarios the execution time of the instrumented
variant is within the runtime variation of the unmodified application. Consequently, the instrumentation
does not result in a prolongation of the execution time even in large scale scenarios. The size of the
event log is about 86 MiB for 144 processes, 693 MiB for 576 processes, and 2.3 GiB for 1296
processes. According to these values, the size of the event log per process rises with an increasing
number of total MPI processes. This effect is caused by the communication pattern of NAS BT-IO.
With an increasing number of processes, each process issues more MPI point-to-point communication

84 5. EVALUATION

operations. The event log includes these communication events. Therefore, the data volume of the event
log increases proportional to the total number of processes. The number of issued MPI I/O operations
per process stays constant. In summary, this case study proves the scalabilty of the presented approach
for I/O instrumentation.

MONC This case study complements the NAS BT-IO analysis. It illustrates effects of an application
that uses a deep I/O software stack and manages its I/O requests across processes manually. The anal-
ysis examines the Met Office NERC Cloud model (MONC) simulator, checks MONC for I/O related
performance issues, and provides insights into operations using multiple I/O layers.

MONC is a Fortran application. It utilizes MPI for inter-process communication and NetCDF to per-
sist its result data. The cloud simulator comprises two kinds of processes. On the one hand, there are
simulation processes for computing the cloud model. On the other hand, the code implements I/O server
processes for storing results to disk. Users can individually set the number of I/O server processes. Dur-
ing application execution, the I/O servers keep simulation results in main memory. After N simulation
steps or at program termination, the I/O servers flush the result data to disk.

This experiment utilizes Score-P to instrument the source code and intercept library calls to POSIX I/O,
MPI I/O, and NetCDF. In contrast to other measurements, this experiment was conducted on ARCHER.
ARCHER is a Cray XC30 system and consists of 4920 compute nodes. Each compute node contains
two 12-core E5-2697 v2 (Ivy Bridge) processors running at 2.7 GHz. The experiment uses a 4.4 PB
Lustre file system (stripe count 1, stripe size 1 GiB) to store simulation results and recorded event logs.
In this measurement, MONC runs on 112 processes, distributed over 8 nodes. Each node hosts one I/O
server process with a pool of 10 additional threads. The remaining 104 simulation processes compute the
cloud model. In the configuration of this experiment MONC simulates 100 time steps. At the end of the
application run, the I/O server processes write the data to disk via calls to NetCDF. The methodology for
a holistic performance analysis of multi-layer I/O allows users to inspect internal function invocations of
MPI I/O and POSIX I/O. In order to avoid interference with the I/O behavior of the observed application,
all collected performance data is kept in main memory during application execution. After the applica-
tion has finished, event logs are written to disk. This experiment uses a comprehensive instrumentation
setup of the observed application. Nevertheless, the recording of performance data causes only a slight
increase in application execution time of about 6%.

Figure 5.13 depicts the overall time exclusively spent in particular function groups. The event log
contains seven groups. About 50% of the time is spent in user functions (see Application group in Fig-
ure 5.13). Furthermore, the figure shows that the simulator spends more time in MPI communication
routines than in I/O operations. Although this first analysis suggests that MONC does not exhibit poor
I/O performance it is worth taking a closer look at I/O operations.

Figure 5.13: This figure depicts function statistics of the MONC experiment run. The application uses
NetCDF to realize I/O data transfers. The internal I/O software stack of NetCDF utilizes
MPI I/O and POSIX I/O. According to the statistic about time spent in function groups, I/O
operations contribute only little to the overall execution time.

5.3. HOLISTIC PERFORMANCE ANALYSIS OF MULTI-LAYER I/O APPLICATIONS 85

(a) Number of executed I/O operations (NetCDF)

(b) Number of executed I/O operations (MPI I/O)

(c) Number of executed I/O operations (POSIX I/O)

Figure 5.14: The figure illustrates I/O statistics of the MONC experiment run. The number of operations
differs on the individual layers (a) NetCDF, (b) MPI I/O, and (c) POSIX I/O of the I/O
software stack.

Figure 5.14 depicts three I/O summary charts for NetCDF (5.14a), MPI I/O (5.14b), and POSIX I/O
(5.14c) to facilitate a detailed I/O performance investigation. All three layers of the I/O software stack
utilize the same RCE_dump_329.nc file. The number of accesses to this file increases while traversing
the NetCDF, MPI I/O, and POSIX I/O layers. This statistic reflects how each library abstracts function-
ality in order to hide complex operations. Furthermore, the figure shows that POSIX I/O also utilizes
additional files. Further analyses aim on identifying the origin of these file accesses.

The recorded event logs clearly reflect the different behavior of simulation and I/O server processes.
This assists users in identifying I/O server processes and focusing subsequent analysis on this subset
of processes. Figure 5.15 depicts the I/O timeline (top) and the process summary (bottom) of Pthread
thread 7:0, i.e., Thread 7 of the I/O server process Rank 0. The I/O timeline displays the performed
type of I/O operations (Read (orange), Write (yellow), Open (blue), Close (green)) on the x-axis and the
accessed files as well as associated handles on the y-axis. If an I/O library (e.g., NetCDF) utilizes another
I/O library, the individual handles of each library are attached to each other, as represented in a tree-like
hierarchy to the left of the upper chart. The hierarchical information between I/O resources recorded
in the event logs are the foundation for this kind of visualization. The top chart in Figure 5.15 depicts
all handles used to access the NetCDF file RCE_dump_329.nc. Thereby, NetCDF internally utilizes
MPI I/O (see handle MPI-IO #0) which in turn performs POSIX I/O operations (see POSIX I/O #20) on
RCE_dump_329.nc. This view also shows that MPI I/O opens (blue bars) maps-files from the /proc file
system using the ISO-C API. Each I/O server process reads (red boxes) its maps-file before transferring
simulation data to the NetCDF file.

The bottom chart of Figure 5.15 depicts the process timeline for Thread 7 of Rank 0 and provides
details about the calling context of I/O operations in this time slice. For instance, the execution of
nc_put_vara_double (bottom chart, blue bar, call stack level 7) creates an I/O write event of
the NetCDF #0 handle (top chart). This operation in turn calls MPI_File_Write_at_all (bot-
tom chart, orange bar, call stack level 8) which generates the I/O write event of the MPI-IO #0 handle

86 5. EVALUATION

Figure 5.15: The I/O timeline (top) shows individual I/O operations of Pthread thread 7:0 (Thread 7 of
the I/O server process Rank 0) on specific files. The tree view on the right hand side reflects
the recorded hierarchical relations between files. The process summary (bottom) depicts
the corresponding call stack and illustrates interactions of the individual layers of the I/O
software stack. For instance, the NetCDF routine nc_put_vara_double (blue bar, call
stack level 7) internally calls the MPI I/O routine MPI_File_write_at_all (orange
bar, call stack level 8) which utilizes POSIX I/O functions (brown and yellow bars, call
stack level 9).

(top chart). Call stack level 9 in the bottom chart shows internal details of this collective MPI I/O rou-
tine. It depicts the fgets call to access the maps-file (/proc/43867/maps). The write calls to store
the final data correspond to the write events of the POSIX I/O #20 handle (top chart). Interestingly,
NetCDF executes MPI communication operations (bottom chart, red bars, call stack level 8) within the
nc_put_vara_double routine. In this time interval, these operations have a short duration compared
with the MPI_File_Write_at_all routine and do not impede performance. However, in a different
scenario, these functions may lead to a communication bottleneck or undesirable wait states.

Current analysis focused on the behavior of one I/O server process. The next analysis steps widen the
scope and compare different I/O server processes. Figure 5.16 shows the process timelines of I/O server
Rank 0/Thread 7 (top) and Rank 14/Thread 2 (bottom). Both servers call identical functions with similar
durations until call stack level 9. On this level, both servers perform ISO-C I/O operations (brown bars)
at the beginning of the MPI_File_Write_at_all routine. Afterwards, one server process (top)
executes POSIX I/O write functions (yellow bars). It seems that only one I/O server process accesses
the RCE_dump_329.nc file through the collective I/O operation. The collective operation appears to
synchronize all processes (causing waiting time) except process Rank 0/Thread 7, that performs the
actual I/O operations. Figure 5.17 depicts the number of system calls within MPI I/O routines. The event
log provides information about the system tree topology and allows a visualization of values aggregated
per compute node. Node nid01713 performs the most system calls within MPI I/O routines. This
confirms, that only one I/O server transfers data to the RCE_dump_329.nc file. This effect is similar
to the collective buffering as presented in the NAS BT-IO case study.

This performance study proves the effectiveness of the client-server-architecture implemented by the
MONC simulator. This approach aggregates I/O requests of the application and thereby takes load off the

5.3. HOLISTIC PERFORMANCE ANALYSIS OF MULTI-LAYER I/O APPLICATIONS 87

Figure 5.16: This figure compares the call stacks of two different MONC I/O server processes. Both
servers show an identical call stack except level 9. Only the I/O server process shown in the
top chart issues calls to the POSIX I/O write routine (yellow bars).

I/O subsystem. However, the study also shows that the number of simulation and I/O server processes
needs to be fine-tuned to achieve optimal performance. The holistic performance analysis approach
presented in this work enables users to investigate the computation and communication behavior of the
application as well as internals of the I/O software stack. Based on these insights, users can calibrate the
ratio between simulation and I/O server processes.

Figure 5.17: This figure depicts the number of system calls within MPI I/O routines and maps the visu-
alization to the system tree topology. Node nid01713 performs the most system calls
within MPI I/O routines. This confirms, that only one I/O server transfers data to the
RCE_dump_329.nc file.

88 5. EVALUATION

5.4 Top-Down Performance Analysis of Scientific Workflows

This section presents three case studies evaluating the top-down analysis methodology of scientific work-
flows. The first case study illustrating a Synthetic Workflow demonstrates the analysis of complex work-
flow structures. The second case study, GATK/Cromwell, focuses on the integration of this methodology
in workflow management systems. Finally, the third case study, GROMACS, describes the process of
tackling performance problems from general overview to their root cause.

5.4.1 Demonstration of the Top-Down Performance Analysis Process

This first case study demonstrates the analysis process with a synthetic workflow. The analysis starts with
an overview of the entire workflow and proceeds with an investigation of individual jobs and job steps.
Figure 5.18 depicts the Workflow Visualizer showing the general structure of the observed workflow.

The synthetic workflow consists of five individual jobs. In this example, the workflow starts with
Job 42 which contains four job steps. After the completion of Job 42, a sequence of parallel jobs starts.
Job 43 and Job 45 run in parallel to Job 44. Solid arrows indicate dependencies of Job 43 and Job 44
on Job 42. Each one of the Jobs 43, 44, and 45 consists of three individual job steps. As Figure 5.18
shows, the workflow does not define a job dependency between Job 43 and Job 45. Consequently, the
job scheduler (Slurm) data contains no dependency information for these two jobs and no solid arrow
is drawn in Figure 5.18. However, even in the absence of Slurm dependency information the proposed
methodology for the analysis of scientific workflows is able to expose job dependencies. Based on the

Figure 5.18: Timeline visualization of the synthetic workflow example. The top chart depicts the gen-
eral structure of the observed workflow. Solid arrows represent scheduling dependencies
between jobs, whereas the dotted arrow illustrates a data dependency between Job 43 and
Job 45. Pie charts at the bottom give a statistical overview of the entire workflow. The chart
at the bottom left depicts the share of individual jobs in the overall runtime. The chart at the
bottom center differentiates the runtime into function groups. The chart at the bottom right
presents general information about the entire workflow.

5.4. TOP-DOWN PERFORMANCE ANALYSIS OF SCIENTIFIC WORKFLOWS 89

I/O activity recording, the methodology tracks data dependencies and provides additional provenance
data. Figure 5.18 illustrates this data dependency as a dotted arrow between Job 43 and Job 45. In this
example, the data dependency between Job 43 and Job 45 enforces a sequential execution of both jobs,
resulting in inefficient resource utilization. While Job 43 and Job 44 run concurrently, Job 45 represents
a load imbalance in the upper execution path. Finally, after the completion of Job 44 and Job 45, the
workflow ends with Job 46 including two job steps. Pie charts at the bottom of Figure 5.18 give a
statistical overview of the entire workflow. The chart at the bottom left depicts the share of individual
jobs in the overall runtime. According to this chart, Job 46 (purple color) dominates and accounts for
about 37% of the overall runtime. The chart at the bottom center differentiates the runtime into function
groups and indicates that the workflow is compute intensive (pastel purple color).

The analysis continues with a detailed discussion of individual jobs and job steps. The investigation
starts with the first job of the workflow (Job 42). The coloring of the Job Step Boxes of Job 42 indicates
that almost all job steps are compute intensive (pastel purple color). Only Job Step 3 of Job 42 spends
about half of its runtime in MPI functions (red color). However, as the runtime of Job 42 is relatively
small in comparison with the total runtime of the workflow, this issue is not prioritized and the investiga-
tion proceeds. Job 43, Job 44, and Job 45 are the next elements of the examined workflow. Each of these
jobs consists of three job steps. In all three jobs, the second job step dominates the runtime and shows a
significant MPI runtime share (red color). Consequently, these job steps are candidates for further anal-
ysis and optimization. Figure 5.19 depicts Job 45 in detail. The Job Step Info chart indicates that Job
Step 2 spends almost half of its runtime in MPI. Further analysis of the event logs is recommended to
identify the root cause of this excessive MPI time. Probably performance critical communication patterns
or load imbalances lead to increased MPI wait times. In addition, Job 46 is also a potential candidate for
detailed performance analysis, as this job exhibits the longest runtime of all jobs. Especially, Job Step 2
of Job 46 dominates the runtime. Any optimization that reduces the runtime of this job will directly
result in a reduced runtime of the overall workflow.

5.4.2 Integration of Performance Data Recording into Workflow Management
Systems

Workflow management systems coordinate the execution of scientific workflows. Therefore, in order
to be widely used, the proposed methodology for the analysis of scientific workflows has to integrate
easily into workflow management systems. This case study demonstrates such an integration using the
workflow management system Cromwell [121] as an example. Cromwell supports a Slurm back-end
transparently. Additionally, many implementations of real-world workflows are available for Cromwell.
These workflows use the Genome Analysis Toolkit (GATK) [121] Java application.

A parameterized extra wrapper layer to Cromwell’s default Slurm back-end provider realizes the inte-
gration into Cromwell. This script wraps each job submission (sbatch call) and makes the approach
independent of a specific workflow example. The wrapper script creates a custom environment that con-
trols the Score-P instrumentation [34] of each job and invokes OTF2-Profile to process any generated job
trace. An automatic epilogue step for all Slurm jobs invokes JobLog to collect actual wall time and other
accounting information of the corresponding job. With this modification, users only have to provide two
additional parameters to their workflows. First, users have to provide the location of the Score-P wrap-
per script. The Score-P wrapper script manages the instrumentation configurations. Because the actual
instrumentation configuration is workflow specific, users should set up an appropriate configuration and
provide it as an input to the workflow. Second, users have to specify the executable to use. Score-P’s
Java bytecode instrumentation relies on a Java wrapper (scorep-bc-java) that processes the Java
executable. This processing step cannot simply be part of the Score-P wrapper script, as not all work-
flows in Cromwell are Java-based. Therefore, users need a parameter to selectively enable or disable
Java bytecode instrumentation.

90 5. EVALUATION

Figure 5.19: Performance profiles of Job 45 in Figure 5.18. Job Step 2 spends significant time in MPI
routines (red color).

This test case presents the Joint Calling Genotypes (JCG) workflow from GATK. It applies user-level
Java instrumentation to record the performance behavior of the (JCG) workflow. Figure 5.20 shows the
results of the measurement.

The JCG workflow consists of two phases. In the first phase, JCG starts with a scatter/gather operation.
This initial phase consists of a configurable number of parallel jobs. As Figure 5.20 shows, the example
of this case study starts with three jobs (Job 11943156 – 11943158). All three jobs have well-balanced
individual durations, indicating an adequate load balancing. However, not all jobs are scheduled concur-
rently. This suggests optimization potential for either end-to-end time or resource usage efficiency.

In the second phase, JCG performs a two-step analysis of results generated by the previous jobs.
Job 11943160 and Job 11943161 represent this subsequent post-processing in Figure 5.20. Jobs of the
second phase depend on the jobs of the first phase, as jobs of the first phase generate the input data
for the post-processing step. Cromwell manages workflow dependencies by its own internal polling
mechanism. Hence, dependencies are not controlled via Slurm, and thus, are not included in available
Slurm information. Nevertheless, the approach presented in this thesis reveals these dependencies based
on information obtained from I/O recording. Figure 5.20 illustrates these dependencies as dotted arrows
between individual jobs. This allows the Workflow Visualizer tool to present the internal workflow
structure for the users.

5.4. TOP-DOWN PERFORMANCE ANALYSIS OF SCIENTIFIC WORKFLOWS 91

Figure 5.20: Timeline visualization of the Joint Calling Genotypes (JCG) workflow from GATK. The
JCG workflow consists of two phases. In the first phase, three jobs run in parallel. In the
second phase, two jobs run consecutively and perform a post-processing of the data gen-
erated by the previous jobs. Dotted arrows indicate data dependencies between individual
jobs.

5.4.3 Optimization of a GROMACS Workflow

The software suite GROMACS (Groningen MAchine for Chemical Simulation) [116] is an open-source
package for molecular dynamics. Its main purpose is the simulation of biochemical molecules like
proteins, lipids, and nucleic acids. This case study examines the “Lysozyme in Water” example [57] and
illustrates the effects of applied optimization.

Figure 5.21 gives an overview of the workflow topology. The observed workflow consists of six jobs
in one pipeline. Figure 5.21a illustrates the topology as a dependency graph. The first three jobs prepare
the simulation system. These jobs perform their work in a completely serial fashion. The last three
jobs are parallelized and perform most of the simulation work. Figure 5.21a shows that the job steps of
Job 12154375 to Job 12154377 spend a considerable amount of their time in I/O (yellow color) and MPI
(red color) routines, suggesting these jobs as good candidates for optimization. However, Figure 5.21b
provides additional insight by scaling the Job Boxes according to their actual runtime. This visualization
indicates that the runtime share of Job 12154375 to Job 12154377 and also Job 12154378 is negligible.
Instead, Job 12154379 and Job 12154380 appear to be promising candidates for further performance
analysis. Especially Job Step 2 and Job Step 5 of Job 12154379 and Job Step 2 of Job 12154380 dominate

92 5. EVALUATION

(a) Dependency Graph visualization

(b) Timeline visualization

Figure 5.21: The figure shows the GROMACS “Lysozyme in Water” workflow. The (a) Dependency
Graph depicts the general structure of six jobs executed in one pipeline. The (b) Timeline
visualization scales the Job Boxes according to their runtimes and shows that the fifth and
sixth job dominate the overall runtime of the workflow.

the overall runtime. All mentioned job steps are compute intensive (green color). Further analysis of Job
Step 2 of Job 12154380 reveals a rather high MPI runtime share of about 10 %. The next step of the
analysis inspects the recorded event logs to identify the reason of this performance issue.

The upper graph of Figure 5.22 shows the Vampir visualization of the corresponding event logs. The
analysis exposes a load imbalance in function fft5d_execute. Work is not evenly distributed across all
processes. On some processes (e.g., Master thread:11) the execution of fft5d_execute takes significantly
longer than on other processes. As a result, processes with less workload start their MPI communication
early but have to wait for processes with longer running fft5d_execute instances. This increases the
overall time spent in MPI for Job 12154380. The lower graph of Figure 5.22 illustrates the event log
of an additional measurement with an improved load balancing setup. This figure shows that this setup
distributes the workload evenly across all processes. As a result, the MPI time share of the job reduces
from 10% to 6%. Additionally, the reduction of the MPI time share implicates a considerable reduction
of the time required to execute an iteration.

5.4.4 Performance Discussion

This section discusses the overhead of the proposed workflow analysis approach. The discussion distin-
guishes three potential sources of overhead: application instrumentation with Score-P, recording of job
scheduling information with JobLog, and data post-processing with OTF2-Profile.

Section 5.2 examines the execution time and memory overhead of the I/O instrumentation. In addi-
tion to I/O activities, recording event logs of real-world applications includes further event types such as
function entries/exits or message transfers. Section 5.2 also suggests options to refine the set of recorded
events and thereby control the overhead. Experiments conducted by Knüpfer et al. [53] applied a reason-
able filter setup to real-world applications and reported a runtime overhead below 4%. For the workflow
analysis experiments as shown in this work the overhead due to application instrumentation reads as fol-
lows. The overhead of the GROMACS case study was below 10%. In comparison with compile-time or
library-wrapping based instrumentation, the Java bytecode instrumentation induces a higher overhead.
Consequently, the overhead of the GATK case study was still quite significant (approximately 3× run-
time), even with filtering. The event logs of the presented case studies demanded at most 10 GiB for the
entire GATK workflow.

Recording of job scheduling information with JobLog is less critical. It records statistics in the range
of 1− 10 kiB. Furthermore, the proposed approach queries scheduling information after the application
has finished and thereby does not affect the application execution.

5.4. TOP-DOWN PERFORMANCE ANALYSIS OF SCIENTIFIC WORKFLOWS 93

Figure 5.22: Event log visualization of GROMACS Job 12154380, Job Step 2. The upper graph (blue
background) shows an event sequence of the GROMACS run with disabled load balancing.
The lower graph (white background) illustrates the corresponding event sequence of a run
with enabled load balancing. The event sequences depict GROMACS functions (green)
and MPI communication (red). Invocations of the function fft5d_execute are highlighted
in yellow. As the lower graph shows, improved load balancing results in a considerable
reduction of the time required to execute an iteration.

Data post-processing with OTF2-Profile is also noncritical as it runs as a post-mortem task and can be
executed on a local machine. In the analyses presented in this section, the post-processing shows a fixed
setup time of 5− 15 seconds and runs for at most 10% of the original application runtime.

As this discussion shows, the proposed top-down analysis approach is able to record valuable perfor-
mance data. Time-critical aspects of this approach provide options to minimize the induced overhead.
The presented toolset allows users to analyze real-world scientific workflows, identify potential bottle-
necks within the workflows, and determine optimization opportunities.

94 5. EVALUATION

95

6 Conclusion and Outlook

This chapter gives a résumé of this thesis and presents an outlook on future work.

6.1 Summary and Conclusion

I/O operations are a performance critical aspect of data intensive applications. Consequently, in addi-
tion to traditional facets, e.g., computation and communication, performance analysis and tuning of such
applications has to address I/O related issues. This dissertation proposes a novel methodology for record-
ing calls to I/O libraries on multiple layers of the software stack. In contrast to current approaches, this
methodology explicitly correlates operations between multiple levels of the complex I/O software stack.
This enhanced level of detail in the recorded performance data is essential for understanding the overall
I/O behavior of applications.

The first contribution of this work is a methodology to investigate application I/O behavior in detail.
The key contribution is a scheme that captures I/O activities on multiple layers of the I/O software stack
and correlates these activities across all layers explicitly. Recording these hierarchical relations between
I/O operations arising from different layers of the I/O software stack enables analyses of the interplay
between these layers. Therefore, this thesis introduces concepts to store information about I/O activities
in event logs including the hierarchical relations between them. This information is the foundation for
the following contributions.

The second contribution of this work defines I/O access patterns observable in the recorded event logs
of parallel scientific applications. These patterns guide software developers in analyzing the I/O behavior
of their applications. In addition, the hierarchical relations of I/O activities recorded in the event logs
allow users to evaluate interactions between layers of the complex I/O software stack, investigate internal
optimizations applied by high-level I/O libraries, and validate their effectiveness in combination with
low-level I/O libraries.

The third contribution of this work consists of a top-down performance analysis methodology for sci-
entific workflows. This methodology widens the scope of analysis from an individual application to
coordinated sequences of multiple applications. It guides users through the comprehensive performance
analysis of complex workflows by starting with a general overview, assisting in the identification of opti-
mization candidates, and presenting detailed performance data as needed. The methodology for workflow
analysis uses the multi-layer I/O recording capability to reveal I/O dependencies between individual jobs
and job steps, respectively.

The fourth contribution of this work is the implementation of all proposed methodologies. This thesis
describes the enhancement of the established performance monitoring infrastructure Score-P by sophis-
ticated I/O recording features. It presents the implementation of I/O definition and event records in the
OTF2 trace format to persistently store captured information. Consequently, this thesis enhanced the
mentioned performance tools significantly. Furthermore, this work provides the implementation of tools
and their cooperation to realize a top-down performance analysis methodology for scientific workflows.

In summary, the proposed methodologies are viable approaches for the performance analysis of par-
allel applications. Software developers can now identify I/O bottlenecks and determine their root causes
inside a complex I/O software and hardware stack. The presented contributions complement existing
functionality and realize a holistic performance analysis for parallel scientific applications including
computation, communication, and I/O operations. The techniques have been applied to real-world ap-
plications. This work shows that these novel methods expose patterns in I/O activities across multiple
layers that otherwise would have been hard or even impossible to find. Introduced features such as

96 6. CONCLUSION AND OUTLOOK

the recording of POSIX I/O and MPI I/O operations are included in the official Score-P releases since
version 6.0. Therefore, contributions of this work are publicly available as open-source. The implemen-
tation of NetCDF and HDF5 recording is in its final stage and will be released in an upcoming Score-P
release. Results of this thesis were already used in several research projects. The project “Next Genera-
tion I/O for the Exascale” (NEXTGenIO) [74] within the European Union’s Horizon 2020 Research and
Innovation programme explored non-volatile memory technology to bridge the gap between memory and
storage. Based on the I/O recording methodology proposed in this thesis, the project extended perfor-
mance analysis tools such as Score-P and Vampir to record and visualize non-volatile memory accesses
of observed applications. The project “Advanced Data Placement via Ad-hoc File Systems at Extreme
Scales” (ADA-FS) [2] within the German Priority Programme 1648 Software for Exascale Computing
(SPPEXA) investigated the use of distributed ad-hoc overlay file systems to improve I/O performance for
highly-parallel applications. Therefore, this project used the work presented in this thesis to investigate
access patterns of applications to and within files.

6.2 Outlook

This thesis focuses on performance analysis of file I/O operations. However, it can be easily extended
to monitor I/O operations on sockets. This use case would only require new definitions for representing
sockets as an I/O resource besides files and directories as shown in this thesis. Furthermore, current
event records can be augmented with information about failed operations. This would extend their scope
of application from performance analysis to debugging and correctness. In addition, future work could
include support for I/O activities on object storage architectures. The extensible design of the definition
and event records as well as the measurement system facilitates the implementation of novel features and
the adaption to upcoming system architectures.

97

Bibliography

[1] LMT3 - Lustre Monitoring Tool. https://github.com/LLNL/lmt. Last accessed on 2020-
09-30.

[2] ADA-FS – Advanced Data Placement via Ad-hoc File Systems at Extreme Scales. http://
ada-fs.github.io/. Last accessed on 2020-09-30.

[3] Laksono Adhianto, Shisagnee Banerjee, Mike W. Fagan, Mark Krentel, Gabriel Marin, John M.
Mellor-Crummey, and Nathan R. Tallent. HPCTOOLKIT: Tools for performance analysis of
optimized parallel programs. Concurrency and Computation: Practice and Experience, 2010.

[4] Akshat Aranya, Charles P. Wright, and Erez Zadok. Tracefs: A File System to Trace Them All. In
Proceedings of the 3rd USENIX Conference on File and Storage Technologies, FAST ’04, pages
129–145, Berkeley, CA, USA, 2004. USENIX Association.

[5] Arm. Arm DDT – Debugger for C, C++ and Fortran Threaded and Parallel
Code. https://www.arm.com/products/development-tools/server-and-
hpc/forge/ddt. Last accessed on 2020-09-30.

[6] Arm. Arm MAP – Low-Overhead Profiling to Optimize C, C++, Fortran and F90
Codes. https://www.arm.com/products/development-tools/server-and-
hpc/forge/map. Last accessed on 2020-09-30.

[7] Dorian C. Arnold, Dong H. Ahn, Bronis R. de Supinski, Gregory L. Lee, Barton P. Miller, and
Martin Schulz. Stack Trace Analysis for Large Scale Debugging. In 2007 IEEE International
Parallel and Distributed Processing Symposium, pages 1–10, March 2007.

[8] Malcolm Atkinson, Sandra Gesing, Johan Montagnat, and Ian Taylor. Scientific workflows: Past,
present and future. Future Generation Computer Systems, 75:216 – 227, 2017.

[9] Simone Atzeni, Ganesh Gopalakrishnan, Zvonimir Rakamaric, Dong H. Ahn, Ignacio Laguna,
Martin Schulz, Gregory L. Lee, Joachim Protze, and Matthias S. Müller. ARCHER: Effectively
Spotting Data Races in Large OpenMP Applications. In 2016 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 53–62, May 2016.

[10] Babak Behzad, Hoang-Vu Dang, Farah Hariri, Weizhe Zhang, and Marc Snir. Automatic Gener-
ation of I/O Kernels for HPC Applications. In 2014 9th Parallel Data Storage Workshop, pages
31–36, November 2014.

[11] Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William Dally, Monty Den-
neau, Paul Franzon, William Harrod, Kerry Hill, Jon Hiller, Sherman Karp, Stephen Keckler,
Dean Klein, Peter Kogge, Robert Lucas, Mark Richards, Al Scarpelli, Steven Scott, Allan Snavely,
Thomas Sterling, R. Stanley Williams, and Katherine Yelick. ExaScale Computing Study: Tech-
nology Challenges in Achieving Exascale Systems. Defense Advanced Research Projects Agency
Information Processing Techniques Office (DARPA IPTO), 15, January 2008.

[12] blktrace(8) - Linux man page. https://linux.die.net/man/8/blktrace. Last accessed
on 2020-09-30.

https://github.com/LLNL/lmt
http://ada-fs.github.io/
http://ada-fs.github.io/
https://www.arm.com/products/development-tools/server-and-hpc/forge/ddt
https://www.arm.com/products/development-tools/server-and-hpc/forge/ddt
https://www.arm.com/products/development-tools/server-and-hpc/forge/map
https://www.arm.com/products/development-tools/server-and-hpc/forge/map
https://linux.die.net/man/8/blktrace

98 Bibliography

[13] Ronny Brendel, Bert Wesarg, Ronny Tschüter, Matthias Weber, Thomas Ilsche, and Sebastian
Oeste. Generic Library Interception for Improved Performance Measurement and Insight. In Ab-
hinav Bhatele, David Boehme, Joshua A. Levine, Allen D. Malony, and Martin Schulz, editors,
Programming and Performance Visualization Tools, pages 21–37. Springer International Publish-
ing, 2019.

[14] Barcelona Supercomputing Center (BSC). Extrae instrumentation package. http://
tools.bsc.es/extrae. Last accessed on 2020-09-30.

[15] Barcelona Supercomputing Center (BSC). Paraver: a flexible performance analysis tool. http:
//tools.bsc.es/paraver. Last accessed on 2020-09-30.

[16] Antoine Capra, Patrick Carribault, Jean-Baptiste Besnard, Allen D. Malony, Marc Pérache, and
Julien Jaeger. User Co-scheduling for MPI+OpenMP Applications Using OpenMP Semantics.
In Bronis R. de Supinski, Stephen L. Olivier, Christian Terboven, Barbara M. Chapman, and
Matthias S. Müller, editors, Scaling OpenMP for Exascale Performance and Portability, pages
203–216. Springer International Publishing, 2017.

[17] Philip Carns, Kevin Harms, William Allcock, Charles Bacon, Samuel Lang, Robert Latham, and
Robert Ross. Understanding and Improving Computational Science Storage Access Through Con-
tinuous Characterization. ACM Transactions on Storage, 7(3):8:1–8:26, October 2011.

[18] Philip Carns, Robert Latham, Robert Ross, Kamil Iskra, Samuel Lang, and Katherine Riley. 24/7
Characterization of Petascale I/O Workloads. In Proceedings of 2009 Workshop on Interfaces and
Architectures for Scientific Data Storage, pages 1–10, 2009.

[19] Philip Carns, Walter Ligon, Robert Ross, and Rajeev Thakur. PVFS: A Parallel File System for
Linux Clusters. In Proceedings of the Extreme Linux Track: 4th Annual Linux Showcase and
Conference, volume 4, page 11, October 2000.

[20] Mohamad Chaarawi, Edgar Gabriel, Rainer Keller, Richard L. Graham, George Bosilca, and
Jack J. Dongarra. OMPIO: A Modular Software Architecture for MPI I/O. In Yiannis Cotronis,
Anthony Danalis, Dimitrios S. Nikolopoulos, and Jack Dongarra, editors, Recent Advances in the
Message Passing Interface, pages 81–89, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[21] collectd – The system statistics collection daemon. https://collectd.org/. Last accessed
on 2020-09-30.

[22] Collectl. http://collectl.sourceforge.net/. Last accessed on 2020-09-30.

[23] IBM Corporation. IBM Parallel Performance Toolkit Version 2.4 documentation. https://
www.ibm.com/support/knowledgecenter/SSFK5S_2.4/doc.pdf. Last accessed on
2020-09-30.

[24] Intel Corporation. Intel Inspector. https://software.intel.com/en-us/inspector.
Last accessed on 2020-09-30.

[25] Intel Corporation. Intel Trace Analyzer and Collector. https://software.intel.com/
content/www/us/en/develop/tools/trace-analyzer.html. Last accessed on
2020-09-30.

[26] Intel Corporation. Intel VTune Profiler. https://software.intel.com/content/www/
us/en/develop/tools/vtune-profiler.html. Last accessed on 2020-09-30.

[27] Anthony Danalis. MPI and Compiler Technology: A Love-Hate Relationship. In Jesper Larsson
Träff, Siegfried Benkner, and Jack J. Dongarra, editors, Recent Advances in the Message Passing
Interface, pages 12–13, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

http://tools.bsc.es/extrae
http://tools.bsc.es/extrae
http://tools.bsc.es/paraver
http://tools.bsc.es/paraver
https://collectd.org/
http://collectl.sourceforge.net/
https://www.ibm.com/support/knowledgecenter/SSFK5S_2.4/doc.pdf
https://www.ibm.com/support/knowledgecenter/SSFK5S_2.4/doc.pdf
https://software.intel.com/en-us/inspector
https://software.intel.com/content/www/us/en/develop/tools/trace-analyzer.html
https://software.intel.com/content/www/us/en/develop/tools/trace-analyzer.html
https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html
https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html

Bibliography 99

[28] Hewlett Packard Enterprise Development. Cray Performance Measurement
and Analysis Tools User Guide. https://pubs.cray.com/bundle/
Cray_Performance_Measurement_and_Analysis_Tools_User_Guide/page/
CrayPat.html. Last accessed on 2020-09-30.

[29] Dominic Eschweiler, Michael Wagner, Markus Geimer, Andreas Knüpfer, Wolfgang E. Nagel, and
Felix Gerd Eugen Wolf. Open Trace Format 2 - The Next Generation of Scalable Trace Formats
and Support Libraries. In Applications, Tools and Techniques on the Road to Exascale Computing:
Proc. of the 14th biennial ParCo conference, volume 22 of Advances in Parallel Computing, pages
481–490, 2012.

[30] Oak Ridge Leadership Computing Facility. Summit - Oak Ridge National Laboratory’s 200
petaflop supercomputer. https://www.olcf.ornl.gov/olcf-resources/compute-
systems/summit/. Last accessed on 2020-09-30.

[31] Oak Ridge Leadership Computing Facility. Titan - Advancing the Era of Accelerated
Computing. https://www.olcf.ornl.gov/olcf-resources/compute-systems/
titan/. Last accessed on 2020-09-30.

[32] Matt Fleming. A thorough introduction to eBPF. https://lwn.net/Articles/740157/.
Last accessed on 2020-09-30.

[33] Free Software Foundation. GDB: The GNU Project Debugger. https://www.gnu.org/
software/gdb/. Last accessed on 2020-09-30.

[34] Jan Frenzel, Kim Feldhoff, Rene Jäkel, and Ralph Müller-Pfefferkorn. Tracing of Multi-Threaded
Java Applications in Score-P Using Bytecode Instrumentation. In ARCS Workshop 2018; 31th
International Conference on Architecture of Computing Systems, pages 1–8, April 2018.

[35] ftrace(1) - Linux man page. https://linux.die.net/man/1/ftrace. Last accessed on
2020-09-30.

[36] Markus Geimer, Felix Wolf, Brian Wylie, and Bernd Mohr. A scalable tool architecture for diag-
nosing wait states in massively parallel applications. Parallel computing, 35:375 – 388, 2009.

[37] Markus Geimer, Felix Wolf, Brian J. N. Wylie, Erika Ábrahám, Daniel Becker, and Bernd Mohr.
The Scalasca Performance Toolset Architecture. Concurrency and Computation: Practice and
Experience, 22(6):702–719, April 2010.

[38] Robert Gerstenberger, Maciej Besta, and Torsten Hoefler. Enabling Highly-Scalable Remote
Memory Access Programming with MPI-3 One Sided. October 2018.

[39] JobLog. https://github.com/harryherold/JobLog. Last accessed on 2020-09-30.

[40] OTF/OTF2 Profile. https://github.com/score-p/otf2_cli_profile. Last ac-
cessed on 2020-09-30.

[41] Pilar Gomez-Sanchez, Sandra Mendez, Dolores Rexachs, and Emilio Luque. PIOM-PX: A Frame-
work for Modeling the I/O Behavior of Parallel Scientific Applications. In Julian M. Kunkel, Rio
Yokota, Michela Taufer, and John Shalf, editors, High Performance Computing, pages 160–173.
Springer International Publishing, 2017.

[42] Max Grossman, Jun Shirako, and Vivek Sarkar. OpenMP as a High-Level Specification Lan-
guage for Parallelism. In Naoya Maruyama, Bronis R. de Supinski, and Mohamed Wahib, editors,
OpenMP: Memory, Devices, and Tasks, pages 141–155. Springer International Publishing, 2016.

https://pubs.cray.com/bundle/Cray_Performance_Measurement_and_Analysis_Tools_User_Guide/page/CrayPat.html
https://pubs.cray.com/bundle/Cray_Performance_Measurement_and_Analysis_Tools_User_Guide/page/CrayPat.html
https://pubs.cray.com/bundle/Cray_Performance_Measurement_and_Analysis_Tools_User_Guide/page/CrayPat.html
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
https://lwn.net/Articles/740157/
https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/
https://linux.die.net/man/1/ftrace
https://github.com/harryherold/JobLog
https://github.com/score-p/otf2_cli_profile

100 Bibliography

[43] Robert J. Hall. Call Path Profiling. In Proceedings of the 14th International Conference on
Software Engineering, ICSE ’92, pages 296–306, New York, NY, USA, 1992. ACM.

[44] Tobias Hilbrich, Joachim Protze, Martin Schulz, Bronis R. de Supinski, and Matthias S. Müller.
MPI runtime error detection with MUST: Advances in deadlock detection. In SC ’12: Proceed-
ings of the International Conference on High Performance Computing, Networking, Storage and
Analysis, pages 1–10, November 2012.

[45] IBM Corporation. IBM Spectrum Scale Version 5.0.3 - Concepts, Planning, and Installa-
tion Guide. https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.3/
com.ibm.spectrum.scale.v5r03.doc/pdf/scale_ins.pdf?view=kc, 2019. Last
accessed on 2020-09-30.

[46] sysstat - System performance tools for the Linux operating system. https://github.com/
sysstat/sysstat. Last accessed on 2020-09-30.

[47] iotop. http://guichaz.free.fr/iotop/. Last accessed on 2020-09-30.

[48] Raj Jain. The Art of Computer Systems Performance Analysis: Techniques for Experimental De-
sign, Measurement, Simulation, and Modeling. Wiley Professional Computing. John Wiley &
Sons, April 1991.

[49] Franziska Kasielke and Ronny Tschüter. From Mathematical Model to Parallel Execution to
Performance Improvement: Introducing Students to a Workflow for Scientific Computing. In
Gabriele Mencagli, Dora B. Heras, Valeria Cardellini, Emiliano Casalicchio, Emmanuel Jeannot,
Felix Wolf, Antonio Salis, Claudio Schifanella, Ravi Reddy Manumachu, Laura Ricci, Marco
Beccuti, Laura Antonelli, José Daniel Garcia Sanchez, and Stephen L. Scott, editors, Euro-Par
2018: Parallel Processing Workshops, pages 211–221. Springer International Publishing, 2019.

[50] Seong J. Kim, Seung W. Son, Wei-keng Liao, Mahmut Kandemir, Rajeev Thakur, and Alok
Choudhary. IOPin: Runtime Profiling of Parallel I/O in HPC Systems. In 2012 SC Compan-
ion: High Performance Computing, Networking Storage and Analysis, pages 18–23, November
2012.

[51] Andreas Knüpfer. Advanced Memory Data Structures for Scalable Event Trace Analysis. PhD
thesis, December 2008.

[52] Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias Lieber, Holger Mick-
ler, Matthias S. Müller, and Wolfgang E. Nagel. The Vampir Performance Analysis Tool-Set. In
Michael Resch, Rainer Keller, Valentin Himmler, Bettina Krammer, and Alexander Schulz, edi-
tors, Tools for High Performance Computing, pages 139–155, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg.

[53] Andreas Knüpfer, Christian Rössel, Dieter an Mey, Scott Biersdorff, Kai Diethelm, Dominic Es-
chweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen Malony, Wolfgang E. Nagel,
Yury Oleynik, Peter Philippen, Pavel Saviankou, Dirk Schmidl, Sameer Shende, Ronny Tschüter,
Michael Wagner, Bert Wesarg, and Felix Wolf. Score-P: A Joint Performance Measurement Run-
Time Infrastructure for Periscope, Scalasca, TAU, and Vampir. In Holger Brunst, Matthias S.
Müller, Wolfgang E. Nagel, and Michael M. Resch, editors, Tools for High Performance Comput-
ing 2011, pages 79–91, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[54] Julian M. Kunkel, Michaela Zimmer, Nathanael Hübbe, Alvaro Aguilera, Holger Mickler, Xuan
Wang, Andriy Chut, Thomas Bönisch, Jakob Lüttgau, Roman Michel, and Johann Weging. The
SIOX Architecture – Coupling Automatic Monitoring and Optimization of Parallel I/O. In Ju-
lian Martin Kunkel, Thomas Ludwig, and Hans Werner Meuer, editors, Supercomputing, pages
245–260. Springer International Publishing, 2014.

https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.3/com.ibm.spectrum.scale.v5r03.doc/pdf/scale_ins.pdf?view=kc
https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.3/com.ibm.spectrum.scale.v5r03.doc/pdf/scale_ins.pdf?view=kc
https://github.com/sysstat/sysstat
https://github.com/sysstat/sysstat
http://guichaz.free.fr/iotop/

Bibliography 101

[55] Sandia National Laboratories. Structural Simulation Toolkit (SST) DUMPI Trace Library.
https://github.com/sstsimulator/sst-dumpi. Last accessed on 2020-09-30.

[56] Argonne National Laboratory. Jumpshot: Performance Visualization Tool. https://
www.anl.gov/mcs/jumpshot-performance-visualization-tool. Last accessed
on 2020-09-30.

[57] Justin Lemkul. GROMACS Tutorial “Lysozyme In Water”. http://
www.mdtutorials.com/gmx/complex/01_pdb2gmx.html. Last accessed on 2020-09-
30.

[58] Glenn K. Lockwood, Shane Snyder, George Brown, Kevin Harms, Philip Carns, and Nicholas J.
Wright. TOKIO on ClusterStor: Connecting Standard Tools to Enable Holistic I/O Performance
Analysis. In Proceedings of the 2018 Cray User Group, May.

[59] Glenn K. Lockwood, Wucherl Yoo, Suren Byna, Nicholas J. Wright, Shane Snyder, Kevin Harms,
Zachary Nault, and Philip Carns. UMAMI: A Recipe for Generating Meaningful Metrics Through
Holistic I/O Performance Analysis. In Proceedings of the 2nd Joint International Workshop on
Parallel Data Storage & Data Intensive Scalable Computing Systems, PDSW-DISCS ’17, pages
55–60, New York, NY, USA, 2017. ACM.

[60] ltrace(1) - Linux man page. https://linux.die.net/man/1/ltrace. Last accessed on
2020-09-30.

[61] LTTng: an open source tracing framework for Linux. https://lttng.org/. Last accessed
on 2020-09-30.

[62] The Lustre llapi library. http://doc.lustre.org/
lustre_manual.xhtml#settinglustreproperties. Last accessed on 2020-09-
30.

[63] Introduction to Lustre Architecture - Lustre systems and network administration. http:
//wiki.lustre.org/images/6/64/LustreArchitecture-v4.pdf, October 2017.
Last accessed on 2020-09-30.

[64] The Lustre file system. http://lustre.org/, February 2018. Last accessed on 2020-09-30.

[65] Huong Luu, Babak Behzad, Ruth Aydt, and Marianne Winslett. A Multi-Level Approach for
Understanding I/O Activity in HPC Applications. In 2013 IEEE International Conference on
Cluster Computing (CLUSTER), pages 1–5, September 2013.

[66] Huong Luu, Marianne Winslett, William Gropp, Robert Ross, Philip Carns, Kevin Harms,
Mr Prabhat, Suren Byna, and Yushu Yao. A Multiplatform Study of I/O Behavior on Petas-
cale Supercomputers. In Proceedings of the 24th International Symposium on High-Performance
Parallel and Distributed Computing, HPDC ’15, pages 33–44, New York, NY, USA, 2015. ACM.

[67] John M. Mellor-Crummey, Laksono Adhianto, Mike W. Fagan, Mark Krentel, and Nathan R. Tal-
lent. HPCTOOLKIT User’s Manual, Version 2020.07. http://hpctoolkit.org/manual/
HPCToolkit-users-manual.pdf, July 2020. Last accessed on 2020-09-30.

[68] Sandra Mendez, Sebastian Lührs, Dominic Sloan-Murphy, Andrew Turner, and Volker Wein-
berg. Best Practice Guide - Parallel I/O. https://prace-ri.eu/training-support/
best-practice-guides/best-practice-guide-parallel-io/, July 2019. Last
accessed on 2020-09-30.

https://github.com/sstsimulator/sst-dumpi
https://www.anl.gov/mcs/jumpshot-performance-visualization-tool
https://www.anl.gov/mcs/jumpshot-performance-visualization-tool
http://www.mdtutorials.com/gmx/complex/01_pdb2gmx.html
http://www.mdtutorials.com/gmx/complex/01_pdb2gmx.html
https://linux.die.net/man/1/ltrace
https://lttng.org/
http://doc.lustre.org/lustre_manual.xhtml#settinglustreproperties
http://doc.lustre.org/lustre_manual.xhtml#settinglustreproperties
http://wiki.lustre.org/images/6/64/LustreArchitecture-v4.pdf
http://wiki.lustre.org/images/6/64/LustreArchitecture-v4.pdf
http://lustre.org/
http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf
http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf
https://prace-ri.eu/training-support/best-practice-guides/best-practice-guide-parallel-io/
https://prace-ri.eu/training-support/best-practice-guides/best-practice-guide-parallel-io/

102 Bibliography

[69] Michael P. Mesnier, Matthew Wachs, Raja R. Simbasivan, Julio Lopez, James Hendricks, Gre-
gory R. Ganger, and David O’Hallaron. //TRACE: Parallel trace replay with approximate causal
events. In In Proceedings of the Fifth USENIX Conference on File and Storage Technologies
(FAST ’07), pages 153–167, 2007.

[70] Gordon E. Moore. Cramming more components onto integrated circuits. Electronics Magazine,
38(8):114, April 1965.

[71] MPI Forum. The standardization forum for the Message Passing Interface (MPI). http://
www.mpi-forum.org/. Last accessed on 2020-09-30.

[72] MPI Forum. MPI: A Message-Passing Interface Standard. Version 3.1. https://www.mpi-
forum.org/docs/mpi-3.1/, June 2015. Last accessed on 2020-09-30.

[73] LLC Nagios Enterprises. Nagios - The Industry Standard In IT Infrastructure Monitoring.
https://www.nagios.com/. Last accessed on 2020-09-30.

[74] NEXTGenIO – Next Generation I/O for the Exascale. http://www.nextgenio.eu/. Last
accessed on 2020-09-30.

[75] Michael Noeth, Prasun Ratn, Frank Mueller, Martin Schulz, and Bronis R. de Supinski. Scala-
Trace: Scalable Compression and Replay of Communication Traces for High Performance Com-
puting. Journal of Parallel and Distributed Computing, 69(8), May 2008.

[76] U.S. Department of Energy. U.S. Department of Energy and Intel to deliver first exascale su-
percomputer. https://www.anl.gov/article/us-department-of-energy-and-
intel-to-deliver-first-exascale-supercomputer. Last accessed on 2020-09-
30.

[77] Chinese Acadamey of Sciences. China’s Exascale Supercomputer Operational by
2020. http://english.cas.cn/newsroom/archive/china_archive/cn2016/
201606/t20160616_164450.shtml. Last accessed on 2020-09-30.

[78] OpenACC. http://openacc.org/. Last accessed on 2020-09-30.

[79] The OpenACC Application Programming Interface Version 3.0. https://
www.openacc.org/sites/default/files/inline-images/Specification/
OpenACC.3.0.pdf, November 2019. Last accessed on 2020-09-30.

[80] OpenMP. The OpenMP API specification for parallel programming. http://openmp.org/.
Last accessed on 2020-09-30.

[81] OpenMP Architecture Review Board. OpenMP Application Programming Interface Version 5.0
November 2018. https://www.openmp.org/wp-content/uploads/OpenMP-API-
Specification-5.0.pdf, November 2018. Last accessed on 2020-09-30.

[82] ParaProf - User’s Manual. https://www.cs.uoregon.edu/research/tau/docs/
newguide/bk01pt02.html. Last accessed on 2020-09-30.

[83] Scott Parker, John Mellor-Crummey, Dong H. Ahn, Heike Jagode, Holger Brunst, Sameer Shende,
Allen D. Malony, David DelSignore, Ronny Tschüter, Ralph Castain, Kevin Harms, Philip Carns,
Ray Loy, and Kalyan Kumaran. Chapter 2: Performance Analysis and Debugging Tools at Scale.
Chapman & Hall/CRC Computational Science. CRC Press, 2017.

[84] perf: Linux profiling with performance counters. https://perf.wiki.kernel.org/
index.php/Main_Page. Last accessed on 2020-09-30.

http://www.mpi-forum.org/
http://www.mpi-forum.org/
https://www.mpi-forum.org/docs/mpi-3.1/
https://www.mpi-forum.org/docs/mpi-3.1/
https://www.nagios.com/
http://www.nextgenio.eu/
https://www.anl.gov/article/us-department-of-energy-and-intel-to-deliver-first-exascale-supercomputer
https://www.anl.gov/article/us-department-of-energy-and-intel-to-deliver-first-exascale-supercomputer
http://english.cas.cn/newsroom/archive/china_archive/cn2016/201606/t20160616_164450.shtml
http://english.cas.cn/newsroom/archive/china_archive/cn2016/201606/t20160616_164450.shtml
http://openacc.org/
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC.3.0.pdf
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC.3.0.pdf
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC.3.0.pdf
http://openmp.org/
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.cs.uoregon.edu/research/tau/docs/newguide/bk01pt02.html
https://www.cs.uoregon.edu/research/tau/docs/newguide/bk01pt02.html
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page

Bibliography 103

[85] Antoine Petitet, Clint Whaley, Jack Dongarra, and Andy Cleary. HPL - A Portable Implementation
of the High-Performance Linpack Benchmark for Distributed-Memory Computers. http://
www.netlib.org/benchmark/hpl/. Last accessed on 2020-09-30.

[86] proc - process information pseudo-filesystem. http://man7.org/linux/man-pages/
man5/proc.5.html. Last accessed on 2020-09-30.

[87] Robert Ross, Lee Ward, Philip Carns, Gary Grider, Scott Klasky, Quincey Koziol, Glenn K. Lock-
wood, Kathryn Mohror, Bradley Settlemyer, and Matthew Wolf. Storage Systems and I/O: Orga-
nizing, Storing, and Accessing Data for Scientific Discovery. May 2019.

[88] sar(1) - Linux man page. https://linux.die.net/man/1/sar. Last accessed on 2020-
09-30.

[89] Pavel Saviankou, Michael Knobloch, Anke Visser, and Bernd Mohr. Cube v4: From Performance
Report Explorer to Performance Analysis Tool. Procedia Computer Science, 51:1343 – 1352,
2015. International Conference On Computational Science, ICCS 2015.

[90] Robert Schöne, Ronny Tschüter, Thomas Ilsche, Joseph Schuchart, Daniel Hackenberg, and Wolf-
gang E. Nagel. Extending the Functionality of Score-P Through Plugins: Interfaces and Use
Cases. In Christoph Niethammer, José Gracia, Tobias Hilbrich, Andreas Knüpfer, Michael M.
Resch, and Wolfgang E. Nagel, editors, Tools for High Performance Computing 2016, pages 59–
82. Springer International Publishing, 2017.

[91] Score-P GitHub Repository. https://github.com/score-p/. Last accessed on 2020-09-
30.

[92] Sameer S. Shende and Allen D. Malony. The Tau Parallel Performance System. International
Journal of High Performance Computing Applications, 20(2):287–311, May 2006.

[93] Ben Shneiderman. The Eyes Have It: A Task by Data Type Taxonomy for Information Visual-
izations. In Proceedings 1996 IEEE Symposium on Visual Languages, pages 336–343, September
1996.

[94] Anna Sikora, Eduardo César, Isaías Comprés, and Michael Gerndt. Autotuning of MPI Appli-
cations Using PTF. In Proceedings of the ACM Workshop on Software Engineering Methods for
Parallel and High Performance Applications, SEM4HPC ’16, page 31–38, New York, NY, USA,
2016. Association for Computing Machinery.

[95] Benjamin Skuse. The third pillar. Physics World, 32(3):40–43, March 2019.

[96] Perforce Software. TotalView HPC Debugging Software. https://totalview.io/
products/totalview. Last accessed on 2020-09-30.

[97] strace(1) - Linux man page. https://linux.die.net/man/1/strace. Last accessed on
2020-09-30.

[98] sysdig. https://sysdig.com/. Last accessed on 2020-09-30.

[99] SystemTap. https://sourceware.org/systemtap/. Last accessed on 2020-09-30.

[100] Taurus HPC-Cluster at Technische Universität Dresden. https://doc.zih.tu-
dresden.de/hpc-wiki/bin/view/Compendium/SystemTaurus. Last accessed
on 2020-09-30.

[101] The Clang Team. ThreadSanitizer. https://clang.llvm.org/docs/
ThreadSanitizer.html. Last accessed on 2020-09-30.

http://www.netlib.org/benchmark/hpl/
http://www.netlib.org/benchmark/hpl/
http://man7.org/linux/man-pages/man5/proc.5.html
http://man7.org/linux/man-pages/man5/proc.5.html
https://linux.die.net/man/1/sar
https://github.com/score-p/
https://totalview.io/products/totalview
https://totalview.io/products/totalview
https://linux.die.net/man/1/strace
https://sysdig.com/
https://sourceware.org/systemtap/
https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/SystemTaurus
https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/SystemTaurus
https://clang.llvm.org/docs/ThreadSanitizer.html
https://clang.llvm.org/docs/ThreadSanitizer.html

104 Bibliography

[102] The LLDB Team. LLDB. https://lldb.llvm.org/. Last accessed on 2020-09-30.

[103] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. Collecting Performance Data with
PAPI-C. In Matthias S. Müller, Michael M. Resch, Alexander Schulz, and Wolfgang E. Nagel,
editors, Tools for High Performance Computing 2009, pages 157–173, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[104] Rajeev Thakur and Alok Choudhary. An Extended Two-phase Method for Accessing Sections of
Out-of-core Arrays. Scientific Programming, 5(4):301–317, December 1996.

[105] Rajeev Thakur, Alok Choudhary, Rajesh Bordawekar, Sachin More, and Sivaramakrishna Kudi-
tipudi. Passion: Optimized I/O for Parallel Applications. Computer, 29(6):70–78, June 1996.

[106] Rajeev Thakur, William Gropp, and Ewing Lusk. Data Sieving and Collective I/O in ROMIO. In
Proceedings. Frontiers ’99. Seventh Symposium on the Frontiers of Massively Parallel Computa-
tion, pages 182–189, February 1999.

[107] Rajeev Thakur, William Gropp, and Ewing Lusk. On Implementing MPI-IO Portably and with
High Performance. In Proceedings of the Sixth Workshop on I/O in Parallel and Distributed
Systems, IOPADS ’99, pages 23–32, New York, NY, USA, 1999. ACM.

[108] The HDF Group. Hierarchical Data Format, Version 5. https://www.hdfgroup.org/
solutions/hdf5/. Last accessed on 2020-09-30.

[109] TOP500.org. Highlights of the 51st TOP500 List. https://www.top500.org/static/
media/uploads/top500_ppt_201806.pdf. Last accessed on 2020-09-30.

[110] TOP500.org. The TOP 500 Supercomputers List. https://www.top500.org. Last accessed
on 2020-09-30.

[111] Ronny Tschüter, Christian Herold, Bert Wesarg, and Matthias Weber. A Methodology for Perfor-
mance Analysis of Applications Using Multi-layer I/O. In Marco Aldinucci, Luca Padovani, and
Massimo Torquati, editors, Euro-Par 2018: Parallel Processing, pages 16–30. Springer Interna-
tional Publishing, 2018.

[112] Ronny Tschüter, Christian Herold, William Williams, Maximilian Knespel, and Matthias Weber.
A Top-Down Performance Analysis Methodology for Workflows: Tracking Performance Issues
from Overview to Individual Operations. In 2019 IEEE/ACM Workflows in Support of Large-Scale
Science (WORKS), pages 1–10, November 2019.

[113] Ronny Tschüter, Johannes Ziegenbalg, Bert Wesarg, Matthias Weber, Christian Herold, Sebastian
Döbel, and Ronny Brendel. An LLVM Instrumentation Plug-in for Score-P. In Proceedings of the
Fourth Workshop on the LLVM Compiler Infrastructure in HPC, LLVM-HPC’17, pages 2:1–2:8,
New York, NY, USA, 2017. ACM.

[114] Unidata. Network Common Data Form (NetCDF) [software]. https://doi.org/10.5065/
D6H70CW6. Last accessed on 2020-09-30.

[115] Lawrence Berkeley National Laboratory University of California. Integrated Performance Moni-
toring for High Performance Computing. https://github.com/nerscadmin/IPM/. Last
accessed on 2020-09-30.

[116] David Van Der Spoel, Erik Lindahl, Berk Hess, Gerrit Groenhof, Alan E. Mark, and Herman
J. C. Berendsen. GROMACS: fast, flexible, and free. Journal of computational chemistry,
26(16):1701–1718, 2005.

https://lldb.llvm.org/
https://www.hdfgroup.org/solutions/hdf5/
https://www.hdfgroup.org/solutions/hdf5/
https://www.top500.org/static/media/uploads/top500_ppt_201806.pdf
https://www.top500.org/static/media/uploads/top500_ppt_201806.pdf
https://www.top500.org
https://doi.org/10.5065/D6H70CW6
https://doi.org/10.5065/D6H70CW6
https://github.com/nerscadmin/IPM/

Bibliography 105

[117] Rob F. Van der Wijngaart. Charon Message-Passing Toolkit for Scientific Computations. In
Mateo Valero, Viktor K. Prasanna, and Sriram Vajapeyam, editors, High Performance Computing
— HiPC 2000, pages 3–14, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[118] Jeffrey S. Vetter and Michael O. McCracken. Statistical Scalability Analysis of Communication
Operations in Distributed Applications. In Proceedings of the Eighth ACM SIGPLAN Symposium
on Principles and Practices of Parallel Programming, PPoPP ’01, pages 123–132, New York, NY,
USA, 2001. ACM.

[119] Virtual Institute for I/O. https://www.vi4io.org/start, February 2018. Last accessed on
2020-09-30.

[120] Karthik Vijayakumar, Frank Mueller, Xiaosong Ma, and Philip C. Roth. Scalable I/O Tracing and
Analysis. In Proceedings of the 4th Annual Workshop on Petascale Data Storage, PDSW ’09,
pages 26–31, New York, NY, USA, 2009. ACM.

[121] Kate Voss, Geraldine Van Der Auwera, and Jeff Gentry. Full-stack genomics pipelining with
GATK4 + WDL + Cromwell [version 1; not peer reviewed]. ISCB Comm J, 6(1381), 2017.

[122] Michael Wagner. Concepts for In-memory Event Tracing: Runtime Event Reduction with Hierar-
chical Memory Buffers. PhD thesis, March 2015.

[123] Parkson Wong, Rob F. Van der Wijngaart, and Bryan Biegel. NAS Parallel Benchmarks I/O
Version 2.4. December 2002.

[124] Steven A. Wright, Simon D. Hammond, John Pennycook, Robert F. Bird, Andy Herdman, Iain
Miller, Ash Vadgama, Abhir Bhalerao, and Stephen A. Jarvis. Parallel File System Analysis
Through Application I/O Tracing. Computer Journal, 56(2):141–155, February 2013.

[125] Xing Wu, Karthik Vijayakumar, Frank Mueller, Xiaosong Ma, and Philip C. Roth. Probabilis-
tic Communication and I/O Tracing with Deterministic Replay at Scale. In 2011 International
Conference on Parallel Processing, pages 196–205, September 2011.

[126] Cong Xu, Suren Byna, Vishwanath Venkatesan, Robert Sisneros, Omkar Kulkarni, Mohamad
Chaarawi, and Kalyana Chadalavada. LIOProf: Exposing Lustre File System Behavior for I/O
Middleware. Cray User Group Conference, 2016.

[127] Andy B. Yoo, Morris A. Jette, and Mark Grondona. SLURM: Simple Linux Utility for Resource
Management. In Dror Feitelson, Larry Rudolph, and Uwe Schwiegelshohn, editors, Job Schedul-
ing Strategies for Parallel Processing, pages 44–60, Berlin, Heidelberg, 2003. Springer Berlin
Heidelberg.

https://www.vi4io.org/start

106 Bibliography

List of Figures 107

List of Figures

1.1 The TOP500 list ranking HPC systems by their computational performance 5
1.2 Illustration of the Titan and Summit supercomputers . 7
1.3 Example of an application interacting with multiple I/O libraries 7

2.1 Contributions of this work in the field of performance analysis and optimization 11
2.2 The I/O hardware and software stack of a typical HPC system 13
2.3 Architecture of the Lustre storage platform . 14
2.4 A parallel application performing its I/O operations in serial 15
2.5 A parallel application performing its I/O operations in parallel 16
2.6 Illustration of two approaches to manage file accesses in parallel applications 16
2.7 Illustration of the performance analysis workflow . 17
2.8 Functions called during the execution of an unmodified application 18
2.9 Function calls and monitor activities while sampling the execution of an application . . . 18
2.10 Function calls and monitor activities during the execution of an instrumented application 20
2.11 Bar chart visualization of profile data . 22
2.12 Timeline visualization of event log data . 22
2.13 Statistics visualized in Cube . 29
2.14 Function statistics visualized as a (stacked) bar graph in ParaProf 29
2.15 Function statistics visualized as a (unstacked) bar graph in ParaProf 30
2.16 Three-dimensional visualization of profile data in ParaProf 30
2.17 Statistics about I/O activities of a job collected by Darshan 31
2.18 Illustration of event logs in Vampir . 32
2.19 Illustration of typical inefficiency patterns in MPI communication 33

3.1 Overview of the process of compiling and linking an application 36
3.2 The concept of intercepting calls to library functions at link-time 37
3.3 The concept of intercepting calls to library functions at execution-time 37
3.4 The concept of a callback-based interception of library function calls 38
3.5 The concept of intercepting calls to library functions via weak symbols 39
3.6 Overview of definitions to reflect I/O resources and their relations 40
3.7 The storage location of a file determines its scope . 41
3.8 Illustration of the hierarchical relation between I/O handles 42
3.9 Illustration of the life cycle of an I/O handle . 43
3.10 Overview of event types and their representation in timeline charts 44
3.11 Example of a sequence of metadata operations . 44
3.12 State diagram illustrating event sequences for blocking and non-blocking I/O operations 45
3.13 Example of blocking and non-blocking I/O operations and their corresponding event

sequences . 45
3.14 Illustration of four processes executing a collective blocking I/O operation 46
3.15 Example of a sequence of file locking operations and their corresponding I/O events . . . 47
3.16 Single function call to a high-level library resulting in multiple calls to a low-level library 49
3.17 Data sieving combines multiple small I/O accesses of a process into one larger request . 49
3.18 Differing amount of transferred data on the individual layers of the I/O software stack . . 50
3.19 Collective buffering reorganizing I/O requests . 51
3.20 Aggregation utilizes selected processes as proxies for requests to the I/O subsystem . . . 51

108 List of Figures

3.21 Illustration of an event log highlighting the effect of aggregation 51
3.22 Example of a Workflow consisting of three Jobs . 52
3.23 Typical hierarchical structure of a Workflow including Jobs and Job Steps 53
3.24 Illustration of the top-down workflow analysis approach 53

4.1 Software architecture of the Score-P measurement infrastructure 55
4.2 Principle of library call interception with Score-P . 56
4.3 Structure of an OTF2 archive and its corresponding file system representation 58
4.4 The workflow measurement infrastructure showing interactions between individual tools 59
4.5 The main window of the Workflow Visualizer . 63
4.6 Zoom to a Job Box in the Workflow Graph . 64
4.7 Different modes to arrange Job (Step) Boxes in the Workflow Graph 65

5.1 Schematic diagram of a Haswell compute node on Taurus 67
5.2 Bind-to-core task bindings . 67
5.3 Execution times of the metadata operations worst-case scenario experiment 71
5.4 Heat distribution in a two-dimensional space, heat source at the center 75
5.5 Accumulated time per function group within the computation phase 76
5.6 Time spent exclusively in individual MPI functions accumulated over all processes . . . 77
5.7 Sequence of function calls highlighting internal I/O library calls within MPI routines . . 77
5.8 Comparison of the I/O modes in NAS BT-IO . 78
5.9 Comparison of writing a snapshot in full and simple I/O mode of NAS BT-IO 80
5.10 Overview of the NAS BT-IO run with 144 MPI ranks 81
5.11 Comparison of two processes and their internal calls to I/O routines 82
5.12 Effects of collective buffering within MPI_File_write_at_all 82
5.13 Function statistics of the MONC experiment run . 84
5.14 I/O statistics of the MONC experiment run . 85
5.15 I/O timeline and process summary of Thread 7 from Rank 0 86
5.16 Call stack comparison of two different MONC I/O server processes 87
5.17 Number of syscalls in MPI I/O mapped to the system tree topology 87
5.18 Timeline visualization of the synthetic workflow example 88
5.19 Performance profiles of Job 45 . 90
5.20 Timeline visualization of the Joint Calling Genotypes (JCG) workflow from GATK . . . 91
5.21 Illustration of the GROMACS “Lysozyme in Water” workflow 92
5.22 Event log visualization of GROMACS Job 12154380, Job Step 2 93

List of Tables 109

List of Tables

1.1 Key features of the HPC systems Titan and Summit . 6

2.1 Overview of monitoring levels and corresponding tools 24
2.2 Overview of application monitoring tools . 25
2.3 Overview of performance analysis tools . 28

4.1 Job metrics queried from the scheduling system . 62
4.2 Job Step metrics queried from the scheduling system 62

5.1 Instrumentation of metadata operations and corresp. prolongation of execution times . . 70
5.2 Instrumentation of read operations and corresp. prolongation of execution times 70
5.3 Instrumentation of write operations and corresp. prolongation of execution times . . . 70
5.4 Size of the event log obtained from an application reading 1 MiB to 1 GiB of data . . . 73
5.5 Size of the event log obtained from an application reading 1MiB per loop iteration . . . 74
5.6 NAS BT-IO execution times with an increasing number of MPI processes 83

110 List of Tables

111

A Appendix

A.1 Definition Records

A.1.1 Definition of I/O Resources

IoRegularFile

String name Name of the file. References a String definition.
SystemTreeNode scope Defines the physical scope of this IoRegularFile in the system tree. E.g., two

IoRegularFile definitions with the same name but different scope values are phys-
ically different, thus I/O operations through IoHandles do not operate on the same
file. References a SystemTreeNode definition.

IoDirectory

String name Name of the directory. References a String definition.
SystemTreeNode scope Defines the physical scope of this IoDirectory in the system tree. E.g., two IoDi-

rectory definitions with the same name but different scope values are physically
different, thus I/O operations through IoHandles do not operate on the same direc-
tory. References a SystemTreeNode definition.

IoFileProperty

IoFile ioFile Parent IoRegularFile definition to which this one is a supplementary definition.
References a IoRegularFile definition.

String property-name Property name. References a String definition.
Type type The type of this property.
AttributeValue value The value of this property.

112 APPENDIX A. APPENDIX

A.1.2 Definition of I/O Handles

IoParadigm

String identification The I/O paradigm identification. This should be used
programmatically to identify a specific I/O paradigm.
For a human-readable name use the name attribute.
If this identification matches one of the known I/O
paradigms listed in the OTF2 documentation Known
OTF2 I/O paradigms, then the attributes of this defi-
nition must match those specified there. References a
String definition.

String name The name of the I/O paradigm. This should be pre-
sented to humans as the name of this I/O paradigm.
References a String definition.

IoParadigmClass class The class of this I/O paradigm.
IoParadigmFlag flags Boolean properties of this I/O paradigm.
uint8_t numberOfProperties Number of properties.
IoParadigmProperty properties [numberOfProperties] The property.
Type types [numberOfProperties] The type of this property. Must match with the defined

type of the property.
AttributeValue values [numberOfProperties] The value of this property.

IoHandle

String name Handle name. References a String definition.
IoFile file File identifier. References a IoRegularFile, or a IoDirectory definition.
IoParadigm paradigm The I/O paradigm. References a IoParadigm definition.
IoHandleFlag flags Special characteristics of this handle.
Comm group Scope of the file handle. This scope defines which process can access this file via this

handle and also defines the collective context for this handle. References a Comm
definition.

IoHandle parent Parent, in case this I/O handle was created and operated by an higher- level I/O
paradigm. References a IoHandle definition.

IoPreCreatedHandleState

IoHandle handle Parent IoHandle definition to which this one is a supplementary definition. References
a IoHandle definition.

IoAccessMode mode The access mode of the pre-created IoHandle.
IoStatusFlag fags The status flags of the pre-created IoHandle.

A.2. EVENT RECORDS 113

A.2 Event Records

A.2.1 Metadata Operations

IoCreateHandle

Location location The location where this event happened.
TimeStamp timestamp The time when this event happened.
IoHandle handle A previously inactive I/O handle which will be activated by this record. Refer-

ences a IoHandle definition.
IoAccessMode mode Determines which I/O operations can be applied to this I/O handle (e.g., read-

only, write-only, read-write).
IoCreationFlag creationFlags Requested I/O handle creation flags (e.g., create, exclusive, etc.).
IoStatusFlag statusFlags I/O handle status flags which will be associated with the handle attribute (e.g.,

append, create, close-on-exec, async, etc).

IoDestroyHandle

Location location The location where this event happened.
TimeStamp timestamp The time when this event happened.
IoHandle handle An active I/O handle which will be inactivated by this records. References a IoHandle

definition.

IoDuplicateHandle

Location location The location where this event happened.
TimeStamp timestamp The time when this event happened.
IoHandle oldHandle An active I/O handle. References a IoHandle definition.
IoHandle newHandle A previously inactive I/O handle which will be activated by this record. References a

IoHandle definition.
IoStatusFlag statusFlags The status flag for the new I/O handle newHandle. No status flags will be inherited

from the I/O handle oldHandle.

IoSeek

Location location The location where this event happened.
TimeStamp timestamp The time when this event happened.
IoHandle handle An active I/O handle. References a IoHandle definition.
int64_t offsetRequest Requested offset.
IoSeekOption whence Position inside the file from where offsetRequest should be applied (e.g., absolute

from the start or end, relative to the current position).
uint64_t offsetResult Resulting offset, e.g., within the file relative to the beginning of the file.

IoChangeStatusFlags

Location location The location where this event happened.
TimeStamp timestamp The time when this event happened.
IoHandle handle An active I/O handle. References a IoHandle definition.
IoStatusFlag statusFlags Set flags (e.g., close-on-exec, append, etc.).

114 APPENDIX A. APPENDIX

IoDeleteFile

Location location The location where this event happened.
TimeStamp timestamp The time when this event happened.
IoParadigm paradigm The I/O paradigm which induced the deletion. References a IoParadigm definition.
IoFile file File identifier. References a IoRegularFile, or a IoDirectory definition.

A.2.2 Data Transfer Operations

IoOperationBegin

Location location The location where this event happened.
TimeStamp timestamp The time when this event happened.
IoHandle handle An active I/O handle. References a IoHandle definition.
IoOperationMode mode Mode of an I/O handle operation (e.g., read or write).
IoOperationFlag operationFlags Special semantic of this operation.
uint64_t bytesRequest equested bytes to write/read.
uint64_t matchingId Identifier used to correlate associated event records of an I/O operation. This

identifier is unique for the referenced IoHandle.

IoOperationComplete

Location location The location where this event happened.
TimeStamp timestamp The time when this event happened.
IoHandle handle An active I/O handle. References a IoHandle definition.
uint64_t bytesResult Number of actual transferred bytes.
uint64_t matchingId Identifier used to correlate associated event records of an I/O operation. This identifier

is unique for the referenced IoHandle.

IoOperation(Issued|Test|Cancelled)

Location location The location where this event happened.
TimeStamp timestamp The time when this event happened.
IoHandle handle An active I/O handle. References a IoHandle definition.
uint64_t matchingId Identifier used to correlate associated event records of an I/O operation. This identifier

is unique for the referenced IoHandle.

A.2. EVENT RECORDS 115

A.2.3 Locking Operations

Io(Acquire|Try|Release)Lock

LocationRef location The location where this event happened.
TimeStamp timestamp The time when this event happened.
IoHandle handle An active I/O handle. References a IoHandle definition.
LockType type Type of the lock.

116 APPENDIX A. APPENDIX

Glossary 117

Glossary

API Application Programming Interface.

CFD Computational Fluid Dynamics.

CPU Central Processing Unit.

GPU Graphics Processing Unit.

HPC High Performance Computing.

MPI Message Passing Interface.

SPMD Single Program Multiple Data.

118 Glossary

	Introduction
	High Performance Computing
	Performance Analysis and Optimization
	Challenges for Performance Analysis of Multi-layered I/O
	Contributions of This Thesis
	A Methodology for Performance Analysis of Applications Using Multi-layer I/O
	Definition of Multi-layer I/O Access Patterns
	A Top-Down Performance Analysis Methodology for Workflows
	Implementation of the Proposed Methodologies

	Thesis Organization

	State-of-the-art and Related Work
	The I/O Subsystem in High Performance Computing Machines
	Concepts of Parallel File Systems
	I/O Strategies of Parallel Applications

	Performance Analysis
	Data Acquisition
	Data Recording
	Data Analysis

	Performance Analysis Tools for I/O Monitoring

	Methodology for a Holistic Performance Analysis of Multi-layer I/O in Parallel Scientific Applications
	Data Acquisition
	Intercepting Calls to Library Functions at Link-Time
	Intercepting Calls to Library Functions at Execution-Time
	Intercepting Calls to Library Functions via Tool Interface

	Data Recording
	Design of Definition Records to Represent I/O Resources
	Design of Event Records to Represent I/O Activities

	Data Analysis
	Definition of Multi-layer I/O Access Patterns in Applications
	Analysis of Scientific Workflows

	Implementation of the Methodology for a Holistic Performance Analysis of Multi-layer I/O in Parallel Scientific Applications
	Realization of the Methodology Within a Monitoring Infrastructure
	Implementation of the Data Acquisition Methods
	Implementation of Data Recording Methods Within a Trace Format
	Implementation of a Toolset for Analysis of Scientific Workflows
	Data Processing at the Job Step Level
	Data Processing at the Job Level
	Data Processing at the Workflow Level

	Evaluation
	Experiment Design
	Theoretical and Synthetic Evaluation
	Holistic Performance Analysis of Multi-layer I/O Applications
	Top-Down Performance Analysis of Scientific Workflows
	Demonstration of the Top-Down Performance Analysis Process
	Integration of Performance Data Recording into Workflow Management Systems
	Optimization of a GROMACS Workflow
	Performance Discussion

	Conclusion and Outlook
	Summary and Conclusion
	Outlook

	Bibliography
	List of Figures
	List of Tables
	Appendix
	Definition Records
	Definition of I/O Resources
	Definition of I/O Handles

	Event Records
	Metadata Operations
	Data Transfer Operations
	Locking Operations

