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Abstract

With the widespread use of information systems in modern society comes a growing demand for
customizable and adaptable software. As a result, systems are increasingly developed as families
of products adapted to specific contexts and requirements. Features are an established concept
to capture the commonalities and variability between system variants. Most prominently, the
concept is applied in the design, modeling, analysis, and implementation of software product lines
where products are built upon a common base and are distinguished by their features. While
adaptations encapsulated within features are mainly static and remain part of the system after
deployment, dynamic adaptations become increasingly important. Especially interconnected
mobile devices and embedded systems are required to be context-sensitive and (self-)adaptive. A
promising concept for the design and implementation of such systems are roles as they capture
context-dependent and collaboration-specific behavior.

A major challenge in the development of feature-oriented and role-based systems are interac-
tions, i.e., emergent behavior that arises from the combination of multiple features or roles. As
the number of possible combinations is usually exponential in the number of features and roles,
the detection of such interactions is difficult. Since unintended interactions may compromise the
functional correctness of a system and may lead to reduced efficiency or reliability, it is desirable
to detect them as early as possible in the development process.

The goal of this thesis is to adopt the concepts of features and roles in the formal modeling and
analysis of systems and system families. In particular, the focus is on the quantitative analysis of
operational models by means of probabilistic model checking for supporting the development
process and for ensuring correctness.

The tool ProFeat, which enables a quantitative analysis of stochastic system families defined in
terms of features, has been extended with additional language constructs, support for a one-by-one
analysis of system variants, and a symbolic representation of analysis results. The implementation
is evaluated by means of several case studies which compare different analysis approaches and
show how ProFeat facilitates a family-based quantitative analysis of systems.

For the compositional modeling of role-based systems, role-based automata (RBA) are in-
troduced. The thesis presents a modeling language that is based on the input language of the
probabilistic model checker PRISM to compactly describe RBA. Accompanying tool support
translates RBA models into the PRISM language to enable the formal analysis of functional and
non-functional properties, including system dynamics, contextual changes, and interactions. Fur-
thermore, an approach for a declarative and compositional definition of role coordinators based
on the exogenous coordination language Reo is proposed. The adequacy of the RBA approach for
detecting interactions within context-sensitive and adaptive systems is shown by several case
studies.
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1 Introduction

Ever since the beginnings of the digital revolution, information systems have entered more
and more areas of everyday life. Both society and industry are increasingly dependent on
software and this trend steadily continues. With the widespread use of software comes a
growing demand for specialized and customized software products as every company
and every user has different needs, requirements, and a different budget. A simple
example are software packages that come in a basic and a professional version which
allow users to choose additional functionalities in exchange for a higher price. Moreover,
software, services, and products deployed globally must often be adapted in order to
conform with local regulations or cultural preferences. For instance, shopping websites
must handle different currencies, address formats, shipping options, tax regulations, etc.,
all depending on the country of operation. As a result, many systems are provided as
product families comprising a multitude of variants adapted to different requirements
and contexts. While adaptations are mainly static, i.e., they remain a part of the software
system once they have been implemented, dynamic adaptations become increasingly
important. Especially interconnected systems that interact with the physical world,
e.g., mobile devices and embedded systems, are expected or even required to be context-
sensitive and (self-)adaptive. Adaptations may be triggered by changes in the environment
or changing availability of resources, such as network connectivity, remaining battery
power, as well as locally accessible services, devices, and sensors. Moreover, adaptivity
is key in systems possessing self-healing and self-optimization capabilities [Bab+05]
where the system adapts to recover from hardware- or software failures and where
adaptations aim to improve, e.g., throughput, latency, or energy efficiency. Furthermore,
adaptation mechanisms may also be utilized to integrate new functionality in long-
running software systems. Adaptations, both static and dynamic, context-dependency, and
distributed computation across multiple devices are major factors that drastically increase
the complexity of modern software systems. Motivated by this rising complexity, several
software-engineering approaches tailored to the development of variability-intensive
and adaptive systems have been introduced. The goal of this thesis is to adopt these
techniques also in the formal modeling and analysis of systems. In particular, the focus
is on a quantitative analysis by means of probabilistic model checking for supporting
the development process and for ensuring correctness. Important concepts for capturing
variability and adaptivity are features and roles which will be discussed in the following.
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1 Introduction

1.1 Engineering approaches for variant-rich adaptive
systems

Features are an established concept for describing the commonalities and variability
among variants in the design, modeling, analysis, and implementation of system families.
The concept is commonly applied in the feature-oriented development of software product
lines (SPLs) [AK09; CE00; CN02; Gri00]. The individual products, i.e., variants, of a
product line are built on a common base and are distinguished by their features. Here, a
feature is generally considered to be a “user-visible aspect, quality, or characteristic” of the
system [Kan+90] or an “optional or incremental unit of functionality” [Zav03]. The feature-
oriented development approach promotes a variability-aware structuring of the system as
well as a systematic reuse of assets and components. Feature-oriented programming is a
paradigm that facilitates the modularization and encapsulation of feature implementations
in feature modules. This enables an automatic generation of products from a set of
feature modules and an implementation of the base functionality. The modularization
of feature implementations is especially important for features that correspond to cross-
cutting concerns [Kic+97] where a feature’s implementation is scattered across multiple
different components. Common examples of cross-cutting concerns are monitoring,
logging, transaction management, synchronization, and caching. The inadequacy of
traditional object-oriented design for modularizing cross-cutting concerns has led to
the introduction of aspect-oriented programming [Kic+97] where aspects encapsulate
modifications to existing components. The concepts and techniques provided by aspect-
oriented programming are also applicable for feature-oriented development [Ape07].
Tool support for feature-oriented programming is provided by, e.g., GenVoca [BO92], the
AHEAD tool suite [Bat04], and FEATUREHOUSE [AKL09]. The feature concept has found
broad application in both academia and industry [SPL; Wei08] for the design, analysis,
and implementation of system families.

For expressing the adaptivity of a system, the feature concept is applicable as well.
The set of features is usually assumed to be static and does not change after deployment.
In a dynamic software product line (DSPL) [GH03], the configuration, i.e., the feature
combination, can be changed at runtime. The DSPL approach is employed to enable
software upgrades after the initial deployment, e.g., from a basic to a professional version.
Dynamic features are also suitable for modeling and implementing adaptive systems,
as they can be activated and deactivated at runtime to react to different contexts or
changes in the environment [Ach+09; Kru+15]. A language-level approach for context-
dependent adaptivity is context-oriented programming [HCN08] which provides a first-
class representation of context. Here, context-specific adaptations are captured in layers
which can be dynamically activated and deactivated on context changes. Activating a layer
automatically applies all contained adaptations to their respective components. Another
concept that facilitates behavioral changes and adaptivity are roles. The role concept
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has first been introduced by Bachman and Daya [BD77] to capture evolving objects and
context-related information in data models. Inspired by the theatrical context, the role
notion is intuitively understood and has subsequently been applied in various fields [ZZ08],
including conceptual modeling [Küh+14; Ste00], programming languages, multi-agent
systems [Cab+10], process modeling, architectural modeling [AG97], and computer-
supported collaborative work. Roles are also prominently applied in role-based access
control (RBAC) [FK92]. However, within RBAC the focus is on the description of security
policies, not on dynamic adaptations. Surveys of role-based approaches in conceptual
modeling and programming languages have been conducted by Steimann [Ste00] and
Kühn et al. [Küh+14; Küh17], showing that there is no commonly accepted notion of
roles. Roles have been considered to be defined by relationships between entities, as a
collection of extrinsic properties, or as a collection of context-dependent attributes and
behavior. A widely accepted trait of roles in conceptual modeling and programming
languages is that they are able to modify the behavior of their player [Küh+14; Ste00]. As
such, roles can be considered to be an abstraction of context-dependent and collaboration-
specific behavior. Therefore, several role-based approaches consider context as a first-class
concept [Gen07; Her02; HK14; Küh+15]. As the term context is both vague and overloaded,
Kühn et al. [Küh+14] proposed the term compartment to refer to the objectified context
in which roles are played. Several role-based programming languages (mostly extensions
of Java) were proposed in the literature, e.g., JavaStage [BA12], powerJava [BBT06],
Chameleon [GØ03], ObjectTeams/Java [Her02], Rava [He+06], and EpsilonJ [TUI05].
On a technical level, there are several approaches that can be employed to implement
the adaptation mechanisms for dynamic features and roles, e.g., metaprogramming with
reflection [Mae87], dynamic delta-oriented programming [DS11], and dynamic aspect
weaving [Boc+04; Din+10; SCT03]. In this thesis, the feature concept as well as the role
concept are used to capture variability and context-dependent adaptations within formal
operational models.

Even though features and roles are conceptually quite different, i.e., features describe
variability and roles capture context-dependent or collaboration-specific behavior, they
share some notable similarities from the perspective of behavioral adaptation. The dif-
ferent roles a player might acquire can be considered to be features of this player that
correspond to its context-specific behavior. The role concept admits a distinction be-
tween role-binding and role-playing [MKK12]. Role-binding enables a player to play the
bound role, and role-playing corresponds to an active enactment of the role behavior.
For instance, a person might become a teacher (binding) and then actually teaches a
class (playing the role of a teacher). Role-binding corresponds to the composition of a
feature with the system and role-playing corresponds to the activation of a feature and
subsequent execution of the feature behavior.

A major challenge in the development of feature-oriented systems are feature interac-
tions [Ape+11; Ape+13a; PR01] which refer to the emergent behavior that arises from the
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1 Introduction

combination of two or more features. While feature interactions may be intended, as they
allow for a modularization of the system’s functionalities, they may also be unintended,
leading to unforeseen side effects. Since the number of possible feature combinations
is usually exponential in the number of features, the feature-interaction problem, i.e.,
the detection of (unintended) interactions, is challenging. Clearly, the same is true for
role-based systems where interactions between roles may occur and where the number
of possible role combinations might also be exponential. The difficulty of detecting inter-
actions is further amplified when considering dynamic features and role-playing since
the temporal order of feature activation and role-playing may have an influence on the
arising interactions.

Unintended interactions have a substantial impact on the correctness of a system. It
is thus desirable to detect interactions as early as possible in the development process.
For that, various validation, verification, and analysis methodologies may be applied. An
overview of these methods is provided in the next section.

1.2 Validation and verification methods

While the complexity of information systems steadily increases, the correctness of these
systems becomes more and more important. Software errors, especially in critical infras-
tructure, are not only costly, but may actually endanger human lives. Besides functional
correctness, the non-functional, i.e., quantitative, aspects of a system are often crucial
as well. Especially embedded systems usually must operate under strict real-time con-
straints. Another example is software on mobile, battery-powered devices which should
not only work correctly, but should also be energy-efficient. Within aerospace applica-
tions, resilience and the mean time between failures are important properties of systems.
In addition to checking a system’s conformance to certain non-functional properties, a
quantitative analysis may also be applied to optimize the configuration of a system, e.g.,
by parameter tuning or selection of an optimal variant w.r.t. some optimization criterion.
Furthermore, a cost-utility analysis can reveal the trade-offs in the configuration of the
system, e.g., between energy-consumption and throughput. Given the increasing impor-
tance of correctness, various methodologies and techniques for establishing functional
and non-functional properties of systems have been established.

Generally, there are several approaches and techniques to validate and verify the
correctness of software systems (not limited to feature-oriented and role-based systems).
Testing [Bei90; MSB11] and simulation of systems and systemmodels, respectively, usually
involve running the system and checking for unexpected behavior or outputs. As full
coverage of all possible behaviors is rarely achieved, these methods usually cannot
show the absence of errors. Testing and simulation are complemented by the formal
verification methods theorem proving [BC04; NK14] and model checking [BK08; CGP01].
These methods are complete since properties that have been proven correct hold for
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1.2 Validation and verification methods

all possible executions of the system or model. Theorem proving is a semi-automatic
approach where nontrivial proof steps have to be supplied by the user, usually in an
interactive session with a proof assistant [BC04; NK14]. In contrast, model checking is a
fully automatic verification technique that systematically explores the state space of a
system without requiring any user input. This thesis focuses on model checking for the
verification and analysis of systems as this methodology is particularly well-suited for
concurrent systems.

Model checking has been introduced independently by both Clarke and Emerson [CE81]
as well asQueille and Sifakis [QS82] in the early eighties. Generally speaking, the analyzed
system is formalized as an automata-based model where transitions between the system’s
states define the operational behavior. Requirements are given in terms of a temporal
logic formula, e.g., using linear temporal logic (LTL) [Pnu77] or computation-tree logic
(CTL) [CE81]. Then, a model checker, i.e., a tool that implements the appropriate model-
checking algorithm, automatically checks whether the model satisfies the specification. In
case the answer is negative, usually an explanation in the form of a counterexample, e.g.,
a path to an invalid state, is returned which may provide insights on how to amend the
model or the specification. A comprehensive introduction of model checking is provided
in the books [CGP01] and [BK08]. Different model checking approaches are mainly
distinguished by the underlying model type and the specification formalism for which
they are applicable. Most commonly, transition systems [Kel76] or Kripke structures serve
as model representation. Real-time systems can be described using timed automata [AD90;
LPY95]. For probabilistic model checking, Markovian models are applied to reason about
the likelihood of certain events for answering questions such as: “Is the probability
that a message is transmitted successfully within 5 steps greater than 0.95?”. A Markov
chain can be seen as a transition system where transitions are purely probabilistic. The
combination of probabilistic choice and nondeterminism is realized by Markov decision
processes (MDPs) [Var85] where the nondeterministic selection of an action is followed by
a probabilistic choice of the successor state. With that, MDPs are an appropriate model to
capture both concurrent processes (by nondeterministic selection of the next scheduled
process) and stochastic effects within the modeled system itself as well as in the system’s
environment.

Since model-checking algorithms operate on the representations of whole systems, the
corresponding models may become prohibitively large. For instance, the model size is
generally exponential in the number of program variables and the number of parallel
processes. This issue is known as the state-space explosion problem. Several techniques
for tackling this problem have been developed, e.g., assume-guarantee reasoning [HQR98;
Pnu84], partial order reduction [God96; Pel93; Val92], symmetry reduction [Cla+96;
DM06], and SAT-based model checking [Bie+99; Wil+00]. Another approach is the use of
symbolic model representations [Bur+92; McM93]. Instead of explicitly representing each
individual state of the system in memory, binary decision diagrams (BDDs) [Bry86] are
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employed to compactly represent sets of states. Using this technique, even the analysis of
very large system models becomes tractable [Bur+92].

Several model-checking tools have been developed. The explicit-state model checker
SPIN provides the input language Promela for modeling systems comprising parallel
processes communicating over shared variables and bounded channels. Promela models
have a transition-system semantics and can be checked against LTL specifications or
monitor automata. SMV [McM93] and its successor NuSMV [Cim+00] apply symbolic
model checking for verifying systems under CTL specifications. While SPIN and NuSMV
provide input languages tailored towards the definition of transition systems, there
are also model checking tools working directly on the source code of general-purpose
programming languages. An example is Java PathFinder [HP00] which translates Java
programs into Promela for a subsequent analysis using SPIN. Later versions implement
a Java virtual machine with model checking capabilities that is able to directly check
Java programs without a translation step. Checking of safety properties on C programs
is provided by the model checker BLAST [Bey+07]. UPPAAL [Ben+95] supports the
verification of real-time systems expressed as a network of timed automata. Probabilistic
model checking can be carried out using, e.g., MRMC [Kat+11], PRISM [KNP11], the
Modest tool set [HH14], iscasMc [Hah+14], or Storm [Hen+20]. Since PRISM is a state-
of-the-art model checker and its input language is also supported by other tools, e.g.,
Storm and iscasMc, it provides the basis for the tooling presented in this thesis.

Testing, theorem proving, and model checking are immediately applicable for analyzing
feature-oriented systems. However, this requires generating all variants of the system
family which are then subsequently analyzed one by one. Because of the exponential
number of variants in the number of features, this is infeasible for families with many
features. Furthermore, features are only implicitly encoded in the system variants which
makes the identification of feature interactions challenging. Making features explicit in
formal modeling enables a feature-aware analysis that can pinpoint problematic feature
combinations directly. Moreover, providing features as a first-class modeling concept
allows for a succinct and modular description of model families. Similarly, adopting the
role concept in a formal modeling approach facilitates a modularization and a separation
of concerns also on the model level by encapsulating context-specific behavior within
roles. A role-aware analysis does not only make interactions between roles explicit,
but also the context in which they occur. The following section gives an overview of
approaches towards feature-oriented as well as role-based modeling and analysis.

1.3 Analysis of feature-oriented and role-based
systems

Software systems with high variability, i.e., system families with a high number of vari-
ants, are already applied in within critical infrastructure and services, such as medical
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applications, telecommunication, avionics, engine control systems, and factory manage-
ment [SPL; Wei08]. Thus, the correctness of these systems is imperative. A wide range of
feature-aware modeling and analysis approaches have been introduced. These approaches
typically try to exploit the structure of feature-oriented systems as well as the commonal-
ities between variants to considerably speed up the analysis. For variability-aware model
checking, featured transition systems (FTS) [Cla+10; Cla+13] have been proposed. Within
an FTS, transitions are guarded by feature combinations which allows the definition of a
whole system family using a single model. Based on FTS, the model checker SNIP [Cla+12;
Cla+13] and its re-engineered successor ProVeLines [Cor+13b] have been developed. Their
input language is based on Promela, extended with feature-related constructs. Both tools
allow the verification of whole system families without generating the individual vari-
ants, and return the set of family instances violating a given property. Symbolic model
checking of feature-oriented systems has been implemented as a modest extension of
NuSMV [Cla+14]. None of the previously mentioned variability-aware tools deals with
dynamic features or stochastic behavior. The compositional modeling framework for
feature-oriented systems proposed by Dubslaff et al. [DBK15] uses an MDP-like formalism
to model the operational behavior of features. The framework also allows for modeling
dynamic feature-oriented systems using an additional automata-based component called
feature controller that defines the rules for the activation and deactivation of features.
The semantics of a set of features under a feature controller is given in terms of an MDP. A
detailed discussion of further feature-related analysis approaches and corresponding tools
is provided in Section 3.1. A survey of formal analysis approaches for feature-oriented
systems has been conducted by Thüm et al. [Thü+14a]. As the approach of [DBK15]
supports dynamic features, stochastic effects, cost annotations, and is compositional, it
will serve as a basis for the feature-oriented analysis approach presented in this thesis.

Formal modeling and analysis approaches tailored specifically towards the concept of
roles for capturing context-dependent behavior have been given little attention in the
literature. Notably, the Helena approach [HK14] utilizes transition systems for modeling
the operational behavior of collaborating, role-playing components. An automated
translation [Kla15] of Helena models into Promela enables a verification using SPIN.
However, this approach does not consider behavioral adaptations of players by their
respective roles and it also does not cover stochastic behavior. An in-depth discussion of
other related approaches for capturing adaptations in operational models is provided in
Section 8.3.

1.4 Contribution

This thesis introduces formal approaches for modeling and analyzing variant-rich adaptive
systems by means of probabilistic model checking where variability is expressed using
features and context-dependent behavior is captured by roles, respectively. Models
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can be defined compositionally and may be annotated with probabilities and costs for
a quantitative analysis. An analysis of such systems is enabled by tool support that
leverages the probabilistic model checker PRISM. In particular, the contributions of this
thesis are the following:

1. The tool ProFeat implements the formal framework introduced by Dubslaff et
al. [DBK15] and provides an automated translation of a feature-oriented modeling
language into the input language of PRISM. The tool was initially developed as part
of my master thesis [Chr14] and has been extended as part of this thesis. Constructs
for defining system families in terms of parameters and feature attributes have
been added to the ProFeat language. The implementation has been extended with
support for a one-by-one analysis of system families. Furthermore, a feature-
aware post-processing of the analysis results was added, including support for the
transformation of results into compact symbolic representations.

2. To show the practical applicability of ProFeat, several case studies have been
conducted. The first set of case studies compares the all-in-one and one-by-one
analysis approaches for different kinds of models and scenarios. Additional case
studies show the applicability of ProFeat for analyzing both static and dynamic
SPLs. Moreover, the potential of using feature-oriented modeling for defining
adaptive systems is illustrated.

3. This thesis proposes role-based automata (RBA) which provide roles as a first-class
construct for modeling the operational behavior of systems. Accompanying compo-
sition operators for parallel composition and role-binding enable a compositional
representation of role-specific behavior and facilitate the coordination of role-
playing. The framework provides an MDP semantics of role-playing components
under a role-playing coordinator, enabling a quantitative analysis of role-based
systems.

4. A component-based and role-oriented modeling language with RBA semantics is
presented. It extends the PRISM language with a role-aware type system as well as
constructs for defining role-specific behavior and the coordination of roles.

5. An automated translation of the role-oriented modeling language into the input
language of PRISM is provided by a dedicated tool. The translation approach
utilizes MDPs with multi-actions [Bai+18] to avoid an exponential blow-up of the
translated model’s size.

6. The potential of detecting interactions both within and also between dynamic
self-adaptive systems is shown by means of two experimental studies.
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7. The coordination of role-playing using an exogenous coordination language is
proposed. This approach enables a compositional and hierarchical specification of
role coordination.

1.5 Outline
Chapter 2 briefly covers the relevant definitions and notations that are used throughout
the thesis. As feature-oriented systems and role-based systems are addressed by separate
approaches, the thesis is accordingly divided into two parts. The first part starts with
an overview of the feature-oriented development approach and a discussion of existing
model-checking approaches tailored towards system families defined in terms of features.
Section 3.2 and Section 3.3 introduce the ProFeat language and implementation, respec-
tively. The applicability of the feature-oriented modeling and analysis approach is shown
in Chapter 4 which completes the first part of the thesis. Chapter 5 starts the second part
with an introduction of the role concept, focusing on conceptual modeling and role-based
programming languages. In Section 5.2, the first main contribution of this part, the RBA
formalism, is presented. Afterwards, the role-oriented modeling language as well as the
translational approach of the implementation are described in Chapter 6, followed by
Chapter 7 which proposes an approach for the exogenous coordination of role-playing.
Chapter 8 concludes the second part of the thesis by evaluating the role-oriented analysis
approach by three experimental studies (Section 8.1), by classifying the approach (Sec-
tion 8.2), and by relating it to existing work (Section 8.3). Finally, the thesis is concluded
in Chapter 9.
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2 Preliminaries

In the following, relevant notations and definitions are introduced.
The set of natural numbers including zero is denoted by N. The power set of a set 𝑋 is

denoted by P(𝑋 ).

Distributions. If 𝑋 is a countable, nonempty set of outcomes, then a (probability)
distribution on 𝑋 is a function _ : 𝑋 → [0, 1] such that

∑︁
𝑥∈𝑋 _(𝑥) = 1. Distr(𝑋 ) denotes

the set of all distributions over 𝑋 . Given some 𝑥 ∈ 𝑋 , the Dirac distribution Dirac(𝑥) over
𝑋 is defined byDirac(𝑥) (𝑥) = 1 andDirac(𝑥) (𝑦) = 0 for all𝑦 ∈ 𝑋 \{𝑥}. The product of two
distributions _1 ∈ Distr(𝑋1) and _2 ∈ Distr(𝑋2) is the distribution _1∗_2 ∈ Distr(𝑋1×𝑋2)
where for all 𝑥1 ∈ 𝑋1 and 𝑥2 ∈ 𝑋2 we have (_1 ∗ _2) (𝑥1, 𝑥2) = _(𝑥1) · _(𝑥2).

Markov decision processes. An MDP is a tuple M = (𝑆,Act,−→, 𝑆 init) where 𝑆

is a finite set of states, Act is a finite set of actions, −→ ⊆ 𝑆 × Act × Distr(𝑆) is the
transition relation, and 𝑆 init ⊆ 𝑆 is the set of initial states. We use the notation 𝑠

𝛼−→ _

for (𝑠, 𝛼, _) ∈ −→. A reward function rew : 𝑆 × Act → N assigns rewards (or costs) to
transitions.

The intuitive behavior of an MDP is as follows. First, an initial state from the set 𝑆 init is
chosen nondeterministically. Within some state 𝑠 , there is a nondeterministic choice of
an action 𝛼 with 𝑠

𝛼−→ _, followed by a probabilistic choice of a successor state 𝑠′ ∈ 𝑆 with
_(𝑠′) > 0.

The Paths of an MDPM are finite or infinite sequences of alternating states and actions
𝑠0𝛼0𝑠1𝛼1𝑠2𝛼2 . . . where 𝑠𝑖

𝛼𝑖−→ _ and _(𝑠𝑖+1) > 0 for all 𝑖 ≥ 0. The set of finite paths is
denoted by FPaths. Given a finite path 𝜋 = 𝑠0𝛼0𝑠1𝛼1 . . . 𝛼𝑘−1𝑠𝑘 , the accumulated reward
along 𝜋 is defined as rew(𝜋) = rew(𝑠0, 𝛼0) + rew(𝑠1, 𝛼1) + . . . + rew(𝑠𝑘−1, 𝛼𝑘−1).

Reasoning about probabilities in MDPs requires the resolution of the nondeterministic
choice between transitions. This is formalized via schedulers which take a finite path and
select the next action to be taken. In this thesis, we only consider deterministic schedulers.
Formally, such a scheduler is a function𝔖 : FPaths → Act × Distr(𝑆). If 𝜋 is a finite path
and𝔖(𝜋) = (𝛼, _) then there is a transition 𝑠

𝛼−→ _ where 𝑠 is the last state in 𝜋 . After
selecting an initial state 𝑠 ∈ 𝑆 init, the behavior of an MDP under a scheduler𝔖 is purely
probabilistic and corresponds to an infinite-state, tree-like Markov chain M𝔖

𝑠 . Using
standard concepts of measure theory, a probability measure Pr𝔖𝑠 for measurable sets of
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infinite paths in the Markov chain M𝔖
𝑠 can be defined. Further details are provided by

standard text books, e.g., [Kul16; Put94].

Structured operational semantics. Throughout this thesis, transition relations are
often defined using the so-called SOS-notation [Plo04]. An SOS-rule (also called inference
rule) has the following form:

premise

conclusion
If the premise above the line holds, the conclusion below holds as well.
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Feature-oriented systems
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3 Feature-oriented engineering for
family-based analysis

Feature-oriented development is an established approach for the design and implemen-
tation of system families. Features provide an abstraction of the variability among a
set of similar systems built on a common base by defining the changes that are applied
to the base system. Since features promote a systematic reuse of components, they fa-
cilitate a family-based analysis that exploits the commonalities among the individual
members of the system family. The most prominent application of the feature concept is
the development of SPLs [AK09; CE00; CN02; Gri00].

This chapter presents the tool ProFeat for the quantitative analysis of (stochastic) system
families by means of probabilistic model checking. The ProFeat modeling language
extends the input language of the probabilistic model checker PRISM [KNP11] with
feature-related constructs, including support for dynamic features, multi-features, and
feature attributes. For analyzing a system family defined in terms of features, ProFeat
translates the corresponding model into the PRISM language and utilizes PRISM for
carrying out the analysis. The analysis results can be converted into a concise symbolic
representation which aids to identify problematic feature combinations or may guide the
feature selection, and thus supports the feature-oriented development process.

The work presented in this chapter has been published in [Chr+16b] and [Chr+18].
The initial version of the ProFeat language and the corresponding tool have been con-
ceptualized and implemented in my master thesis [Chr14]. Since then, the language
has been extended with the following constructs. First, support for feature attributes
and with that support for numerical constraints over both features and attributes was
added. Second, the blocking behavior of inactive features has been made configurable,
thereby lifting some restrictions imposed by the first version of the language. Third, a
construct for modeling system families defined by one or more parameters has been
added. The implementation has also been extended in several directions. The original
implementation of ProFeat only supported an all-in-one analysis where all members of a
system family are analyzed at once. The extended version presented in this thesis also
supports a one-by-one analysis where system family instances are analyzed individually.
Finally, the facilities for result post-processing, including the conversion to symbolic
representations, have been added.
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Outline. The first section of this chapter gives an overview of the feature-oriented
development process and product-line development. Furthermore, the related work
regarding the verification and analysis of feature-oriented systems by means of model
checking is discussed. Section 3.2 describes the ProFeat language with a focus on the
feature-related modeling constructs. Finally, an overview of the implementation and
notable implementation details are provided in Section 3.3.

3.1 Feature-oriented development
The feature concept is mainly applied within the development of SPLs [AK09; CE00; CN02;
Gri00]. A software product line comprises a family of similar systems (called products)
that are built upon a common base. The products differ in the set of features they provide.
Thus, features are an abstraction of the variability in a system family. Generally, a feature
is an “optional or incremental unit of functionality” [Zav03]. A feature may also have an
impact on the non-functional properties of a system, e.g., performance, energy efficiency,
or reliability. In software product line engineering, features promote a systematic reuse
of assets [CE00], such as implementation artifacts or documentation, which enables an
efficient development of system families. New products do not have to be created from
scratch, but can be assembled from already implemented parts. This allows users to
customize a product to fit their specific needs. Furthermore, it enables the reaction to
changing demands of stakeholders or the system’s environment.

Usually, not all combinations of features are allowed or possible. For instance, if there
is a standard and a professional version of some feature, then both cannot be combined
in the same product. A feature model, also called variability model, defines which feature
combinations are valid, i.e., allowed, and thus defines the set of products. There are
several possible representations of feature models. The simplest one is a list of all valid
feature combinations. However, since the number of possible feature combinations is
exponential in the number of features, this representation is only feasible for product
lines with only a few features or products.

A compact graphical representation of the valid feature combinations is provided by
feature diagrams [Kan+90]. An example of a small car product line is depicted in Figure 3.1.
In a feature diagram, features are organized in a hierarchical tree-like structure where
each sub-feature depends on its parent feature. For instance, the Body feature can only be
part of the feature combination if its parent feature Car is included as well. The root fea-
ture, also called concept, is contained in every feature combination. If a feature is marked
as mandatory, it must be selected whenever its parent feature is selected1. In the example,
every car must have an Engine, but not every car needs to be equipped with a sunroof
since the Sunroof feature is marked as optional. The model elements for “or” (filled arc)

1In this thesis, we assume “mandatory” to be the default case and drop the markers in subsequent feature
diagrams.
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Car

Body Engine Transmission

Sunroof Electric Gasoline Manual Automatic

mandatory
optional
or
exclusive or
implication

Figure 3.1: Feature diagram for a simple car product line

and “exclusive or” (non-filled arc) express that at least on sub-feature must be included
and that exactly one sub-feature must be selected, respectively. For instance, a car must
have at least an Electric engine or a Gasoline engine, but hybrid vehicles may have both.
Furthermore, cross-tree constraints can be added to further restrict the set of feature com-
binations. In the example, cars with Manual transmission must have a Gasoline engine.
The basic feature diagram notation originally introduced within the feature-oriented
domain analysis (FODA) [Kan+90] has been extended to improve the expressiveness and
to represent large product lines more concisely. Hierarchical constraints have been gener-
alized to UML-like multiplicities [CHE05; Rie+02] to specify lower and upper bounds on
the number of selected sub-features. Feature attributes [BTR05; CBH11] may be utilized
to constrain the valid feature combinations depending on quantitative measures, e.g., the
combined cost, size, or energy consumption of features. Finally, cardinalities may also be
attached to features, leading to multi-features [Cor+13c], i.e., features that can appear
multiple times in a feature combination. All mentioned extensions are orthogonal and
can be combined in the same feature model notation. Initially, the semantics of FODA-
style feature diagrams was only intuitively defined which lead to ambiguities and raised
questions regarding their expressiveness. This issue was later remedied by giving them a
formal semantics [Sch+07]. Textual representations of feature diagrams, e.g., the Feature
Description Language (FDL) [VK02] and the Textual Variability Language (TVL) [CBH11],
were introduced to overcome the limitations of the graphical notation w.r.t. scalability
and tool support. While feature diagrams and their textual representations are the de-
facto standard for feature modeling, alternative representations have been proposed, e.g.,
propositional formulas [Bat05] and constraint-based characterizations [Jör+12].

The feature-oriented development process is separated into two distinct phases [CN02;
Gri00], as depicted in Figure 3.2. In the domain engineering phase, the base functionality
as well as the variability within the system family are identified which results in a feature
model defining the set of features and valid feature combinations. Artifacts corresponding
to those features are then created and implemented. In the application engineering phase,
demands and requirements are collected to refine the feature model until a single suit-
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Software
generatorArtifacts

Feature model Configuration

Software
product

domain engineering application engineering

Figure 3.2: The feature-oriented development process

able configuration (i.e., feature combination) is found. Practical product-line approaches
typically provide a software generator tool which automates the derivation of a concrete
product from the artifact base for a given configuration. For this, several techniques
have been proposed. Annotative approaches (e.g., using #ifdef directives) commonly
use an off-the-shelf preprocessor for selecting relevant portions of code [Lie+10]. Gen-
erative approaches [CE00] as well as feature-oriented programming [AKL09; Bat04],
delta-oriented programming [Sch+10], and aspect-oriented programming [Kic+97] allow
for a modularization of feature-related functionality in feature modules, delta modules,
and aspects, respectively.

Feature combinations are not necessarily static. In a dynamic software product line,
the set of features, i.e., the configuration, can be changed by activating and deactivating
features at runtime [Din+10; DS11; GH03]. This enables upgrades of already deployed
systems. Moreover, dynamic features can be applied to model and implement self-adaptive
systems where features are activated and deactivated in response to changes in the
environment.

Features are usually not completely independent from each other. The notion of feature
interaction refers to the emergent behavior that arises from the combination of two or
more features that is not present when the features are applied in isolation [Ape+11;
Ape+13a; PR01]. Such interactions are often intended and unavoidable to implement
the required functionalities of a system in a modular fashion. However, unintended
interactions may cause unforeseen side-effects that severely compromise the correctness
of the system. Unintended feature interactions have been extensively studied in the
context of telecommunication systems [Cal+03]. An example from this domain are the
features “voice mail on busy” and “forward call on busy” which both try to take control of a
second incoming call [Cal+03; PR01]. Prioritizing either one of them inadvertently breaks
the other. Since the number of possible feature combinations is usually exponential in
the number of features, the detection and prediction of feature interactions is challenging.
Within dynamic feature-oriented systems, the problem becomes even more difficult, as
the temporal order of feature activations and deactivations may have an impact on the
occurring interactions. The extended notion of quantitative feature interactions refers to
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interactions that have an influence on the non-functional properties of the system, such
as performance [Sie+12].

Towards detecting feature interactions, several analysis techniques have been adapted
to feature-oriented systems, including type checking, static analysis (e.g., control-flow and
data-flow analysis), theorem proving, and model checking [Thü+14a]. To deal with the
possibly large number of feature combinations, these approaches exploit the commonali-
ties between the individual products, e.g., by utilizing symbolic representations, or make
use of the compositional structure by applying compositional reasoning techniques. In
the following, we will discuss the related work that applies model checking for the formal
analysis of feature-oriented systems. FTS [Cla+10; Cla+13] are a variant of labeled transi-
tions systems where transitions are annotated with feature combinations, i.e., FTS follow
the annotative approach. With that, a single FTS can represent the behavior of a whole
system family. Tool support for analyzing FTS is provided by SNIP [Cla+12; Cla+13].
Its input language fPromela extends the Promela language [Hol97] with feature annota-
tions. Cordy et al. later added support for multi-features and feature attributes [Cor+13c].
Using SNIP, a system family can be verified against properties expressed in LTL. ProVe-
Lines [Cor+13b] is a re-engineered implementation of SNIP and is itself a product line
of verification tools. In addition to LTL model checking, it supports the verification of
timed models and is able to check the behavioral equivalence of SPLs. While FTS can
only represent static product lines, A-FTS [Cor+13a] allow for changes to the feature
combination within transitions and are thus able to represent dynamic SPLs. Plath and
Ryan [PR01] adapted the superimposition construct [Kat93] to the input language of
the model checker NuSMV. In contrast to the annotative approach in fPromela, the
resulting language allows for the definition of feature modules. In the superimposition
approach, a feature module describes the changes it applies to a system upon composition.
Plath and Ryan [PR01] only consider a product-based analysis, i.e., each system variant
has to be constructed and analyzed one-by-one. A family-based analysis approach for
fSMV (the feature-oriented extension of NuSMV’s input language) has been proposed by
Classen et al. [Cla+14]. They applied the lifting approach [PS08] to encode the feature
combinations into the model’s state space. A minor extension to NuSMV enables the
extraction of the satisfying feature combinations after checking the system family against
a CTL property. A similar approach based on lifting has been proposed in [Dim+15] for
translating fPromela into the standard Promela language. The tool SPLverifier [Ape+11]
utilizes FEATUREHOUSE [AKL09] for the composition of feature modules written in
the C language. This approach also employs lifting which then allows the analysis of
an SPL using the non-feature-aware model checker CPAChecker [BK11]. Lauenroth et
al. [LPT09] propose I/O-automata with “must” and “may” transitions for representing
system families and provide a model checking tool for checking them against CTL-like
properties. Based on modal transition systems [Asi+11], the tool VMC [BMS12] enables
the verification of SPLs against requirements expressed in a branching-time logic. While it
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is not primarily an analysis tool, the FeatureIDE [Thü+14b] integrates the theorem prover
KeY as well as the JPF-BDD model checker for the verification of product lines written in
Java. All approaches mentioned up to this point only deal with non-probabilistic behavior
and only allow for a functional analysis. The work by Ghezzi and Sharifloo [GS13] as
well as the approach by Rodrigues et al. [Rod+15] apply parametric model checking for
the analysis of SPLs. Here, the parameters of a parametric discrete-time Markov chain
(DTMC) encode the variability within the system family. A similar approach for capturing
variability in UML activity diagrams has been presented by Kowal et al. [KST14] where
parametric continuous-time Markov chains (CTMCs) provide the basis for a family-based
performance analysis. The tool QFLan [Van+18] provides a modeling language for defin-
ing feature-oriented systems with probabilistic behavior and possibly dynamic features.
Here, models have a DTMC semantics and are translated into the input language of the
MultiVeStAmodel checker for statistical model checking. In the input language of QFLan,
feature guards are tied to actions instead of individual transitions (as it is the case for
FTS) which severely limits the compositionality of feature modules. A compositional
modeling framework for probabilistic feature-oriented systems has been introduced by
Dubslaff et al. [DKB14] and extended in [DBK15]. Rather than relying on superimposi-
tion, the framework promotes parallel composition for combining feature modules. The
changes of the configuration in a dynamic feature-oriented system are described using a
special coordination component called feature controller. The semantics of a set of feature
modules under a feature controller is given in terms of a single MDP that encompasses
the behavior of the whole system family. Here, the initial states of the MDP correspond
to the initial feature combinations. The parallel composition of feature modules can be
mapped straightforwardly to the parallel composition of modules as implemented in the
model checker PRISM. The framework in [DBK15] has been implemented in the tool
ProFeat [Chr+18] which will be presented in detail in the following sections.

3.2 Describing system families: The ProFeat language

This section presents the ProFeat language which can be considered as an extension of the
PRISM language tailored to model families of stochastic systems using feature-oriented
constructs. Additionally, the ProFeat language provides support for metaprogramming to
describe families of systems generically.

In the following, the ProFeat language will be illustrated using a simple producer-
consumer running example as shown in Figure 3.3. The system comprises a single producer
that creates jobs with workload sizes chosen according to a stochastic distribution and
enqueues them into a FIFO buffer. The workers can take jobs from this buffer and process
them. Each worker can only process a single job at once. The time it takes to process a job
is determined by the job’s workload size and the processing speed of the worker. Varying
the buffer size, the number of workers, the workload distribution, and the processing
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Producer

Worker1

Worker2

Worker3

Figure 3.3: Running example: a producer-consumer system with a single producer, multiple
consumers, and a buffer in between

speed of the workers gives rise to a family of systems. The accompanying feature diagram
is shown in Figure 3.4.

System

Fast Producer Workers Buffer

Worker0
speed:[1..5]

Worker1
speed:[1..5]

Worker2
speed:[1..5]

Figure 3.4: Feature diagram of the producer-consumer system

3.2.1 Feature-oriented language constructs

A ProFeatmodel consists of two distinct parts: a declaration of a feature model describing
the feature combinations and a modular definition of the operational behavior of some
or all features declared in the feature model. Optionally, a set of family parameters may
be specified. For the definition of operational behavior, the ProFeat language adopts the
guarded command language of PRISM and extends it with feature-specific concepts as
presented in [DBK15]. By using constraints over the activity of the declared features, the
behavior of features or the base system can depend on the current feature combination.
Furthermore, dynamic feature-oriented systems can be specified by defining a special
module called feature controller that is responsible for switching between different feature
combinations. The controller module uses the same syntax as other modules, but can
additionally activate and deactivate features as part of the update definition within
commands.
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1 root feature
2 all of Producer, Buffer, Workers, optional Fast;
3 constraint active(Fast) => active(Worker[0]) & active(Worker[1]);
4 constraint Worker[0].speed + Worker[1].speed < 7;
5 endfeature
6

7 feature Workers
8 some of Worker[3];
9 endfeature

10

11 feature Worker
12 speed : [1..5];
13 endfeature

Listing 3.5: Excerpt of the feature model for the producer-consumer system

Declaration of the feature model

ProFeat provides a textual description language for declaring feature models that is
inspired by the Textual Variability Language (TVL) [CBH11]. A part of the feature model
declaration for the producer-consumer running example is shown in Listing 3.5. Features
are declared within feature blocks enclosed by the keywords feature and endfeature.
The root feature is a designated feature that represents the base system. In the example,
the root feature corresponds to the System feature in Figure 3.4 and is decomposed into
four sub-features. The all of decomposition (line 2) states that all listed sub-features
must be part of the feature combination whenever their parent feature is selected or
active. The Worker feature is decomposed using some of (line 8) which indicates that at
least one of the sub-features must be selected. In addition to the one of operator (which
requires exactly one of the sub-features to be active), the decomposition can also be given
in terms of a cardinality [n..k] declaring that at least n and at most k sub-features must
be active whenever the parent feature is active. Optional features are preceded by the
optional keyword (line 2), stating that the feature may or may not be part of the feature
combination, regardless of the decomposition operator, i.e., the optional keyword has
priority over the decomposition operator.

ProFeat also supports multi-features [Cor+13c], i.e., features that can appear multiple
times in a feature combination. The number of instances is given in brackets after the
feature name. In the example, the Workers feature comprises three copies of the Worker
feature (line 8). If a multi-feature is marked as optional, then each individual copy is
optional. Besides multi-features, ProFeat also supports feature attributes [CBH11]. For
instance, the Worker feature has the attribute speed which can take any integer value
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from 1 to 5. Using multi-features and feature attributes, even large and complex product
lines can be specified succinctly.

The inclusion of multi-features in the language necessitates a distinction between
features and feature instances. In ProFeat, each feature instance is uniquely identified by
a fully qualified name that corresponds to the path from the root feature to the feature
instance in the feature hierarchy. The sub-features of a feature as well as its attributes are
accessible using the familiar dot-notation. If a sub-feature is a multi-feature, the specific
instance is referred to using the index-operator. For instance, the fully qualified name of
the second Worker’s speed attribute is root.Workers.Worker[1].speed. As long as
the qualified name remains unambiguous, the prefix of the name can be dropped, e.g.,
Worker[1].speed is valid as well.

Analogous to feature diagrams, the textual feature model may also contain cross-tree
constraints as well as constraints over the values of feature attributes. In the running
example, the first constraint (line 3) in the root-feature block requires that the first two
Worker instances must be active whenever the Fast feature is selected. The second
constraint limits the combined speed of the first two Workers. If a constraint is preceded
by the initial keyword, then it only needs to hold for the initial feature combination,
but is not required to be satisfied after changes to the feature combination issued by
the feature controller. Obviously, this distinction is only relevant if the model defines a
controller and thus allows for dynamic feature switches.

Definition of feature behavior

The declaration of the feature model is strictly separated from the operational behavior
of features which enables an easy reuse of feature models and behavior definitions. A
feature can be “implemented” by one or more feature modules that are referenced using
the modules keyword within the feature declaration. For instance, the Worker feature
is implemented by the Worker_impl module, as shown in line 5 of the extended feature
declaration in Listing 3.6. Note that ProFeat follows the approach of [DBK15] where
feature modules are defined using the annotative approach and where the overall system
behavior arises from the parallel composition of all feature modules. This in contrast to,
e.g., fSMV where feature modules are defined by a superimposition construct [Kat93].
Superimposition is order-dependent, i.e., the feature module which is added last can not
only change the behavior of the base system, but also that of all feature modules that
have been added before it. This makes adding and removing features along with their
respective feature modules rather challenging. Therefore, ProFeat employs an annotative
approach using a parallel composition of feature modules.

Feature modules are defined using an extended version of PRISM’s syntax for modules.
A module comprises a set of local variables (line 9 in Listing 3.6) that define its local
state space and a set of guarded commands (lines 11 and 12). A guarded command
consists of an optional action label (in brackets), a guard over the variables of the model,
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1 feature Worker
2 speed : [1..5];
3

4 block dequeue[id];
5 modules Worker_impl;
6 endfeature
7

8 module Worker_impl
9 t : [0..max_work_size] init 0;

10

11 [working[id]] t > 0 -> (t' = max(0, t - speed));
12 [dequeue[id]] t = 0 -> (t' = Buffer.cell[0]);
13 endmodule

Listing 3.6: Declaration and implementation of the Worker feature

and a stochastic update of the module’s local variables. For instance, the command in
line 11 expresses that the module processes remaining work units by subtracting its
speed, but only if there are still work units available (t > 0). Modules can communicate
by synchronizing over shared actions or by reading each other’s local variables. Local
variables can be accessed using the same dot-notation as described earlier for features
and attributes. Within the local scope of a feature and its corresponding feature modules,
one can refer to its own local variables and attributes without using a qualified name.
For instance, the speed attribute of the Worker feature is referenced in line 11. The local
variables of a feature module can always be read, even if the corresponding feature is
not active. If a feature is deactivated, its local state is “frozen” and remains unchanged
until the feature is reactivated. For defining behavior that depends on the current feature
combination, ProFeat provides the active predicate that evaluates to true if the given
feature is active in the current system state. By default, feature modules of inactive
features do not block on synchronizing actions. Thus, with respect to synchronization,
deactivating a feature has the same effect as removing its feature modules from the
model. This is useful if the model is fully synchronous, i.e., if there is a global action that
synchronizes the transitions of all modules. However, in some cases the non-blocking
behavior is undesired. Then, it is crucial that the synchronization with actions of an
inactive feature is prevented, i.e., blocked. In the producer-consumer example, taking
a job out of the buffer is modeled using synchronization (line 12) where each Worker
has its own individual dequeue action2. Thus, an inactive Worker must not synchronize

2In ProFeat, action labels can be indexed like arrays. This construct is utilized here to generate unique
working and dequeue actions for each instance of the Worker feature. The id expression evaluates to
the index of the feature instance.
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1 controller
2 [] buffer_full & !active(Worker[2]) -> activate(Worker[2]);
3 [] buffer_low & active(Worker[2]) -> deactivate(Worker[2]);
4 endcontroller

Listing 3.7: Feature controller for the producer-consumer system

with the buffer, or else the job is lost. Therefore, its dequeue action is marked as blocking
(line 4).

Definition of the feature controller

The feature controller is a special module that defines rules for the dynamic activation
and deactivation of features. Listing 3.7 shows an example for the producer-consumer
model. Essentially, a controller is a module (possibly with its own internal state) which
can modify the feature combination using the activate and deactivate updates. In
the example, the third Worker is activated to speed up processing whenever the buffer is
full. Conversely, if the buffer is almost empty, the now superfluous Worker is deactivated,
e.g., to save energy. The definition of the controller is optional. If no controller is given,
the feature combination is static. Feature modules can synchronize with the controller
upon activation or deactivation using the special activate and deactivate actions
which allows them to react to the activation or deactivation of their associated feature to,
e.g., reset local variables. Furthermore, a feature module may also block its deactivation
which is useful for deferring the deactivation to a later point. For instance, by adding the
following line to the worker_impl module, the Worker cannot be deactivated until it has
finished processing its current job:

[deactivate] t = 0 -> true;

3.2.2 Parametrization

Model families can also arise from system parameters. For instance, in the producer-
consumer example the size of the FIFO buffer can be considered as such a parameter.
System parameters are defined within a family block, as shown in Listing 3.8. Similar to
feature attributes, system parameters can be constrained as well (line 3). It is possible to
combine a family declaration with a feature model which results in a system family that
is defined both by system parameters and all valid initial feature combinations.

System parameters can be used anywhere in the model including, but not limited
to, guards and probabilities. In contrast to feature attributes, system parameters are
treated as constants within each instance of a family. This has an important consequence:
parameters can also be used to specify the range of variables, the size of arrays, and even
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1 family
2 buffer_size : [1..8];
3 initial constraint buffer_size != 5;
4 endfamily

Listing 3.8: Parametrization of the producer-consumer model

the number of multi-feature instances. Thus, system parameters can directly influence
the structure and the state space of the system.

3.2.3 Metaprogramming language extensions

ProFeat provides several extensions to the PRISM language that enable a generic defini-
tion of models. This is especially important for modeling system families as it allows us
to represent the behavior of all system instances using a single parametrized definition.
Besides Boolean and integer variables, ProFeat supports (one dimensional) arrays. Ad-
ditionally, the language offers several metaprogramming constructs that are commonly
provided by template languages. Using for loops, sequences of commands, probability
distributions, variables updates, and expressions can be generated. A common use case
are families where the family instances differ in their structure, e.g., in the buffer size
or the number of multi-feature instances. If a for loop is used in an expression, its
body must contain the placeholder “...” exactly once. Intuitively, in the iteration 𝑖 this
placeholder is replaced with the resulting expression of iteration 𝑖 + 1. For instance, the
following expression sums up the first 𝑛 elements of the array arr:

for i in [0..n-1] { arr[i] + ... }

If 𝑛 = 4, this expression is expanded to:

arr[0] + arr[1] + arr[2] + arr[3]

Feature templates and module templates

Both feature blocks and feature modules can be instantiated multiple times. Each time
a feature is referenced in a decomposition, a new instance of that feature and all its
associated feature modules is created. Thus, feature declarations and feature modules can
be regarded as reusable templates. These templates can be parametrized which in turn
enables a parametrization of guards, probabilities, and costs.

An example is the feature module implementing the Buffer in the producer-consumer
model. It is parametrized over the capacity of the buffer, as shown in line 5 of Listing 3.9.
The actual buffer size is determined upon instantiation of the feature module (line 2).
In the given example, the buffer size is defined as a system parameter buffer_size
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1 feature Buffer
2 modules fifo(buffer_size);
3 endfeature
4

5 module fifo(capacity)
6 cell : array [0..capacity - 1] of [-1..max_work_size] init -1;
7

8 for w in [0..2]
9 [dequeue[w]] cell[0] != -1 ->

10 (cell[capacity-1]' = -1) &
11 for i in [0..capacity-2] (cell[i]' = cell[i+1]) endfor;
12 endfor
13

14 // ...
15 endmodule

Listing 3.9: A FIFO buffer implementation parametrized over the capacity

ranging over a finite set of possible values. The for loop spanning lines 8 to 12 generates
a command for each worker labeled with the dequeue action. The inner loop (line 11)
shifts the buffer contents when the first element is taken out.

3.2.4 Property specifications

For the definition of specifications and queries, ProFeat reuses PRISM’s property specifi-
cation language which is based on probabilistic computation tree logic (PCTL) [AHK03;
BA95; BK98]. Within properties, ProFeat’s full range of language extensions may be used.
We consider three example properties of the producer-consumer model. The following
property states that even in the worst case almost surely the buffer is not filled more than
75%:

Prmin (︁□ (level < 0.75)
)︁
= 1

As a second example, we ask for the minimal probability that at some point Worker2 is
active which can be expressed by:

Prmin (︁◇ (“Worker2 is active”)
)︁

ProFeat models may be annotated with costs and rewards for reasoning about quanti-
tative measures. In contrast to the PRISM language where reward structures are defined
globally, in ProFeat rewards are defined locally as part of feature declarations. Not only
does this further facilitate a modularization of the model, it also has practical implications.
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1 feature Worker
2 rewards "energy"
3 active(this) & t > 0 : 1;
4 [activate] true : 5;
5 endrewards
6 endfeature

Listing 3.10: Definition of a Worker’s energy consumption

As part of a feature declaration, rewards may also be parametrized using ProFeat’s feature
template construct. ProFeat extends the reward syntax of PRISM in two ways. First, the
active function may also be used within reward definitions, allowing for rewards to
depend on the feature combination. Second, rewards can be attached to feature switches
by using the special activate and deactivate actions, enabling quantitative reasoning
about dynamic feature-oriented systems. Listing 3.10 shows an extended declaration of
theWorker feature encompassing a reward structure for its energy consumption. In line 3,
energy costs of 1 are specified for all states where the Worker is active and currently
processes a job. The this keyword refers to the feature instance for which the feature
declaration has been instantiated. All feature switches that activate a Worker feature are
annotated with a cost of 5 (line 4). The third example property specifies that even in the
worst case the maximal expected energy consumption of the producer-consumer system
does not exceed a given threshold. Here, goal is an atomic proposition which holds in
those states where all jobs have been processed completely.

Exmax(“accumulated energy until reaching goal”) ≤ threshold

Listing 3.11 shows all three properties (lines 4, 5, and 13) in the extended specification
language. Expressions containing ProFeat-specific language constructs must be enclosed
in ${ and }. For instance, in the definition of the atomic proposition goal (lines 8–11), a
for loop is used to iterate over all Worker instances. The active function can be used in
the same way as in a ProFeat model.

3.2.5 Semantics
A ProFeat model may begin with a keyword determining the type of model that is
described, i.e, either a DTMC (keyword dtmc), a CTMC (keyword ctmc), or an MDP
(keyword mdp which is the default if no model type is given). The semantics of the
ProFeat model then is a family of DTMCs, CTMCs, or MDPs respectively, and can be
obtained straightforwardly from the following three ingredients. First, ProFeat applies the
framework presented in [DBK15] which provides a formal semantics for feature modules
under a feature controller. Second, the semantics of the feature model follows that of
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1 formula level = ${ (for i in [0..buffer_size-1]
2 (cell[i] > 0 ? 1 : 0) + ...
3 endfor) / buffer_size } ;
4 Pmin>=1 [ G (level < 0.75) ];
5 Pmin=? [ F ( ${ active(Worker[2])) } ];
6

7 const threshold = 20;
8 label "goal" = ${ (counter = 0) &
9 for w in [0..2]

10 (active(Worker[w])) => Worker[w].t = 0 & ...
11 endfor } ;
12

13 R{"energy"}max<=threshold [ F "goal" ];

Listing 3.11: Property specifications utilizing ProFeat’s language extensions

TVL [CBH11] extended with multi-features as proposed in [Cor+13c]. Finally, ProFeat
uses a translational approach towards PRISM models whose guarded command language
has a well-defined semantics [KNP11]. The translation of a ProFeat model into a PRISM
model is detailed in the following section.

3.3 Implementation
This section gives an overview of the ProFeat tool and provides notable implementation
details. First, we discuss the general workflow of using ProFeat for the analysis of system
families described in the ProFeat language. As depicted in Figure 3.12, ProFeat applies a
translational approach utilizing the probabilistic model checker PRISM for carrying out
the analysis. ProFeat models (and properties) are translated into the input language of
PRISM. In a post-processing step, the analysis results produced by PRISM are collected
and transformed such that they refer to the original ProFeat model. While those three
steps are usually performed in succession, they may also be executed separately to, e.g.,
apply some further transformations on the generated PRISM models or to explore the
generated model using a simulator.
ProFeat provides two different analysis approaches: one-by-one and all-in-one, also

called product-based analysis and family-based analysis in the context of software product
lines [Thü+14a]. In case of a one-by-one analysis, ProFeat generates a separate PRISM
model for each member of the system family which, consequently, are analyzed sepa-
rately by invoking PRISM for each instance. In the all-in-one approach, a single model
representing the whole family is generated. The analysis of this model using a single run
of the model checker yields the results for all family members at once.
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Figure 3.12: ProFeat workflow overview

Clearly, the commonalities between the family members may cause a lot of redundancy
in the state space of the family model. ProFeat relies on PRISM’s symbolic engine which
internally uses BDDs, a universal data structure for representing Boolean functions, to
compactly store the model. A BDD [Ake78; Lee59] is a directed, acyclic graph with a
single root node and consists of decision nodes as well as terminal nodes representing
the constants true and false. Each decision node is labeled with a Boolean variable
and has exactly two outgoing edges corresponding to setting the variable to true or
false, respectively. Within ordered BDDs [Bry86], the same ordering of variables is used
consistently along all paths from the root to the terminal nodes. The graph structure of an
ordered BDD is obtained by reducing the decision tree of a Boolean function (using the
fixed variable ordering) by merging isomorphic subgraphs and eliminating any terminal
nodes with the same value as well as any decision node where both outgoing edges target
isomorphic subgraphs. Removing redundancies and exploiting shared structures in the
BDD yields the potential of compactly representing Boolean functions. When using BDDs
to represent family models, this means that behavior that is shared between instances of
the family is potentially present only once. Since PRISM is a probabilistic model checker,
it actually usesmulti-terminal binary decision diagrams (MTBDDs) to represent the model.
MTBDDs [Bah+93; Cla+93] are a variant of BDDs where terminal nodes can represent
any real value instead of just the values true and false. The memory consumption and the
analysis performance crucially depend on the variable ordering of the MTBDD. We can
exploit automated reordering techniques [Kle+18] to minimize the size of the MTBDD
representation which potentially speeds up the analysis.

It may seem that the all-in-one approach is clearly superior to the naive one-by-one
approach, however, this is not necessarily the case in practice. Since the family model
must encompass the behavior of all family members, it is usually much larger than any
of the models for a single family member. Thus, if the family model is too large to fit in
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memory, a one-by-one analysis might still be feasible. Moreover, the one-by-one approach
can be trivially parallelized. If enough computational resources are available, the analysis
of the whole family takes just as long as the analysis of the largest family member. In
conclusion, it largely depends on the model and the available resources which approach is
favorable. Therefore, ProFeat lets the user switch between the all-in-one and one-by-one
approaches without requiring any modifications of the ProFeat model. The translation
of properties does not depend on the chosen analysis approach and merely involves a
syntactical transformation of ProFeat language constructs into their PRISM-language
equivalent.

The main advantage of the translational approach is that the full range of PRISM’s
support for quantitative analysis can also be employed for feature-oriented models. Fur-
thermore, any improvements to the PRISM implementation also benefit ProFeat. There is
also the potential for using a different model checking tool that supports PRISM’s input
language, e.g., Storm [Hen+20].

The post-processing step transforms the analysis results returned by PRISM into a list
of results for each feature combination and each possible combination of parameter values.
In case a one-by-one analysis was chosen, ProFeat automatically collects the results from
each analysis run. Thus, the representation of the final results is independent of the
chosen analysis approach. The explicit representation of results in the form of a table is
usually sufficient for small system families or if only a few configurations are of interest.
However, if the system contains many features, the exponential blow-up of the number of
feature combinations leads to numerous entries in the result table. This makes it difficult
to draw general conclusions about the whole system family. In order to give the user a
better understanding of the analysis results, ProFeat can additionally provide symbolic
result representations. Similar to the analysis, where the symbolic representation is often
more compact than the explicit representation, a symbolic representation of the results
is often smaller than the list of feature combinations. Two different representations are
supported. First, a propositional formula over features representing the set of feature
combinations satisfying some qualitative property can be generated (similar to the output
returned by the feature-aware model checker ProVeLines [Cor+13b]). Note that this
includes quantitative properties where some threshold must be met. Second, ProFeat can
produce a BDD where each inner node represents a decision whether the corresponding
feature is enabled or not, and each terminal node indicates whether the (qualitative)
property is satisfied or not. In case of a quantitative analysis, an MTBDD is generated
instead where each terminal node corresponds to a distinct analysis result. ProFeat may
additionally apply rounding to the analysis result which potentially reduces the number
of terminal nodes at the cost of precision. The generated MTBDD may be used within the
application engineering phase to guide the feature selection depending on quantitative
measures.
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In the following, the implementation of the translation as well as the post-processing
of analysis results will be discussed in detail.

3.3.1 Translation of ProFeat models

The translation of a set of feature modules under a feature controller into a PRISM model
is based on the compositional modeling framework for feature-oriented systems presented
in [DBK15] which maps the composition of feature modules to the parallel composition
of PRISM modules. The translation of ProFeat specifications into PRISM specifications
is purely syntactical and involves the translation of ProFeat expressions into PRISM
expressions within properties. In the following, notable steps of the translation are
highlighted and illustrated using the producer-consumer running example introduced in
Section 3.2.

Encoding of feature combinations

Since PRISM is not a feature-aware model checker, we apply the lifting approach [PS08]
to encode the set of feature combinations into the state space of the model. In the ProFeat
language, the read and write access to the feature combination is only possible via the
active function and the activate/deactivate updates, respectively. This abstraction
allows us to choose an internal representation of the feature combinations that best suits
our needs. The basic idea is to introduce a new Boolean variable for each feature in the
feature model that is set to true if the feature is part of the feature combination and set
to false if not. However, some features may be mandatory, i.e., they must be part of
every feature combination, and thus their associated variable would always be set to true.
Furthermore, the inclusion of some feature may solely depend on the inclusion of their
parent feature. In order to reduce the number of variables for representing the feature
combination, only one variable per non-mandatory atomic set is generated. An atomic set
consists of features that can be treated as a unit, as they always appear (or do not appear)
together in feature combinations [Seg08]. For instance, in the translation of the producer-
consumer system (see Figure 3.4), a variable for the Fast feature and one variable for each
Worker instance is generated. ProFeat does not actually use Boolean variables, but rather
integer variables with a range of [0..1], as this enables summing up feature variables in
the PRISM language and thus simplifies the handling of cardinality constraints. With this
representation in place, the translation of the active function is straightforward. If the
atomic set associated to the feature is mandatory, then the expression is simply replaced
by true. Otherwise, the corresponding feature variable of the atomic set is inserted in
place of the call. Analogously, the activate and deactivate updates assign 0 or 1 to
the associated variable, respectively.
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Translation of feature modules

Each feature module instance is translated into a single PRISM module. Consider List-
ings 3.13a and 3.13b which show the feature module of the Worker feature and its transla-
tion, respectively. Note that only the translated module for the firstWorker is shown since
the other instances are nearly identical. As all variable names are global in the PRISM
language, the variable names are prefixed with the feature instance name to make them
unique and to prevent name clashes in the translated model. Here, w_0 is the internal
name of the firstWorker feature instance where 0 is the index of the multi-feature instance.
The guard of each command is extended with the corresponding feature variable w_0_act
such that the commands can only be executed when the associated feature is part of the
feature combination. However, it must be ensured that an inactive feature does not block
its actions, i.e., deactivating the feature should have the same effect as removing it. This
is achieved by inserting transitions for each non-blocking action that can only be taken if
the feature is not active (line 9 in Listing 3.13b). This command is not generated in case
the action has been marked as blocking in the feature declaration. In the example, the
dequeue action has been marked as blocking, thus no additional command is inserted.

1 module Worker_impl
2 t : [0..max_work] init 0;
3

4 [] t > 0 ->
5 (t' = max(0, t - speed));
6 [dequeue[id]] t = 0 ->
7 (t' = Buffer.cell[0]);
8 [cancel] true -> (t' = 0);
9

10 endmodule

(a) Worker in ProFeat model

module w_0_Worker_impl
w_0_t : [0..max_work];

[] w_0_act & w_0_t > 0 ->
(w_0_t' = max(0,w_0_t - speed));

[dequeue_0] w_0_act & w_0_t = 0 ->
(w_0_t' = b_cell_0);

[cancel] w_0_act -> (w_0_t' = 0);
[cancel] !w_0_act -> true;

endmodule

(b) Worker 0 in PRISM model

Figure 3.13: Feature module of a Worker and its translation

Translation of the feature controller

The feature controller is translated into a single PRISM module as well. Note that
the feature variables that indicate whether an atomic set of features is active or not are
local variables of the translated controller module. This way, the controller is able to
update the configuration also in action-labeled commands3. The translation must ensure
that activating and deactivating features does not lead to an invalid feature combination.
Consider the update in line 4 of Listing 3.14. According to the featuremodel (see Figure 3.4),
3In the PRISM language, updates to global variables are only allowed if the command does not synchronize
with any other module.
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1 controller
2 [] buffer_full & !active(Worker[1]) -> activate(Worker[1]);
3 [] buffer_full & !active(Worker[2]) -> activate(Worker[2]);
4 [] buffer_low -> deactivate(Worker[2]);
5 [] buffer_empty -> deactivate(Worker[1]) & deactivate(Worker[2]);
6 endcontroller

Listing 3.14: Feature controller of the producer-consumer system

at least one Worker feature must be active at all times. Thus, this command may only
be executed if at least one other Worker feature is active in the current configuration,
otherwise it should block. This is achieved by extending the guard of the translated
command as shown in line 2 of Listing 3.15. The guard is synthesized as follows. First,
all constraints of the feature model (including those given by the decomposition of
features) involving the updated feature are collected (in this example only the some of
decomposition of the Workers feature, implicitly stating that at least one and at most 3
Worker features may be active). Then, the corresponding feature variables are replaced
by their updated value. In this case, Worker 2 should be deactivated, thus the feature
variable w_2 is replaced with 0. Then, the resulting expression only evaluates to true if
the updated feature combination is valid. Hence, the command can only be executed if
the feature combination is still valid in the next state.

1 [w_2_deactivate] buffer_low &
2 (1 <= w_0 + w_1 + 0) & (w_0 + w_1 + 0 <= 3) ->
3 (Worker_2' = 0);

Listing 3.15: Translation of the third feature controller command

Another aspect of the translation concerns the synchronization between the feature
controller and the feature modules. Remind that a feature module can synchronize with
the controller when its associated feature is activated or deactivated using the activate
or deactivate actions, respectively. Consider again the feature controller in Listing 3.14,
where in line 4 the controller implicitly synchronizes with the feature module of Worker
2, shown in Listing 3.16a. To realize this synchronization in the PRISM model, ProFeat
automatically generates action labels for feature activation and deactivation, as shown in
line 6 of Listing 3.16b (action w_2_deactivate). The translated controller command is
then labeled with the action w_2_deactivate as well. The last controller command in
Listing 3.14 deactivates Worker 1 and Worker 2 at once, thus it also must synchronize
with both corresponding feature modules. However, the PRISM language only allows
for at most one action label per command. Thus, both action labels are merged into a
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single action label as part of the translation. However, this solution requires special care
when translating feature modules. First, the action labels of all controller commands that
deactivateWorker 2 are collected (lines 4 and 5 in Listing 3.14). Then, the command in the
feature module is duplicated for each of those collected actions and labeled accordingly, as
shown in Listing 3.16b. This translation realizes the synchronization between the feature
controller and the feature modules even in case of multiple simultaneous activations and
deactivations of features.

1 module Worker_impl
2 t : [0..max_work] init 0;
3

4 [deactivate] t = 0 -> true;
5

6

7

8 endmodule

(a) Worker in ProFeat model

module w_2_Worker_impl
w_2_t : [0..max_work];

[w_1_deactivate_w_2_deactivate]
w_2_act & w_2_t = 0 -> true;

[w_2_deactivate]
w_2_act & w_2_t = 0 -> true;

endmodule

(b) Worker 2 in PRISM model

Figure 3.16: Translation of the synchronization between a feature module and the controller

All-in-one and one-by-one translation

If the user chooses the one-by-one analysis, a separate model for each possible set of
initial values for system parameters and for each initial feature combination is created.
The system parameters are constant for each instance and thus are inserted as constants
in the translated models. However, the feature variables are still generated as variables,
as the feature combination may be changed by the feature controller.

In case of an all-in-one analysis, ProFeat generates a single PRISMmodel with multiple
initial states, one for each member of the system family. Since the ProFeat language allows
array sizes, the number of multi-feature instances, and variable bounds to be defined in
terms of system parameters, the size of these structures depends on the initial state and
is no longer statically known at the time of translation. For instance, in the producer-
consumer model, the buffer size as well as the number of workers may be defined in terms
of system parameters. Clearly, the family model must accommodate every member of the
system family, thus ProFeat generates arrays with the largest possible size, generates the
maximal number of multi-feature instances, and creates variables with the least lower
bounds and largest possible upper bounds. The maximal size of these structures and
variables can be computed from the possible values of the system parameters which are
known at translation time. The need for instantiating all structures with their greatest
possible size is the main reason that the family model is often substantially larger than
(most of) the models for the family members.
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3.3.2 Post-processing of analysis results

As a consequence of the translational approach, the analysis results are produced by
the employed analysis tool. Therefore, the results actually refer to the translated PRISM
model rather than the ProFeatmodel, i.e., variable names will not appear as written in the
ProFeat model. Furthermore, since PRISM is not a feature-aware tool, feature variables
are not easily distinguishable from other variables. However, the main issue is that the
results as produced by PRISM in a family-based analysis are hard to read which makes
their interpretation challenging. As a first step of the post-processing, variable names
and feature names are rewritten such that they match their definition in the original
ProFeat model. Furthermore, feature combinations are represented as a set of feature
names which further increases the readability.

Symbolic representation of analysis results

As ProFeat relies on standard tools for the analysis, the symbolic representation of the
analysis results is not directly exported by the employed model checking tool. Thus,
the propositional formula or the BDD representing the satisfying or violating feature
combinations is computed from the list of results returned by PRISM. Generating the
symbolic representations directly from the result table has a subtle side effect. Since
only results for the valid feature combinations are returned by PRISM, the symbolic
representation not only encodes the set of feature combinations satisfying the property, but
also the set of valid feature combinations. This often makes the symbolic representation
unnecessarily large, as it encodes information that is already provided by the feature
model. For this reason, we apply techniques for presence-condition simplification [Rhe+15]
and extend them to MTBDDs.

To generate a propositional formula representing the feature combinations that satisfy
some qualitative property, ProFeat proceeds as follows. The set of satisfying feature
combinations directly corresponds to a formula in canonical disjunctive normal form
(CDNF) where the literals are features. In order to minimize this formula, the Quine-
McCluskey algorithm [McC56] is applied. As mentioned, this formula also encodes the
feature model, but we are only interested in the constraints that must hold in addition
to the feature model. Formally, given a propositional formula Φ for the feature model,
we need to compute an additional constraint Ψ such that all feature combinations of the
restricted feature model Φ′ = Φ∧Ψ satisfy the property. This can be achieved by applying
the Quine-McCluskey algorithm as described and additionally treating all invalid feature
combinations as “don’t care” terms which then gives the algorithm more opportunities
for minimization.

The BDD or MTBDD representation of the analysis results is built by successively
considering each line of the result table and adding its corresponding path to the BDD.
As an example, we consider the simple model shown in Listing 3.17 and ask for the
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1 root feature
2 all of optional x, optional y;
3 constraint active(x) => active(y);
4 modules base_impl;
5 endfeature
6

7 feature x modules x_impl; endfeature
8 feature y modules y_impl; endfeature
9

10 module base_impl
11 state : [0..1] init 0;
12 [tick] !(x.state = 1) & !(y.state = 1) ->
13 1/3: (state' = 0) + 2/3: (state' = 1);
14 endmodule
15

16 module x_impl
17 state : [0..1] init 0;
18 [] state = 0 -> 1/2: (state' = 0) + 1/2: (state' = 1);
19 endmodule
20

21 module y_impl
22 state : [0..1] init 0;
23 [tick] !(x.state = 1) -> 1/4:(state' = 0) + 3/4: (state' = 1);
24 endmodule

Listing 3.17: Simple feature-oriented model in ProFeat

37



3 Feature-oriented engineering for family-based analysis

Final result: [0.0,0.9876543209876543]
Results for initial configurations:

(x, y)=0.0
(y)=0.73
()=0.99

Listing 3.18: Output of analyzing the simple feature-oriented model with ProFeat

probability of reaching a state where root.state = 1 holds. The result table is shown in
Listing 3.18 and the corresponding MTBDD representation in Figure 3.19a. The variables
in the MTBDD (indicated by ellipses) correspond to features. An outgoing solid line
denotes that the respective feature is active, and a dashed line denotes inactive features.
The terminal nodes correspond to the analysis results. Then, a path from the root node of
the MTBDD to a terminal node stands for all feature combinations that share an analysis
result. An additional terminal node (drawn as an empty box) stands for invalid feature
combinations for which there is no analysis result. This is needed since the generated
MTBDD still encodes the feature model. In order to remove any nodes from the MTBDD
where the decision is already dictated by the feature model, we proceed as follows. First,
the terminal node representing the invalid feature combinations is removed, together
with all incoming edges. Now the MTBDD will contain inner nodes that only have one
outgoing edge. Intuitively, this means that no actual decision is to be made in these nodes.
The correct decision, i.e., the one that will not lead to an invalid feature combination, can
be made by considering the feature model. Therefore, these nodes will be removed as
well, again with all incoming edges. This procedure proceeds in a bottom-up manner
until no more nodes can be removed. The resulting MTBDD for the example is shown in
Figure 3.19b. Consider the path that starts with selecting the feature x in the root node.
In the initial MTBDD, there is now a choice to include or not include feature y. However,
from the feature model we already know that feature ymust be active if feature x is active
(line 3 in Listing 3.17). Therefore, this decision has been removed in Figure 3.19b.

The generated BDD representations of the results may still be quite large. Therefore,
ProFeat provides a further reduction mechanism utilizing the sifting algorithm [Rud93].
The algorithm reorders the BDD variables in an attempt to find an equivalent BDD with
fewer nodes. This typically yields an order where the features with the greatest impact
on the analysis result are considered first. Thus, the relative “importance” of a feature
w.r.t. the considered query can be easily extracted. In general, the height of the BDD
scales linearly with the number of features. However, the number of BDD nodes largely
depends on the structure of the analysis results and the variable ordering found by the
sifting algorithm.
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x

y y

0.73 0.99 0.0

(a) Including feature model, rounded to 2 decimals
(empty box represents an invalid feature combi-
nation)

x

y

0.00.73 0.99

(b) Without feature model, rounded to 2 decimals

Figure 3.19: MTBDD representations of analysis results
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4 Case studies and application
areas

In this chapter, the practical applicability of ProFeat for analyzing families of stochastic
systems defined in terms of features is demonstrated by means of several case studies. All
case studies have been conducted using ProFeat for translating the models and PRISM
for carrying out the quantitative analysis. PRISM provides different model checking
engines [KNP02]. The Explicit engine uses a graph-like data structure for representing
models where each state (and its transitions) are stored individually in memory. The
symbolic MTBDD engine uses MTBDDs for representing models, the Sparse engine uses
sparse matrices, and the Hybrid engine uses MTBDDs for representing the model, but
an explicit representation of vectors in the numerical analysis. Since ProFeat relies on a
symbolic representation for removing redundancies in the family model representations,
the Explicit engine has not been considered in the case studies. A performance comparison
of the other three engines is part of Section 4.1.

Experiment setup. The experiments were carried out on a machine with two 8-core
Intel Xeon E5-2680 CPUs running at 2.7 GHz with enabled Hyper-threading and equipped
with 384 GB of RAM.The parallel execution of the one-by-one analysis runs was restricted
to a maximum of 32 parallel processes.

Outline. The first set of case studies (Section 4.1) focuses on the comparison of the all-
in-one and one-by-one analysis approaches, highlighting the approaches’ suitability for
different kinds of models and scenarios. Moreover, these case studies show the usefulness
of the feature concept for defining a family of models, illustrating the benefit of using
ProFeat for comparative studies, variant selection, and parameter optimization. The
case studies in Section 4.2 show that ProFeat supports the analysis of stochastic SPLs,
both static and dynamic. The body-sensor-network product line [Rod+15] furthermore
illustrates how the symbolic result representation generated by ProFeat can help to gain
insights on the impact of individual features on certain quantitative measures. The final
two case studies in Section 4.3 show that the feature concept also has useful applications
beyond the definition of SPLs, e.g., for capturing dynamic adaptations.

The results presented in this chapter have been published in [Chr+18], except for the
last case study in Section 4.3.2 which is part of the publication [Wei+17].
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4.1 Comparing family-based and product-based analysis

This section presents a set of case studies that have been conducted to compare the
all-in-one (family-based) and one-by-one (product-based) analysis approaches, both for
models defined in terms of features and for parametrized models. For the one-by-one
analysis, we also consider a parallel execution of the analysis runs. To compare the
analysis approaches for a system family defined in terms of features, the first case study
examines variations of the producer-consumer system introduced in Section 3.2. The
second set of case studies consists of several models defined in terms of system parameters
which have been converted into ProFeat models to enable an all-in-one analysis.

4.1.1 Analysis of feature-oriented systems

In the following, the producer-consumer model (see Section 3.2) will serve as a base
model for different variants and their analysis. Within the base model, which is a dynamic
feature-oriented system, the feature controller can activate and deactivateWorker features,
increase or decrease the size of the buffer, and increase or decrease the processing speed
of each Worker. In order to guarantee fairness between the system’s actions and the
controller actions, an additional control module has been added. After a reconfiguration,
this module blocks any controller actions until the producer has inserted at least one new
job into the buffer. For the quantitative analysis, the goal is to process a certain number
of jobs. The model has been extended with an additional module responsible for counting
the finished jobs. The following three variants of this model and their corresponding
analysis queries were considered:

Best buffer size. In this variant, the buffer size is static, i.e., not changed by the controller.
Here, we ask for the buffer size that incurs minimal storage costs for processing all
jobs. The storage costs depend on the number of filled buffer cells and also scale
linearly with the buffer size, i.e., the larger the buffer, the higher the storage costs.

Best set of workers. This system is a static feature-oriented system where the variant
space comprises all possible nonempty subsets of workers. Thus, for 𝑛 different
workers the system family has 2𝑛 − 1 members. We assume a heterogeneous set of
workers where each worker has a different energy-efficiency. The goal is to find a
combination of workers for which the expected energy required to finish all jobs is
minimal.

Workload distributions. Here, we consider the fully dynamic base model as described
above where the system variants arise from different workload distributions. The
size of the system family is given by the number of possible distributions. The task
is to find the distribution where the expected energy to finish all jobs is minimal.
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Figure 4.1 shows the number of MTBDD nodes used by the representation of the three
model variants for different buffer sizes, number of workers, and number of distributions,
respectively. The number of nodes shown for the one-by-one approach is the sum of
nodes for representing all individual family members. For all three models the number of
nodes for the all-in-one approach is significantly smaller than the sum of nodes for the
individual family members which indicates that some behavior is shared between the
family members.
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Figure 4.1: Number of MTBDD nodes for the producer-consumer models

The quantitative analysis described above has been carried out using both the MTBDD
engine and the Sparse engine of PRISM. In general, the Sparse engine performed better
than the MTBDD engine which is often the case for expectation queries (this is also the
case for non-family models). The analysis times for finding the best buffer size are shown
in Figure 4.2. Here, the all-in-one approach is only superior up to a maximal buffer size of
11 when using theMTBDD engine and 10 when using the Sparse engine. The structurally
different buffer modules of the individual family members do not exhibit enough shared
behavior that would benefit an all-in-one analysis. In case the number of family instances
is exponential in the family parameter, as in the model for finding the best set of workers
(see Figure 4.3), the all-in-one approach outperforms the one-by-one analysis and can
even rival the parallel computation while using much fewer resources. For the third
model variant, where different workload distributions were analyzed, the one-by-one
and all-in-one approaches show asymptotically similar performance. Note that in this
model the family instances only differ in the transition probabilities within the Producer
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Figure 4.2: Analysis time of the producer-consumer model for an increasing buffer size
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Figure 4.4: Analysis time of the producer-consumer model for an increasing number of different
workload distributions

feature module. Overall, there is no clearly superior analysis approach. However, the
results indicate that an all-in-one analysis is favorable if the number of family members
is high and there is a lot of shared behavior between instances.

4.1.2 Analysis of parametrized systems

The experiments presented in this section serve to investigate the potential of utilizing
a family-based analysis for parametrized models. For that, the following models of
the PRISM benchmark suite [KNP12] have been converted to ProFeat models: IEEE
802.3 CSMA/CD protocol (Carrier Sense, Multiple Access with Collision Detection),
randomized self-stabilizing algorithm, and randomized dining philosophers. In addition,
we also consider the Probabilistic-Write/Copy-Select (PWCS) [Bai+13] locking protocol.
The PWCS model is defined in terms of two family parameters: The number of writers
competing for the access to a shared object, and the number of replicas for a given object.

All models have been originally written in a mix of the PRISM language and some
template language. Thus, only a one-by-one analysis was possible. The conversion
to ProFeat models required only minor changes to the original models as ProFeat’s
metaprogramming extensions are very similar to the constructs typically provided by
template languages. The source code size of the ProFeat models is comparable to the
PRISM template models and in some cases the rewriting into the ProFeat language
resulted in a slightly more compact representation.
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Table 4.1: Sizes of parametrized models

MTBDD nodes
Model Instances family separate

CSMA (2–4 processes) 4 633 997 634 076
Self-stabilizing (3–21 processes) 19 4 340 10 662
Philosophers (3–12) 10 82 995 82 689
PWCS (3 replicas, 1–9 writers) 9 134 236 134 190
PWCS (3 writers, 1–7 replicas) 7 955 505 958 033

Table 4.1 presents the model sizes both in terms of family instances and the number of
MTBDD nodes that PRISM uses to represent the models. In case of a one-by-one analysis,
the number of nodes is the sum of nodes required for representing the separate models
for each family instance. A reduction of the number of MTBDD nodes was achieved only
for the self-stabilizing model. For all other models, the size of the family model was in
the order of the sum of the separate models. This is caused by the fact that there is almost
no sharing of behavior between the family members.

Table 4.2 shows the time required for analyzing the models. Each row corresponds to a
different query which cover minimal and maximal expected values as well as probabilities
for bounded and unbounded reachability. At the time the experiments were conducted,
PRISM’s Hybrid engine did not yet support the computation of expectations. The results
show that the one-by-one approach is almost universally more performant, except for
the PWCS model parametrized over the number of replicas. Even for the self-stabilizing
algorithm, where a reduction in the number of MTBDD nodes was achieved, the one-by-
one analysis is significantly faster. In conclusion, the results indicate that the one-by-one
approach is favorable for parametrized models that yield few family instances and that
barely have any shared behavior. This matches the experiences made in the previous
section where the all-in-one approach was only faster for families with many instances
and significant sharing of behavior.

4.2 Software product lines

The concept of features is most prominently applied within the conceptualization, model-
ing, and implementation of SPLs. In order to demonstrate the feasibility of using ProFeat
for the quantitative analysis of SPLs, we consider two “classical” SPL models that have
been considered before in the literature. The first case study, a Body Sensor Network
product line [Rod+15], shows how ProFeat improves on existing analysis approaches
for stochastic family models. Moreover, this case study highlights ProFeat’s result post-
processing capabilities in a practical setting. Second, the elevator product line [PR01]
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Table 4.2: Analysis times (in seconds) for parametrized models (each row represents one query,
analysis time for one-by-one is sum over all instances)

MTBDD Hybrid Sparse
Model all 1by1 par all 1by1 par all 1by1 par

CSMA timeout not supported 1 236 1 251 1 220
timeout 3 660 3 577 3 384 1 078 1 013 954

Self-stabilizing 2 036 1 643 932 251 37 22 129 33 20
≪ 1 1 2 not supported 122 24 15

timeout not supported 2 629 476 269
13 10 7 12 10 6 12 10 7
13 10 7 13 10 7 13 10 6

Philosophers 9 056 6 212 3 945 9 722 5 949 4 009 out of memory

PWCS 49 26 15 232 165 130 314 271 220
(over writers) 6 564 2 247 960 not supported 5 473 1 544 1 230

PWCS 752 2 279 1 628 968 348 306 738 2 209 1 265
(over replicas) timeout not supported 1 221 3 857 2 735

is extended towards a dynamic feature-oriented system to show ProFeat’s potential for
analyzing dynamic software product lines.

4.2.1 Body sensor network

A Body Sensor Network (BSN) consists of connected sensors that send measurements to
a central entity which evaluates the data to identify conditions critical to the wearer’s
health. A static BSN product line has been introduced by Rodrigues et al. [Rod+15] where
sensors correspond to features. The feature diagram is depicted in Figure 4.5.

The approach of Rodrigues et al. [Rod+15] follows the idea presented in [GS13] to
model families of stochastic systems using parametric DTMCs [LMT07] to enable a family-
based analysis. For each feature, a parameter 𝑓 is introduced which is 1 if the feature is
active and 0 otherwise. A factor 𝑝 is multiplied to the probability of every transition that
depends on the feature, where 𝑝 = 𝑓 in case the transition exists if the feature is active
and 𝑝 = 1 − 𝑓 otherwise. Then, parametric model checking is applied to obtain a single
formula which, given a feature combination, evaluates to the probability of reaching a
set of goal states. In case of the BSN model, the formula evaluates to the reliability of
the system for a given feature combination. The authors of [Rod+15] report that the
parametric analysis approach utilizing PARAM [Hah+10] can be seven times faster than
a one-by-one analysis using PRISM (for a family size of 298 instances). Furthermore,
they proposed a symbolic bounded-search approach that is up to eleven times faster
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Body sensor network

Monitoring Storage

SensorInformation Sensor

Oxy Temp PlsRt Pos Fall ACC EKG TEMP SPO2

SQLite Memory

PlsRt ⇒ SPO2 ∨ EKG

Figure 4.5: Feature diagram for the body sensor network product line

than the one-by-one analysis, and finally demonstrated a handcrafted model-dependent
compositional parametric approach that is up to 100 times faster. For obtaining these
results, three different model checking tools have been used. Moreover, these existing
tools had to be adapted using additional scripts to perform the one-by-one analysis and
to evaluate the formulas returned by the parametric model checkers.

With only minor modifications, the parametric BSN model can be turned into a ProFeat
model that directly incorporates the feature model of the BSN product line. This is possible
since ProFeat’s representation of features is directly compatible with the parametric
encoding of features as proposed by [GS13]. A feature parameter f can be replaced with
the expression active(f) ? 1.0 : 0.0 in the ProFeat model, i.e., if the feature f is
active, the expression evaluates to 1 and otherwise to 0. Thus, the resulting ProFeat
model enables an all-in-one analysis of the same model that has been used by Rodrigues
et al. [Rod+15] and furthermore simplifies the comparison to a one-by-one analysis.

With the ProFeatmodel of the BSN product line, we can reproduce the results of [Rod+15]
regarding the reliability of the product line and at the same time compare the performance
of an all-in-one analysis using ProFeat with the approaches proposed by Rodrigues et al.
The all-in-one approach turned out to be ≈100 times faster than a one-by-one analysis,
independent of the used PRISM engine (at 1s for all-in-one vs. 128s for one-by-one with
5651 MTBDD nodes vs. 111507 nodes). Hence, ProFeat directly enables a speed-up of the
analysis of the same magnitude as the optimized handcrafted decomposition by [Rod+15].

In the following, the post-processing of ProFeat is applied to gain further insights
on the analysis results. For comparison, Listing 4.6 shows an excerpt of the results as
produced by PRISM for an all-in-one analysis. After the post-processing by ProFeat, the
values of the feature variables are replaced by their corresponding feature names and
other system variables are omitted which yields a more readable output as demonstrated
in Listing 4.7. Note that ProFeat optionally sorts the feature combinations depending
on the analysis results such that the best and worst family instances w.r.t. the query can
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be spotted easily. Notably, the ProFeat output looks the same for a one-by-one analysis,
whereas a one-by-one analysis using only PRISM produces 298 separate log files with
one result each.

Results (non-zero only) for filter "init":
2924:(0,1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,1,1,1)=0.9704387384917665
2977:(0,1,0,1,0,1,1,1,0,1,1,1,0,0,0,0,1,1,1)=0.9617396442452253
4041:(0,1,0,1,1,1,1,1,0,1,1,1,0,0,0,0,1,1,1)=0.953118529409139
4191:(0,1,1,0,0,0,0,1,0,0,0,1,0,0,0,0,1,1,1)=0.9792165174854354
5163:(0,1,1,0,0,1,1,1,0,0,1,1,0,0,0,0,1,1,1)=0.9617396442452253

... 293 lines omitted ...

Range of values over initial states: [0.9445746949695,0.9792165174854]

Listing 4.6: Excerpt of the analysis results provided by PRISM for the BSN product-line model

Final result: [0.9445746949695,0.9792165174854]
Results for initial configurations:
(Mem, Fall, Oxy, PlsRt, Pos, Temp, SACC, SSPO2, STemp)=0.94457469496953
(Mem, Oxy, PlsRt, Pos, Temp, SACC, SSPO2, STemp)=0.953118529409139
(Mem, PlsRt, Pos, Temp, SACC, SSPO2, STemp)=0.9617396442452253
(Mem, Pos, Temp, SACC, STemp)=0.9704387384917665
(Mem, PlsRt, SECG, STemp)=0.9792165174854354

... 293 lines omitted ...

Listing 4.7: Excerpt of the analysis results after post-processing by ProFeat

The symbolic representation of the analysis results (rounded to a precision of two
decimals) in the form of an MTBDD is shown in Figure 4.8a. Note that this MTBDD
encodes the feature model in addition to the results. The corresponding MTBDD without
the feature model is presented in Figure 4.8b which is a much clearer representation of the
results than the explicit table with 298 rows. From this representation we can learn that
only 5 of the product lines’ 11 non-mandatory features actually have a direct influence
on the reliability of the system. The other features are either dependent on the inclusion
of these 5 features or have no impact on the result at all, like the Mem and Sqlite features.
Consider, for example, the leftmost path ¬Fall,¬Oxy,¬PlsRt,¬Pos to the result 0.98. The
feature model states that at least one of the sub-features of the SensorInformation feature
must be selected. Thus, when following the described path in the diagram, it is clear that
the Temp feature must be selected and, in turn, also the TEMP sensor feature. Therefore,
the nodes for Temp and TEMP are not present on this path of the diagram. With respect
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to the overall reliability of the system, the diagram shows that the system becomes less
reliable for each added feature. It is hard to draw such high-level conclusions directly
from the explicit result representation. Thus, the transformation of the results into an
MTBDD can be a very useful tool for deriving products with the desired properties.

(a) with feature model, 2 digits precision (b) without feature model, reordered

Figure 4.8: MTBDD representations for the analysis results of the Body Sensor Network product
line. Outgoing solid edges denote that the feature is included, dashed edges indicate
that it is excluded. The empty terminal node denotes an invalid feature combination.

4.2.2 Elevator product line
The elevator (or lift) product line has been originally introduced by Plath and Ryan [PR01]
and subsequently considered as a case study for family-based verification, e.g., in [Ape+13b;
Cor+13c]. The system consists of a single cabin which can move to different floors of
a building. Persons wishing to take the elevator first have to push a call button on the
landing they are on. Once the elevator arrives, a floor button inside the elevator has to
be pushed to select the target floor. In its basic version [PR01], the static product line
comprises 5 optional features that extend the basic behavior:

Parking. If there are no more landing requests and the elevator is idle, the cabin moves
to a designated parking floor instead of remaining in the same position.

2/3 full. If the cabin is filled up to 2/3 of its capacity, it no longer takes any new landing
requests until it has served all the passengers inside the cabin.

Overloaded. If the number of persons inside the cabin exceeds the elevator’s weight
restriction, the doors will not close until enough persons leave the cabin.
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Table 4.3: Sizes of elevator models

MTBDD nodes
Model Instances family separate

Elevator (2 floors) 64 42 254 1 329 204
Elevator (3 floors) 64 151 274 4 924 349
Elevator (4 floors) 64 420 448 13 519 274

Elevator (2–4 floors) 192 779 569 19 772 827

Empty. If the cabin is empty, all requests issued from inside the cabin are cancelled as
they are no longer relevant.

Executive floor. This gives the requests from a designated floor priority over other
requests.

For the case study considered in this section, several extensions have been added to the
model. First, nondeterministic choices are resolved with probabilities where appropriate,
e.g., to model the request rate and to add a probability of failure. Second, an additional
service feature enables the system to automatically call service technicians that may repair
the elevator or install new features. As a consequence, the elevator system we consider
here is actually a dynamic product line where features can be activated and deactivated
during runtime. We deal with a simple instance of the elevator systemwhich can transport
one person and where at most two persons are in the system. Additionally, the system is
parametrized by the number of floors (2–4). We also consider the family of three product
lines, comprising 192 instances of the elevator system (64 valid feature combinations and
3 possible parameter values). The sizes of these models are shown in Table 4.3. The much
smaller number of MTBDD nodes required for representing the family model indicates
that a lot of behavior is shared between the family instances. In the quantitative analysis
of the model, we asked whether the minimal (i.e., worst case) probability to successfully
serve the top floor within the next three steps if the cabin is initially at the first floor and
the top floor is requested is greater than 0.99. The performance of the analysis approaches
and PRISM engines is shown in Table 4.4. Especially for larger instances, the all-in-one
analysis using the MTBDD engine considerably outperforms all other approaches and
engines. Thus, we again reach the conclusion that the all-in-one approach is particularly
effective for product-line models with many instances.

4.3 Self-adaptive systems
This section presents two case studies that serve to illustrate how the language constructs
provided by ProFeat are useful beyond modeling classical product lines and parametrized
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Table 4.4: Analysis times (in seconds) for elevator models (analysis time for one-by-one is sum
over all instances)

MTBDD Hybrid Sparse
Model all 1by1 par all 1by1 par all 1by1 par

Elevator (2 floors) 1 65 7 2 49 7 1 45 7
Elevator (3 floors) 4 223 11 98 2 531 96 7 286 18
Elevator (4 floors) 15 910 32 2 601 54 262 1 952 56 2 008 83

Elevator (2–4 floors) 29 1 199 49 5 089 56 843 2 052 74 2 339 106

models. In particular, a feature-oriented network system model shows how using ProFeat
is beneficial for analyzing single systems where the concept of features is applied to
describe the dynamics of (self-)adaptivity. In the second case study, the verification of an
adaptation protocol for self-adaptive systems, the combination of feature-oriented model-
ing and ProFeat’s metaprogramming capabilities proved to be effective for generically
describing the system.

4.3.1 Adaptive network system model

This case study illustrates how the concept of dynamic features can be applied to simplify
the modeling of an adaptive system. We consider a distributed system which consists of
several processing elements (PEs) connected by a heterogeneous network for communi-
cation. The network comprises links with different characteristics, as shown in Figure 4.9,
where PEs are connected by wired links and directed wireless links. While the wired
links are static and always available, the wireless links can be dynamically switched on
or off. Furthermore, these link types differ in their throughput and energy consumption.
We assume that both activating wireless links and keeping them active consumes energy,
even in case they are unused, i.e., a turned-on link carrying no network traffic is still
considered to be active. In the model, the system runs concurrent tasks that may be
distributed among several PEs and the subtasks processed by the PEs utilize the network
links to communicate. We focus on the network part of the system and thus abstract
from the operational behavior of the PEs. Therefore, the state of the network system is
solely determined by the load (network traffic) on the communication links.

The operation of the model is structured into four phases. First, a new task is generated.
The number of PEs necessary to process the task is given by a binomial distribution which
allows us to determine the load on the system using a single parameter. In the second
phase, the task is mapped onto the PEs which subsequently increases the load on the
network links connecting the selected PEs. The mapping may cause wireless links to be
activated if necessary. If no mapping is found or no mapping is possible at all, the task is
dropped, raising a “fail” event. Within the third phase, wireless links may be activated
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Figure 4.9: A network system with cube topology. The solid lines denote wired connections, while
the dashed lines indicate directed wireless connections.

and, given that they carry no network traffic, may also be deactivated. The processing
of tasks happens in the fourth phase. Finishing tasks is modeled by probabilistically
decreasing the load on the network links. Once the last phase ends, the described process
repeats from the start.

There are several possibilities to implement the task mapping in such a system. In
this case study, three variants of the system were considered. In the first two, the task
mapping is nondeterministic, enabling a best- and worst-case analysis. The third variant
utilizes a randomized strategy that may serve as a basis for an actual implementation of
the task mapping.

Nondeterministic. For a task that requires 𝑛 network links (and 𝑛 + 1 PEs), this model
nondeterministically selects one of all possible spanning trees with 𝑛 edges over
the network topology.

Nondeterministic with hopping. This is a variation of the nondeterministic model
where mappings may include additional hops, i.e., PEs that do not contribute to the
processing of a task and merely serve as communication relays. For each generated
task, number of hops is chosen according to some fixed probability distribution.

Heuristic. A simple heuristic for mapping tasks applies the “greedy” principle. First, the
PE with the most capacity remaining among its connected network links is selected.
Then, the task is randomly distributed over the adjacent PEs. The probability that
an adjacent PE is selected is indirectly proportional to the load on the adjacent link.

In the following, we discuss some notable modeling details. Each wireless link 𝑖 is
treated as an optional dynamic feature Link[i], i.e., the set of wireless links is compactly
represented by a multi-feature. As a consequence, the definition of costs is simplified,
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as they have to be defined only once in the feature model and are then automatically
applied to all links. Turning wireless links on and off is handled by the feature controller
which activates and deactivates the corresponding features. An excerpt of the controller
in the nondeterministic variant is shown in Listing 4.10. A for loop is used to generate a
deactivation command for each wireless link. The load array stores the current amount of
network traffic for each link. The excerpt in Listing 4.11 shows a part of how the mapping
is realized in the model. Here, one of all possible spanning trees of size task_size is
selected. An element with index 𝑖 in the selected array is true if the PE with index 𝑖 is
a node in the spanning tree. The parametrized formulas from(k) and to(k) return the
endpoints of a link with index 𝑘 . The spanning tree is built incrementally where in each
step another link, which must be connected to any PE that has been chosen beforehand, is
selected nondeterministically. The load of the selected link is increased accordingly and
the remaining task size to be mapped is decremented. The process repeats until the task
size reaches zero. The metaprogramming constructs allow that the behavior of the model
is defined completely independent of the network topology. Instead of being hard-coded
into the model, the topology is specified by a constant array which can be accessed using
the from and to formulas.

1 controller
2 // ...
3 for i in [0..NUM_OPTIONAL_LINKS-1]
4 [] active(Link[i]) & load[i] = 0 & phase = RECONF & link = i ->
5 deactivate(Link[i]);
6 [] phase = PHASE_RECONF & link = i -> true;
7 endfor
8 endcontroller

Listing 4.10: Part of the network system’s feature controller that nondeterministically deactivates
unused wireless links

1 for i in [0..NUM_LINKS-1]
2 [] phase = MAP & task_size > 0 & load[i] < link_capacity(i) &
3 selected[from(i)] & !selected[to(i)] ->
4 (selected[to(i)]' = true) & (load[i]' = load[i] + 1) &
5 (task_size' = task_size - 1);
6 endfor

Listing 4.11: Excerpt of the nondeterministic variant of the network system model showing how a
spanning tree is built iteratively during the mapping phase
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In the model that has been used for the subsequent quantitative analysis, the maximal
task size was limited to 2. Here, the task size refers to theminimal number of network links
the task requires, i.e., a task of size 𝑛 needs at least 𝑛 links and 𝑛 + 1 PEs. The probability
that the next incoming task has size 1 is given by the parameter 𝑡1. Thus, the probability
𝑡2 for an incoming task of size 2 is 𝑡2 = 1 − 𝑡1. The minimal probability that mapping
a task fails within the first 9 rounds depending on 𝑡1 are presented in Figure 4.12. The
results for the nondeterministic variant represent the theoretical optimum. As expected,
the probability of a mapping failure decreases if the arrival of a task with size 2 becomes
less likely. Tasks of size 1 can be mapped easily if there is at least one link that still has
enough spare capacity. Furthermore, the ability to map a task of size 1 does not depend
on previous mapping choices. However, mapping of a task with size 2 is more likely to
fail, as two links connected via a PE have to be found that still can accommodate the
additional load. Thus, whether mapping a task of size 2 can be successful also depends on
previous mapping choices.
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Figure 4.12: Minimal probability of that a mapping failure occurs within 9 rounds, depending on
the arrival probability of a task with size 1 (instead of a task with size 2) in each round

The second experiment considers the trade-off between successful mappings and the
energy required to guarantee them within a certain probability which is formalized as an
energy-utility quantile [Bai+14]. Here, we assume that the activation of a wireless link
consumes 2 units of energy and keeping them active requires 1 unit. Wired links do not
incur any additional energy costs. Figure 4.13 shows the quantile value as the minimal
energy required depending on the probability that at most one mapping fails. The higher
the probability, the more likely it is that wireless links must be utilized to avoid mapping
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failures and hence more energy must be used. The plot shows the results for 𝑡1 = 0.5, i.e.,
the distribution of task sizes is uniform. Due to the combinatorial blow up of possible
mappings, the model suffers from the state-space-explosion problem with around 120
million states for the topology shown in Figure 4.9. Therefore, the analysis had to be
carried out using PRISM’s MTBDD engine.
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Figure 4.13: Minimal energy required such that there is a mapping strategy which guarantees
with probability 𝑝 at most one mapping failure within 9 rounds

4.3.2 Adaptation protocol for distributed systems

The focus of this case study was the verification and quantitative analysis of a novel
protocol for coordinating adaptations in a distributed system [Wei+17]. Such a system
consists of several collaborating nodes that can communicate over a possibly unreliable
network. We assume that on each node the application logic is strictly separated from the
adaptation logic which is encapsulated in the local adaptation manager. Due to changes
in the context or environment, new goals, or occurring defects, the distributed system
may need to adapt in order to react to changed circumstances. We further assume that
there is no central entity coordinating the adaptation. Rather, all nodes are required to
coordinate their local adaptations with the other involved nodes such that eventually a
consistent system state is reached. That is, either all nodes have successfully applied the
adaptation, or, in case of some unexpected error, the previous system state is restored. A
decentralized approach for adaptations complicates the coordination of the individual
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nodes, but it makes the system more resilient by not relying on a centralized coordination
entity.

The coordination protocol for decentralized adaptation of multiple distributed nodes
proposed in [Wei+17] proceeds as follows. First, the adaptation plan (generated by some
planning component) is sent to all involved nodes and provides them with two important
pieces of information: the set of other nodes that are involved in the adaptation, and
which local adaptations are necessary on each node. In a second step, the involved nodes
must reach a stable state that allows for the local adaptations to be applied. After that,
each node locally applies the adaptations. If a node was able to successfully change its
configuration, it sends a report message to every other involved node and enters a waiting
state. It remains in this state until it has received the report messages of all other involved
nodes. If this finally happens, the whole adaptation is considered to be successful. In case
a node could not apply its local adaptation because of some error, it sends a transaction
rollback message to the other nodes to abort the adaptation across the system. Obviously,
the coordination messages of the protocol can get lost in an unreliable network. If some
node A did not receive the expected report message of some node B until a timeout has
occurred, node A will first request that node B resends its report message. In case that
is unsuccessful, node A will send a broadcast message to all other nodes asking for a
confirmation of B’s success. If that also fails, A will abort the adaptation locally and send
the transaction rollback message to all other nodes. The protocol further allows grouping
multiple adaptations together into an adaptation transaction to ensure a consistent system
state.

Modeling details

The support for feature-oriented modeling combined with the metaprogramming facilities
of ProFeat enables a generic definition of the system’s and the protocol’s operational
behavior. For each node 𝑖 of the system, the model contains a feature Node[i], i.e., the
set of nodes is represented as a multi-feature. Thus, the node behavior needs to be defined
only once and is automatically instantiated for all nodes. For realizing asynchronous
message passing between the nodes, the model contains a Network feature that stores all
incoming messages in a buffer, as shown in Listing 4.14. ProFeat allows action labels to
be indexed like arrays (line 6) which enables a general definition of the network feature
module independent of the concrete messages that are being sent. If a message arrives,
it is placed into the next empty cell of the buffer (lines 6–8), or it is lost with a certain
probability (line 9). Conversely, if a node receives a message from the network, the
message is removed from the buffer (line 11). Note that the network imposes no order on
sending and receiving, thus messages may also get reordered. The index of the send and
recv messages carries the actual message content and is generated using parametrized
formulas for each message type. Consider for example Listing 4.15 where a node sends a
report message from itself to another node (with sender and receiver given as arguments
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1 module Network(buf_size) {
2 cell : array [0 .. buf_size - 1] of [EMPTY .. NUM_MSGS - 1] init EMPTY;
3

4 for msg in [0 .. NUM_MSGS - 1]
5 for c in [0 .. buf_size - 1]
6 [send[msg]] for i in [0 .. c - 1] cell[i] != EMPTY & ... endfor &
7 cell[c] = EMPTY ->
8 (1 - P_MSG_LOSS): (cell[c]' = msg) +
9 P_MSG_LOSS: true;

10

11 [recv[msg]] cell[c] = msg_id -> (cell[c]' = EMPTY);
12 endfor
13 endfor
14 endmodule

Listing 4.14: The Network module uses a buffer for realizing asynchronous message passing

to the report formula). The model is parametrized by number of nodes in the network,
the buffer size, and the probability for message loss. Furthermore, a Scenario feature
describes the adaptation transaction and can be configured by a set of constants. Overall,
the generality of the model allows us to quickly experiment with different settings and
scenarios without having to rewrite the model every time.

1 for i in [0 .. NUM_NODES - 1]
2 [send[report(id, i)]] state = S_SEND & index = i -> (index' = index+1);
3 endfor

Listing 4.15: Excerpt of the Node feature module for sending a report message over the network

Quantitative Analysis

After having verified that the protocol is deadlock-free and that adaptations are applied
consistently in case there is no message loss, we asked for the minimal probability of a
successful adaptation transaction for a probability of message loss between 0 and 0.1. The
results for a system with 3 nodes and 2 adaptation steps are presented in Figure 4.16. The
analysis has been carried out for a model variant with no handling of message loss and
another variant where a node will actively request the resending of lost report messages.
As expected, the latter protocol variant is more resilient to message loss.
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Figure 4.16: Minimal probability of a successful adaptation transaction for a given probability of
message loss
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Role-based systems
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5 Formal modeling and analysis of
role-based systems

In this chapter, a compositional modeling framework for context-sensitive and adaptive
systems is proposed. For that, we adopt concepts and notions from role-based modeling,
as roles elegantly capture context-specific adaptations. The modeling formalism com-
prises role-based automata (RBA) which provide roles as a first-class modeling concept.
Role-playing, i.e., the active enactment of role-related behavior, is made explicit by role-
playing annotations which enable reasoning about the active participation of components
within (unintended) interactions. This is especially important in highly dynamic, adap-
tive systems where the occurrence of interactions may depend on the sequence of role
activations and deactivations. Furthermore, roles make the context in which components
act explicit as well. This not only allows us to reason about interactions within single
systems, but also about interactions between systems or within hierarchies of systems.

Outline. The first part of this chapter, Section 5.1, gives an overview of the role concept
with a focus on conceptual modeling and role-based programming languages. Based on
the concepts and notions of role-based modeling, the second part (Section 5.2) introduces
RBA which allow capturing role-based behavior, such as dynamic role-playing and role
interactions, within formal operational models.

The contents of Section 5.2 are based on the publication [Chr+20].

5.1 The role concept
The role concept has been considered in a broad range of fields [ZZ08], including data
modeling, conceptual modeling [Küh+14; Ste00], programming languages, security (role-
based access control [FK92]), multi-agent systems [Cab+10], and computer-supported
collaborative work. Bachman and Daya introduced roles in data modeling as early as
1977 to capture evolving entities within databases [BD77]. Distinguishing entities and
roles that entities might play enables a more natural mapping of real-world concepts to
the data model and allows a more flexible modification of data. Consider the example of a
person (the entity) who is an employee (the role) in a company. The person’s record may
contain the full name, date of birth, etc., while the employee record stores the position,
salary, office telephone number, and so on. Separating these records is justified by the
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fact that they have different lifetimes. An employee might leave a company or may
change the department which requires the employee record to be deleted or updated. A
person, however, does not cease to be a person if the employment changes. Furthermore,
a person may have multiple part-time employments which is easily handled by adding
another employee role. Naturally, a person entity can acquire different roles depending
on the context. For instance, the person might additionally become a project manager.
By treating roles as a first-class concept, transient and context-dependent properties can
be handled without modification of entity records, facilitating an evolution of data.

By encapsulating context-dependent behavior and properties, roles facilitate a sep-
aration of concerns. A collaboration between objects can be modeled using a set of
interacting roles where each role encompasses the behavior of a participant in the collabo-
ration. With roles acting as intermediaries between objects, relationships become explicit,
making the complex interactions between objects easier to grasp. This is in contrast to
standard object-oriented systems where relationships are only implicitly defined, usually
by references. However, roles are not only conceptually relevant, but also provide a
practical programming mechanism. Since they encapsulate behavior and are able to
adapt objects, they enable a fine-grained modularization. Not only does this make the
implementation of a system more manageable, it also facilitates component reuse. For
instance, consider a leader election protocol in a distributed system. This collaboration,
represented by a set of roles, may be reused across different (unrelated) components of
the system or even in the implementation of other systems. It has been observed that
roles share similarities with aspects from aspect-oriented programming [Kic+97]. In
particular, both concepts allow the modification of existing behavior. That makes roles
suitable for implementing cross-cutting concerns [GØ02; Her02; HU02; VL16]. A concern
is called cross-cutting if its implementation is scattered over multiple components and
thus cannot be cleanly modularized using standard object-oriented techniques. Examples
include monitoring, synchronization, and transaction management. In conclusion, roles
are not only conceptually appealing, but serve a practical purpose by enabling a separa-
tion of concerns. With that, systems can be built compositionally by combining small,
manageable parts.

5.1.1 Towards a common notion of roles

Roles are an intuitively understood concept and have been widely recognized as a useful
modeling construct, as they allow for an accurate representation of real-world concepts.
However, most approaches that incorporate roles introduced a different definition of roles,
often without considering already existing work. This is not overly surprising, as each
research field had different reasons for introducing roles, fulfilling their specific needs
and requirements. Overall, this lead to a fragmented research landscape and still to this
day there is no consensus on what a role actually is. Roles have been considered to be
named places in relationships, a collection of dynamic properties of objects, a description
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of context-dependent attributes and behavior, and have been characterized as a set of
capabilities, requirements and goals. As a result, there have been several attempts to
reconcile and unify the different role notions that have been presented in the literature,
most prominently by Steimann. In a survey of role-based approaches [Ste00] that have
been proposed before the year 2000, he identified the following list of 15 characteristics
associated with roles.

1. A role comes with its own properties and behavior.
2. Roles depend on relationships.
3. An object may play different roles simultaneously.
4. An object may play the same role several times, simultaneously.
5. An object may acquire and abandon roles dynamically.
6. The sequence in which roles may be acquired and relinquished can be subject to

restrictions.
7. Objects of unrelated types can play the same role.
8. Roles can play roles.
9. A role can be transferred from one object to another.

10. The state of an object can be role-specific.
11. Features of an object can be role-specific.
12. Roles restrict access.
13. Different roles may share structure and behavior.
14. An object and its roles share identity.
15. An object and its roles have different identities.

Note that the term “feature” in item (11) is not restricted to the notion of features in the
feature-oriented approach, but refers to any operation or functionality provided by a role-
playing object. Also note that some of these characteristics are conflicting, e.g, (14) and
(15), thus no approach can provide all characteristics at once. Based on his observations,
Steimann proposed the general role-based modeling language Lodwick [Ste00] to serve as
a foundation for other role-based modeling languages and programming languages.

A more recent survey of role-related approaches has been conducted by Kühn et
al. [Küh+14]. With the rise of mobile and interconnected devices, the focus of con-
temporary approaches has shifted to address context-aware systems and applications.
Consequently, several proposed modeling languages and programming languages include
context as a first-class modeling construct. Since the term “context” is both vague and
heavily overloaded, these approaches often introduce a new notion for this concept, such
as team [Her02], institution [Gen07], or ensemble [HK14]. Kühn et al. proposed the gen-
eral term compartment [Küh+14] in order to unify these different notions of objectified
contexts. To account for the context-related characteristics of roles, they extended the
list of Steimann with the following items.
16. Relationships between roles can be constrained.
17. There may be constraints between relationships.
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18. Roles can be grouped and constrained together.
19. Roles depend on compartments.
20. Compartments have properties and behavior.
21. A role (type) can be part of several compartments.
22. Compartments may play roles like objects.
23. Compartments may play roles which are part of themselves.
24. Compartments can contain other compartments.
25. Different compartments may share structure and behavior.
26. Compartments have their own identity.
27. The number of roles occurring in a compartment can be constrained.

In addition to the extended list of role characteristics, Kühn et al. classified the approaches
in the literature by which of the three different aspects of roles1 they address. The
behavioral aspect refers to the capability of roles to extend or alter the structure and
behavior of an object. Modeling languages which support relationships as a first-class
citizen emphasize the relational aspect of roles. Here, roles depend on and are defined
by the relationships between them. Context-dependent roles encapsulate attributes and
behavior that are relevant in a specific collaboration, situation, or protocol. From these
three aspects and their combinations, the following classes of role-based approaches arise.

Behavioral aspect. The Generic Role Model [DPZ02] addresses behavioral and structural
adaptation only. An emphasis on behavioral adaptation can also be found in many
role-based programming languages such as Chameleon [GØ03], Rava [He+06], and
JavaStage [BA12].

Relational aspect. In UML class diagrams [OMG11] and theObject-Role Modeling (ORM)
approach [Hal05], roles designate the ends of relationships between objects. The
programming language Rumer [BG10; BGE07] incorporates relationships as a
first-class language construct.

Relational and behavioral aspects. Examples of this class include the modeling lan-
guage Lodwick [Ste00] and OntoUML [Gui+04; GW12], an extension of the UML
based on a precise ontological foundation.

Context-dependent and behavioral aspects. Representatives of this class are theMeta-
model for Roles [Gen07] which attempts to reconcile earlier role-based approaches,
and the Data, Context and Interaction (DCI) paradigm [CR14]. Within DCI, all
behavior is contained in roles that reside within contexts. The programming lan-
guage EpsilonJ [TUI05] provides first-class contexts and has been extended to
NextEJ [KT10] which supports scoped context activation as introduced by the

1Kühn et al. use the term natures of roles.
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context-oriented programming paradigm. The powerJava language [BBT06] uti-
lizes roles for the exogenous coordination of objects. Arguably the most mature
role-based language is the Java extension ObjectTeams/Java [Her02; Her07].

Context-dependent and relational aspects. The Information NetworkingModel [LH09]
is a data modeling language that extends the classical Entity-Relationship model
with roles and contexts. In the Helena approach [HK14], components play roles
in ensembles. Relationships are made explicit by role connectors. While roles
have behavior, components serve merely as providers for data and operations to be
invoked by roles. Therefore, structural and behavioral adaptation is not supported.

Combination of all aspects. The Compartment Role Object Model (CROM) [Küh+14] is
a family of meta-models that allows the combination of all three aspects of roles.
The Scala library SCROLL [LA15] facilitates role-based programming and, as it is
based on the CROM, covers all aspects of roles.

As the CROM currently is the most comprehensive meta-model that combines and unifies
many ideas of previous works, the formal modeling approach presented in this thesis
takes inspiration from the CROM and its concepts. Therefore, the next section discusses
the meta-model in more detail.

5.1.2 The Compartment Role Object Model
The CROM is a meta-model for the conceptual modeling of role-based systems and
combines the behavioral, relational and context-dependent aspects of roles [Küh+15]. In
fact, it does not only provide a singular meta-model, but rather a family of meta-models.
For that, the characteristics of roles listed in Section 5.1.1 are treated as features. To
capture dependencies, e.g., that constraining relationships requires that relationships are
supported, and other constraints between these features, a feature model in the form of a
feature diagram is utilized to define the valid feature combinations [Küh+14; Küh17]. By
selecting a specific combination of features, users of the meta-model can customize it and
tailor it to their specific needs. Tool support for configuring the meta-model as well as
conceptual modeling is provided by the model editor FRaMED [Küh+16].

The CROM provides four meta-types: natural type, role type, compartment type, and
relationship type. Naturals (e.g., person, company) are entities that are independent of
any context and constitute the role players. The context in which roles are played is
provided by a compartment (e.g., university, business transaction). Relationship types are
used to relate two roles that are dependent on each other and cannot exist in isolation
(e.g., a buyer role and a seller role). In order to give these types a precise ontological
semantics and to provide guidance on which meta-type should be used for a certain
real-world concept, the meta-types are characterized in terms of the meta-properties
identity, rigidity, and foundedness. The identity [Gui05; GW00] property states whether
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the instance of a type has a unique, derived, or composite identity. For instance, a person
has a unique identity that is not shared with or derived from any other entity. The identity
of a student role, on the other hand, is derived from the identity of the person playing it.
Relations between entities often have a composite identity, e.g., a business transaction
might derive its identity from the buyer, seller, and the items being sold. If an instance
has a rigid [GW00] type, then it has this type during its whole lifetime. For instance, a
car cannot cease to be a car until it is scrapped. The dual, anti-rigidity, denotes that a
property can cease to hold, e.g., a person can stop being a customer without ceasing to be
a person. Finally, foundedness [GW00; MKK12] (also called dependence) describes entities
whose existence depends on another entity, e.g., to be a customer there must exist another
person who is a vendor. Furthermore, both the customer and the vendor depend on the
context, i.e., the exchange of money and goods. Using these three ontological properties,
each concept provided by the CROM is characterized. For instance, a role type derives its
identity from its player. Furthermore, it is anti-rigid, as a role can cease to exist without
affecting the lifetime of its player. Finally, roles are founded, as they depend both on the
existence of a player and a context. The characterization of all meta-types is summarized
in Table 5.1.

Table 5.1: Ontological characterization of meta-types [Küh+15]

Concept Identity Rigidity Foundedness Example

natural type unique rigid non-founded person, car
role type derived anti-rigid founded student, customer
compartment type unique rigid founded university, transaction
relationship type composite rigid founded advises, married

The CROM framework provides a graphical notation for models, i.e., the type level,
as well as for instances [Küh+15]. We will only discuss the subset of notations here
that are used throughout this thesis. For a full reference of the graphical notation,
see [Küh17]. The type-level notation, which is inspired by UML class diagrams, is shown
in Figure 5.1a. Natural types and compartment types are represented by boxes where
the first line constitutes the type name. Optionally, attributes and method signatures
can be defined. Role types are defined similarly, but are represented by rounded boxes
to visually distinguish them from rigid types. The “fills” relation ( ) specifies that
a type can fill a certain role type, i.e., its instances can act as instances of the indicated
role type. Compartment types have an additional part that contains the participating role
types. The instance-level notation is shown in Figure 5.1b. In a Compartment Role Object
Instance (CROI), instances are drawn analogously to their corresponding types. For a
visual distinction from types, the instance name is underlined and followed by the type
of the instance. Again, roles are drawn with rounded corners. That a role is played by an
instance is denoted by drawing the role’s box inside the role segment of the player’s box,
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CompType

RoleType
NaturalType
attribute: type

method()

(a) Type-level notation

c : CompType

n : NaturalType

r : RoleType

(b) Instance-level notation

Figure 5.1: CROM graphical notation (extracted from [Küh17])

e.g., the instance n plays the role r. Compartment participation is likewise indicated by
putting the role (and also its player) into the lower part of the compartment.

To summarize, the CROM combines the behavioral, relational, and context-dependent
aspects of roles and provides a clear graphical notation for the conceptual modeling of
role-based systems. The formal framework presented in the latter part of this chapter
therefore adopts the ontologically founded notions of naturals, roles, and compartments
as defined by the CROM.

5.1.3 Roles in programming languages

For a modeling formalism aiming to capture the operational behavior of role-based
systems, the behavioral aspect of roles is especially important. Therefore, the focus of
this section is to survey existing role-based programming languages to gain insights on
which effects roles can have on the behavior of objects, components, and systems.

We can distinguish three groups of role-based programming languagesw.r.t. the possible
adaptations a role can apply to the behavior of its player: no adaptations are possible, only
new behavior can be added, and lastly, arbitrary modifications of behavior are possible.

No adaptation. Within JavaStage [BA12], roles are mainly utilized for modularization
and the separation of concerns. Hence, only static roles are supported and no
adaptation mechanism is provided. In powerJava [BBT06], roles are a means
for the exogenous coordination of components. As such, they constitute a two-
way interface between the component and the context: methods that must be
provided by the component and methods that are provided to the component by
the environment. Since roles have no own behavior in this language, no adaptation
is possible.

Add new behavior. The only language falling into this group is Rumer [BG10; BGE07].
Here, roles are defined as parts of relationships. A relationship may add properties
and new behavior to the components it connects, but cannot alter their behavior.
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Modify behavior. Role-based programming languages that focus on the behavioral as-
pect of roles and use them as a construct for capturing context-dependent behavior
belong to this group. Chameleon [GØ03] applies a well-known adaptation mech-
anism from aspect-oriented programming [Kic+97]. A role can inject behavior
before and after existing methods of the player. Methods can also be overridden,
i.e., replaced completely, by the role. In case both the player and one or more of its
roles provide a method with the same name, the method with the highest priority
is chosen upon invocation. These priorities can be changed dynamically to adapt
to different contexts. ObjectTeams/Java [Her02; Her07] applies aspect-oriented
techniques as well. Rava [He+06] internally uses the role-object pattern [Bäu+98]
and thus also allows replacing methods of the player by role methods. Both Ep-
silonJ [TUI05] and NextEJ [KT10] likewise utilize a technique reminiscent of the
role-object pattern. The SCROLL library [LA15] uses a yet another approach. Here,
the player and its roles are internally stored as nodes in a graph. A dispatch configu-
ration specifies how this graph is traversed to find the target of a method invocation.
Clearly, by prioritizing the role method over the player’s method, replacement of
the player’s original behavior is possible. Note that in all languages in this group it
is possible to invoke the base behavior of the player from within the role’s behavior,
e.g., to extend and adapt already existing functionality.

In conclusion, most role-based programming languages focusing on context-dependent
behavior support a flexible adaptation by replacing existing behavior and adding new
behavior. Consequently, the formal approach for modeling the operational behavior of
role-based systems presented in the following allows adding and overriding behavior as
well.

5.2 Compositional modeling of role-based behavior
In this section, we introduce an automata-based formalism for modeling the operational
behavior of role-based systems. The conceptual notions used here are inspired by the
CROM [Küh+15] which unifies the well-established views on roles presented in the lit-
erature. Similar to the CROM, we distinguish between different kinds of components,
namely naturals that constitute the role players, roles, and compartments that are objecti-
fied contexts in which the roles are played. In contrast to the CROM and other similar
meta-models which are only concerned with the structure of a role-based system, we focus
here on their operational behavior. For that reason, we do not consider role relationships,
as they are mainly a means to describe and constrain the structure of role-based systems.

As the separation of concerns is a major motivation of the role-oriented development
approach, role-based systems naturally admit a compositional structure with naturals,
roles, and compartments as the basic components. We introduce RBA as a uniform repre-
sentation of such components. These basic components are combined using operators for
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role-binding and parallel composition. Role-binding enables a player to act in a certain role,
i.e., to play the role. The distinction between role-binding and role-playing, corresponding
to the ability to act in a certain role and actually playing the role, respectively, has also
been considered by Mizoguchi et al. [MKK12]. To attain a joint automaton capturing both
player behavior and emerged role-playing behavior, the role-binding operator takes an
RBA representing either a natural, a role, or a compartment, and combines it with an RBA
specifying the role-dependent behavior. The possibility to bind roles to compartments,
which themselves consist of role-playing components, enables a hierarchical modeling
of systems. The second operator, parallel composition, formalizes the interaction of RBA
using the standard notion of synchronization over shared actions. Applying the afore-
mentioned composition operators for combining the RBA of all components results in a
single RBA encompassing the behavior of the whole role-based system. This RBA also
contains all possible combinations of role-playing. However, usually not all role-playings
are actually allowed. Constraints regarding role-playing are formalized using another
automata-based component, the (role-playing) coordinator. The composition of an RBA
with a coordinator resolves all allowed combinations of role-playing and yields an MDP.
As MDPs are a well-established formalism with broad applications, this semantics enables
the application of already available tool support.

The concepts presented in this section are illustrated using a banking example adapted
from [CR14] and [Küh+15]. In this scenario, an Account (a natural type) implements only
the basic functionality of a bank account: storing a balance and providing operations
to increase or decrease it. The (context-specific) functionality for a money transfer
between accounts is encapsulated in the Source and Target roles within the Transaction
compartment, resulting in a separation of concerns. Similarly, the business rules for
different kinds of accounts is captured in roles within the Bank compartment. An account
playing the Checking account role may be overdrawn up to a certain limit. A fee is applied
to every transaction on a Savings account. The role model of the example is shown in
Figure 5.2, depicting that a natural of type Account can fill the roles of type Checking,

Account
balance: Money

Bank

Checking
limit: Money

Savings
transactFee: float

Transaction

Source

Target

Figure 5.2: Role model for the banking example in CROM notation
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Savings, Source and Target. In the following examples, we successively model a money
transfer from one Account to another where the first one plays the Source role and the
second one plays the Target role.

5.2.1 Role-based automata and their composition

RBA are an MDP-like formalism with additional annotations to capture role-specific
behavior as well as the effects of binding a role to a player. For defining a notion of
composability, we first introduce role interfaces that specify which roles appearing in an
RBA are already bound to a player (the bound roles) and which roles are not bound yet
(the unbound roles). Note that role interfaces always refer to role instances.

Definition 5.1 (Role interface). A role interface is a pair 𝑅 = ⟨𝐵,𝑈 ⟩ of a set of bound
roles 𝐵 and a set of unbound roles𝑈 with 𝐵 ∩𝑈 = ∅.

We use the shorthand notation 𝑅 for 𝐵 ∪𝑈 in case we do not explicitly refer to 𝑅 as
role interface. If𝑈 = ∅, then the role interface is closed. Two role interfaces ⟨𝐵1,𝑈1⟩ and
⟨𝐵2,𝑈2⟩ are called compatible if they have no common roles, i.e., (𝐵1∪𝑈1)∩ (𝐵2∪𝑈2) = ∅.
We define a commutative and associative composition operator ⊕ on compatible role
interfaces where ⟨𝐵1,𝑈1⟩ ⊕ ⟨𝐵2,𝑈2⟩ =

⟨︁
𝐵1 ∪ 𝐵2, (𝑈1 ∪𝑈2) \ (𝐵1 ∪ 𝐵2)

⟩︁
.

A role annotation denotes which roles are played (or not played) on a transition. The
set of role annotations over a set of roles 𝑅 is defined as A(𝑅) = {𝑟, 𝑟, +𝑟 : 𝑟 ∈ 𝑅}. If a
transition is labeled with 𝑟 or 𝑟 , then the role 𝑟 is actively played or explicitly not played,
respectively. In case neither 𝑟 nor 𝑟 appear on a transition, then role 𝑟 may be played, but
not necessarily. Transitions annotated with +𝑟 are added to the player upon binding the
role 𝑟 .

Definition 5.2 (Role-based automaton). An RBA is a tuple A = (𝑆,Act, 𝑅,−→, 𝑆 init),
where

• 𝑆 is a finite set of states,
• Act is a set of actions,
• 𝑅 = ⟨𝐵,𝑈 ⟩ is a role interface,
• −→ ⊆ 𝑆 × Act × P(A(𝑅)) × Distr(𝑆) is a role-annotated transition relation, and
• 𝑆 init ⊆ 𝑆 is a set of initial states.

A transition of a role-based automaton has the form (𝑠, 𝛼, 𝑋, _), where 𝑠 ∈ 𝑆 is the source
state, 𝛼 ∈ Act is an action, 𝑋 ⊆ A(𝑅) is a set of role annotations, and _ is a distribution
over 𝑆 representing an internal probabilistic choice that specifies the probabilities for
entering the successor states. We assume that transitions are not labeled with conflicting
annotations, i.e., for all transitions and roles 𝑟 ∈ 𝑅 we have |𝑋 ∩ {𝑟, 𝑟, +𝑟 }| ≤ 1. Further,
we introduce the notation 𝑠

𝛼/𝑋
−−−→ _ for (𝑠, 𝛼, 𝑋, _) ∈ −→.
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5.2 Compositional modeling of role-based behavior

RBA provide a uniform representation for naturals, roles, and compartments. An RBA
represents a natural if its role interface 𝑅 = ⟨𝐵,𝑈 ⟩ is empty, a role if 𝐵 = ∅ and 𝑈 is a
singleton, and a compartment otherwise.

02 12

inc2 / ∅

dec2 / ∅

Figure 5.3: RBA for Account instance Acc2

R𝑡

P𝑡

d / {𝑡}inc2 / {𝑡}

inc2 / {𝑡}dec2 / {𝑡}

inc2 / {𝑡}dec2 / {𝑡}

(a) Target role

0

-1

dec2 / {+𝑐}inc2 / {+𝑐}

dec2 / {𝑐}inc2 / {𝑐}

dec2 / {𝑐}inc2 / {𝑐}

(b) Checking role

Figure 5.4: RBA for the Target role and the Checking role

Example 5.3 (Role-based automata for naturals and roles). Figure 5.3 shows the RBA for
the instance Acc2 of the natural type Account. Since there are multiple accounts in the
banking scenario, all states and actions of the presented RBA carry the index 2. To keep
the example automata small, the account balance is either 0 or 1 and can be increased or
decreased using the inc and dec actions, respectively.

In Figure 5.4a, the RBA representing an instance of the Target role is shown. Note that
the name Target refers to the RBA itself, while 𝑡 is the role’s name in the role interface.
In the ready state R𝑡 , the deposit action 𝑑 may be invoked which enters the processing
state P𝑡 . Then, the account balance is increased by synchronizing with the player’s inc2
action. The self-loops on both states annotated with {𝑡} enable the inc2 and dec2 actions
in case the role is not played. The Source role can be modeled analogously.

The RBA for an instance of the Checking account role is presented in Figure 5.4b. This
role enables an account to be overdrawn. For the sake of simplicity, the account can only
be overdrawn once, indicated by the state -1 . The {+𝑐} role annotations allow the inc2
and dec2 actions to be taken even if the player of the role does not provide these actions
in its current state. This effectively enables overdrawing an empty account via the dec2
action.

We call an RBA an unbound role instance of a role 𝑟 if each transition is annotated
with either 𝑟 , 𝑟 , or +𝑟 , and 𝑅 = ⟨∅, {𝑟 }⟩. Note that the RBA in Figures 5.4a and 5.4b are
unbound role instances of the Target role 𝑡 and Checking account role 𝑐 , respectively.

73



5 Formal modeling and analysis of role-based systems

Parallel composition

Having established RBA as basic building blocks of the modeling formalism, we turn to the
definition of the parallel composition operator which formalizes the interaction between
RBA.The definition of the operator follows the usual definition of parallel composition for
MDPs. Two automata in parallel run concurrently and can communicate via handshaking,
i.e., synchronization over shared actions.

Definition 5.4 (Parallel composition). The parallel composition of two RBA
A𝑖 = (𝑆𝑖,Act𝑖, 𝑅𝑖,−→𝑖, 𝑆

init
𝑖 ) with compatible role interfaces 𝑅𝑖 for 𝑖 ∈ {1, 2} is defined as

A1 ∥ A2 =
(︁
𝑆1 × 𝑆2, Act1∪Act2, 𝑅1⊕𝑅2, −→, 𝑆 init1 × 𝑆 init2

)︁
where −→ is the smallest transition relation fulfilling the rules shown in Figure 5.5.

(int1)
𝑠1

𝛼/𝑋
−−−→1 _1 𝛼 ∈ Act1\Act2

⟨𝑠1, 𝑠2⟩
𝛼/𝑋
−−−→ _1 ∗ Dirac(𝑠2)

(int2)
𝑠2

𝛼/𝑌
−−−→2 _2 𝛼 ∈ Act2\Act1

⟨𝑠1, 𝑠2⟩
𝛼/𝑌
−−−→ Dirac(𝑠1) ∗ _2

(sync)
𝑠1

𝛼/𝑋
−−−→1 _1 𝑠2

𝛼/𝑌
−−−→2 _2 𝛼 ∈ Act1 ∩ Act2

⟨𝑠1, 𝑠2⟩
𝛼/𝑋∪𝑌
−−−−−→ _1 ∗ _2

Figure 5.5: Rules for the parallel composition of RBA

The parallel composition is well-defined, i.e., composing two RBA yields again an RBA.
Note that due to the union of role annotations in the (sync) rule of Figure 5.5, multiple
roles can be played at the same time in a single transition.

Role-binding

Next, we consider the role-binding operator. Role-binding joins the behavior of a role
with that of its player, possibly modifying the player’s behavior, such that the player
is able to actively play the bound role. Existing approaches for role-binding presented
in [FK01; TK03a; TK03b] and the closely related aspect weaving presented in [KFG04]
realize composition by taking the union of the components’ state spaces. This effectively
results in a sequential execution of player behavior and role behavior. In contrast to
these approaches, we employ a product construction similar to parallel composition.
The product construction enables more flexibility for modeling the joint role-and-player
behavior, as it allows a concurrent execution of role behavior and player behavior. Note
that the sequential composition is fully covered by the product construction. By using
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overriding transitions to switch into the role behavior and subsequently blocking all
player behavior, a sequential execution be achieved.

Definition 5.5 (Role-binding). Let A = (𝑆𝑎,Act𝑎, 𝑅𝑎,−→𝑎, 𝑆
init
𝑎 ) and

P = (𝑆𝑝,Act𝑝, 𝑅𝑝,−→𝑝, 𝑆
init
𝑝 ) be RBA with compatible role interfaces 𝑅𝑎 = ⟨𝐵𝑎,𝑈𝑎⟩ and

𝑅𝑝 . Binding an unbound role 𝑟 ∈ 𝑈𝑎 in A to a player P yields an RBA

A[𝑟 → P] =
(︁
𝑆𝑎 × 𝑆𝑝, Act𝑎∪Act𝑝, 𝑅, −→, 𝑆 init𝑎 × 𝑆 init𝑝

)︁
where 𝑅 = 𝑅𝑎 ⊕ 𝑅𝑝 ⊕ ⟨{𝑟 },∅⟩ and −→ is the smallest transition relation fulfilling the rules
shown in Figure 5.6.

(int𝑎)
𝑠𝑎

𝛼/𝑋
−−−→𝑎 _𝑎 𝛼 ∈ Act𝑎\Act𝑝

⟨𝑠𝑎, 𝑠𝑝⟩
𝛼/𝑋
−−−→ _𝑎 ∗ Dirac(𝑠𝑝)

(int𝑝 )
𝑠𝑝

𝛼/𝑌
−−−→𝑝 _𝑝 𝛼 ∈ Act𝑝\Act𝑎

⟨𝑠𝑎, 𝑠𝑝⟩
𝛼/𝑌
−−−→ Dirac(𝑠𝑎) ∗ _𝑝

(sync)
𝑠𝑎

𝛼/𝑋
−−−→𝑎 _𝑎 𝑠𝑝

𝛼/𝑌
−−−→𝑝 _𝑝 𝛼 ∈ Act𝑎 ∩ Act𝑝 +𝑟 ∉ 𝑋

⟨𝑠𝑎, 𝑠𝑝⟩
𝛼/𝑋∪𝑌
−−−−−→ _𝑎 ∗ _𝑝

(add)
𝑠𝑎

𝛼/𝑋
−−−→𝑎 _𝑎 𝛼 ∈ Act𝑎 ∩ Act𝑝 +𝑟 ∈ 𝑋

⟨𝑠𝑎, 𝑠𝑝⟩
𝛼/𝑋\{+𝑟 }∪{𝑟 }
−−−−−−−−−−−→ _𝑎 ∗ Dirac(𝑠𝑝)

Figure 5.6: Rules for binding a role 𝑟 within an RBA A to a player P

Note that the interleaving rules in Figure 5.6 are defined as for parallel composition. The
(sync) rule contains the additional precondition that the role transition is not annotated
with +𝑟 . Rule (add) covers the case where 𝑟 adds and possibly overrides an action of the
player to which 𝑟 is bound, without any synchronization with the player. This effectively
allows the role to add new behavior to its player using the role annotation +𝑟 . Note
that a role can also suppress transitions of the player by simply blocking them, i.e., by
not providing a matching synchronizing transition. Combining both effects, adding and
suppressing, allows the role to change the behavior of the player. In this case, we say
that the role overrides the player’s behavior. In particular, overriding happens if both the
role and the player provide transitions that are labeled with the same action 𝛼 and the
role transition is annotated with +𝑟 . Then, the role will take its transition alone while the
player remains in the same state (if the role is actively played). Therefore, the player’s
transition is effectively replaced by the role transition.
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02, R𝑡 12, R𝑡

02, P𝑡 12, P𝑡

inc2 / {𝑡}

dec2 / {𝑡}

inc2 / {𝑡}

dec2 / {𝑡}

inc2 / {𝑡}d / {𝑡} d / {𝑡}

(a) Target[𝑡 → Acc2]

12,0 02,0

12,-1 02,-1

dec2 / {𝑐}

inc2 / {𝑐}

dec2 / {𝑐}

inc2 / {𝑐}

dec2 /
{𝑐}

inc2 /
{𝑐}

dec2 /
{𝑐}

inc2 /
{𝑐}

(b) Checking[𝑐 → Acc2]

Figure 5.7: Resulting RBA for binding the Target role and the Checking role to Acc2

Example 5.6 (Role-binding). For the banking running example, the result of binding
the Target role (Figure 5.3) to the account Acc2 (Figure 5.4a) is shown in Figure 5.7a. The
transitions where the Target role 𝑡 is actively played to receive a deposit are emphasized.

Figure 5.7b shows the result of binding the Checking role (Figure 5.4b) to the account
Acc2. The Checking role (see Figure 5.4b) provides a transition labeled with action dec2
(from state 0 to -1 ). Since this transition is annotated with {+𝑐}, it gets added to the
player upon binding which enables overdrawing the account, subsequently moving from
state 02,0 to 02,-1 . An example for overriding is the transition from state 12,0 to 12,-1 .
Here, the dec2 transition of Acc2 is blocked and then replaced by the transition of the
Checking role.

It is possible to bind multiple roles to the same player via nested role-binding. For
instance, binding both the Checking role and the Target role to the same account Acc2
can be achieved by a composition Target[𝑡 → Checking[𝑐 → Acc2]].

Let us discuss again the distinction between role-binding and role-playing. As men-
tioned previously, binding a role enables a player to act in that role. The ability to play a
role is a state property. If a state has outgoing transitions annotated with 𝑟 , then the role
𝑟 can be played. Role-playing, on the other hand, happens within transitions. A role 𝑟 is
actively played while taking a transition that is annotated with 𝑟 . Therefore, the distinct
notions of a role being bound and a role being played are clearly reflected in the structure
of an RBA.

Non-blocking roles

It follows from the (sync) rule in Figure 5.6 that a bound role can block actions of the
player even if the role is not actively played. More precisely, this is the case when the
player would be able to perform a transition labeled with action 𝛼 , but a bound and not
played role 𝑟 does not provide an 𝛼 transition with role annotation 𝑟 . We call an RBA for
role 𝑟 non-blocking for an action 𝛼 if every state 𝑠 of the associated RBA has a self-loop
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(︁
𝑠, 𝛼, {𝑟 },Dirac(𝑠)

)︁
. Further, we call a role RBA A non-blocking w.r.t. to a player P in

case the role is non-blocking for all actions 𝛼 ∈ ActA ∩ ActP , where ActA and ActP are
the action sets of the role RBA A and the player RBA P, respectively. If an RBA A for
role 𝑟 is non-blocking w.r.t. a player P, then the player’s original behavior is preserved
upon role-binding. That is, if the role 𝑟 is not actively played, i.e., no transitions annotated
with 𝑟 are taken, then the RBA A[𝑟 → P] behaves exactly the same as P. The roles
shown in Figure 5.4 are indeed non-blocking for all actions of the account Acc2 and the
original behavior of Acc2 is preserved after role-binding (see the horizontal transitions
in Figure 5.7). Blocked behavior caused by role-binding is often unintuitive and leads to
easily overseen side-effects. Thus, the implementation of the approach presented here
(see Chapter 6) follows other role-oriented programming languages and preserves the
role players’ original behavior in case their roles are not actively played. This is achieved
by automatically transforming each role into a non-blocking role w.r.t. its player.

5.2.2 Algebraic properties of compositions
In this section, we discuss the interactions between the composition operators on RBA
defined in the previous section. The parallel composition and role-binding operators
fulfill certain algebraic properties, highlighted in the following theorem.

Theorem 5.7 (Algebraic properties of compositions). For pairwise compatible RBA
A1,A2,A3,P1,P2 we have

A1 ∥ A2 ≅ A2 ∥ A1 (5.1)
A1 ∥ (A2 ∥ A3) ≅ (A1 ∥ A2) ∥ A3 (5.2)

If it additionally holds that A1 and A2 are unbound role instances with names 𝑎1 and 𝑎2,
respectively, we have

(A1 ∥ A2) [𝑎1 → P1] ≅ A1 [𝑎1 → P1] ∥ A2 (5.3)
(A1 ∥ A2) [𝑎1 → P1] [𝑎2 → P2] ≅ (A1 ∥ A2) [𝑎2 → P2] [𝑎1 → P1] (5.4)

where ≅ stands for isomorphism (equality up to renaming of states). If Act1 ∩ Act2 = ∅ for
the action sets Act1 and Act2 of A1 and A2, respectively, it further holds that

A1 [𝑎1 → A2 [𝑎2 → P1]] ≅ A2 [𝑎2 → A1 [𝑎1 → P1]] (5.5)

Proof. Let A𝑖 = (𝑆𝑖,Act𝑖, 𝑅𝑖,−→𝑖, 𝑆
init
𝑖 ) and P𝑗 = (𝑆P𝑗

,ActP𝑗
, 𝑅P𝑗

,−→P𝑗
, 𝑆 initP𝑗

) be RBA for
𝑖 ∈ {1, 2, 3} and 𝑗 ∈ {1, 2}.

eq. (5.1): Commutativity of the parallel composition is clear since ∪ and ∗ (the product
measure on distributions) are both commutative. Furthermore, the conditions in
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the premise of (sync) are symmetric and (int1) is symmetric to (int2). Compatibility
of the role interfaces is also clear by the commutativity of interface compatibility.

eq. (5.2): Associativity of the parallel composition for RBA follows directly from the
associativity of the parallel composition for MDPs. The only difference are the
additional role-playing annotations. However, associativity is also given here by
the associativity of ∪. It remains to show compatibility of the role interfaces. From
the left-hand side, we obtain 𝑅2∩𝑅3 = ∅ and 𝑅1∩ (𝑅2∪𝑅3) = ∅. Thus, 𝑅1∩𝑅2 = ∅
and 𝑅1 ∩ 𝑅3 = ∅. Therefore, (𝑅1 ∪ 𝑅2) ∩ 𝑅3 = ∅.

eq. (5.3): For proving this property, we rely on the associativity of the parallel compo-
sition (eq. (5.2)). Note that the rules for role-binding correspond to the rules for
parallel composition in case a transition is not labeled with a +𝑟 annotation. Thus,
it remains to show that eq. (5.3) holds in case A1 has transitions labeled with +𝑎1.
Assume there is a transition 𝑠1

𝛼/𝑋∪{+𝑎1}−−−−−−−−→1 _1. We have to consider the cases where
𝛼 ∈ Act1 \ Act2 (int1) and 𝛼 ∈ Act1 ∩ Act2 (sync).

(int1) Applying rule (add) on the left-hand side yields for all 𝑠2 ∈ 𝑆2 and 𝑠P1 ∈ 𝑆P1

transitions

⟨𝑠1, 𝑠2, 𝑠P1⟩
𝛼/𝑋\{+𝑎1}∪{𝑎1}−−−−−−−−−−−−−→ _1 ∗ Dirac(𝑠2) ∗ Dirac(𝑠P1) .

On the right-hand side, binding 𝑎1 in A1 to P1 yields for all 𝑠P1 ∈ 𝑆P1 the
transitions

⟨𝑠1, 𝑠P1⟩
𝛼/𝑋\{+𝑎1}∪{𝑎1}−−−−−−−−−−−−−→ _1 ∗ Dirac(𝑠P1) .

Then, the parallel composition with A2 yields

⟨𝑠1, 𝑠P1, 𝑠2⟩
𝛼/𝑋\{+𝑎1}∪{𝑎1}−−−−−−−−−−−−−→ _1 ∗ Dirac(𝑠P1) ∗ Dirac(𝑠2) .

(sync) Applying rule (add) on the left-hand side yields for all 𝑠P1 ∈ 𝑆P1 transitions

⟨𝑠1, 𝑠2, 𝑠P1⟩
𝛼/𝑋\{+𝑎1}∪{𝑎1}−−−−−−−−−−−−−→ _1 ∗ _2 ∗ Dirac(𝑠P1) .

On the right-hand side, binding 𝑎1 in A1 to P1 yields for all 𝑠P1 ∈ 𝑆P1 the
transitions

⟨𝑠1, 𝑠P1⟩
𝛼/𝑋\{+𝑎1}∪{𝑎1}−−−−−−−−−−−−−→ _1 ∗ Dirac(𝑠P1) .

Then, the parallel composition with A2 yields

⟨𝑠1, 𝑠P1, 𝑠2⟩
𝛼/𝑋\{+𝑎1}∪{𝑎1}−−−−−−−−−−−−−→ _1 ∗ Dirac(𝑠P1) ∗ _2 .

78



5.2 Compositional modeling of role-based behavior

eq. (5.4): For proving this property, we rely on the commutativity of the parallel com-
position (eq. (5.1)). Remind that the rules for role-binding correspond to the rules
for parallel composition in case a transition is not labeled with a +𝑟 annotation.
Commutativity of the (add) rule is clear since (𝑋 \ {+𝑟1} ∪ {𝑟1}) \ {+𝑟2} ∪ {𝑟2} =
(𝑋 \ {+𝑟2} ∪ {𝑟2}) \ {+𝑟1} ∪ {𝑟1}.

eq. (5.5): For the rules (inta), (intp), and (sync) property 5.5 is clear by associativity
(eq. (5.2)) and commutativity (eq. (5.1)) of the parallel composition. It remains to
show that eq. (5.5) holds if A1 or A2 have overriding transitions. Assume A1

has a transition 𝑠1
𝛼/𝑋∪{+𝑎1}−−−−−−−−→ _1 with 𝛼 ∈ Act1 ∩ ActP1 . Then, binding A1 on the

left-hand side yields for all 𝑠2 ∈ 𝑆2 and 𝑠P1 ∈ 𝑆P1 transitions

⟨𝑠1, 𝑠2, 𝑠P1⟩
𝛼/𝑋\{+𝑎1}∪{𝑎1}−−−−−−−−−−−−−→ _1 ∗ Dirac(𝑠2) ∗ Dirac(𝑠P1) .

On the right-hand side, binding A1 yields for all 𝑠P1 ∈ 𝑆P1 transitions

⟨𝑠1, 𝑠P1⟩
𝛼/𝑋\{+𝑎1}∪{𝑎1}−−−−−−−−−−−−−→ _1 ∗ Dirac(𝑠P1) .

Since Act1 ∩ Act2 = ∅, there is no synchronization of A2’s transitions with the
above transitions introduced by binding A1. Thus, binding A2 yields for all 𝑠2 ∈ 𝑆2

and 𝑠P1 ∈ 𝑆P1 transitions

⟨𝑠2, 𝑠1, 𝑠P1⟩
𝛼/𝑋\{+𝑎1}∪{𝑎1}−−−−−−−−−−−−−→ Dirac(𝑠2) ∗ _1 ∗ Dirac(𝑠P1) .

The casewhereA2 has an overriding transition can be shown as forA1 by swapping
A1 and A2.

□

Equations (5.1) and (5.2) state that the parallel composition of RBA is both commutative
and associative. From eq. (5.3), we obtain that role-binding can be applied both before
and after the parallel composition of roles. Furthermore, role-binding is commutative if
the roles are bound to different players (eq. (5.4)). Additionally, binding two roles to the
same player also commutes in case the roles are independent, i.e., the action sets of the
roles’ RBA are disjoint, as stated in eq. (5.5). The latter property allow us to bind multiple
roles to the same player using nested role-binding, and in turn, allows the player to act in
multiple compartments at the same time.

The commutativity of binding two roles to the same player cannot be expected if the
roles are not independent, i.e., their action sets are not disjoint. Since role-binding allows
the replacement of transitions (cf. Definition 5.5), the order in which the roles are bound is
crucial. An example is given in Figure 5.8. Here, the role A1 synchronizes with its player
over the 𝛼 action, whileA2 overrides the 𝛼 transition of its player. IfA1 is bound last (see
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𝛼/∅

(a) P

𝛼/{𝑎1}𝛼/{𝑎1}

(b) A1

𝛼/{+𝑎2}𝛼/{𝑎2}

(c) A2

𝛼/{𝑎1, 𝑎2}

𝛼/{𝑎1, 𝑎2}𝛼/{𝑎1, 𝑎2}

𝛼/{𝑎1, 𝑎2}

(d) A1 [𝑎1 → A2 [𝑎2 → P]]

𝛼/{𝑎1, 𝑎2}

𝛼/{𝑎1, 𝑎2}

𝛼/{𝑎2}

(e) A2 [𝑎2 → A1 [𝑎1 → P]]

Figure 5.8: Example showing that binding two roles to the same player does not commute in case
the roles’ action sets are not disjoint

Figure 5.8d), it can synchronize with both A2 and P, resulting in the transition annotated
with {𝑎1, 𝑎2}. This transition does not exist if A2 is bound last, since A2 overrides the
𝛼 transition of A1. The ability to bind roles which modify not only the behavior of the
player but also the behavior of other roles is often useful for the separation of concerns.
In the banking scenario for instance, the Target role (Figure 5.4a) can be bound to an
account that already has the Checking role (Figure 5.4b) bound to it. Then, the account can
be overdrawn in a money transfer, while the concerns of overdrawing and withdrawing
are still cleanly separated into the Checking and Target roles, respectively.

Not only the order in which roles are bound to a player is important, but also the
order in which the binding operator itself is applied can affect the final result. Suppose
there are two roles 𝑜 and 𝑖 with associated RBA A𝑜 and A𝑖 , respectively, that shall be
bound to the same player RBA P. For that, we can first bind the role 𝑖 to the player,
followed by the binding of the role 𝑜 , formally A𝑜 [𝑜 → A𝑖 [𝑖 → P]]. However, we could
also bind the role 𝑜 first (to the role 𝑖) and then bind the role 𝑖 to the player, formally(︁
A𝑜 [𝑜 → A𝑖]

)︁
[𝑖 → P]. Figure 5.9 shows an example where the different binding

orders result in different RBA. If the role 𝑜 is bound first, then its overriding transition
(annotated with {+𝑜}) only affects the RBA A𝑖 , but not P. However, if the role 𝑜 is
bound last, then the overriding transition applies to both A𝑖 and P. Note that in general
A𝑜 [𝑜 → A𝑖 [𝑖 → P]] ≇

(︁
A𝑜 [𝑜 → A𝑖]

)︁
[𝑖 → P] even in case Act𝑜 ∩ Act𝑖 = ∅.

5.2.3 Coordination and semantics of RBA
We define the semantics of an RBA with respect to a coordination component called
role-playing coordinator. The composition of an RBA with a coordinator resolves all
role-playing and yields an MDP where the role-playing is encoded into the action labels.

A role annotation (as defined in Section 5.2.1) is a symbolic representation that may
stand for multiple role-playings. We define a role-playing as a set I ⊆ 𝑅 that contains all
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0

1

𝛼/∅

(a) P

𝛼/{𝑖}𝛼/{𝑖}

(b) A𝑖

x

y

𝛼/{𝑜}

𝛼/{𝑜}

𝛼/{+𝑜}

(c) A𝑜

0,x

1,x 0,y

1,y

𝛼/{𝑖, 𝑜}

𝛼/{𝑖, 𝑜}

𝛼/{𝑜}

𝛼/{𝑜}

𝛼/{𝑖, 𝑜}

𝛼/{𝑖, 𝑜}

(d) A𝑜 [𝑜 → A𝑖 [𝑖 → P]]

0,x

1,x 1,y

𝛼/{𝑖, 𝑜}

𝛼/{𝑖, 𝑜}

𝛼/{𝑜}

(e)
(︁
A𝑜 [𝑜 → A𝑖 ]

)︁
[𝑖 → P]

Figure 5.9: Example showing that the order in which role-binding is applied affects the result

roles that are played within a transition, i.e., if 𝑟 ∈ 𝑅 and 𝑟 ∈ I then 𝑟 is explicitly played,
and if 𝑟 ∉ I then 𝑟 is not played. We further define the set of possible role-playings as the
set of all role-playings permitted by a role annotation.

Definition 5.8 (Possible role-playings). The set of possible role-playings R(𝑋, 𝑅) ⊆ P(𝑅)
with respect to a role annotation 𝑋 ∈ A(𝑅) comprises exactly those I ⊆ 𝑅 for which

(1) for all 𝑟 ∈ I we have 𝑟 ∉ 𝑋 , and
(2) for all 𝑟 ∈ 𝑅 with {𝑟, +𝑟 } ∩ 𝑋 ≠ ∅ we have 𝑟 ∈ I.

Intuitively, for any I ∈ R(𝑋, 𝑅) the rules above state that I does not contain a role that
must not be played (1) and does contain all roles that are played (2). The role annotation
𝑋 in a transition (𝑠, 𝛼, 𝑋, _) of an RBA over 𝑅 intuitively means that all combinations
of roles I ∈ R(𝑋, 𝑅) fulfilling the constraints imposed by 𝑋 can be played within the
transition.

Role-playing coordinator

The role-playing coordinator specifies the rules for role-playing in an RBA. Essentially, a
role-playing coordinator is an RBA with a different semantics.

Definition 5.9 (Coordinator). A (role-playing) coordinator is an RBA
C = (𝑆,Act, 𝑅,−→, 𝑆 init) for which 𝑅 is closed and for all transitions (ℓ, 𝛼, 𝑌 , _) ∈ −→ and
𝑟 ∈ 𝑅 we have +𝑟 ∉ 𝑌 .
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ℓ0

ℓ1 ℓ2

ℓ3

w / {𝑠}

dec1 / {𝑠}

d / {𝑡}

inc2 / {𝑡}

Figure 5.10: A role-playing coordinator for the banking scenario coordinating money transfers

The role-playing coordinator represents a unified formalism to specify both static
constraints and temporal constraints on role-playing. A static constraint must hold at all
times, while a temporal constraint imposes some order on the role-playing. Additionally,
the coordinator may “implement” a context model that associates a specific context to
each environment or situation the system may encounter. Upon context changes, the
coordinator then activates and deactivates the appropriate roles. Note that since the
coordinator is basically an RBA, the parallel composition on RBA can also be applied to
combine multiple coordinators. This enables a separation of concerns on the coordination
level by, e.g., assigning a dedicated coordinator to each compartment.

Example 5.10 (Money-transfer coordinator). Figure 5.10 shows the role-playing coor-
dinator for money transfers in the banking scenario. First, money is withdrawn from
account 1 using the Source role 𝑠 which decreases the account’s balance. Then, the trans-
fered money is deposited on account 2 via the Target role 𝑡 , which subsequently increases
the balance. This coordinator specifies a temporal constraint, namely that the Source
role 𝑠 must be played before Target role 𝑡 . Additionally, it defines a static constraint
implicitly. The roles 𝑠 and 𝑡 cannot be played simultaneously at any time, since there is
no coordinator transition annotated with {𝑠, 𝑡}.

As mentioned previously, we distinguish between role-binding and role-playing. The
role-playing coordinator is only concernedwith playingwhich raises the questionwhether
a similar construct for role-binding exists, i.e., a coordination component that can dynam-
ically bind and unbind roles. For answering that question, we first have to clarify what it
means to unbind a role. Unbinding is the inverse of binding, thus after unbinding a role
the player should behave as before the role has been bound. Thus, in order to be able to
unbind a role, the original behavior of the player must be preserved. As discussed in Sec-
tion 5.2.1, the player’s behavior is preserved as long as all its roles are non-blocking w.r.t.
the player. Therefore, if all roles are non-blocking, then the effect of dynamic unbinding
can be achieved using the role-playing coordinator by only allowing transitions in which
the “unbound” role is not played.
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Semantics of RBA

Given an RBA A that arises from the composition of naturals, roles, and compartments,
and a coordinator C formalizing the rules for role-playing, the operational semantics of
A under C is an MDP defined as follows.

Definition 5.11 (MDP semantics). Composing an RBA A = (𝑆𝑎,Act𝑎, 𝑅𝑎,−→𝑎, 𝑆
init
𝑎 ) and

a coordinator C = (𝑆𝑐,Act𝑐, 𝑅𝑐,−→𝑐, 𝑆
init
𝑐 ) yields an MDP

⟦A⟧C =
(︁
𝑆𝑎 × 𝑆𝑐, Act, −→, 𝑆 init𝑎 × 𝑆 init𝑐

)︁
where Act = (Act𝑎 ∪ Act𝑐) × P(𝑅) with 𝑅 = 𝑅𝑎 ∪ 𝑅𝑐 , and −→ ⊆ 𝑆 × Act × Distr(𝑆) is the
smallest transition relation fulfilling the rules shown in Figure 5.11

(int𝑎)

𝑠
𝛼/𝑋
−−−→𝑎 _ 𝛼 ∈ Act𝑎\Act𝑐

I ∈ R(𝑋, 𝑅)

⟨𝑠, ℓ⟩
⟨𝛼,I⟩
−−−−→ _ ∗ Dirac(ℓ)

(int𝑐 )

ℓ
𝛼/𝑌
−−−→𝑐 _𝑐 𝛼 ∈ Act𝑐\Act𝑎

I ∈ R(𝑌, 𝑅)

⟨𝑠, ℓ⟩
⟨𝛼,I⟩
−−−−→ Dirac(𝑠) ∗ _𝑐

(sync)
𝑠

𝛼/𝑋
−−−→𝑎 _𝑠 ℓ

𝛼/𝑌
−−−→𝑐 _𝑐 𝛼 ∈ Act𝑎 ∩ Act𝑐 I ∈ R(𝑋 ∪ 𝑌, 𝑅)

⟨𝑠, ℓ⟩
⟨𝛼,I⟩
−−−−→ _𝑠 ∗ _𝑐

Figure 5.11: Rules for the composition of an RBA and a coordinator

The interaction between the RBA and the coordinator is formalized by synchronization
over both actions and role-playing. This allows the coordinator to enforce and restrict
role-playing by providing only the appropriate transitions. Additionally, the coordinator
may monitor and react to role-playing which enables the specification of temporal con-
straints. For a trivial coordinator consisting of only a single state and an empty transition
relation, the MDP-semantics for RBA arises from resolving each possible role-playing
nondeterministically due to (int𝑎) in Figure 5.11 being the only applicable rule.

Example 5.12 (MDP for the money transfer). Figure 5.12 shows the MDP for the money
transfer in the banking scenario with two accounts, the first one playing the Source role
and the second one playing the Target role under the coordinator shown in Figure 5.10.
The system works as specified, as money is withdrawn from the source account (by
decrementing its balance) and then deposited on the target account.

Having MDPs as underlying semantics for role-based systems allows us to apply
methods for simulation, verification, and quantitative analysis, such as standard model-
checking algorithms for temporal logics, e.g., LTL and PCTL. To reason about role-
playing, which is encoded into the action labels of the resulting MDP, standard approaches
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11R𝑠02R𝑡 ℓ0

11P𝑠02R𝑡 ℓ1

01R𝑠02R𝑡 ℓ2

01R𝑠02P𝑡 ℓ3

01R𝑠12R𝑡 ℓ0⟨︁
w, {𝑠}

⟩︁
⟨︁
dec1, {𝑠}

⟩︁ ⟨︁
d, {𝑡}

⟩︁
⟨︁
inc2, {𝑡}

⟩︁

Figure 5.12: Resulting MDP of the composition ⟦Source[𝑠 → Acc1] ∥ Target[𝑡 → Acc2]⟧C

using action-based logics may be employed [DV90]. The implementation of a role-
oriented modeling language presented in the next chapter leverages the MDP-semantics
by providing a translation of a high-level modeling language into the input language of
the model checker PRISM.
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role-oriented modeling language

In this chapter, an implementation for the formal modeling and analysis of role-based
systems is presented. It is based on the modeling formalism described in Chapter 5. Since
using RBA directly for modeling is infeasible for larger systems, the implementation
provides a role-oriented modeling language (RML) with RBA-semantics for concisely
specifying RBA and role-playing coordinators. Leveraging the MDP-semantics of RBA
under a coordinator, the tool RBSC translates a role-based model into the input language
of the probabilistic model checker PRISM. This allows us to reuse existing infrastructure
and PRISM’s extensive analysis support. An overview of the approach is provided in
Figure 6.1.

PRISM

PRISM
modelRBSC

role model

+
behavior

role-based
system

𝜑𝑟1U𝑟2𝜓

specification
role-specific
requirements

role
interactions

quantitative
measures

…

Figure 6.1: Overview of the approach

Outline. In Section 6.1, the role-oriented modeling language is introduced. Notable
implementation details of the translation into PRISM’s input language are described in
Section 6.2. We continue to use the banking running example introduced in Section 5.2
to illustrate the concepts described in this chapter.

The implementation has been presented partially in the publication [Chr+20].

6.1 Role-oriented modeling language
A role-based model comprises two distinct parts: a declarative description of the system
structure and a modular representation of the operational behavior for each component of
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the system. In the following, we use the generic term component to refer to naturals, roles,
and compartments. For describing the component structure of the system, we take inspira-
tion from existing meta-models for role modeling, such as the CROM [Küh+15]. Since the
modeling language is intended to be used in formal analysis and has an automata-based
semantics, the component behavior is defined in terms of guarded commands [JSM97]
where a command is a symbolic representation of possibly multiple transitions. The
syntax is inspired by the input language of PRISM, thus our modeling language can be
seen as a role-oriented extension of the PRISM language. In the following, the constructs
of the modeling language RML are explained in detail, starting with the description of
the system structure.

6.1.1 Declaration of the system structure

The modeling formalism presented in Section 5.2 solely concerns the instance level, i.e.,
every RBA represents a single component instance or a set of component instances. RML
provides an additional type level which means that each component instance has an
associated component type. This has two important implications for the modeling of role-
based systems. First, component instances can be derived from a common representation
by instantiation of a component type, comparable to the concept of creating an object
from a class in object-oriented languages. Second, constraints regarding the system
structure can not only be defined over individual instances, but also over component
types, which allows us to formulate general constraints over sets of instances. In RML,
the structure of a system is defined by a set of component types and a set of additional
constraints that describe the structure to which instances of the role-based system must
adhere to.

Component types

A model contains a type definition for each component type as exemplified in List-
ing 6.2a. Every definition of a natural type, role type, or compartment type declares a
(unique) type name. Additionally, role-type definitions and compartment-type definitions
specify general constraints that must hold for all instances of these types. In particular, a
role-type definition is followed by a list of component types whose instances are allowed
as players of the role (lines 3–9). Note that the player types are not limited to natural
types, but can also include other role types or compartment types. Indeed, the Source
and Target role types list both the roles Checking and Savings as possible players
(lines 6–9). Subsequently, this allows us to bind both, e.g., a Checking role instance
and a Source role instance to the same Account instance using nested role-binding.
A compartment-type definition incorporates a list of role occurrence constraints. An
instance of the compartment is required to contain exactly one role instance for each
of the listed role types. Thus, both a Source role instance and a Target role instance
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1 natural type Account;
2

3 role type Checking(Account);
4 role type Savings(Account);
5

6 role type Source(Account,
7 Checking, Savings);
8 role type Target(Account,
9 Checking, Savings);

10

11 compartment type Transaction(
12 Source, Target);
13

14 compartment type Bank(
15 Checking[0..3], Savings[0..3]);

(a) Component type definitions

Account

Bank

Checking
[0..3]

Savings
[0..3]

Transaction

Source Target

(b) Corresponding role model

Figure 6.2: Type definitions for the banking scenario

must be contained in an instance of the Transaction compartment type (lines 11–12). It
is also possible to specify lower and upper bounds to refine the occurrence constraints,
as shown in lines 14 and 15. An instance of the Bank compartment may contain up
to 3 Checking roles and 3 Savings roles. Furthermore, multiple alternative lists of oc-
currence constraints can be specified. For instance, the definition compartment type
SmallBank(Checking | Savings) states that a compartment instance must contain
either a Checking or a Savings account, but not both. Alternatives and cardinalities can
also be combined. The type definitions in RML can be seen as a textual representation
of commonly used role models (such as the CROM) that describe the type level of a
role-based system. Figure 6.2b shows the role model corresponding to the type definitions
in the CROM’s graphical notation. Note that the “fills” relation between the roles has
been omitted from the graphical representation to reduce clutter.

Instantiating systems

After having defined the types the components of the role-based system may have, the
next step is to actually create instances of these types in order to construct a concrete
system. Generally speaking, systems are described by a set of constraints that define
the set of component instances and specify how those components are related to each
other. In particular, a constraint may specify which player is bound to a certain role
instance or it may specify that a role instance belongs to a certain compartment. The
constraint language is based on first-order logic (FOL) and interpreted over the set of
component instances. It has three built-in predicates. The “:” (pronounced “has type”)
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1 system {
2 acc[2] : Account;
3

4 src : Source;
5 trg : Target;
6

7 trans : Transaction;
8

9 src boundto acc[0];
10 trg boundto acc[1];
11

12 src in trans;
13 trg in trans;
14 }

(a) System description

trans : Transaction

acc[0] : Account

src : Source

acc[1] : Account

trg : Target

(b) Corresponding role model instance

Figure 6.3: Instantiation of a role-based system within the banking scenario

predicate states that the component instance on the left-hand side has the type given on
the right-hand side. The second predicate, boundto, holds true if the role instance on
the left-hand side is bound to the component on the right-hand side. Note that there are
no restrictions regarding the player, except that a role cannot be bound to itself. Lastly,
the in predicate states that a role instance is contained in a given compartment instance.
The “:” predicate is special, in that it allows us to introduce new constant symbols. If T
is a component type name and c is not defined elsewhere in the model, the constraint
c : T introduces a new constant c which refers to a fresh component instance with type
T. Furthermore, the construct a[N] : T, where N is an expression that evaluates to a
non-negative integer, creates an array of component instances, all having type T. This
construct is especially useful to generically define models that are parametrized by some
size parameter. Together, the three built-in predicates are sufficient to fully describe an
instance of a role-based system.

Example 6.1 (Instantiating a transaction compartment). The constraints describing a
system are given within a system block, as shown in Listing 6.3a where a transaction in
the banking scenario is instantiated. In lines 2–7, the component instances of the system
are listed, where the array instantiation construct is used to create two Account instances,
acc[0] and acc[1]. The constraints in lines 9 and 10 state that the Source role instance
src and the Target role instance trg are bound to acc[0] and acc[1], respectively.
Finally, the two role instances are placed into the Transaction compartment instance
trans (lines 12–13). The corresponding system in the graphical CROI notation is shown
in Figure 6.3b.
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1 system {
2 acc : Account;
3

4 ch : Checking;
5 src : Source;
6

7 ch boundto acc;
8 src boundto ch;
9 }

Listing 6.4: Binding multiple roles using nested binding

Example 6.2 (Nested role-binding). As described in Section 5.2.1, multiple roles can be
bound to the same player using nested role-binding. In the banking scenario, we may
bind both a Checking role and a Source role to the same player, as shown in Listing 6.4.
Note that the Source role src is not directly bound to the Account natural acc. This
would be possible if the src role and the Checking role ch were independent, i.e., if
their action alphabets were disjoint. However, this is not the case. Therefore, the order
in which the roles are bound to their player is important. In RML, the binding order is
derived from the graph induced by the boundto relation. Since the ch role is directly
bound to the acc natural (line 7), it is bound first. The src role, on the other hand, is
only indirectly bound to acc, in particular over the ch role (line 8). It is therefore bound
second, to both the ch role and implicitly (because of the binding in line 7) also to the
account acc.

A set of constraints is called complete if (1) each role instance is bound to a player, and
(2) each compartment contains enough role instances to fulfill its occurrence constraints
as defined by the compartment-type definition. The set of constraints in Listing 6.3a is
complete, since both roles are bound to a player and the trans compartment instance
contains exactly one Source and one Target role. A complete set of constraints corre-
sponds to at most one system1. However, it is also possible to define multiple systems
using a single system block by specifying a set of constraints which is not complete, i.e.,
where the players of some roles are unspecified or where not enough roles are assigned
to some compartments. Generating multiple similar systems, i.e., a system family, using
an incomplete set of constraints is useful for comparative studies and synthesis, e.g.,
for determining the best assignment of roles to players according to some optimization
criterion.

The set of systems corresponding to an incomplete set of constraints is generated by
an automated stepwise extension of the constraint set until the set is complete. There are
possibly multiple different extensions at every step and every combination of extensions
1If the set of constraints is unsatisfiable, e.g., if there are contradicting constraints, then there is no

corresponding system.
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corresponds to a single system instance. Within a single step, the constraint set is extended
as follows.

• If there is an unbound role instance r with role type R, the player of r is either
created by instantiating one of the types listed in the definition of R, or a player
with the right type is selected among the existing component instances. The role r
is then bound to the instantiated or selected player.

• If there is a compartment instance c where, according to its compartment-type
definition, the lower bound for some role type R is not satisfied, the missing role
instance is either newly instantiated or selected among the existing role instances
with type R. The instantiated or selected role is then assigned to the compartment
c.

Note that the instantiation of a new player may create an unbound role or an empty
compartment. Similarly, a newly created role within a compartment is initially unbound.
In both cases, the newly created instances are also considered in the subsequent extension
steps. Special care is taken to ensure that only a finite number of new instances is created.
If within a single combination of extensions a type has been instantiated before, it is
not instantiated again. The process of extending an incomplete set of constraints as
outlined above ensures that all possible combinations of role-binding and compartment
membership are explored while still only a minimal number of component instances is
created.

1 natural type Account;
2 role type Checking(Account);
3 role type Savings(Account);
4 compartment type Bank(Checking, Savings);
5

6 system {
7 acc : Account;
8 bank : Bank;
9 }

Listing 6.5: Incomplete set of constraints for instantiating multiple systems

Example 6.3 (Systems corresponding to an incomplete constraint set). Listing 6.5 com-
prises a simplified set of component-type definitions for the banking example. In partic-
ular, the Bank compartment must contain exactly one Checking role and one Savings
role. The constraint set in the system block is incomplete, since there are no roles as-
signed to the bank compartment instance. Thus, the occurrence constraints of the Bank
compartment type are not satisfied.

In order to generate the systems satisfying the constraints in Listing 6.5, the previously
described extension process is applied. The decision tree containing the possible exten-
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bank missing Checking role

c missing player

bank missing Savings role

s missing player

complete
(a) (b) (c) (d) (e)

(1)
instantiate
c:Checking

bind to
acc (2)

instantiate
a:Account

instantiate
s:Savings (3)

instantiate
s:Savings

bind to
acc instantiate

a:Account (4)

bind to
acc bind

to a

instantiate
a2:Account

Figure 6.6: Decision tree for extending the incomplete system definition shown in Listing 6.5

sions at every step is shown in Figure 6.6. In the first step, a role of type Checking must
be assigned to the bank to fulfill the bank’s first occurrence constraint. Since there is no
existing role of that type, the only possible extension is to instantiate a new Checking
role c and assign it to the bank. Of course, this newly created role does not have a player
yet, so the next step is to bind the role. At this point, there are two possible choices for
extending the constraint set. Either c is bound to the existing natural instance acc, as it
has the right type, or a new Account is instantiated as the player. Let us choose the latter
possibility and follow the right edge in the decision tree. Now that the bank compartment
has the Checking role c, only a role of type Savings is missing. Again, the only possible
extension is to create a new Savings instance, since no such role exists yet. As before,
this new role does not have a player and may be bound to the existing acc natural or a
newly created instance. However, since in a previous step the Account natural a has been
instantiated, binding the role s to a is also an option. We choose the first extension which
leaves us with a complete set of constraints (see Listing 6.7) corresponding to the system
shown in Figure 6.8c. The bank compartment contains a Checking role and a Savings
role and both of these roles are bound to a player. All systems that are associated with a
path in the decision tree and therefore correspond to the constraint set in Listing 6.5 are
presented in Figure 6.8.

Since the constraint language is based on FOL, constraints may also include forall and
exists quantifiers over the set of component instances. A quantifier may optionally spec-
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1 system {
2 acc : Account;
3 bank : Bank;
4

5 // step (1)
6 c : Checking; c in bank;
7 // step (2)
8 a : Account; c boundto a;
9 // step (3)

10 s : Savings; s in bank;
11 // step (4)
12 s boundto acc;
13 }

Listing 6.7: Completed set of constraints for the system in Figure 6.8c

ify a component type or a set of component types to restrict the quantifier to the instances
of these types. Furthermore, the built-in type-sets natural, role and compartment may
be used to only reason about all instances of naturals, roles and compartments, respec-
tively. Quantification is often necessary in conjunction with incomplete constraint sets
which correspond to multiple systems. Since the extension of an incomplete constraint
set may instantiate new components that have no corresponding constant symbol in the
system block, quantification is the only way to reason about these components. Using
quantification, general constraints regarding the system structure can be formulated. This,
in turn, allows us to filter out systems with an undesired structure.

Example 6.4 (Quantification). Within two of the systems shown in Figure 6.8, neither
the Checking role nor the Savings role in the bank compartment are bound to the acc
component (systems (d) and (e)). This is correct w.r.t. the set of constraints specified in
Listing 6.5, but may not have been intended. To rule out these two instances, the system
description can be extended as shown in Listing 6.9.

The additional constraint states that there is some role r which is contained in the
bank compartment and played by acc. Note that a constraint like acc boundto c or
acc boundto r would not be possible, since the components c and s have not been
defined within the system block and thus have no associated constant symbol.

We additionally might require that an account cannot be both a checking account and
a savings account. This can be achieved by the constraint shown in Listing 6.10. In this
example, type-restricted quantifiers are used to reason only about specific component
instances.

It is important to note that the quantifiers appearing in a system block cannot be used
to instantiate new components, i.e., they only range over existing components that have
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bank : Bank

acc : Account

c : Checking

s : Savings

(a)

bank : Bank

acc : Account

c : Checking

a : Account

s : Savings

(b)

bank : Bank

a : Account

c : Checking

acc : Account

s : Savings

(c)

bank : Bank

a : Account

c : Checking

s : Savings

acc : Account

(d)

bank : Bank

a : Account

c : Checking

a2 : Account

s : Savings

acc : Account

(e)

Figure 6.8: Systems corresponding to the constraint set in Listing 6.5. Newly instantiated compo-
nent instances appear dashed.

1 system {
2 acc : Account;
3 bank : Bank;
4

5 exists r : role. r in bank & r boundto acc;
6 }

Listing 6.9: Description of systems where acc plays a role in the bank

1 forall a : Account. !exists c : Checking, s : Savings.
2 c boundto a & s boundto a;

Listing 6.10: Constraint stating that an account cannot be a Checking and Savings account at
the same time
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been introduced by the “:” predicate or the automatic extension of incomplete constraints.
This restriction is needed to ensure the finiteness of the systems described by a constraint
set.

6.1.2 Definition of operational behavior

The definition of component behavior is strictly separated from the declaration of the
system structure. Operational behavior is defined within modules that are associated
with component types. A module basically represents a single RBA. Upon instantiation
of a type, the behavior of a component instance is derived by instantiating the modules
associated with its component type. Defining behavior per type enables a generic model-
ing of component behavior which allows us to easily extend a model by creating new
component instances without having to specify behavior for each instance individually.

Modules are associated to a component type by an implementation declaration as
exemplified in Listing 6.11. The impl keyword is followed by the type name for which
an implementation is provided, and a list of modules implementing the type. If multiple
modules are given, then the behavior of the component type corresponds to the parallel
composition of these modules. In case a type is only implemented by a single module
that is not used anywhere else, giving the module a name is not necessary. Then, the
shorthand syntax as shown in Listing 6.12 can be used, where the impl keyword is
directly followed by the module body. The additional level of indirection provided by
implementation declarations exists mainly for practical reasons. It enables the user of the
modeling language to create a library of commonly used modules (e.g., buffers, channels,
counters, etc.) which can then be reused in different models and selected by means of an
implementation declaration. Furthermore, it allows quickly changing the behavior for
certain types by simply swapping out the implementation declarations, without needing
to change any module definitions or type declarations.

1 natural type Account;
2

3 impl Account(account);
4

5 module account {
6 // ... module body ...
7 }

Listing 6.11: An implementation declaration linking a module and a component type
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1 natural type Account;
2

3 impl Account {
4 // ... module body ...
5 }

Listing 6.12: Shorthand notation for providing an implementation for a type

Definition of modules

Modules are defined using an extension of PRISM’s language [KNP11] for reactive mod-
ules [AH96]. We recall here briefly the structure of a module. A module consists of
two parts: a set of local variables that define the state space of the module and a set of
guarded commands [JSM97] defining the transitions between those states. All variables
have a finite domain and can be either of Boolean or (bounded) integer type. A command
describes the transition to another state by updating the local variables of the module,
and can only be executed if its guard evaluates to true. When the command of a module
is executed, it possibly synchronizes with other modules over a shared action. A module
in RML has the same basic structure as in the PRISM language, but with some extensions
we will discuss in the following.

Example 6.5 (Defining the behavior of a natural). Listing 6.13a shows the module
describing the behavior of Account components. The state space of an account is fully
represented by a single variable balance which stores how much money is left in the
account. Since the model must be finite, we define an upper bound for the account balance
(line 10) using a constant (line 1). Increasing and decreasing the balance is defined by the
commands in lines 12 and 13, respectively. Figure 6.13b shows the corresponding RBA
resulting from the instantiation of the module for the component instance acc.

While variables in the PRISM language can only have primitive types, variables in RML
can also be (possibly multi-dimensional) arrays where the elements are either Boolean or
bounded integers. Furthermore, RML has different scoping rules for local variables. In
the PRISM language, all variables, including local variables, are defined within the global
scope which means that within a model every variable name must be globally unique. In
RML, this approach would not be possible. As soon as a module is instantiated more than
once, there are multiple copies of the module’s variables with the same name2. For that
reason, a module in RML has its own local (lexical) scope in which the local variables
are defined. Outside the module’s scope, a reference to a variable of the module must be
qualified. The qualified name of a variable consists of the component instance name for

2The PRISM language provides a rudimentary mechanism for creating a copy of a module, but it requires
that all variables of the module must be renamed.
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1 const MAX_BALANCE = 3;
2

3 natural type Account;
4

5 system {
6 acc : Account;
7 }
8

9 impl Account {
10 balance : [0..MAX_BALANCE] init 0;
11

12 [self.inc] balance < MAX_BALANCE -> (balance' = balance + 1);
13 [self.dec] balance > 0 -> (balance' = balance - 1);
14 }

(a) Module defining the behavior of Account components

0 1 2 3
acc.inc / ∅

acc.dec / ∅

acc.inc / ∅

acc.dec / ∅

acc.inc / ∅

acc.dec / ∅
(b) RBA for component instance acc

Figure 6.13: A module implementing a component and the corresponding RBA.
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1 impl Account {
2 balance : [0..MAX_BALANCE] init 0;
3

4 [self.inc[1]] balance <= MAX_BALANCE - 1 -> (balance' = balance + 1);
5 [self.inc[2]] balance <= MAX_BALANCE - 2 -> (balance' = balance + 2);
6 [self.dec[1]] balance >= 1 -> (balance' = balance - 1);
7 [self.dec[2]] balance >= 2 -> (balance' = balance - 2);
8 }

Listing 6.14: Indexed action labels for increasing and decreasing the account balance by different
amounts

which the module defining the variable has been instantiated, followed by the variable
name itself. Consider again the example in Listing 6.13a. Within the body of the module,
i.e., in its local scope, the variable balance can be used unqualified. However, outside the
module body, i.e., in the global scope, the unqualified name balance is not defined. To
refer to the local variable of the Account instance acc, the qualified name acc.balance
must be used. The described scoping rules prevent name clashes in the global scope even
in case a module is instantiated multiple times.

Another language construct necessitated byRML’s component instantiationmechanism
concerns action labels. Suppose a module contains a command labeled with action act
and is instantiated multiple times. As in the PRISM language, action labels are global.
Therefore, all instances of the module would synchronize over the action act. This
might be the intended behavior in some situations, e.g., if the instances should act in
lock-step. However, sometimes the opposite is needed, i.e., that each instance has its
own unique action. In the banking scenario, for example, each account should have
its own actions for incrementing and decrementing the balance, otherwise all account
balances would be linked together. To accommodate the second case, action labels can be
prefixed with a component instance name. In Listing 6.13a, the actions are prefixed with
the self keyword which refers to the component instance name for which the module
is instantiated3. Therefore, the Account instance acc provides the actions acc.inc
and acc.dec, as shown in Figure 6.13b. In addition to prefixes, it is also possible to
add one or more indices to an action label. For instance, we could amend the account
behavior such that the balance can be increased and decreased by different amounts, as
shown in Listing 6.14. Indexing action labels is especially useful in conjunction with
the metaprogramming constructs of RML (more details are provided at the end of this
Section).

3The self keyword can also be used outside of action labels. For instance, in the module for Account,
the expression self.balance refers to the local variable balance of the module.
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Role-specific behavior

When defining the operational behavior of roles, additional language constructs can be
usedwithinmodules to describe role-specific behavior. In particular, adding the override
keyword in front of an action label marks all corresponding transitions of the command
as overriding. That is, for a role instance 𝑟 the transitions are annotated with {+𝑟 }.
Additionally, within a role module, the keyword player refers to the component instance
to which the role has been bound4. Similar to the self keyword, player may also be
used as prefix in action labels to refer to actions prefixed with the player’s component
name. Note that all transitions originating from a role module are automatically annotated
with the respective role names. Therefore, there are no explicit role annotations in RML.
Furthermore, each role specified in RML is automatically transformed into a non-blocking
role w.r.t. its player (see Section 5.2.1) in order to preserve the original behavior of the
player on role-binding.

Example 6.6 (Defining role behavior). Figure 6.15a shows the module implementing a
Checking role. Similar to the Account natural (Listing 6.13a), a single variable od stores
the amount by which the account has been overdrawn (line 12). The role overrides both
the inc and dec actions of its player. Note that since the role instance c is bound to the
Account instance acc, the action player.inc is resolved to acc.inc when instantiating
the module for the Checking instance c. The corresponding RBA for the role instance
c is presented in Figure 6.15b. The self-loops for the non-blocking behavior of the role
are generated automatically and therefore have no corresponding commands in the role
module.

Some actions of a component are only used for the synchronization between the
component’s roles and the component itself, i.e., these actions are not intended for the
communication with any other component of the system. Therefore, these internal actions
should only be taken by the player of a role if the role is actually played. In case the role
is not played, these actions should be blocked. To achieve this effect, an action within a
guarded command can be modified with the internal keyword. For instance, we could
adapt the module for Accounts such that the account balance can only be increased and
decreased by the Source and Target roles. For that, the inc and dec actions are marked
as internal, as shown in Listing 6.16. As mentioned before, all roles are automatically
transformed into non-blocking roles w.r.t. their player. However, by adding an internal
modifier to an action act of a component c, all roles bound to c become blocking for act.
That is, if any of the bound roles is not played, the action act is blocked.

4player can also be used as a function, even outside of role modules, to get the player of a given role
instance. Within a role module, the expressions player(self) and player are equivalent.
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1 const MAX_OVERDRAFT = 1;
2

3 role type Checking(Account);
4

5 system {
6 acc : Account;
7 c : Checking;
8 c boundto acc;
9 }

10

11 impl Checking {
12 od : [0..MAX_OVERDRAFT] init 0;
13

14 [override player.dec] od < MAX_OVERDRAFT -> (od' = od + 1);
15 [override player.inc] od > 0 -> (od' = od - 1);
16 }

(a) Module defining the behavior of Checking role components

0 1
acc.dec / {+c}

acc.inc / {+c}

acc.inc / {c}

acc.dec / {c}

acc.inc / {c}

acc.dec / {c}
(b) RBA for role component instance c bound to the component acc (auto-generated self-loops for non-

blocking behavior appear dashed)

Figure 6.15: A module implementing a role component and the corresponding RBA
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1 impl Account {
2 balance : [0..MAX_BALANCE] init 0;
3

4 [internal self.inc] balance < MAX_BALANCE -> (balance' = balance + 1);
5 [internal self.dec] balance > 0 -> (balance' = balance - 1);
6 }

Listing 6.16: The Account module with internal actions

Coordination

The definition of a role-playing coordinator has the same basic structure as a module and
is contained in a coordinator block. There may be multiple coordinators in a single
systemwhich are then combined using parallel composition. Coordinators are instantiated
automatically for each system described by the system definition and therefore do not
appear in the system block. Within a coordinator definition, role-playing is coordinated
using an extended form of guarded commands. These coordination commands have the
general form [action] [role-guard] guard -> update. The additional role guard
is a Boolean expression over the role instances in the system. A coordination command
synchronizes with exactly those transitions of the system whose role annotation satisfies
the role guard5. There is another difference between coordination commands and standard
commands. If two coordination commands are independent, i.e., they do not update the
same local variables, they can be executed synchronously within a single transition.
Since the coordination commands can be seen as rules for role-playing, it makes sense
that multiple independent rules can be applied simultaneously. Furthermore, allowing
multiple commands to be executed synchronously enables an important optimization
which we will discuss in detail in Section 6.2.4.

Example 6.7 (Definition of a coordinator). The coordinator in Figure 6.17a controls the
money transfer between accounts which play the src (source) and trg (target) roles.
First, it synchronizes with the src role over the withdraw action to initiate the transfer
(line 10). The role guard in this command forces the src role to be played. Next, the
coordinator allows the src role to decrease the account balance (line 11). Note that in
accordance with the system description (line 3), the action player(src).dec is resolved
to acc[0].dec. Finally, the money is deposited on the account playing the trg role
by increasing its balance (lines 12–13). The resulting coordinator RBA is presented in
Figure 6.17b.

A coordination command can synchronize with exactly those transitions of the system
whose role annotation contains at least the roles appearing in the role guard of the

5Since the role guard does not concern states but rather concerns transitions, it is surrounded by brackets
like the action label.
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1 system {
2 acc[2] : Account;
3 src : Source; src boundto acc[0];
4 trg : Target; trg boundto acc[1];
5 }
6

7 coordinator {
8 loc : [0..3] init 0;
9

10 [src.withdraw] [src] loc = 0 -> (loc' = 1);
11 [player(src).dec] [src] loc = 1 -> (loc' = 2);
12 [trg.deposit] [trg] loc = 2 -> (loc' = 3);
13 [player(trg).inc] [trg] loc = 3 -> (loc' = 3);
14 }

(a) Coordinator module for money transfers

0

1

2

3

src.withdraw / {src}

acc[0].dec / {src} trg.deposit / {trg}

acc[1].inc / {trg}

(b) Coordinator for the concrete system in (a)

Figure 6.17: Implementation of a coordinator for money transfers and the corresponding automa-
ton

101



6 Implementation of a role-oriented modeling language

command. In case it is necessary that a coordination command synchronizes over more
roles than those appearing in the role guard, an explicit set of roles can be added to the
role guard. For instance, the role guard in line 10 of Figure 6.17a can be modified such
that it explicitly synchronizes with role-playings containing both the src and trg roles.

[src.withdraw] [src over [src, trg]] l = 0 -> (l' = 1);

The role guard in the above example is equivalent to src & (trg | !trg). Additionally,
it is possible to specify an explicit set of roles for a whole coordinator.

1 coordinator over [src, trg] {
2 // ... coordinator body ...
3 }

Besides specifying rules for role-playing, the coordinator may also resolve the nonde-
terminism of role-playing that arises if two or more roles may be played for some action.
In programming languages, the concept of selecting the concrete implementation or
functionality for an operation is known as dispatch [Boc+12]. Within role-based systems,
it is often natural to prioritize the more specific role or the role that has been bound
last. RML provides the built-in function playable to simplify specifying priorities. For
some role instance r, the expression playable(r) evaluates to true if r can be played
in the current system state, i.e., the current state has an outgoing transition whose role
annotation contains r. Listing 6.18 exemplifies the use of the playable function for
defining priorities. Here, the role b may only be played if the role a cannot be played,
effectively giving a priority over b. Since the guard of a coordination command can be
arbitrarily complex, a more sophisticated dispatch is possible as well. This allows us to
model dynamic dispatch as it is provided by the role-based language SCROLL [LA15]
where the role-playing may depend on the system state.

1 coordinator {
2 [] [ a & !b] playable(a) -> true;
3 [] [!a & b] !playable(a) -> true;
4 }

Listing 6.18: Using the playable function to define priority of role a over role b

Metaprogramming constructs

RML provides several metaprogramming constructs which enable a generic description
of a system’s behavior. A model may be parametrized, e.g., to enable scaling of the
model via a size parameter. Furthermore, if the system block of the model defines a
family of systems, the metaprogramming constructs allow us to define a single generic
description of the behavior covering all system instances, instead of defining the behavior
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1 function succ(n : int) : int = n + 1;
2

3 function factorial(n : int) : int =
4 if n <= 1 then 1 else n * factorial(n - 1);
5

6 function core(c : component) : component =
7 if c : role then core(player(c)) else c;
8

9 function boundin(n : component, c : compartment) : bool =
10 exists r : role. r boundto n & r in c;

Listing 6.19: Function definitions in RML

of each system instance separately. The metalanguage is fully integrated into RML
which has two main advantages. First, the generated expressions and commands are
always syntactically valid and well-typed. When using an external metaprogramming
or template language, these properties are usually not guaranteed. Second, within the
metaprogramming constructs, complete access to the model’s constants is provided. This
includes the component instances defined in the system block and those generated by
the automatic completion of the constraint set. Paired with the ability to define array
variables and indexing action labels, the metaprogramming constructs allow a succinct
and generic modeling of system families.

RML supports the definition of functions to reduce code duplication. Functions without
parameters are comparable to the formula construct in the PRISM languagewhich assigns
a shorthand name to an expression. Within a function definition, the function name is
followed by a possibly empty list of typed parameters. After the parameter list, the return
type of the function is specified. Finally, the function body is an expression (whose type
must match the specified return type) which may refer to any parameter specified in the
parameter list. Note that this expression may also call any function which allows the
definition of recursive and mutually recursive functions. In an RML model, functions can
be called within any expression, including constraints in the system block.

Example 6.8 (Function definitions). Listing 6.19 shows several illustrative function
definitions.
succ: This function simply adds 1 to its argument and returns the result. Note that the

parameter type int does not need to be bounded since the parameter is not part of
the model’s state.

factorial: The second definitions illustrates that the function being defined can be
called inside the function’s body, enabling recursive definitions.

core: In the literature, the player of a role is called the core object by some authors. In
RML, the component referred to by the player keyword and the actual player of
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1 system {
2 trans[NUM_TRANSACTIONS] : Transaction;
3 // ...
4 }
5

6 coordinator {
7 loc : array NUM_TRANSACTIONS of [0..3] init 0;
8

9 forall i : [0 .. NUM_TRANSACTIONS - 1] {
10 forall src : Source. src in trans[i] {
11 forall trg : Target. trg in trans[i] {
12 [src.withdraw] [src] loc[i] = 0 -> (loc[i]' = 1);
13 [core(src).dec] [src] loc[i] = 1 -> (loc[i]' = 2);
14 [trg.deposit] [trg] loc[i] = 2 -> (loc[i]' = 3);
15 [core(trg).inc] [trg] loc[i] = 3 -> (loc[i]' = 3);
16 } } }
17 }

Listing 6.20: Coordination of all Transaction compartments using forall

the role are not necessarily the same. Consider again the example in Listing 6.4.
Here, the Source role src is not directly bound to the Account instance acc, but
rather to the Checking role ch. Therefore, the expression player(src) evaluates
to ch. However, logically the player of src is the account acc. The core function
repeatedly applies the player function until the core component of the given role
is found. The expression core(src) therefore evaluates to acc.

boundin: In the example in Listing 6.9, we defined a constraint stating that the component
acc should be bound to some role in the bank compartment. It is possible to abstract
this constraint into a user-defined predicate boundin. Then, the system description
can be written as follows6.

1 system {
2 acc : Account; bank : Bank;
3 acc boundin bank;
4 }

Besides its use in the specification of constraints, the forall quantifier can also be
employed within modules to generate sequences of commands, stochastic updates and
variable assignments. This is especially useful if the behavior of a component depends on
the system’s structure or size.

6Functions with exactly two parameters may be written in infix notation between their arguments.
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1 impl Account {
2 balance : [0..MAX_BALANCE] init 0;
3

4 forall i : [1..2] {
5 [self.inc[i]] balance <= MAX_BALANCE - i -> (balance'= balance + i);
6 [self.dec[i]] balance >= i -> (balance' = balance - i);
7 }
8 }

Listing 6.21: Applying forall in conjunction with indexed action labels

Example 6.9 (Coordinator for all Transaction compartments). Listing 6.20 shows how
the forall quantifier can be applied to coordinate multiple Transaction compartments
using a single generic coordinator. For the definition of the coordinator, we assume that
the system block defines an array of Transaction compartments (line 2). The coordi-
nator keeps the state of each transaction separately in the loc array (line 7). The outer
forall iterates over the indices of the trans array elements (line 9). The next forall-
block iterates over all component instances of type Source that are contained in the
Transaction compartment with index i (line 10). An analogous block is used to iterate
over all Target roles contained in the compartment (line 11). Finally, using the iteration
variables defined before, the coordination commands are specified (lines 12–15). Defining
the coordinator in this generic form allows us to change the number of transactions in
the system (by changing the NUM_TRANSACTIONS parameter) or the assignment of the
Source and Target roles to the Transaction compartments freely, without having to
adapt the coordinator.

Example 6.10 (Indexed action labels and forall). We revisit here the example presented
in Listing 6.14 where the inc and dec actions are indexed with the amount that is added
and subtracted from the account balance, respectively. Using the forall construct, we
can now write this module more succinctly, as shown in Listing 6.21. Note that the
iteration variable i is used as the action-label index to generate separate actions for each
amount.

Costs and rewards

In order to reason about quantitative properties, the states and transitions of a role-
based model can be augmented with costs and rewards, such as energy consumption
and throughput. As in the PRISM language, transition rewards are associated with an
action label. Additionally, rewards can be attached to role-playing by specifying a role
guard like in coordination commands. Furthermore, the metaprogramming constructs
described in the previous section are also applicable within reward structures.
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1 rewards "fees" {
2 forall src : Source {
3 [src.withdraw] [src] true := 0.05;
4 }
5 }

Listing 6.22: Definition of rewards

RBA A1,A2, . . .

RBA A MDPs M1,M2, . . . ,MC

MDP M

parallel composition,
role binding

transformation, including
coordinator C

composition with
coordinator C

parallel composition

Figure 6.23: Approaches for the composition of RBA

Example 6.11 (Definition of rewards). In Listing 6.22, a reward structure for transaction
fees is defined. Using a forall-block, a reward item for each Source role in the model
is generated. The reward item associates a cost of 0.05 with the withdraw action. The
role guard states that the cost applies if the src role is played on this transition.

6.2 Translation of role-based models
We employ a translational approach for the analysis of role-based models given in the
modeling language RML. First, an RML model is translated into the input language of
the model checker PRISM. Then, the analysis is performed by invoking PRISM on the
translated model. In case the RML model describes a family of systems, a separate PRISM
model for each family instance is generated.

The MDP semantics of RBA (see Section 5.2.3) enables a straightforward translation
approach. In a first step, the RBA for the individual components are combined by role-
binding and parallel composition which yields a single RBA representing the whole
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role-based system. Then, the composition with the role-playing coordinator results in a
single MDP, as shown on the left side of Figure 6.23. The aforementioned composition
operators can be lifted to act directly on the guarded commands of RML modules. The
translation then yields a single PRISMmodule representing the behavior of the role-based
system.

The straightforward translation approach, however, has limited scalability due to
technical limitations. The main issue is the possible exponential blow-up of the number
of guarded commands caused by the composition of the RML modules. Even for medium-
sized models, the translated PRISM model becomes so large that parsing, semantic
checking, and model construction dominate the overall analysis time. For larger models,
parsing may not even be possible due to memory limits.

There is an alternative translation approach that avoids the exponential blow-up of the
model representation. It is possible to transform an RBA into a Markov decision process
with multi-actions (maMDP) such that the effects of role-binding are mimicked by the
parallel composition of maMDPs. In an maMDP, transitions are labeled with sets of
actions instead of single actions. The main idea of the transformation is to encode the role-
playing annotations into the multi-actions. When transforming an RBA into an maMDP,
the number of transitions only grows linearly. The behavior of the whole role-based
system then arises from the parallel composition of the transformed maMDPs, as shown
on the right side of Figure 6.23. Note that both translation approaches yield isomorphic
MDPs. The RBA-to-maMDP transformation can also be lifted to guarded commands.
Thus, an RML module can be transformed into a PRISM module with multi-actions.
In [Bai+18], we presented an extended version of PRISM that is capable of processing
and analyzing models with multi-actions. With this, the second step of the approach,
the parallel composition of the maMDPs, can be performed by PRISM during model
construction. Therefore, there is no exponential blow-up of the model representation.

In the following, the alternative translation approach outlined above is described in
more detail. We start with a formal definition of the RBA transformation in Section 6.2.1
and prove its correctness. Next, an overview of the multi-action extension of PRISM
is provided in Section 6.2.2 which yields the foundation for the transformation of RML
modules to PRISM modules in Section 6.2.3. Finally, the translation of the role-playing
coordinator is discussed in Section 6.2.4.

6.2.1 Transformation to multi-action MDPs

In this section, we formally define the transformation of an RBA to anmaMDP. To preserve
the effects of role-binding upon parallel composition of these maMDPs, we further define
a closure operation on maMDPs modifying the maMDP of the role player depending
on the bound role. By applying both the transformation and the closure operation, the
effects of parallel composition and role-binding on RBA can be captured using the parallel
composition of the transformed maMDPs.
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Multi-action MDPs

MaMDPs are a natural extension of MDPs where transitions are labeled with action sets
instead of single actions.

Definition 6.12 (maMDP). A multi-action MDP is a tuple M = (𝑆,Act,−→, 𝑆 init) where
• 𝑆 is a finite set of states,
• Act is a set of actions,
• −→ ⊆ 𝑆 × P(Act) × Distr(𝑆) is a transition relation with multi-actions, and
• 𝑆 init ⊆ 𝑆 is a set of initial states.

The different transition relation compared to MDPs requires us to adapt the parallel
composition operator for maMDPs. The parallel composition of maMDPs defined in the
following is derived from the composition of a data-abstract variant of constraint automata
(CA) [Bai+06], or more precisely simple probabilistic constraint automata (SPCA) [Bai05].

Definition 6.13 (Parallel composition of maMDP). The parallel composition of two multi-
action MDPs M𝑖 = (𝑆𝑖,Act𝑖,−→𝑖, 𝑆

init
𝑖 ) with 𝑖 ∈ {1, 2} for a set of non-synchronizing

actions 𝑁 ⊆ Act1 ∪ Act2 is defined as

M1 ∥𝑁 M2 =
(︁
𝑆1 × 𝑆2, Act1 ∪ Act2, −→, 𝑆 init1 × 𝑆 init2

)︁
where −→ is the smallest transition relation fulfilling the rules shown in Figure 6.24.

(int1)
𝑠1

Σ−→1 _1 Σ ∩ Act2 = ∅

⟨𝑠1, 𝑠2⟩
Σ−→ _1 ∗ Dirac(𝑠2)

(int2)
𝑠2

Σ−→2 _2 Σ ∩ Act1 = ∅

⟨𝑠1, 𝑠2⟩
Σ−→ Dirac(𝑠1) ∗ _2

(sync)
𝑠1

Σ1−−→1 _1 𝑠2
Σ2−−→2 _2 Σ1 ∩ Act2 = Σ2 ∩ Act1 | (Σ1 ∪ Σ2) ∩ 𝑁 | ≤ 1

⟨𝑠1, 𝑠2⟩
Σ1∪Σ2−−−−−→ _1 ∗ _2

Figure 6.24: Rules for the parallel composition of maMDPs

The (sync) rule formalizes the synchronization of maMDPs via handshaking over
common actions in the action alphabets. Note that there are no restrictions regarding
the emptiness of Σ1 ∪ Act2 and Σ2 ∪ Act1. Therefore, transitions that are not labeled
with any action contained in the action alphabet of the other maMDP and that are thus
“unrelated” can be taken simultaneously. By rules (int1) and (int2), these transitions can
also be executed without synchronization. Furthermore, transitions labeled with the
empty action set can synchronize with any transition.

A slight extension in Definition 6.13 compared to the composition of data-abstract
SPCA is the inclusion of the set of non-synchronizing actions 𝑁 . Actions 𝛼, 𝛽 ∈ 𝑁 can
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never synchronize even if they are unrelated, i.e., if 𝛼 ≠ 𝛽 . This is formalized by the
last precondition of rule (sync). In the product maMDP, the action set of each transition
contains at most one non-synchronizing action. The concept of non-synchronizing actions
is later needed to distinguish between role-playing actions and “standard” actions of RBA
of which the former are synchronizing and the latter are non-synchronizing. Note that
the standard parallel composition operator as defined for data-abstract SPCA is obtained
by assuming 𝑁 = ∅.

Transformation of RBA to multi-action MDPs

We now turn to the transformation of RBA to maMDPs. The main idea here is to treat the
role annotations as actions and add them to the transitions’ action sets in the maMDP.
This transformation makes use of the fact that the action sets of maMDP-transitions are
combined upon synchronization (see rule (sync) in Figure 6.24), similar to the combination
or role annotations in the parallel composition of RBA (cf. rule (sync) in Figure 5.5).

Before turning to the transformation, we need some auxiliary definitions. Given
a set 𝑋 of role annotations, we define 𝑋− = {𝑟 : +𝑟 ∈ 𝑋 }. Further, we define the
set of overriding actions of a role instance 𝑟 in an RBA R = (𝑆,Act, 𝑅,−→, 𝑆 init) as
Act+𝑟R = {𝛼 : (𝑠, 𝛼, 𝑋, _) ∈ −→, +𝑟 ∈ 𝑋 } where 𝑟 ∈ 𝑅.

Definition 6.14 (maMDP of an RBA). The maMDP arising from an RBA
A = (𝑆,Act, 𝑅,−→, 𝑆 init) is defined as

M[A] =
(︁
𝑆, Act ∪ A(𝑅), −→M, 𝑆 init

)︁
where −→M is the smallest transition relation fulfilling the following rule.

𝑠
𝛼/𝑋
−−−→ _

𝑠
{𝛼}∪𝑋∪𝑋−

−−−−−−−−→M _

The above transformation is sufficient to imitate the parallel composition of RBA
using the parallel composition of the transformed maMDPs, but it does not cover the
effects of role-binding. For that, we define an additional closure operation on maMDPs.
Note that the rules for role-binding (see Figure 5.6) are almost identical to the rules for
parallel composition (cf. Figure 5.5). Thus, only a special treatment of transitions with +𝑟
annotations is necessary, where 𝑟 is a role instance name. A role annotation +𝑟 means that
the role transition will not synchronize with any transition of the player upon binding,
i.e., the role takes the transition alone (if it is played) while the player remains in the same
state. Suppose the role transition is labeled with some action 𝛼 ∈ Act𝑟 , where Act𝑟 is the
action alphabet of the role’s RBA. The case where 𝛼 ∉ Act𝑝 , with Act𝑝 being the action
alphabet of the player RBA, is already covered by the interleaving rules of the maMDP
composition. It remains to handle the case where 𝛼 ∈ Act𝑝 . Since the action 𝛼 is shared by
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02

12

{inc2}{dec2}

{dec2, +𝑐}{inc2, +𝑐}

{dec2, +𝑐}{inc2, +𝑐}

(a) MAcc2 = cl𝑐Checking (M[Acc2])

0

-1

{dec2, 𝑐, +𝑐}{inc2, 𝑐, +𝑐}

{dec2, 𝑐}{inc2, 𝑐}

{dec2, 𝑐}{inc2, 𝑐}

(b) MChecking = M[Checking]

Figure 6.25: maMDPs for the account Acc2 and the Checking role. Transitions added by the closure
operation appear dashed.

12,0 02,0

12,-1 02,-1

{dec2, 𝑐}

{inc2, 𝑐}

{dec2, 𝑐}

{inc2, 𝑐}

{dec2, 𝑐, +𝑐}{inc2, 𝑐, +𝑐} {dec2, 𝑐, +𝑐}{inc2, 𝑐, +𝑐}

Figure 6.26: maMDP for the composition cl𝑐Checking(M[Acc2]) ∥ {inc2,dec2 } M[Checking]

the role RBA and the player RBA, their corresponding maMDPs will synchronize over 𝛼 .
However, we must ensure that the player remains in the same state during this transition.
In order to achieve this effect, a self-loop labeled with {𝛼, +𝑟 } is added to every state
of the player’s maMDP. Note that no other transition of the player’s maMDP is labeled
with some action set Σ where +𝑟 ∈ Σ. Therefore, the player will not change its state if
the +𝑟 transition of the role is taken. In summary, to mimic the effects of role-binding
using the parallel composition of maMDPs, it suffices to extend the maMDP of the player
depending on the overriding transitions of the role. This extension is formalized by the
following definition.

Definition 6.15 (RBA closure). Given an RBA R and an instance name 𝑟 , the closure over
an maMDPs M = (𝑆,Act,−→, 𝑆 init) is defined as

cl 𝑟R (M) =
(︁
𝑆, Act ∪ {+𝑟 }, −→′, 𝑆 init

)︁
where −→′ = −→∪

{︁ (︁
𝑠, {𝛼, +𝑟 },Dirac(𝑠)

)︁
: 𝑠 ∈ 𝑆, 𝛼 ∈ Act+𝑟R

}︁
.

Example 6.16 (Transformation and closure). Figure 6.25 shows the maMDPs arising from
the respective RBA of the Acc2 natural and the Checking role (cf. Figures 5.3 and 5.4b).
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Since the Checking role will be bound to the account Acc2, we further apply the closure
operation to the maMDP of Acc2. The result of the parallel composition of the two
maMDPs is presented in Figure 6.26. Note that the resulting maMDP is indeed isomorphic
to the RBA Checking[𝑐 → Acc2] (cf. Figure 5.7b) when ignoring the additional +𝑐 actions.

The example illustrates how the transformation preserves the effect of the +𝑐 role
annotations. For instance, the transition in MChecking labeled with {inc2, 𝑐, +𝑐} can only
synchronize with transitions in MAcc2 that are labeled with {inc2, +𝑐}. Since only the
self-loops inMAcc2 carry this action set, the player remains in the original state if the role
is played. Also note that the actions {inc2} ofMAcc2 and {inc2, 𝑐, +𝑐} of MChecking cannot
synchronize, since {inc2} ∩ ActMChecking = {inc2} and {inc2, 𝑐, +𝑐} ∩ ActMAcc2

= {inc2, +𝑐}.

The compatibility of role-binding and the parallel composition of RBA with the parallel
composition of maMDPs under the transformations defined in Definitions 6.14 and 6.15
is given by the following theorem.

Theorem 6.17 (Composition compatibility). Let A1,A2 be RBA with compatible role
interfaces, Act1,Act2 be the action sets of A1,A2 respectively, R be an RBA for role 𝑟 that
can be bound to A1 and ≅ stand for isomorphism (equality up to renaming of states). Then

1. M
[︁
A1 ∥ A2

]︁
≅ M[A1] ∥𝑁 M[A2]

2. M
[︁
R[𝑟 → A1]

]︁
≅ cl 𝑟R

(︁
M[A1]

)︁
∥𝑁 M[R]

where 𝑁 = Act1 ∪ Act2.

Proof. We first show (1). Let A𝑖 = (𝑆𝑖,Act𝑖, 𝑅𝑖,−→𝑖, 𝑆
init
𝑖 ) for 𝑖 ∈ {1, 2}. Further, let M 𝑗 =

(𝑆M 𝑗
,ActM 𝑗

,−→M 𝑗
, 𝑆 initM 𝑗

) for 𝑗 ∈ {1, 2, 21, 22} be maMDPs with M1 = M
[︁
A1 ∥ A2

]︁
,

M21 = M[A1], M22 = M[A2] and M2 = M21 ∥𝑁 M22. We show that M1 ≅ M2.
𝑆M1 = 𝑆M2 , ActM1 = ActM2 and 𝑆 initM1

= 𝑆 initM2
follows directly from Definitions 5.4, 6.13

and 6.14. It remains to show that −→M1 = −→M2 .

(⊆): The transitions of M1 arise from the parallel composition of the two RBA A1,A2

defined by the rules in Figure 5.5 which we consider separately by case distinction.

(int1) Assume there is a transition 𝑠1
𝛼1/𝑋−−−−→1 _1 with 𝛼1 ∈ Act1 \ Act2. Then, by

applying rule (int1) of Figure 5.5 and subsequently applying Definition 6.14, it
follows that for all 𝑠2 ∈ 𝑆2 the maMDP M1 has transitions

⟨𝑠1, 𝑠2⟩
{𝛼1}∪𝑋∪𝑋−

−−−−−−−−−→M1 _1 ∗ Dirac(𝑠2) .

On the right hand side, the transformation of Definition 6.14 applied to A1

yields the transition 𝑠1
{𝛼1}∪𝑋∪𝑋−

−−−−−−−−−→M21 _1. We apply rule (int1) in Figure 6.24,
which yields for all 𝑠2 ∈ 𝑆2 the transitions

⟨𝑠1, 𝑠2⟩
{𝛼1}∪𝑋∪𝑋−

−−−−−−−−−→M2 _1 ∗ Dirac(𝑠2) .

111



6 Implementation of a role-oriented modeling language

(int2) The symmetric case follows from case (int1) by swapping A1 and A2.

(sync) Assume there are transitions 𝑠1
𝛼1/𝑋−−−−→1 _1 and 𝑠2

𝛼2/𝑌−−−−→2 _2 with 𝛼 = 𝛼1 =

𝛼2. Then, by applying rule (sync) of Figure 5.5 and subsequently applying
Definition 6.14, we obtain that M1 has a transition

⟨𝑠1, 𝑠2⟩
{𝛼}∪(𝑋∪𝑌 )∪(𝑋∪𝑌 )−
−−−−−−−−−−−−−−−−→M1 _1 ∗ _2 .

On the right hand side, the transformation of Definition 6.14 applied to A1

and A2 yields transitions 𝑠1
{𝛼}∪𝑋∪𝑋−

−−−−−−−−→M21 _1 and 𝑠2
{𝛼}∪𝑌∪𝑌−

−−−−−−−−→M22 _2. Rule
(sync) of Figure 6.24 applies, since | ({𝛼} ∪𝑋 ∪𝑋− ∪𝑌 ∪𝑌−) ∩ 𝑁 | = 1 where
𝛼 ∈ 𝑁 . Note that 𝑋 ∩ 𝑁 = ∅ and 𝑌 ∩ 𝑁 = ∅. This yields the transition

⟨𝑠1, 𝑠2⟩
{𝛼}∪𝑋∪𝑋−∪𝑌∪𝑌−

−−−−−−−−−−−−−−→M2 _1 ∗ _2 ,

which is equal to the transition in M1 since (𝑋 ∪ 𝑌 )− = 𝑋− ∪ 𝑌−.

(⊇): This direction can be shown analogously to (⊆).

Now let us show (2). Let A𝑝 = (𝑆𝑝,Act𝑝, 𝑅𝑝,−→𝑝, 𝑆
init
𝑝 ) and R = (𝑆𝑎,Act𝑎, 𝑅𝑎,−→𝑎

, 𝑆 init𝑎 ) be RBA with A𝑝 and R having compatible role interfaces. Further, let M 𝑗 =

(𝑆M 𝑗
,ActM 𝑗

,−→M 𝑗
, 𝑆 initM 𝑗

) for 𝑗 ∈ {1, 2, 21, 22} be maMDPs with M1 = M
[︁
R[𝑟 → A𝑝]

]︁
,

M21 = cl 𝑟R
(︁
M[A𝑝]

)︁
, M22 = M[R] and M2 = M21 ∥𝑁 M22. We show that un-

der a projection 𝜋 that removes all “+”-prefixed actions, M1 = 𝜋 (M2). 𝑆M1 = 𝑆M2 ,
ActM1 = ActM2 and 𝑆 initM1

= 𝑆 initM2
follows directly from Definitions 5.5 and 6.13 to 6.15. It

remains to show that −→M1 = 𝜋 (−→M2).

(⊆): The transitions of M1 arise from binding role 𝑟 in R to A𝑝 as defined by the rules
in Figure 5.6 which we consider separately by case distinction.

(intp) Assume there is a transition 𝑠𝑝
𝛼𝑝/𝑌−−−−→𝑝 _𝑝 with 𝛼𝑝 ∈ Act𝑝 \ Act𝑎 . Then, by

applying rule (int𝑝 ) of Figure 5.6 and subsequently applying Definition 6.14, it
follows that for all 𝑠𝑎 ∈ 𝑆𝑎 the maMDP M1 has transitions

⟨𝑠𝑎, 𝑠𝑝⟩
{𝛼𝑝 }∪𝑌∪𝑌−

−−−−−−−−−→M1 Dirac(𝑠𝑎) ∗ _𝑝 .

On the right hand side, the transformation of Definition 6.14 yields the tran-

sition 𝑠𝑎
{𝛼𝑎}∪𝑋∪𝑋−

−−−−−−−−−→M21 _𝑎 . We apply rule (int2) of Figure 6.24, which for all
𝑠𝑎 ∈ 𝑆𝑎 yields the transitions

⟨𝑠𝑎, 𝑠𝑝⟩
{𝛼𝑝 }∪𝑌∪𝑌−

−−−−−−−−−→M2 Dirac(𝑠𝑎) ∗ _𝑝 .
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(inta) This case can be shown similarly to (intp).

(sync) Assume there are transition 𝑠𝑝
𝛼𝑝/𝑋−−−−→𝑝 _𝑝 and 𝑠𝑎

𝛼𝑎/𝑌−−−→R _𝑎 with 𝛼 = 𝛼𝑝 = 𝛼𝑎

and +𝑟 ∉ 𝑋 . Then, by applying rule (sync) of Figure 5.6 and subsequently
applying Definition 6.14, it follows that M1 has a transition

⟨𝑠𝑎, 𝑠𝑝⟩
{𝛼}∪(𝑋∪𝑌 )∪(𝑋∪𝑌 )−
−−−−−−−−−−−−−−−−→M1 _𝑎 ∗ _𝑝 .

On the right hand side, the transformation in Definition 6.14 yields the

transitions 𝑠𝑎
{𝛼}∪𝑋∪𝑋−

−−−−−−−−→M21 _1 ∗ Dirac(𝑠𝑝) and 𝑠𝑝
{𝛼}∪𝑌∪𝑌−

−−−−−−−−→M22 _𝑝 . Since
({𝛼} ∪ 𝑋 ∪ 𝑋−) ∩ ActM22 = ({𝛼} ∪ 𝑌 ∪ 𝑌−) ∩ ActM21 = {𝛼} and |{𝛼} ∪ 𝑋 ∪
𝑋−∪𝑌 ∪𝑌−) ∩𝑁 | = 1, rule (sync) in Figure 6.24 applies. Note that 𝑋 ∩𝑁 = ∅
and 𝑌 ∩ 𝑁 = ∅. This yields the transition

⟨𝑠𝑎, 𝑠𝑝⟩
{𝛼}∪𝑋∪𝑋−∪𝑌∪𝑌−

−−−−−−−−−−−−−−→M2 _𝑎 ∗ _𝑝 .

(add) Assume there is a transition 𝑠𝑎
𝛼/𝑋
−−−→𝑎 _𝑎 where 𝛼 ∈ Act𝑎 ∩ Act𝑝 and +𝑟 ∈

𝑋 . Then, by applying rule (add) of Figure 5.6 and subsequently applying
Definition 6.14, it follows that for all 𝑠𝑝 ∈ 𝑆𝑝 the maMDP M1 has transitions

⟨𝑠𝑎, 𝑠𝑝⟩
{𝛼}∪(𝑋\{+𝑟 })∪𝑋−

−−−−−−−−−−−−−−→M1 _𝑎 ∗ Dirac(𝑠𝑝) .

On the right hand side, M21 has transitions 𝑠𝑝
{𝛼,+𝑟 }
−−−−−→M21 Dirac(𝑠𝑝) for all

𝑠𝑝 ∈ 𝑆𝑝 introduced by the closure as defined in Definition 6.15. The trans-
formation in Definition 6.14 applied to R yields that M22 has a transition

𝑠𝑎
{𝛼}∪𝑋∪𝑋−

−−−−−−−−→M22 _𝑎 . Applying rule (sync) of Figure 6.24, which is possible
since +𝑟 ∈ 𝑋 , yields for all 𝑠𝑝 ∈ 𝑆𝑝 the transitions

⟨𝑠𝑎, 𝑠𝑝⟩
{𝛼,+𝑟 }∪𝑋∪𝑋−

−−−−−−−−−−→M2 _𝑎 ∗ Dirac(𝑠𝑝) .

Removing all +𝑟 actions using projection 𝜋 then yields the transitions

⟨𝑠𝑎, 𝑠𝑝⟩
{𝛼}∪(𝑋\{+𝑟 })∪𝑋−

−−−−−−−−−−−−−−→M2 _𝑎 ∗ Dirac(𝑠𝑝) .

(⊇): This direction can be shown analogously to (⊆).

□
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Compatibility of RBA and multi-action MDP semantics

After having shown that the composition operators on RBA are compatible with the
parallel composition of maMDPs, it is left to show the correctness of the transformation
itself (see Definitions 6.14 and 6.15). That is, we need to show that the MDP semantics of
an RBA (see Section 5.2.3) corresponds to the maMDP semantics of the transformed RBA.
For this, we first define the composition of an maMDP resulting from the transformation
of an RBA with an maMDP arising from transforming a role-playing coordinator, i.e., we
define the ⟦·⟧ operator from Definition 5.11 for maMDPs. To streamline the definition,
we introduce the projection functions act𝑅 (Σ) = Σ \ A(𝑅) and role𝑅 (Σ) = Σ ∩ A(𝑅).

Definition 6.18 (Composition with role-playing coordinator for maMDPs). The maMDP
arising from the composition of an maMDP M𝑎 = (𝑆𝑎,Act𝑎,−→𝑎, 𝑆

init
𝑎 ) representing a

role-based system and an maMDPM𝑐 = (𝑆𝑐,Act𝑐,−→𝑐, 𝑆
init
𝑐 ) of a role-playing coordinator

for a set of roles 𝑅 is defined as

M𝑎 ⋈︁𝑅 M𝑐 =
(︁
𝑆𝑎 × 𝑆𝑐,Act𝑎 ∪ Act𝑐,−→, 𝑆 init𝑎 × 𝑆 init𝑐

)︁
where −→ is the smallest transition relation fulfilling the rules in Figure 6.27.

(int𝑎)
𝑠𝑎

Σ−→𝑎 _𝑎 act𝑅 (Σ) ∩ act𝑅 (Act𝑐) = ∅ I ∈ R(role𝑅 (Σ), 𝑅)

⟨𝑠𝑎, 𝑠𝑐⟩
act𝑅 (Σ)∪I−−−−−−−−→ _𝑎 ∗ Dirac(𝑠𝑐)

(int𝑐 )
𝑠𝑐

Σ−→𝑐 _𝑐 act𝑅 (Σ) ∩ act𝑅 (Act𝑎) = ∅ I ∈ R(role𝑅 (Σ), 𝑅)

⟨𝑠𝑎, 𝑠𝑐⟩
act𝑅 (Σ)∪I−−−−−−−−→ Dirac(𝑠𝑎) ∗ _𝑐

(sync)

𝑠𝑎
Σ𝑎−−→𝑎 _𝑎 𝑠𝑐

Σ𝑐−−→𝑐 _𝑐
act𝑅 (Σ𝑎) ∩ act𝑅 (Act𝑐) = act𝑅 (Σ𝑐) ∩ act𝑅 (Act𝑎)
|act𝑅 (Σ𝑎 ∪ Σ𝑐) | = 1 I ∈ R(role𝑅 (Σ𝑎 ∪ Σ𝑐), 𝑅)

⟨𝑠𝑎, 𝑠𝑐⟩
act𝑅 (Σ𝑎∪Σ𝑐 )∪I−−−−−−−−−−−→ _𝑎 ∗ _𝑐

Figure 6.27: Rules for the composition of an maMDP arising from an RBA and an maMDP arising
from a role-playing coordinator

We now show the correctness of the alternative translation approach. Note that the
following theorem directly implies behavioral equivalence of an RBA under the trivial
coordinator (consisting only of a single state and an empty transition relation) and its
corresponding transformed maMDP. First, we define a technical notion of projections on
multi-actions to relate maMDPs of a certain form with standard MDPs. For a given set of
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actions Act and roles 𝑅, let 𝜋 : P(Act∪A(𝑅)) → Act×P(𝑅) be a function that transforms
a multi-action into a pair of action and role-playing where for any 𝛼 ∈ Act𝑐 ∪ Act𝑎 and
I ⊆ 𝑅 we have 𝜋 ({𝛼} ∪ I) = ⟨𝛼,I⟩. When M is an maMDP where in each transition at
most one element of the action set is not contained in 𝑅, we write 𝜋 (M) to denote the
MDP arising from the application of 𝜋 onto the action sets of every transition.

Theorem 6.19 (Correctness of the translation approach). For any RBA A and coordinator
C with roles 𝑅𝑎 and 𝑅𝑐 , respectively, we have

𝜋
(︁
M[A] ⋈︁𝑅 M[C]

)︁
≅ ⟦A⟧C

where 𝑅 = 𝑅𝑎 ∪ 𝑅𝑐 .

Proof. Let A = (𝑆𝑎,Act𝑎, 𝑅𝑎,−→𝑎, 𝑆
init
𝑎 ) be an RBA and C = (𝑆𝑐,Act𝑐, 𝑅𝑐,−→𝑐, 𝑆

init
𝑐 ) be a

role-playing coordinator. Further, letM1 be anmaMDPwithM1 = M[A] ⋈︁𝑅 M[C] and
M2 be anMDPwithM2 = ⟦A⟧C, and𝑅 = 𝑅𝑎∪𝑅𝑐 . Note that projection 𝜋 as defined above
can be applied to all multi-actions inM1, since multi-actions inM[A] andM[C] contain
at most one action 𝛼 with 𝛼 ∈ Act𝑎 and 𝛼 ∈ Act𝑐 , respectively. Furthermore, the (sync) rule
of the composition operator ⋈︁𝑅 (Figure 6.27) only produces multi-actions which contain at
most one action 𝛼 ∈ Act𝑎∪Act𝑐 . We now show that 𝜋 (M1) = M2. First, 𝑆1 = 𝑆2 = 𝑆𝑎×𝑆𝑐
and 𝑆 init1 = 𝑆 init2 is clear by Definitions 6.14 and 6.18. Applying Definitions 6.14 and 6.18
yields Act1 = (Act𝑎 ∪ A(𝑅𝑎) ∪ (Act𝑐 ∪ A(𝑅𝑐)) = Act𝑎 ∪ Act𝑐 ∪ A(𝑅) and Definition 5.11
yields Act2 = (Act𝑎 ∪ Act𝑐) × P(𝑅), with 𝑅 = 𝑅𝑎 ∪ 𝑅𝑐 . Thus, we have 𝜋 (Act1) = Act2.
Finally, 𝜋 (−→1) = −→2 is clear by the definition of ⋈︁𝑅 (cf. Definition 6.18) which matches
the definition of ⟦·⟧ (cf. Definition 5.11). □

6.2.2 Multi-action extension of PRISM
The previously described transformation allows us to translate the individual RBA that
constitute a role-based system into maMDPs. Using this foundation, the modules that
constitute an RML model can be translated into PRISM modules with multi-actions
such that the number of guarded commands in the PRISM model is only polynomial
in the number of commands of the corresponding RML model. However, applying the
parallel composition for modules with multi-actions directly on the PRISM-language
level would again result in an exponential blow-up in the size of the model representation.
Thus, to reap the benefits of the alternative translation approach, PRISM must be able
to directly handle models containing multi-actions. Then, the composition of the multi-
action modules is shifted to the model construction phase, as it is the case for standard
PRISM models. The extended version of PRISM capable of processing models with multi-
actions is described in this section. The implementation described here has been published
in [Bai+18].

A multi-action-capable version of PRISM also has broad applications outside the trans-
lation of role-based models. It can, for instance, be applied for modeling exogenous
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(1a)
[Σ] 𝑔 → 𝑢 ∈ 𝐶1 Σ ∩ Act = ∅

[Σ] 𝑔 → 𝑢 ∈ 𝐶
(1b)

[Σ] 𝑔 → 𝑢 ∈ 𝐶2 Σ ∩ Act = ∅
[Σ] 𝑔 → 𝑢 ∈ 𝐶

(1c)
[Σ1] 𝑔1 → 𝑢1 ∈ 𝐶1 [Σ2] 𝑔2 → 𝑢2 ∈ 𝐶2 Σ1 = Σ2 Σ1 ∩ Act ≠ ∅

[Σ1 ∪ Σ2] 𝑔1 ∧ 𝑔2 → 𝑢1 ∗ 𝑢2 ∈ 𝐶

(2a)
]Σ[ 𝑔 → 𝑢 ∈ 𝐶1 Σ ∩ Act = ∅

]Σ[ 𝑔 → 𝑢 ∈ 𝐶
(2b)

]Σ[ 𝑔 → 𝑢 ∈ 𝐶2 Σ ∩ Act = ∅
]Σ[ 𝑔 → 𝑢 ∈ 𝐶

(2c)
]Σ1[ 𝑔1 → 𝑢1 ∈ 𝐶1 ]Σ2[ 𝑔2 → 𝑢2 ∈ 𝐶2 Σ1 ∩ Act = Σ2 ∩ Act

]Σ1 ∪ Σ2[ 𝑔1 ∧ 𝑔2 → 𝑢1 ∗ 𝑢2 ∈ 𝐶

(3a)
]Σ1[ 𝑔1 → 𝑢1 ∈ 𝐶1 [Σ2] 𝑔2 → 𝑢2 ∈ 𝐶2 Σ2 ≠ ∅ Σ1 = Σ2 ∩ Act

[Σ1 ∪ Σ2] 𝑔1 ∧ 𝑔2 → 𝑢1 ∗ 𝑢2 ∈ 𝐶

(3b)
[Σ1] 𝑔1 → 𝑢1 ∈ 𝐶1 ]Σ2[ 𝑔2 → 𝑢2 ∈ 𝐶2 Σ1 ≠ ∅ Σ2 = Σ1 ∩ Act

[Σ1 ∪ Σ2] 𝑔1 ∧ 𝑔2 → 𝑢1 ∗ 𝑢2 ∈ 𝐶

Figure 6.28: Rules for the parallel composition of PRISMmodules withmulti-actions synchronizing
over the action alphabet Act

coordination [Bai+18]. Therefore, we chose to conservatively extend the PRISM language
in order to maintain compatibility with the standard semantics of PRISM models. A
command in the extended PRISM language consists of a multi-action, a state guard, and
a stochastic update. The multi-action can take either the closed form, denoted [Σ], or
the open form, denoted ]Σ[. Intuitively, a closed multi-action cannot be extended with
additional actions during composition. For an open multi-action Σ, composition may
yield a multi-action Σ′ with Σ ⊆ Σ′. Note that in case the model contains only closed
multi-actions consisting of at most one action, it has the same semantics as a standard
PRISM model.

We now turn to the parallel composition operator for modules containing multi-actions.
Figure 6.28 presents the rules for the𝑀1 |Act |𝑀2 operator, where𝑀1,𝑀2 are modules and
Act is the synchronization alphabet. The standard parallel composition operator 𝑀1 ∥ 𝑀2

is obtained by using Act = Act1 ∩ Act2 as the synchronization alphabet. The expression
[Σ] 𝑔 → 𝑢 ∈ 𝐶𝑖 denotes that there is a guarded command with closed multi-action Σ,
guard 𝑔 and stochastic update 𝑢 in module 𝑀𝑖 . Analogously, ]Σ[ 𝑔 → 𝑢 ∈ 𝐶𝑖 denotes
that there is a command with open multi-action Σ. Furthermore, 𝑢1 ∗ 𝑢2 stands for the
combined stochastic update of 𝑢1 and 𝑢2 using the product distribution as in the standard
PRISM semantics. Rules (1a)–(1c) cover the cases where only closed multi-actions are
used. Apart from using multi-actions instead of single actions, these rules are equivalent
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to PRISM’s standard parallel composition operator. Rules (2a)–(2c) deal with open multi-
actions. These rules correspond to the rules for the parallel composition of maMDPs (cf.
Figure 6.24) lifted to guarded commands. The last two symmetric rules (3a) and (3b) handle
the case where open and closed multi-actions synchronize. Since closed multi-actions
cannot be extended with further actions, the result of such a synchronization is again
a closed multi-action. Note that from rules (1a)–(1c) it follows that the empty closed
multi-action [] never synchronizes with any other multi-action. The empty open multi-
action ][, on the other hand, can synchronize with any other open or closed multi-action
except the empty closed multi-action. The parallel composition operator for modules
with multi-actions is both commutative and associative.

1 module M1
2 s : [0..2] init 0;
3

4 ]a, b[ s=0 -> (s'=1);
5 [a, b] s=0 -> (s'=2);
6 endmodule
7

8 module M2
9 t : [0..2] init 0;

10

11 ]b, c[ t=0 -> (t'=1);
12 ]b[ t=0 -> (t'=2);
13 endmodule

(a) Individual modules

1 module M1_M2
2 s : [0..2] init 0;
3 t : [0..2] init 1;
4

5 ]a, b, c[ s=0 & t=0 -> (s'=1) & (t'=1);
6 ]a, b[ s=0 & t=0 -> (s'=1) & (t'=2);
7 [a, b] s=0 & t=0 -> (s'=2) & (t'=2);
8 endmodule

(b) Composed module

Figure 6.29: Composition of modules with multi-actions

Example 6.20 (Composition of modules with multi-actions). Figure 6.29 shows two
PRISM modules with multi-actions and the result of their composition. Since both the
commands in line 4 and line 11 of Figure 6.29a feature an open multi-action with shared
action b, the commands are combined according to rule (2c) in Figure 6.28. Similarly, the
command in line 4 can also synchronize with the command in line 12. For the commands
in line 5 and line 12, rule (3b) applies. Note that the commands in line 5 and line 11 do not
synchronize, since the closed multi-action [a, b] cannot be extended with action c.

Multi-actions can additionally be used within the declarations of reward structures to
assign rewards to the composed system. Like in modules, both the open and the closed
form of multi-actions may be used. A reward item with a closed multi-action [Σ] will
assign a reward to transitions with multi-action Σ′ if Σ = Σ′. For open multi-actions ]Σ[,
the reward is assigned if Σ ⊆ Σ′. The open form is especially useful to assign rewards for
some specific action regardless of which other actions are contained in the multi-action
as well.
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1 natural type Account {
2 bal : [0 .. MAX_BALANCE] init 0;
3

4 [self.inc] bal < MAX_BALANCE -> (bal' = bal + 1);
5 [self.dec] bal > 0 -> (bal' = bal - 1);
6 }
7

8 role type Checking(Account) {
9 od : [0 .. MAX_OVERDRAFT] init 0;

10

11 [override player.dec] od < MAX_OVERDRAFT -> (od' = od + 1);
12 [override player.inc] od > 0 -> (od' = od - 1);
13 }
14

15 system {
16 a : Account; c : Checking;
17 c boundto a;
18 }

Listing 6.30: RML modules defining the behavior of the Account natural and Checking role

The extensions described previously have been implemented in PRISM’s explicit engine
and in the (semi-)symbolic engines. The extended PRISM version is able to directly process
and analyze the multi-action PRISM models generated by the RBSC tool.

6.2.3 Translation of components

By utilizing the transformation of RBA to maMDPs and the multi-action extension of
PRISM described in the previous sections, we are now able to translate RML modules
to PRISM modules with multi-actions. Since the translation of the language constructs
shared by RML and the PRISM language is straightforward, we focus here only on the
role-specific constructs.

Consider again the banking example with a single checking account role bound to an
account natural shown in Listing 6.30. First, actions for the role-playing are added to all
commands of a role’s modules. In the translation of the example in Listing 6.31, the action
c is therefore added to the multi-actions of the translated commands (lines 13 and 14).
Since the actions within the role module are marked with override, the additional action
ovr_c (corresponding to the +𝑐 role annotation) is added in the translation according
to Definition 6.14. All role instances in RML are automatically transformed to be non-
blocking w.r.t. their player (see also Section 5.2.1). Therefore, a self-loop for each action
of the role must be added to every state of the role. This is achieved by the commands in
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1 module a
2 a_bal : [0..1] init 0;
3

4 ]a_inc[ a_bal < 1 -> (a_bal' = a_bal + 1);
5 ]a_dec[ a_bal > 0 -> (a_bal' = a_bal - 1);
6 ]a_dec, ovr_c[ true -> true;
7 ]a_inc, ovr_c[ true -> true;
8 endmodule
9

10 module c
11 c_od : [0..1] init 0;
12

13 ]a_dec, c, ovr_c[ c_od < 1 -> (c_od' = c_od + 1);
14 ]a_inc, c, ovr_c[ c_od > 0 -> (c_od' = c_od - 1);
15 ]a_dec, not_c[ true -> true;
16 ]a_inc, not_c[ true -> true;
17 endmodule

Listing 6.31: Translated modules for the Account natural and Checking role. Generated role
actions appear in italic.

lines 15 and 16 in Listing 6.31 labeled with the not_c action (corresponding to the 𝑐 role
annotation) indicating that the role is not played on these transitions. For the translation
of components that have roles bound to them, the closure operator must be applied (see
Definition 6.15). In the example, the checking role c is bound to the account a (line 17 of
Listing 6.30). Thus, the closure is applied to the component implementing a, i.e., self-loops
for each action of the role c labeled with ovr_c are added to the module (lines 6 and 7 of
Listing 6.31).

According to the definitions of role-binding (Definition 5.5) and the parallel composition
of RBA (Definition 5.4), transitions can only synchronize over shared actions which
should also be the case for RML modules. However, after translating RML modules to
PRISM modules with multi-actions, unrelated actions may synchronize as well, since the
translated model contains only open multi-actions. In order to maintain the compatibility
of role-binding and the parallel composition ofRMLmodules with the parallel composition
of their corresponding translated PRISM modules, the synchronization of unrelated
actions must be prevented. Note that the parallel composition of modules with multi-
actions within PRISM currently does not support the composition under a set of non-
synchronizing actions like in Definition 5.4. Therefore, the following construction is
necessary. An additional PRISM module (usually named Nosync) is generated as part of
the translation. For each action 𝛼 appearing in the RML model, the Nosync module has a
self-loop labeled with the open multi-action ]𝛼[. The generated module for the example
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1 module Nosync
2 ]a_dec[ true -> true;
3 ]a_inc[ true -> true;
4 endmodule

Listing 6.32: Generated module for preventing the synchronization of non-role actions

is shown in Listing 6.32. Since the Nosync module covers the whole alphabet of non-role
actions and each command is only labeled with a single action, the parallel composition
of this module with the translated model effectively removes all transitions arising from
the synchronization of unrelated actions. In the example, all transitions labeled with an
open multi-action containing both the actions a_inc and a_dec have no synchronizing
transition within the Nosync module, and are therefore blocked. Thus, the inclusion of
the Nosync module mimics the effect of the parallel composition operator for maMDPs
defined previously.

6.2.4 Translation of role-playing coordinators

A coordinator may contain both standard commands as well as coordination commands.
Since neither can coordinators be roles nor can roles be bound to them, the translation of
standard commands is straightforward and merely involves the resolution of qualified
identifiers and metaprogramming constructs. The translation of coordination commands,
on the other hand, must handle the additional role guard. A role guard is a symbolic
representation of a set of role-playings. Therefore, the translation of a coordination
command may result in multiple commands, one for each role-playing that satisfies
the role guard. A role-playing satisfying the role guard is encoded as a set of actions
(analogous to the encoding utilized in the translation of RMLmodules). These role-playing
actions are subsequently added to the multi-action of the translated command.

The number of possible role-playings is exponential in the number of roles. Therefore,
the number of generated commands may also grow exponentially when translating a
coordinator. This is a major issue even for medium-sized models. However, this issue
can be mitigated by using a more optimized translation. The optimization is based on the
observation that usually not all roles appear in every role guard. In fact, it is often the
case that a coordination command only concerns small groups of roles, e.g., those that are
contained in the same compartment, or even just individual roles. A second observation
is that for translating a coordinator, the set of possible role-playings can be restricted to
the roles that actually appear in some role guard of the coordinator. Combining these
two observations leads to the main idea of the optimized translation. The coordinator can
be partitioned into smaller coordinators, one for each individual group of coordinated
roles. Since each of these coordinators handles only a few roles, the set of role-playings
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that has to be considered during their translation is smaller than the complete set of all
role-playings. While this optimization can be applied by hand when writing the model,
its impact on the overall size of the resulting PRISM model is so significant that the
implementation performs the partitioning of the coordinator automatically.

In order to apply the partitioning in an automated fashion, we first must establish the
conditions under which coordination commands can be separated into different partitions.
In particular, two coordination commands with sets of roles 𝑅1, 𝑅2 appearing in the role
guards and sets of updated variables 𝑉1,𝑉2, respectively, must be contained in the same
partition if at least one of the following conditions hold.

1. 𝑅1 ∩ 𝑅2 ≠ ∅
2. 𝑉1 ∩𝑉2 ≠ ∅

Condition (1) ensures that commands that coordinate some common set of roles are not
put into different coordinators. In the PRISM language, a command can only update
a local variable if the command is contained in the same module as the definition of
the variable. Thus, if any given two commands update the same variable, they must
necessarily be contained in the same module. This is addressed by condition (2). The
partitioning of a coordinator proceeds as follows. First, a graph is constructed where the
node set is the set of coordination commands of the coordinator. There is an edge between
two commands if some of the conditions stated above hold. Then, a new coordinator for
each connected component of the graph is generated.

Example 6.21 (Translation of a coordinator). Listing 6.33 contains a coordinator for-
malizing the rule that the role a must have been played before the roles b or c can be
played. This coordinator can be partitioned into two coordinators, resulting in the co-
ordination modules shown in Listing 6.34. Both the first and the second coordination
commands update the local variable played (lines 19 and 20) and therefore end up in
the same module (lines 4 and 5 in Listing 6.34). The third command of the coordinator
(line 21) coordinates a different set of roles than the first two and thus can be placed in a
different coordinator module (lines 10–12 in Listing 6.34). Note that the translation of the
coordinator takes the definitions of the role modules into account. For instance, from the
behavioral definition for role type R it is deduced that roles b and c can only be played
together for the tick action (line 10 in Listing 6.34). The final commands in each of the
translated coordinators (lines 6 and 13) are needed for technical reasons. It is necessary
that the action alphabet of a coordination module contains all role-playing actions, both
in positive and negative form, as well as the actions provided by the coordinated roles.
Since the PRISM language does not provide a construct to specify the action alphabet of
a module explicitly, a command containing all actions is added to the module. The guard
of this command is false, therefore it adds no transitions to the resulting MDP.
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1 natural type N;
2

3 role type R(N) {
4 s : [0 .. 2] init 0;
5

6 [self.act] s = 0 -> (s' = 1);
7 [tick] true -> (s' = 2);
8 }
9

10 system {
11 n : N;
12 a : R; b : R; c : R;
13 forall r : R. r boundto n;
14 }
15

16 coordinator {
17 played : bool init false;
18

19 [a.act] [a] !played -> (played' = true);
20 [tick] [a] true -> (played' = true);
21 [] [b | c] played -> true;
22 }

Listing 6.33: Coordinator stating that role a must have been played before roles b and c can be
played

6.2.5 Encoding role-playing into states

The translation of a role-basedmodel into the PRISM language allows us to utilize PRISM’s
rich property specification language to define the desired behavior of the system. In
order to reason about role-playing which is encoded into the actions of the MDP, we
adapt well-known techniques for action-based logics [DV90]. Model checking for action-
based temporal logics can be reduced to standard model checking by translating both the
formula and the model [FGR94]. The main idea of the model translation is splitting each
transition labeled with a visible action and adding a new state labeled with the observed
action. An example is shown in Figure 6.35, where the translation adds an intermediate
state 𝛼 , q signifying that on the transition from p to q an 𝛼-action has occurred. With
these intermediate states in place, we can subsequently translate a temporal-logic formula
incorporating actions into a formula reasoning purely over states. We will concentrate
here only on the model translation and refer to [DV90] for the translation of formulas.

For reasoning about role-playing, the model translation described above has to be
adapted. This is necessitated by the fact that for a given observed role 𝑟 , a transition in an
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6.2 Translation of role-based models

1 module coordinator
2 played : bool init false;
3

4 ]a_act, a[ !played -> (played' = true);
5 ]tick, a[ true -> (played' = true);
6 ]a_act, tick, a, not_a[ false -> true;
7 endmodule
8

9 module coordinator2
10 ]tick, b, c[ played -> true;
11 ]b_act, b[ played -> true;
12 ]c_act, c[ played -> true;
13 ]b, not_b, c, not_c[ false -> true;
14 endmodule

Listing 6.34: Translated coordinator, partitioned into two modules. Generated role actions appear
in italic.

p q𝛼

(a) Fragment of a transition system

p 𝛼 , q q𝛼

(b) Translation of the fragment

Figure 6.35: Translation for encoding the visible action 𝛼 into the state space

RBA may not only be annotated with 𝑟 (the role is played) and 𝑟 (role is not played), but
may also have no 𝑟 -annotation at all. Remind that this means the role 𝑟 may be played,
but not necessarily. When specifying properties involving role-playing, such transitions
need special treatment. Suppose we require that from some point onward, the role 𝑟 has
to be played continuously. Then, a missing annotation for 𝑟 must be interpreted as “𝑟 is
played”. However, if it is required that 𝑟 is continuously not played after some point, the
interpretation must be that “𝑟 is not played” on transitions with no 𝑟 -annotation. The
main idea to handle missing role annotations is to introduce three different labellings per
role 𝑟 : role 𝑟 has been played in the last transition (𝑟 ), 𝑟 has explicitly not been played (𝑟 ),
and thirdly, 𝑟 may have been played (𝑟?). Using these labellings, the previously described
examples can be easily expressed. A role 𝑟 is continuously played on a path if there is no
state labelled with 𝑟 . Analogously, 𝑟 is not played continuously if there is no state labelled
with 𝑟 . Similar to the translation for action-based logics, we split transitions annotated
with visible role-playing and introduce an intermediate state labelled with the observed
role-playing. An example is shown in Figure 6.36. In the first transition, the intermediate
state is labelled with 𝑠 , since role 𝑠 has been played in the transition, and with 𝑡? because
the transition carries no 𝑡-annotation.
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6 Implementation of a role-oriented modeling language

ℓ0 𝑠 , 𝑡?, ℓ1 ℓ1 ℓ2 𝑠?, 𝑡 , ℓ3 ℓ3

⟨︁
a, {𝑠}

⟩︁ ⟨︁
b, {𝑡}

⟩︁
Figure 6.36: Translation for encoding role-playing of roles s and t into the state space

There are two possible ways to implement this translation for encoding the role-
playing into the state space. First, the translation could be performed directly on the
MDP resulting from the translation of the role-based model. This however would require
to adapt the model-construction process in the model checker, in this case PRISM, to
insert the additional states. The second possibility is to perform the translation on the
PRISM-language level. Since the second approach only requires minor modifications to
the translation from an RML model to a PRISM model, the tool applies the translation on
the PRISM-language level.

The translation on the language level must accomplish to the following. First, it
must add the intermediate states for making the role-playing observable using the state
labelling. Second, it must split transitions with role-playing annotations. In order to keep
the number of additional states as small as possible, these modifications are not applied for
all roles in the model, but only for selected observed roles. Adding the intermediate states
is achieved by introducing an integer variable with range −1 to 1 for each observed role.
In the following we call these variables role-playing variables. The possible values for role-
playing variables map directly to the labelling described before, with 1, −1, and 0meaning
the role has been played, has not been played, and may have been played, respectively.
For each role the role-playing variable, which has the same name as the role, is added
to the module specifying the role’s behavior. This allows the role module to update its
associated role-playing variable. Splitting transitions is achieved as follows. First, an
atomic proposition step (defined as a formula in the PRISM model) is defined which is
true if we are in a “normal” state, i.e., not an intermediate state. To make sure that the
transitions of the original model are only taken from non-intermediate states, the guard
step is added to each command of the model (this includes commands of all modules,
not limited to role modules). Each command in a role module carrying a role annotation
updates the role-playing variable accordingly. Consider the example in Listing 6.37 which
shows the translated role module for a role 𝑡 . The command in line 7 is annotated with t,
therefore it writes 1 to the role-playing variable. Similarly, the command in line 8 updates
the variable to −1 as it is annotated with not_t. Note that for all transitions in the model
that carry neither the t nor the not_t actions, the role-playing variable is not updated
and thus keeps the value 0. These modifications cover the first half of the split transitions,
into the intermediate states. It remains to add the second half by introducing transitions
from the intermediate states to the successor states. For that, there is a reset command
in each role module, such as in line 9 of Listing 6.37. Each of these reset commands is
labelled with the reset action, such that all role modules leave the intermediate state
synchronously. The guard is always !step, therefore the reset commands can only be
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6.2 Translation of role-based models

1 formula step = s = 0 & t = 0;
2

3 module t
4 t : [-1..1] init 0;
5 t_x : [0..1] init 0;
6

7 ]b, t, ovr_t[ step & t_x = 0 -> (t_x' = 1) & (t' = 1) ;

8 ]b, not_t[ true -> (t' = -1) ;
9 [reset] !step -> (t' = 0);

10 endmodule

Listing 6.37: Source-level translation for encoding role-playing into the state space. Additions to
the role module are highlighted.

executed in an intermediate state. Finally, all role-playing variables are reset to 0. With
these modifications in place, the MDP described by the PRISM model has exactly the
desired structure which allows us to observe the role-playing using accordingly labelled
intermediate states.
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7 Exogenous coordination of roles
The coordination of role-playing is a central aspect in role-based systems. Not only does
the coordinator control the adaptations to context changes, but it also encodes the rules
for role-playing. This includes both invariants, e.g., that certain roles must not be played
at the same time, and also rules specifying the temporal order of role-playing. Since
roles only change the behavior of their player when they are actually played, enforcing
and prohibiting certain role-playings has a substantial influence on the overall behavior
of a role-based system. In the RBA formalism presented in Chapter 5, the coordinator
is formalized as an automata-based component similar to all other components of the
system. Likewise, in the role-oriented modeling language (see Chapter 6), the coordinator
is defined using the same guarded command language that is used for describing the
behavior of components. These representations can make the rules for role-playing
quite opaque. For instance, the fact that roles 𝑎 and 𝑏 must not be played together
cannot be captured using a single transition or command. Rather, this rule is enforced
by not having any transition or command where 𝑎 and 𝑏 appear together in the role-
playing annotation. This chapter explores the idea of making the coordination explicit by
employing a coordination language for specifying the role-playing within a role-based
system.

Coordination languages facilitate a clean separation between coordination logic and
application logic. Several coordination languages have been proposed [PA98] which can
be classified as either endogenous or exogenous. In endogenous coordination, the coordi-
nation primitives of the coordination language are used within the implementation of the
individual components. Contrarily, in exogenous coordination the coordination primitives
reside outside the components. Thus, components are orchestrated from “outside” via
their interfaces. This allows for a decoupling of component implementations since the
individual components do not have to be aware of each other. In the RBA approach,
the coordination of role-playing is concentrated in a dedicated coordination component.
Thus, it is rather natural to employ an exogenous coordination language. The approach
presented in this chapter is based on the channel-based exogenous coordination language
Reo [Arb04] which allows a declarative definition of coordinators, called connectors,
using either a graphical notation [Arb04] or a textual description language [DA18]. While
the semantics of Reo has been initially defined in terms of timed data streams [Arb03;
Arb04], several alternative characterizations have been presented in the literature [JA12].
Constraint automata (CA) [Bai+06] as well as their probabilistic counterparts, probabilistic
constraint automata (PCA) and simple probabilistic constraint automata (SPCA) [Bai05],
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7 Exogenous coordination of roles

can describe both the operational behavior of Reo connectors (including channels) and the
interface behavior of the coordinated components. Like Reo, CA allow for a compositional
construction of coordinators. Tool support for model checking of systems defined in
terms of Reo and CA is provided by Vereofy [Bai+10].

The goal of this chapter is the transfer of the concepts introduced by the RBA approach
to CA. This enables the compositional definition of role-playing coordinators in terms of
CA and Reo. The analysis could then be carried out using Vereofy. However, since Vereofy
does not support probabilistic model checking, we will pursue a different approach, as
shown in Figure 7.1. The ReoCompiler [Reo] is a tool for generating code from a textual
description of a Reo connector [DA18]. It has been extended with support for targeting
the PRISM language with multi-actions which has already been presented in Section 6.2.2.
The operational behavior of the components within the circuit can then be defined using
either constraint automata or PRISM modules. This approach enables a quantitative
analysis of role-based systems defined in terms of SPCA and Reo.

ReoCompilerReo circuit

Reo library
(constraint automata)

PRISM module
templates

PRISM model
(multi-actions, MDP)

PRISM

Figure 7.1: Using the extended ReoCompiler to generate PRISM models

Outline. This chapter is structured as follows. First, an overview of Reo is provided
in Section 7.1, followed by the relevant definitions of CA and their composition. The
embedding of role-related concepts into CA is discussed in Section 7.3. Finally, Section 7.4
presents notable details of the implementation, covering the extension of the ReoCompiler
and further extensions of the PRISM language.

The content of this chapter is based on the publications [Chr+16a] and [Bai+18].

7.1 The exogenous coordination language Reo

This section provides a brief overview of Reo [Arb04] and its graphical notation. A Reo
network, also called a circuit, consists of components and connectors. Connectors are
built compositionally from simpler connectors where the simplest connectors are basic
channels. The focus of Reo is on the connectors and the coordination of components. In
the exogenous approach, components are not aware of each other or the environment
they are used in. They communicate solely over one or more I/O ports (depicted as )
that allow them to send data or receive data over the connected channels.
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7.1 The exogenous coordination language Reo

Channels have two ends. Each end can be either a source end or a sink end which
accept data into the channel or dispense data out of the channel, respectively. A channel
is not necessarily one-directional and may have two source ends or two sink ends. Each
channel has a type which specifies constraints for the data flow through the channel. Reo
provides a set of standard channels:

Synchronous channel ( ): The sync channel accepts data on its source end
and atomically propagates it to its sink end. The channel only accepts data if the
reader on its sink end is able to accept it, thus it synchronizes the reader and writer
connected to its channel ends.

FIFO1 channel ( ): This channel consumes a single data item at its source end
and stores in a buffer. The data is later dispensed at the sink end once the connected
reader is able to accept it.

Filter channel: A filter channel puts additional constraints on the incoming data, im-
mediately disposing all data that does not pass the filter.

Synchronous drain ( ): This channel has two source ends and consumes data
items synchronously.

Asynchronous drain ( ): An asynchronous variant of the previous channel
type which consumes data arriving at either end immediately. If two data items
arrive at the same time, one of them is chosen nondeterministically.

Synchronous spout ( ): The dual of the synchronous drain writes arbitrary
data to its source ends, synchronously.

Asynchronous spout ( ): The asynchronous variant of the spout channel dis-
penses arbitrary data to one of the connected readers. If both readers are willing to
accept data at the same time, one is chosen nondeterministically.

The set of basic channels can be extended with user-defined channels by defining compo-
nents with two ports and the desired semantics.

Channels are composed by joining their channel ends in order to create more complex
connectors. Joining channel ends results in a node. There are three different node types: A
source node (Figure 7.2a) is formed by joining only sink ends and acts as a replicator. Any
data that is written to a source node is synchronously written to all connected channel
ends, but only if all channel ends accept simultaneously. In a sink node (Figure 7.2b), only
sink ends are joined. This node type acts as a merger and only accepts data from exactly
one of the coincident channels at a time. If multiple channels attempt to dispense data into
the node at the same time, one is chosen nondeterministically. The combination of both
source and sink nodes, the mixed node (Figure 7.2c), has a merger-replicator semantics.
It nondeterministically accepts data from one sink end and synchronously dispenses it
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7 Exogenous coordination of roles

(a) source node (b) sink node (c) mixed node

Figure 7.2: Reo node types

Reader
C

Writer1
A

Writer2 B

Figure 7.3: Two writers and a reader connected by an alternator connector

to all source ends. A variant of the standard mixed node is the router node (depicted as
) which propagates data to exactly one nondeterministically chosen source end. The

described behavior of Reo nodes allows for the construction of complex synchronization
and coordination patterns by composing simple channels.

Example 7.1 (Alternator connector). Figure 7.3 shows a connector that realizes an alter-
nating data flow from two writers to a single reader. The synchronous drain synchronizes
the connector’s input ports A and B. While the data written to port A is immediately
delivered to the output port C, the data from port B is stored in the FIFO1 channel. Note
that the synchronous drain also prevents new data items from entering the connector
as long as the FIFO1 is full. Once the data originating from port B is dispensed from the
FIFO1 to port C, the process begins anew, resulting in the pattern ABABAB….

CA [Bai+06] provide a compositional operational semantics for Reo connectors and can
also be utilized to describe the I/O-behavior of components. Furthermore, the composition
of CA matches the join operation of Reo for combining channel ends. An overview of CA
and their composition is provided in the next section.

7.2 Constraint automata

CA [Bai+06] are a variant of transition systems where the transitions are labeled with data-
dependent I/O-operations. They are suitable for describing the data flow in coordination
models and thus provide an operational semantics for Reo connectors and components.
The states of a CA stand for the possible configurations of a connector, e.g., the contents
of FIFO1 channels, and the transitions represent the possible data flows at, e.g., I/O ports,
nodes, and channel ends.
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7.2 Constraint automata

ACA is defined over a finite setN of names, standing for observable data-flow locations
or ports. A transition in a CA is labeled with a subset of N and a data constraint. A data
constraint is a symbolic representation of all possible assignments of data items to ports.
Data constraints are formalized as propositional formulas over the atoms “𝑑𝐴 = 𝑥” with
𝐴 ∈ N and 𝑥 ∈ Data, where Data is a finite data domain. In the following, we assume that
there is a global data domain Data that is shared by all ports. The set of data constraints
is inductively defined by the following grammar, where 𝐴 ∈ N and 𝑥 ∈ Data.

𝑔 ::= true | 𝑑𝐴 = 𝑥 | 𝑔1 ∨ 𝑔2 | ¬𝑔

The set of all data constraints over data domain Data and names 𝑁 ⊆ N is denoted as
DC(𝑁,Data). We use the shorthand notation DC if the set of names and the data domain
are clear from the context.

Definition 7.2 (Constraint automaton [Bai+06]). A constraint automaton is a tuple
A = (𝑄,N ,−→, 𝑄 init), where

• 𝑄 is a finite set of states,
• N is a finite set of names,
• −→ ⊆ 𝑄 × P(N) × DC ×𝑄 is the transition relation, and
• 𝑄 init ⊆ 𝑄 is the set of initial states.

A transition of a CA has the form (𝑠, 𝑁 ,𝑔, 𝑡). Intuitively, the automaton moves from state
𝑠 to 𝑡 , where I/O-operations are performed by the ports 𝐴 ∈ 𝑁 which satisfy the data
constraint 𝑔. Here, the set 𝑁 is called the name-set and 𝑔 the guard of the transition. We

use the notation 𝑠
𝑁,𝑔
−−−→ 𝑡 for (𝑠, 𝑁 ,𝑔, 𝑡) ∈ −→.

Example 7.3 (CA for a FIFO1 channel). Figure 7.4 shows the CA for a FIFO1 channel
with input port A and output port B. The data domain consists of the elements 0 and 1.
The states of the CA represent the data item that is stored in the buffer and the initial
state denotes an empty buffer. Consequently, the transitions are guarded by the data
items that are written to or read from the buffer.

0 1

{𝐴}, 𝑑𝐴 = 0

{𝐵}, 𝑑𝐵 = 0 {𝐴}, 𝑑𝐴 = 1

{𝐵}, 𝑑𝐵 = 1

Figure 7.4: CA for a FIFO1 channel over data domain Data = {0, 1} with input port A and output
port B

The composition of CA formalizes both synchronous I/O-operations on shared ports
and asynchronous I/O-operations. With that, the product operator on CA is adequate to
describe the effects of joining channel ends in Reo networks.

131



7 Exogenous coordination of roles

Definition 7.4 (Constraint automata product [Bai+06]). The product of two CA A𝑖 =

(𝑄𝑖,N𝑖,−→𝑖, 𝑄
init
𝑖 ) for 𝑖 ∈ {1, 2} is defined as

A1 ⋈︁ A2 =
(︁
𝑄1 ×𝑄2, N1 ∪ N2, −→, 𝑄 init

1 ×𝑄 init
2

)︁
where −→ is the smallest transition relation fulfilling the rules shown in Figure 7.5.

(int1)
𝑠1

𝑁,𝑔
−−−→1 𝑡1 𝑁 ∩ N2 = ∅

⟨𝑠1, 𝑠2⟩
𝑁,𝑔
−−−→ ⟨𝑡1, 𝑠2⟩

(int2)
𝑠2

𝑁,𝑔
−−−→2 𝑡2 𝑁 ∩ N1 = ∅

⟨𝑠1, 𝑠2⟩
𝑁,𝑔
−−−→ ⟨𝑠1, 𝑡2⟩

sync
𝑠1

𝑁1, 𝑔1−−−−→1 𝑡1 𝑠2
𝑁2, 𝑔2−−−−→2 𝑡2 𝑁1 ∩ N2 = 𝑁2 ∩ N1

⟨𝑠1, 𝑠2⟩
𝑁1∪𝑁2, 𝑔1∧𝑔2−−−−−−−−−−→ ⟨𝑡1, 𝑡2⟩

Figure 7.5: Rules for the product of CA

The CA product is both commutative and associative.
For capturing probabilistic channels and connectors, CA have been extended to SPCA

and the more general PCA [Bai+06]. For SPCA, the transition relation allows for a
probabilistic choice of the successor state, formally −→ ⊆ 𝑄 × P(N) × DC × Distr(𝑄).
An example for a channel that can be modeled using an SPCA is a lossy FIFO1 channel
where writing data into the buffer fails with a certain probability. On the other hand, a
probabilistic lossy synchronous channel that drops data written to its source end with a
certain probability cannot be adequately described using an SPCA since here the data
flow itself is probabilistic. However, the more expressive PCA can capture such channels.
Here, not only the successor state, but also the name set as well as the data constraint
are chosen according to a probability distribution. Since SPCA are expressive enough for
embedding RBA, we will not consider PCA in this chapter.

7.3 Embedding of role-based automata in constraint
automata

The goal of this section is to transfer the concepts introduced by the RBA approach
(Section 5.2) to CA and Reo. In particular, role-playing should be made explicit by
providing appropriate annotations. Furthermore, the CA-based approach should allow
a compositional construction of role-based systems. Thus, corresponding operators for
parallel composition and role-binding must be provided. Most importantly, the approach
should enable the coordination of role-playing using Reo connectors.

Analogous to the RBA approach, we will use CA as a uniform representation for
naturals, roles, and compartments. A natural can be represented by a standard CA. For
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7.3 Embedding of role-based automata in constraint automata

capturing roles and role-specific behavior, the transitions of a role-CA must be annotated
with its respective role name in order to make the role-playing explicit. The idea here
is to treat some of the names in the CA as role names. Formally, we partition the set
of names N into a set of role names 𝑅 and other names N ′. Then, the name-sets of the
CA transitions explicitly encode role-playing, i.e., if 𝑟 ∈ 𝑁 for some name-set 𝑁 and a
role name 𝑟 ∈ 𝑅, then the role 𝑟 is played in this transition. Contrarily, if 𝑟 ∉ 𝑁 , the
role is explicitly not played. Like in the RBA formalism, compartments arise from a
combination of multiple roles. With the basic building blocks in place, we can now turn
to the role-specific composition of CA.

Remind that the parallel composition of RBA mainly corresponds to the standard
parallel composition of MDPs, but additionally handles the role-playing annotations.
Specifically, the role-playing annotations are combined upon synchronization, allowing
that multiple roles are played in a single transition. Since role-playing is indicated by
special role names in the name-sets of a CA, the same effect is achieved by using the
standard product operator on CA. In the synchronization rule (see Figure 7.5), the union
of the name-sets also combines the role-playing.

Next, we consider the second composition operator, role-binding. The role-playing
annotations in an RBA serve a dual purpose. Not only do they indicate role-playing,
they also denote that certain transitions are added to the player upon role-binding. Since
the encoding of role-playing in CA described above only provides information about
role-playing, we introduce additional labeling functions that indicate which transitions of
the corresponding CA will be added to the player on role-binding. Formally, for each role

𝑟 we define a function O𝑟 : 𝑄 × P(N) × DC ×𝑄 → P(𝑅). If for some transition 𝑠
𝑁,𝑔
−−−→ 𝑡

with 𝑟 ∈ 𝑁 we have 𝑟 ∈ O(𝑠, 𝑁 ,𝑔, 𝑡), then the transition is added upon binding 𝑟 . This
corresponds to a “+𝑟”-annotated transition in an RBA. The role-binding operator can now
be adapted to CA.

Definition 7.5 (Role-binding for CA). Let A = (𝑄𝑎,N𝑎,−→𝑎, 𝑄
init
𝑎 ), P = (𝑄𝑝,N𝑝,−→𝑝

, 𝑄 init
𝑝 ) be CA and O𝑟 be the labeling function for the role 𝑟 . Binding an unbound role

𝑟 ∈ N𝑎 in A to a player P with 𝑟 ∉ N𝑝 yields a CA

A ⋈︁O𝑟
𝑟 P =

(︁
𝑄𝑎 ×𝑄𝑝, N𝑎 ∪ N𝑝, −→, 𝑄 init

𝑎 ×𝑄 init
𝑝

)︁
where −→ is the smallest transition relation fulfilling the rules shown in Figure 7.6.

An alternative to the role-binding operator presented above is to utilize Reo for con-
structing a connector that binds a role component to a player component. The main
advantage of this approach is that it enables using standard tools for modeling and ana-
lyzing Reo circuits also for role-based systems since no special role-binding operator is
needed. As the full Reo framework can be employed to construct such a binding connector,
the interactions and coordination between a player component and its role components
can be arbitrarily complex.
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(int𝑎)
𝑠𝑎

𝑁,𝑔
−−−→𝑎 𝑡𝑎 𝑁 ∩ N𝑝 = ∅

⟨𝑠𝑎, 𝑠𝑝⟩
𝑁,𝑔
−−−→ ⟨𝑡𝑎, 𝑠𝑝⟩

(int𝑝 )
𝑠𝑝

𝑁,𝑔
−−−→𝑝 𝑡𝑝 𝑁 ∩ N𝑎 = ∅

⟨𝑠𝑎, 𝑠𝑝⟩
𝑁,𝑔
−−−→ ⟨𝑠𝑎, 𝑡𝑝⟩

(sync)
𝑠𝑎

𝑁𝑎, 𝑔𝑎−−−−→𝑎 𝑡𝑎 𝑠𝑝
𝑁𝑝 , 𝑔𝑝−−−−→𝑝 𝑡𝑝 𝑁𝑎 ∩ N𝑝 = 𝑁𝑝 ∩ N𝑎 𝑟 ∉ O𝑟 (𝑠𝑎, 𝑁𝑎, 𝑔𝑎, 𝑡𝑎)

⟨𝑠𝑎, 𝑠𝑝⟩
𝑁𝑎∪𝑁𝑝 , 𝑔𝑎∧𝑔𝑝−−−−−−−−−−→ ⟨𝑡𝑎, 𝑡𝑝⟩

(add)
𝑠𝑎

𝑁,𝑔
−−−→𝑎 𝑡𝑎 𝑁 ∩ N𝑝 ≠ ∅ 𝑟 ∈ O𝑟 (𝑠𝑎, 𝑁𝑎, 𝑔𝑎, 𝑡𝑎)

⟨𝑠𝑎, 𝑠𝑝⟩
𝑁,𝑔
−−−→ ⟨𝑡𝑎, 𝑠𝑝⟩

Figure 7.6: Rules for binding a role 𝑟 within a CA A to a player P

C

R

(a) merger

C

R

(b) sync

C R

(c) decorator

Figure 7.7: Patterns for binding role components to player components. Roles components are
depicted with rounded corners and the role-binding connector is surrounded by a
dotted line. The bottom ports control role-playing.

Depending on how a role should adapt its player, different connectors may be appro-
priate. If a role only adds behavior, the connector shown in Figure 7.7a is sufficient. Here,
the outputs of the player component C and the role component R are merged using a
standard Reo node. Thus, R can neither block nor modify the output of C (assuming
fairness of the merger). The case where the role acts solely as a filter and suppresses
certain behavior is realized by the connector shown in Figure 7.7b. The synchronous
drain channel forces the synchronization between C and R for every outgoing data item.
Thus, R can inhibit certain outgoing messages by refusing to synchronize. Since the
synchronous drain consumes the data sent by R, the role cannot add new behavior. The
connector shown in Figure 7.7c implements the most general case for role-binding. Here,
the role component may suppress or modify any data sent by the player and can add new
behavior as well. Clearly, this binding pattern subsumes both the patterns in Figures 7.7a
and 7.7b. However, the fact that the role component in Figure 7.7a cannot modify or
suppress the data sent by the player is apparent from the structure of the connector. This
is not the case in Figure 7.7c where one would have to examine the operational behavior of
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the role component to establish the same guarantee. Thus, by using behavior-restricting
connectors for role-binding, certain guarantees can be established without having to take
the components’ implementations into account. The binding patterns shown in Figure 7.7
can be generalized easily to account for additional ports and roles.

The last missing piece of the CA-based framework for constructing role-based systems
is the coordination of role-playing. Recall that a role 𝑟 is actively played in a transition

𝑠
𝑁,𝑔
−−−→ 𝑡 if 𝑟 ∈ 𝑁 . This encoding implies that for each role there is an I/O-port which

is active whenever the role is played. Thus, it is sufficient to provide a coordination
component (also in the form of a CA) that allows, enforces, or blocks I/O-activity on these
ports to coordinate role-playing. Naturally, this coordination component can be obtained
by constructing a Reo connector. This approach enables a declarative and compositional
description of role-playing coordinators. The role-orientedmodeling framework presented
in this section can be extended straightforwardly to SPCA which makes it as expressive
as the RBA approach.

7.4 Implementation
This section presents a general approach for the exogenous coordination of stochastic
components. The components are defined using PRISM’s guarded command language and
the coordination “glue code” is described using Reo. The implementation of this approach
is twofold. First, PRISM has been extended with support for multi-actions and additional
language constructs for component-based modeling. Second, the ReoCompiler [Reo]
has been extended with support for PRISM as a new target language. This extension
enables the automatic generation of a PRISM model from a textual description of a Reo
circuit [DA18] that coordinates PRISM modules. Furthermore, support for the concept
of reward monitors has been added to the ReoCompiler which allows attaching rewards
and costs to port activity in the Reo network. This facilitates a quantitative analysis
of Reo networks using PRISM’s extensive analysis support. While the implementation
presented in the following enables the analysis of arbitrary Reo circuits, it is in particular
also applicable for the role-oriented modeling approach presented in the previous section.

7.4.1 Exogenous coordination of PRISM modules

The guarded command language of PRISM has been extended with language features that
facilitate an exogenous coordination of modules. Most importantly, the PRISM language
has been extended conservatively with support for multi-actions, i.e., a command can be
labeled with a set of actions instead of only a single action. Multi-actions naturally corre-
spond to the name-sets in CA and port names in Reo. The adapted parallel composition
for modules with multi-actions has been derived from the data-abstract variant of the
SPCA product. For details on the multi-action extension, see Section 6.2.2.
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In addition to the multi-action extension, several language constructs that simplify ex-
ogenous and component-based modeling have been added. The standard PRISM language
provides a mechanism for obtaining a copy of an already existing module by renaming all
its variables and possibly renaming some of its actions. The renaming is necessary since
all variable names are global in the PRISM language and thus must be unique. The main
issue of this approach is that it requires detailed knowledge of the variable names within
the module which complicates an automated creation of copies. For that reason, the
language has been extended to allow a rule-based renaming. For instance, the following
statement creates a copy of module M1 named M2 where the variable names in M2 are
obtained by adding the prefix M2_ to all variable names of M1.

module M2 = M1 (varprefix=M2_) endmodule

Using this construct, the uniqueness of variable names can be guaranteed easily. Addition-
ally, action names may be renamed using the actionprefix keyword. Alternatively, re-
naming may also append a suffix to variable names and action labels using the varsuffix
and actionsuffix keywords, respectively. With this automatic renaming, the renaming
statement can be seen as the instantiation of a module. However, in the standard PRISM
language, every module appearing in the model file is instantiated automatically. In order
to enable the definition of a library of modules that can be instantiated as needed, a
module definition can be marked as a template. A module prepended with the template
keyword is not instantiated automatically, but is available for instantiation via module
renaming. The multi-action extension and the basic support for template instantiation
make the PRISM language a viable target language for the ReoCompiler. This connection
will be addressed in the following.

7.4.2 Reo for exogenous coordination within PRISM

For generating the coordination glue code for PRISMmodules, we utilize the ReoCompiler
tool developed at the CentrumWiskunde& Informatica, Amsterdam [Reo]. Given a textual
description of a Reo circuit [DA18], the ReoCompiler compiles the coordination glue code
into a selected target language, such as Java. The generated code that implements the Reo
connector can then be combined with the component implementations (e.g., provided as
Java classes) which results in a complete implementation of the Reo circuit.

The ReoCompiler has been extended such that PRISM is one of the supported target
languages. In particular, the extended compiler provides an automatic translation of
the ReoCompiler’s internal representation of connectors into the PRISM language with
multi-actions. Together with the support for module instantiation from module templates,
the generated model (given in the PRISM language) instantiates the PRISM modules
referenced in the textual description of the Reo network and connects it with the generated
coordination glue code. The connector and the PRISM modules interface via actions that
have been exported as port names.
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The semantics of the PRISM language with multi-actions corresponds to the data-
abstract variant of SPCA. This is appropriate if the data domain of the Reo circuit is a
singleton set. However, attaching data items to port activity is rather natural for some
modeling tasks. In order to enable data-dependent actions in PRISMmodels, an additional
tool has been developed which encodes data items into action names. For simplicity,
the tool only supports data domains consisting of finite sets of integers. Consider the
following example of a command where the action is treated as data:

[a] s = 0 & a = 1 -> (s' = 1);

Intuitively, this command states that the module can move from state s = 0 to state
s = 1 if action a is executed and carries the data item 1. The tool translates the command
by attaching the data item to the action name:

[a_1] s = 0 -> (s' = 1);

This tool enables the automatic translation of any data-aware Reo connector into the
extended PRISM language.

Another extension of the ReoCompiler concerns cost and reward annotations on Reo
circuits. This is useful, e.g., for specifying the energy consumption of certain components
or for tracking the number of completed tasks. Rewards are captured by a special type of
component called reward monitor. A reward monitor has one or more input ports that can
be connected to the Reo network using channels as usual. The reward monitor definition
then specifies the rewards that are assigned whenever certain input ports of the monitor
are active. A reward monitor component is translated into a reward structure where
rewards assigned to ports are straightforwardly transformed into transition rewards for
the actions corresponding to the ports.

The extensions to the ReoCompiler and PRISM enable a quantitative analysis of systems
comprising stochastic components that are coordinated by Reo connectors. This imple-
mentation is applicable for modeling and analyzing role-based systems with exogenous
coordination, as will be demonstrated in a case study in Chapter 8.
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approach

The evaluation of the role-oriented modeling approaches and the implementations is
threefold. First, the practical applicability is demonstrated by means of three experimental
studies. Second, the RBA approach is classified according to the characteristics of roles
that have been identified by Steimann [Ste00] and Kühn et al. [Küh+14]. Third, the
expressiveness of the approach is discussed by relating it to previous work for modeling
adaptive systems.

8.1 Experimental studies

In this section, the applicability of the proposed modeling approaches is demonstrated
by means of three experimental studies. The first two apply the RBA approach (see
Chapter 5) and the role-oriented modeling language (see Chapter 6). The third experiment
illustrates the potential of applying the exogenous coordination language Reo for defining
the role-playing coordinator as proposed in Chapter 7. Furthermore, the scalability of the
implementations and the translational approaches is evaluated.

The first experimental study, a peer-to-peer file transfer protocol, focuses on detecting
unintended interactions originating from specific combinations of roles or the order
of role-playing. The analysis considers both interactions within a single network and
interactions between different networks. The second experimental study is an example
from production automation, a self-adaptive robot production cell. Here, the quantitative
impact of interactions is considered. Finally, the third experimental study again focuses
on the peer-to-peer file transfer protocol, but this time utilizing a declarative definition
of the coordinator as a Reo circuit.

The first two experimental studies are part of the evaluation in [Chr+20] and the third
has been presented in [Bai+18].

Experiment setup. All experiments have been carried out on a system with two quad-
core Intel Xeon L5630 CPUs (at 2.13 GHz) and 192 GB RAM running Debian 10.
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8.1.1 Peer-to-peer file transfer

The peer-to-peer file transfer example has been adapted from [HK14]. The considered
system comprises a number of computer systems called stations that constitute the
naturals. Each station can store a number of files depending on its capacity. A station
may play the roles client, server, and relay to request a file from any of its connected
peers, to provide files to other stations, and to relay files and requests to neighboring
stations, respectively. The model contains at least one network compartment that defines
the topology of the system’s network and specifies the file-transfer protocol. A station
can be part of several networks. In that case, it has multiple distinct sets of server, client,
and relay roles, one set of roles for each network. For instance, a station may concurrently
play the client role in one network and the server role in another.

A file transfer is initiated by a station that assumes the client role and subsequently
sends a request message. If another station that owns the requested file receives the
request, it plays the server role. Otherwise, it plays the relay role and resends the request
to its neighboring peers. A server fetches the file from its station and sends it to the client,
possibly over one or more relays. Upon receiving the file, the client role stores the file on
its corresponding station.

Modeling details

In the following, we will discuss how the role-oriented modeling approach and the
modeling language facilitate modularization and a separation of concerns. For that, we
examine notable details of the file-transfer model. The model is parametrized and can
be instantiated for different network topologies, e.g., fully connected, star, and ring. The
topology is specified in terms of unidirectional links between stations. The definition of a
unidirectional ring topology with 3 stations is shown in Listing 8.1. Here, links is an
array of links and a link consists of a source and a target station where each station is
identified by its index. The definition states that station 0 can send a message to station
1 directly, but station 1 can only send a message to station 0 if the message is relayed
by station 2. The extensive metaprogramming support of RML allows us to generically
define the behavior of all components such that the model can be instantiated for any
topology.

const links = [ [0, 1], [1, 2], [2, 0] ];

Listing 8.1: Definition of a unidirectional ring network topology

We now turn to the implementation of a station which is shown in Listing 8.2. This
simplified version of a station can store a single file (line 2) which can be retrieved via the
load action (line 5) and overwritten by the store action (line 6). Note that both actions
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1 impl Station {
2 file : [0 .. NUM_FILES] init init_file[self.get_index()];
3

4 forall f : [1 .. NUM_FILES] {
5 [internal self.load[f]] file = f -> true;
6 [internal self.store[f]] true -> (file' = f);
7

8 forall link : [0 .. LAST_LINK]. self.is_source_of(link) {
9 [req(f, link)] false -> true; // send request

10 [data(f, link)] false -> true; // send data
11 }
12

13 forall link : [0 .. LAST_LINK]. self.is_target_of(link) {
14 [req(f, link)] false -> true; // receive request
15 [data(f, link)] false -> true; // receive data
16 }
17 }
18 }

Listing 8.2: Module implementing a station

are marked as internal (see Section 6.1.2) since they are intended for the communication
between a station and its roles only. Messages between stations over some link for a file
f are modeled as actions req(f, link) and data(f, link) corresponding to request
messages and file data messages, respectively. Here, link stands for an index to an
element in the links array. The quantifier in line 8 ranges over all links that originate in
the station, i.e., the links over which the station can send messages. Since a station which
is not playing any role does not send messages by itself, the guards for both commands
in lines 9 and 10 are false, thereby blocking these actions. Similarly, incoming messages
are not accepted, thus the corresponding actions are blocked as well (lines 14 and 15).
Modeling all messages as actions allows us to easily modify the behavior of a station by
overriding specific actions.

The functionality of the client, server, and relay roles can be fully encapsulated within
RML modules without having to modify the stations’ modules in any way. As a repre-
sentative example, we consider the implementation of the server role which is shown
in Listing 8.3. A server has the three locations S_IDLE, S_LOAD, and S_SEND in which
it waits for an incoming request, loads the file from its associated station, and sends
the requested file over the network, respectively. An additional variable buf is used to
temporarily store the file before it is sent. In order to react to incoming requests, the
server role overrides the req actions (line 7). Analogously, the data actions for outbound
messages are overridden to send the file to connected peers. The client and relay roles
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1 impl Server {
2 loc : enum { S_IDLE, S_LOAD, S_SEND } init S_IDLE;
3 buf : [0 .. NUM_FILES] init 0;
4

5 forall f : [1 .. NUM_FILES] {
6 forall link : [0 .. LAST_LINK]. self.is_target_of(link) {
7 [override req(f, link)] loc = S_IDLE ->
8 (loc' = S_LOAD) & (buf' = f);
9 }

10

11 [core(self).load[f]] loc = S_LOAD & buf = f -> (loc' = S_SEND);
12

13 forall link : [0 .. LAST_LINK]. self.is_source_of(link) {
14 [override data(f, link)] loc = S_SEND & buf = f ->
15 (loc' = S_IDLE) & (buf' = 0);
16 }
17 }
18 }

Listing 8.3: Module implementing a server role

can be modeled similarly, again without modifying the module of the station or any of
the other role modules. This clear separation of concerns provides extensive flexibility for
instantiating various system variants. For instance, there may be stations that have no
client role bound to them, i.e., they can only act as servers or relays. But more importantly,
it allows us to bind a role of the same type multiple times such that a station may act as a
server within different networks.

Themodel is translated into the standard PRISM language as detailed in Section 6.2. The
MDP arising from the PRISMmodel has nondeterministic choices among all role-playings.
Furthermore, the client issuing the next request is chosen nondeterministically as well.
The MDP provides the basis for the following functional analysis.

Functional analysis

We first establish the functional correctness of systems consisting only of a single network.
To be able to track progress within the system, a monitor component is added to the
model. It contains Boolean variables 𝑔 𝑠

𝑓
for all stations 𝑠 and files 𝑓 indicating whether

station 𝑠 has gotten file 𝑓 at some point. These variables are initially false and set to true
once station 𝑠 stores file 𝑓 . Further, we define the atomic propositions send𝑐 and recv𝑐
that hold in all states where the client role 𝑐 has just sent a request and received the
requested file, respectively. In addition to verifying that the model is free of deadlocks,
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the following properties, given as CTL formulas, were checked. Here, 𝑆 denotes the set of
stations, 𝐶 denotes the set of client roles, and 𝐹 denotes the set of files.

1. Some station is able to get file A.
∀□∃◇

(︁ ⋁︁
𝑠∈𝑆

𝑔 𝑠
𝐴

)︁
2. All stations eventually received each file at least once.

∃◇
(︁ ⋀︁
𝑠∈𝑆,𝑓 ∈𝐹

𝑔 𝑠
𝑓

)︁
3. Each request will eventually be answered.⋀︁

𝑐∈𝐶
∀□

(︁
send𝑐 =⇒ ∀◇recv𝑐

)︁
Checking the above properties revealed several unintended role interactions that were
subsequently ruled out by refining the model. In the following, we discuss two types of
interactions in more detail.

1 coordinator {
2 forall f : [1 .. NUM_FILES] {
3 forall srv : Server {
4 forall link : [0 .. LAST_LINK] {
5 if srv.is_target_of(link) {
6 [req(f, link)] [ srv ] station_of(srv).file = f -> true;
7 [req(f, link)] [ !srv ] station_of(srv).file != f -> true;
8 } } } }

Listing 8.4: Coordinator specifying that the server role may only be played if its associated station
possesses the file.

Interactions between a role and its player. The server role may be played for an incoming
request even if its associated station does not possess the requested file (cf. line 7 of
Listing 8.3). This eventually leads to a deadlock once the server tries to synchronize with
its player over the load action (line 16). In order to prevent this unintended playing of
the server role, the coordinator shown in Listing 8.4 is added to the model. The command
in line 7 states that the server role must not be played in case its station does not have
the file. Additionally, we must allow playing the server role in case the station actually
has the file (line 6). Another interaction is caused by the client role. If a station has the
last remaining copy of a file, its client role may overwrite it by requesting and receiving
a different file. In this scenario a file is “lost”, and thus property (2) is violated. This
fault can be prevented by extending the module of the network compartment such that
requests can only be generated if the fulfillment of the request does not overwrite the
last remaining copy of a file in the network.
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Figure 8.5: Overlapping networks with a shared station

Interactions between roles. Interactions between roles of the same player can occur if
these roles override the same action(s). This is actually the case for the client and relay
roles as they both override the data actions for incoming files. In case the client role
has been requesting a file before, both the client and relay role can be played for the
data action. However, playing the relay role in this scenario means that the file is sent
along to another station instead of storing it. Again, this interaction can be prevented by
extending the coordinator such that playing the client role is enforced for an incoming
requested file. Unintended behavior may also emerge from interactions between roles of
different players. The protocol only allows for a single file transfer at a time. Thus, if a
client role issues a new request while another transfer is still in progress, the protocol
is violated. This, in turn, may leave some components of the system in an intermediate
state which ultimately leads to a deadlock. This issue is prevented by only allowing the
generation of new requests if the network is currently idle.

With the refinements described previously all properties are satisfied, but only for
systems that consist of a single isolated network. Due to complex interactions this is not
the case for systems with multiple networks connected by shared stations. Consider the
scenario shown in Figure 8.5 which comprises two network compartments, the first one
containing stations 1 and 2, and the second one spanning over the stations 2, 3, and 4.
Since station 2 is contained in both networks, it has two sets of server, client, and relay
roles bound to it such that it can play these roles in either network. We assume that in
this scenario stations 2 and 3 initially store file B and station 4 possesses file A. Checking
the properties (1)–(3) on this model revealed the following unforeseen interactions.

While at most one transfer can happen within a single network at any given time,
there may be concurrent transfers in different networks. This may lead to the following
interaction. First, the client role of station 2 in network 2 requests and receives file A, but
does not immediately store it on station 2. Likewise, the other client role of station 2 in
network 1 requests and receives file B and also does not store it immediately. Then, the
previously received file A is stored on station 2 by the client role in network 2. This now
allows station 4 to receive file B and to overwrite its copy of file A. Finally, the client role
of station 2 stores file B, thereby overwriting the last remaining copy of file A. From this
point on property (1) can no longer be satisfied. Similarly, property (3) may be violated
due to concurrent file transfers. Suppose station 1 decides to send a request for file B.
Before actually sending the request, station 2 requests and receives file A in network
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2, thereby overwriting file B on station 2. Then, station 1 actually sends its request to
station 2. However, since station 2 no longer has file B, it will act as relay and send the
request back to station 1. Because station 1 does not possess file B either, it will act in
the relay role as well, and thus the process repeats indefinitely. This violates property (3)
since the request of station 1 is never answered.

role-playing action
client_0, client_0_genreq_2
client_2, client_2_genreq_1
client_0, client_0_genreq_2
client_2, client_2_genreq_1
client_2, not_relay_2, not_server_3, relay_3, r_2_3_1
not_client_3, not_relay_4, relay_3, server_4, r_3_4_1
server_4, station_3_load_1
not_client_3, not_relay_4, relay_3, server_4, d_4_3_1
client_2, not_relay_2, not_server_3, relay_3, d_3_2_1
client_1, client_2, station_1_store_1
client_0, not_relay_0, not_server_1, relay_1, r_0_1_2
not_client_1, not_server_0, relay_0, relay_1, r_1_0_2
not_client_0, not_server_1, relay_0, relay_1, r_0_1_2
not_client_1, not_server_0, relay_0, relay_1, r_1_0_2

Listing 8.6: Action trace for the violation of property (3)

Violations of the properties caused by unintended interactions are reported by PRISM
in the form of a counterexample. Listing 8.6 presents the action trace for the violation of
property (3) in the two-network scenario (Figure 8.5). Each line corresponds to a single
system state that has been reached by executing the action in the second column while the
roles in the first column were played or not played. For better readability the system states
have been omitted and the trace has been reformatted, but otherwise appears verbatim.
The last two lines in the trace form a loop corresponding to the repeated relaying of the
request message. Since all role-playing is encoded into the actions of the MDP, tracing
errors back to the original role-based model is straightforward. Furthermore, the explicit
representation of role-playing in the counterexample trace helps to identify the relevant
roles in the interaction.

In summary, the functional analysis revealed that network-local coordination alone is
not sufficient in case of interacting networks with shared stations. In order to prevent the
described interactions the coordinator could be extended by additional global constraints
over all networks. For instance, concurrent file-transfers involving shared stations could
be disallowed.

145



8 Evaluation of the role-oriented approach

Scalability

The file transfer model can be instantiated for any number of files and stations which
allows us to investigate the scalability of the analysis approach. More precisely, the model
has been instantiated for star topologies where each station has a bidirectional connection
to the center station. To determine the impact of the role-oriented modeling as well as the
translational analysis approach, a second file-transfer model using only standard PRISM
language constructs has been created. This standard PRISM model contains neither any
role-binding nor a coordinator1. Note that the standard model is tailored to the specific
benchmark scenario and is less flexible and less modular than the role-based model.
Adding a second network to the system, for instance, would require extensive rewriting
of the model.

The model sizes for various numbers of stations and files is shown in Table 8.1. The
size is listed both in terms of the number of reachable states and the number of nodes
in the MTBDD that PRISM uses to represent the MDP symbolically. The number of
MTBDD nodes has been minimized via sifting, a heuristic reordering of the MTBDD
variables [Kle+18], for each model instance separately. The table also lists the time
required for checking the properties described previously. The analysis time has been
averaged over three runs with an additional warm-up run beforehand. The time for
translating the RML model into a PRISM model is not included in the build time, as it
accounts for less than 1% of the overall analysis time. Even for the largest instance the
translation took only 1.2 s on average.

For visualizing the overhead introduced by the role-based approach, Figure 8.7 shows
the analysis time of the role-based models relative to the analysis time of the standard
model. If a point is above the 1-line, the role-based analysis is slower than the analysis
of the standard model. For instance, analysis of the instance with 4 stations and 3 files
takes roughly thrice as long. The overhead of the role-oriented approach is caused by
the additional role-playing actions present in the MDP that also have to be encoded in
the MTBDD. Furthermore, the multi-action extension of PRISM [Bai+18] uses a different
encoding of actions than standard PRISM which causes further overhead in the form
of additional MTBDD variables. Nevertheless, for larger instances the impact of this
overhead diminishes. It turns out, for the larger instances with 2 or 3 files, the structure of
the role-based model is favorable for the conducted analysis and leads to an overall lower
analysis time compared to the standard model. In summary, the experiments showed that
the role-oriented analysis approach is feasible in practice, even for larger models.

1To be able to freely scale the standard PRISM model, it has been defined in RML as well. However, only
the metaprogramming constructs of RML have been utilized in order to generically define the model.
In principle, any other template language could have been used as well.
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Table 8.1: Model sizes, build times, and analysis times for increasing numbers of stations and files
in the file-transfer model

Role-oriented model Standard PRISM model
St. Files States Nodes Build (s) Analysis (s) Nodes Build (s) Analysis (s)

2 1 20 2 401 0.114 0.016 384 0.047 0.017
3 1 83 10 810 0.352 0.030 1 540 0.076 0.032
4 1 328 24 873 0.760 0.063 3 773 0.124 0.073
3 2 981 45 127 1.368 0.129 5 533 0.221 0.150
5 1 1 063 44 900 1.552 0.143 7 229 0.225 0.166
6 1 3 126 69 837 2.874 0.261 11 433 0.362 0.299
7 1 8 625 101 313 4.847 0.415 17 506 0.624 0.383
4 2 13 937 98 575 3.702 0.483 13 646 0.745 0.608
8 1 22 748 138 624 6.997 0.654 24 054 0.923 0.807
9 1 58 007 185 849 10.658 1.172 34 362 1.581 1.628
5 2 130 779 177 263 9.245 1.596 29 539 2.598 1.815
4 3 235 843 208 195 9.494 1.525 23 171 2.230 1.612
6 2 1 035 819 281 856 17.535 5.299 64 419 7.862 5.513
7 2 7 450 395 419 064 35.844 13.237 134 222 21.522 17.964
5 3 8 770 909 381 840 27.208 13.111 69 169 13.079 13.771
8 2 50 362 803 593 018 65.928 31.791 200 442 51.566 41.718
5 4 193 690 961 683 121 93.195 86.554 123 723 66.381 97.930
6 3 222 866 842 668 929 126.077 119.330 226 758 164.400 163.973
9 2 326 024 459 884 738 133.810 83.126 411 685 147.653 115.856
7 3 4 722 943 030 1 114 291 544.446 852.297 793 286 1527.186 1911.909
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Figure 8.7: Analysis time of the role-based models relative to the standard models for fixed number
of files
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Figure 8.8: An automated production cell consisting of three robots connected by two autonomous
carts

8.1.2 Self-adaptive production cell

The second experimental study is an example from production automation, an autonomous
production cell that is able to adapt itself in case of failures (adapted from [GOR06]).
A production cell consists of robots and a number of autonomous carts that transport
workpieces between the robots. Each robot is equipped with a tool to fulfill a certain task.
An example of a cell with three robots is shown in Figure 8.8 where the first one drills
holes, the second one inserts screws, and the third one tightens them. Robots can switch
their equipped tool, thus each robot is basically able to perform each task. However, it is
assumed that switching tools takes a considerable amount of time. Therefore, a sensible
configuration of the production cell assigns exactly one of the tasks to each robot. Each
time a tool is used it may break with a given fixed probability. If a workpiece cannot be
processed further because of a broken tool, the cell is reconfigured to restore its ability to
process further workpieces.

Modeling details

Similar to the work by Güdemann et al. [GOR06], the cell has been modeled using a role-
oriented approach. The role of a robot determines its assigned tool, e.g., the robot playing
the driller role is responsible for drilling holes. This approach enables a separation of
concerns in two ways. First, the tools’ functionality can be encapsulated and modularized,
and second, the reconfiguration of the production cell can be accomplished by changing
the role assignment. Both are reflected and implemented in the RML model, i.e., the
reconfiguration logic is fully contained in the coordinator. The functional correctness of
the model has been established, i.e., it has no deadlock states and workpieces are processed
fully and in-order. This provides the basis for the following quantitative analysis.

Quantitative analysis

The first analysis goal is to quantify the benefit of employing a self-adaptation mechanism
for the resiliency of the overall system. For this, we consider three variants of the
production cell with three robots. The fixed variant possesses no self-adaptivity and
provides a baseline to compare the adaptive variants to. The adaptive-chain and adaptive-
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ring variants are able to self-adapt with varying degrees of flexibility. In the adaptive-chain
variant, only the direction in which the workpieces travel through the production cell can
be changed, resulting in two possible configurations. The adaptive-ring variant allows that
carts move directly between robots 1 and 3, thus each robot can potentially assume any
role. In the following experiments, we assume that the probability that a tool breaks upon
usage is 0.01. We consider the maximal probability that 𝑛 workpieces are processed fully.
A higher probability corresponds to a more resilient system. The results are presented in
Figure 8.9. The plot clearly shows that introducing self-adaptivity significantly increases
the resiliency of the system proportional to the flexibility provided to the coordinator.
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Figure 8.9: Maximal probability of fully processing 𝑛 workpieces

Next, we consider a scenario where one of the robots can process workpieces twice
as fast as the others. To fully utilize its additional productivity, the robot may be shared
between two production cells. This allows us to increase the throughput of the production
without adding a complete second production cell. A possible setup is shown in Figure 8.10.
The throughput is defined as the number of finished workpieces per time unit where each
processing step and each reconfiguration of a production cell takes one time unit. Note
that robots can work in parallel. For instance, robots 1 and 3 may be drilling into two
different workpieces within the same time unit. In order to reason about the throughput
in the model, a reward of 1 is assigned to each transition that completes a workpiece. An
additional monitor module keeps track of the elapsed time by incrementing a counter in
each processing and reconfiguration phase. In case of multiple production cells within
a single system we consider two possible adaptation schemes. A localized adaptation
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Figure 8.10: Two automated production cells sharing a robot

Table 8.2: Expected throughput of production cells

Expected throughput
Production cells Adaptation min max

1 localized 0.2531 0.2827
2 (shared robot) localized 0.3493 0.5096
2 (shared robot) global 0.4035 0.5474
2 localized 0.6870 0.7964

is limited to the robots of a single production cell while a global adaptation potentially
reconfigures all robots in the system. From now on, we assume that the probability
for a tool breaking is 0.1. To quantify the increase in throughput, we compare a single
production cell with a system consisting of two overlapping production cells as shown
in Figure 8.10. The results are shown in Table 8.2. For reference, the throughput of two
individual production cells is shown in the last line. Both in the best and the worst case,
the shared-robot variant has a significantly higher throughput than a single cell while
only requiring two additional robots. The throughput of two cells is more than double
than that of a single cell which is caused by the increased redundancy of the overall
system. That is, even if one of the two cells fails completely, the other one might still be
able to process workpieces.

Adding a second overlapping production cell increases the overall throughput. However,
the shared robot may cause unintended interactions between the production cells. Since
it can only be equipped with one tool at a time, the tool assignment for the shared
robot has an influence on both production cells. Suppose that in the scenario shown in
Figure 8.10 the drill tool of robot 1 breaks. To further process workpieces the left cell
adapts itself by assigning the drill tool to robot 5 and the tighten tool to robot 1. The routes
of the automated carts are adapted accordingly. But then, there is no longer any robot
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responsible for inserting in the right cell. Thus, the next time a screw needs to be inserted
the right cell might reassign the insert tool to the shared robot. However, then the left
cell is required to adapt again once the next hole needs to be drilled which is causing an
adaptation in the right cell once more, and so on. This interaction of frequent conflicting
reconfigurations does not influence the functional correctness of the system. Workpieces
are still fully processed by both production cells. However, as the reconfiguration of robots
takes a certain amount of time, the throughput of the overall system is reduced in this case.
The conflicting adaptations can be avoided by adopting a global adaptation scheme that
takes all robots into account and keeps all cells operational if possible. For instance, in
the scenario where the drill tool of robot 1 breaks, a global adaptation may assign the drill
tool to robot 5 and the insert tool to both robot 1 and 3. This way, the processing capability
of the left cell is restored and the subsequent conflicting reconfiguration of the right cell is
avoided. The impact of the described interaction can be quantified by comparing systems
with localized and global adaptation mechanisms. The results are presented in the second
and third line of Table 8.2. Even though the global adaptation scheme requires a more
sophisticated reconfiguration mechanism and coordination between different production
cells, it significantly increases the throughput of the overall system.

8.1.3 File transfer with exogenous coordination

In this section, we revisit the peer-to-peer file transfer system from Section 8.1.1 to evaluate
the approach presented in Chapter 7. In particular, we utilize the exogenous coordination
language Reo to define the role-playing coordinator and leverage the presented PRISM
extensions and Reo tool support for a quantitative analysis. In order to simplify the model
and the analysis, only a single isolated network with either a ring topology or a chain
topology is considered.

Modeling details

The behavior of the server, relay, and client roles is encapsulated within individual role
components that are bound to the corresponding station components. Role-binding
between a station component and its role components is achieved by constructing a
binding connector as proposed in Section 7.3. Figure 8.11 depicts the binding connector
in detail. The station component as well as the role components are modeled as PRISM
modules. Each of the role components has one port that allows enabling or disabling the
role by providing or not providing a data item to this port, respectively. The channels
between the station component and the role components enable each role to retrieve
the file stored on the station and to replace it with another one. The right part of the
connector attaches the roles to the network (via the in and out ports), allowing each of
them to send or receive messages, i.e., request messages or file data messages. The binding
connector is the same for each station and is instantiated as needed. The network itself is
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also realized as a Reo connector which connects the in and out ports of the stations and
their respective roles according to the network topology.

Station
store

load
Client

Server

Relay

in

out

client server relay

Figure 8.11: A station component and its bound role components

The client, server, and relay ports of a station’s roles allow the role-playing coordi-
nator to enable, enforce, or prohibit role-playing. In contrast to the monolithic coordinator
of the model presented in Section 8.1.1, here the coordinator is split into multiple local
coordinators and a single global coordinator. There is a local coordinator for each station
and its bound roles. This local coordinator enforces that the Server role is only played if
the station has the requested file. It also gives priority to theClient role over the Relay role
in case the requested file arrives. These simple rules are sufficient to guarantee a correct
execution of the file-transfer protocol. The sole responsibility of the global coordinator is
to ensure that only a single transfer happens at any given time. The choice of the station
which is allowed to send the next request is either random (using a uniform distribution
over all stations) or nondeterministic. Overall, in this model the exogenous coordination
approach enables a compositional definition of the role-playing coordinator using simple
connectors with a localized responsibility. This enables a separation of concerns also for
the coordinator and improves comprehensibility of the coordination compared to the
monolithic approach.

Quantitative analysis

We consider the file-transfer model with three stations in four variants: using a chain
topology or a ring topology, and using nondeterministic choice or probabilistic choice
of the station sending the next request. For the quantitative analysis, reward monitors
and state rewards have been added to the model. Network activity, i.e., the activity of
at least one in or out port, consumes energy. Furthermore, a penalty is associated with
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Table 8.3: Analysis results for the file-transfer model with 3 stations

Query

Topology Scheduling c d e f g

chain nondet. 4.00 16.15 0.95 0.98 10.0
ring nondet. 2.00 15.94 1.00 0.96 12.0
chain random 5.87 18.73 0.64 0.65 15.0
ring random 4.00 18.34 0.78 0.72 12.0

pending requests that have not yet been processed. A request is pending if a station
wants to initiate a file transfer but has not been chosen by the global coordinator yet.
After generating the model variants using the ReoCompiler, they have been analyzed
using PRISM, asking for
(a) the minimal/maximal probability that eventually station 1 receives its requested file,
(b) the minimal/maximal probability that eventually all stations have received a file,
(c) the minimal expected time until the file requested by station 1 is delivered,
(d) the minimal expected time until all stations have received a file,
(e) the maximal probability to deliver a file to station 1 with less than 𝑥 penalty,
(f) the maximal probability for delivering a file using a given energy budget without

overstepping the penalty threshold, and
(g) the minimal energy required such that a file is delivered to station 1 with a probability

greater than 0.9 without a penalty violation.
The analysis results for the queries (c) to (g) are shown in Table 8.3. As expected, the
results for (c) show that in the ring topology the requested file is delivered faster since a
direct transfer between stations is always possible. The difference between the optimal
scheduling of requests and a random scheduling is shown by the results for (e). Generally,
the random scheduling incurs a higher penalty as requests are kept waiting longer. The
reward-bounded reachability probability (f) and the quantile [Bai+14] query (g) illustrate
the trade-off between early processing of a request, or waiting for another request which
causes a penalty for pending requests.

Scalability

Table 8.4 shows the model sizes and analysis times for the queries (f) and (g). The model
sizes are given in terms of reachable states, the number of MTBDD nodes for representing
the model symbolically, and the number of unique action names in the generated PRISM
models. Compared to the file-transfer model presented in Section 8.1.1 (Table 8.1), the
model with exogenous coordination of role-playing is considerably larger. Within the
exogenous approach, the coordinator is not able to access the local state of the other
components directly. Thus, the coordinator must obtain the necessary information by
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Table 8.4: Model sizes and analysis times for the file-transfer model with 3 stations

Time (s)

Topo. Sched. States Nodes Actions Build Analysis f Analysis g

chain nondet. 4 204 38 870 150 10.7 81.1 58.4
ring nondet. 34 164 97 471 150 90.7 197.8 91.3
chain random 12 612 40 735 154 10.6 92.0 24.4
ring random 102 492 102 326 154 62.6 224.5 101.0

reading data from the corresponding ports and then store it in its own local state. The
additional message passing and the redundant storage of state information causes a much
larger state space. Another issue is the large number of unique action names in the
generated models. Every data-flow location that serves as an interface between a Reo
connector and a PRISM module must have its own unique name. Since all complex
components are modeled as PRISM modules, the number of these interface ports is quite
large even for small instances of the model. The presented tooling currently does not apply
any optimizations to reduce the number of action labels and the multi-action version of
PRISM is not optimized for handling models with many action labels.

In conclusion, the exogenous modeling approach enables a compositional and declara-
tive definition of role-playing coordinators. However, the current implementation of the
approach is considerably less scalable than the RBA approach. The experiments in this
section have shown that the exogenous modeling approach is viable, but could potentially
benefit from further optimizations.

8.2 Classification

In order to evaluate the adequacy and expressiveness of the role-oriented modeling
approach presented in this thesis, we check it against the properties of roles identified by
Steimann in his survey of role-based approaches [Ste00]. Since modeling of systems is
done in RML for the most part instead of using RBA directly, we will discuss the formalism
and the modeling language in conjunction. Note that the notion of an object will be
used synonymously with natural (instance) as the presented approach is not based on
object-oriented concepts.

1. A role comes with its own properties and behavior.
As roles are represented by an automata-based formalism, RBA, they can have their
own state and behavior. Similarly, within RML a role is implemented using role
modules whose state space is given by a set of variables and whose behavior is
defined in terms of guarded commands.
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2. Roles depend on relationships.
This property is not enforced within the RBA approach as roles may exist without a
counter-role, and thus can also represent different states or phases of their respective
player.

3. An object may play different roles simultaneously.
Multiple roles can be bound to the same player via nested role-binding (cf. Sec-
tion 5.2.1). By means of synchronization over shared actions, roles of the same
player may even be played simultaneously within the same transition.

4. An object may play the same role several times, simultaneously.
Playing the same role type several times amounts to creating multiple copies of the
role’s RBA and binding them to the same player, again, via nested role-binding.

5. An object may acquire and abandon roles dynamically.
The intended meaning of this property refers to the capability to dynamically switch
between exposing role-specific behavior and not exposing this behavior. In the RBA
formalism, therefore, acquiring and abandoning roles correspond to playing and
not playing the role, respectively. Since playing a role is a property of a transition,
switching between playing and not playing a role is achieved by choosing the
respective transition with the desired role-playing annotation.

6. The sequence in which roles may be acquired and relinquished can be subject to
restrictions.
As described in the previous point, acquisition and removal of a role correspond
to playing and not playing it, respectively. Role-playing may be restricted using
the coordinator (see Section 5.2.3). Since the coordinator can have its own state,
restricting the sequence of role-playing is easily accomplished.

7. Objects of unrelated types can play the same role.
As long as the role and player interfaces are compatible, the role-binding operator
poses no further requirements to the player. Thus, a role may be bound to players
of different types.

8. Roles can play roles.
A role can be bound to any RBA. Therefore, the player may also be another role
which allows that roles can play roles.

9. A role can be transferred from one object to another.
This is not directly supported, neither by the formalism nor by the role-oriented
modeling language. However, a role transfer can be emulated by binding copies of
the role to both the source and the target of the transfer. Then, the role of the source
is played before the transfer happens and the role of the target is played after the
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transfer. The state transfer between the copies can be modeled straightforwardly in
RML by copying the local variables’ values from the source role to the target role.

10. The state of an object can be role-specific.
If the RBA resulting from binding a role to a player is regarded as a compound
object, then this object’s state can indeed be role-specific.

11. Features of an object can be role-specific.
A role may override the behavior of its player or add new behavior. Therefore, the
features of an object may be provided or modified by a played role.

12. Roles restrict access.
The concepts of visibility and accessibility of actions, state, and behavior do not exist
within the RBA approach. Therefore, binding a role cannot restrict access. However,
blocking actions of the player may be considered to be an access restriction.

13. Different roles may share structure and behavior.
This property refers to the concept of inheritance present in many object-oriented
languages. Neither RBA nor RML support the inheritance of behavior.

14. An object and its roles share identity.
This property is not directly applicable to RBA because object identities are not a
first-class concept within the formalism. However, since binding a role to a player
yields a single RBA that incorporates both the role’s RBA and the player’s RBA, it
can be argued that they have a shared identity.

15. An object and its roles have different identities.
It follows directly from the previous point that this property does not hold for the
RBA formalism. However, in RML instances of roles and players can be distinctly
addressed by their name to refer to their local variables and actions. In that sense
they do not have a shared identity.

The previously listed properties of roles mainly concern the behavioral aspects of roles
and the notion of relationships between roles. In a more recent survey by Kühn et
al. [Küh+14], a shift of contemporary approaches to context-dependent roles has been
identified and the list of role properties has been extended to account for the additional
characteristics.

16. Relationships between roles can be constrained.
Neither the RBA formalism nor RML provide first-class relationships, therefore, no
constraints on relationships can be defined.

17. There may be constraints between relationships.
For the same reason as in the previous point, defining constraints between relation-
ships is not possible.
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18. Roles can be grouped and constrained together.
There is no explicit support for role groups. However, RML provides a count func-
tion to count the number of role instances of a certain type within a compartment.
When used within the system block, cardinality constraints for a set of roles can
be defined.

19. Roles depend on compartments.
Compartments are a first-class concept in both the RBA formalism and in RML.
While roles can be part of a compartment, i.e., depend on it, they may also exist
without one. In RML the property that each role is contained within a compartment
can be enforced by adding the following constraint to a system block.

forall r : role. exists c : compartment. r in c;

20. Compartments have properties and behavior.
Like roles, compartments are represented by RBA and, therefore, this property
holds for them as well.

21. A role (type) can be part of several compartments.
In RML it is possible to refer to the same role type in different compartment-
type definitions and even put different constraints on them. The property is not
applicable to the pure RBA formalism since it does not provide a type level.

22. Compartments may play roles like objects.
This is possible since compartments are also represented by RBA which allows us
to bind roles to them.

23. Compartments may play roles which are part of themselves.
The RBA of a compartment arises from the parallel composition of the RBA for the
roles contained in the compartment. Binding a role within the compartment to the
compartment itself means that the compartment’s RBA would need to be present
in both positions of the binding operator which is not possible without creating a
copy of the compartment.

24. Compartments can contain other compartments.
The nesting of compartments, e.g., a university compartment containing a faculty
compartment is not possible in the presented approach.

25. Different compartments may share structure and behavior.
As is the case for roles, the inheritance of compartment behavior is not supported.

26. Compartments have their own identity.
This property is not applicable for the RBA formalism as it does not include first-
class identities. However, in RML, compartments are a first-class concept and have
their own identity.
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27. The number of roles occurring in a compartment can be constrained.
RML directly supports the specification of occurrence constraints as part of the
compartment-type definition.

The role-orientedmodeling approach presented in this thesis covers the key characteristics
of roles and includes compartments as an integral part of the formalism. With that even
more advanced properties of roles, e.g., that compartments themselves can play roles,
are fully supported. Neither the RBA formalism nor the modeling language provide an
explicit notion of relationships. Rather, they are implicitly defined by the shared actions
between roles. Nevertheless, the FOL-based constraint language of RML is expressive
enough to mimic the effect of relationship constraints even without an explicit notion of
relationships. Another aspect that is not covered by the approach is the inheritance of
role behavior and compartment behavior. However, this is not surprising given the level
of abstraction in RBA. Furthermore, formal models that lend themselves to an analysis
using (probabilistic) model checking usually do not reach a scale where inheritance would
bring a significant benefit to modeling. To summarize, the above classification as well as
the case studies show that the approach is adequate for modeling role-based systems.

8.3 Related work
As the related work on role-based systems that inspired the approach in this thesis
has already been discussed in Section 5.1, we focus here on related work regarding the
formal modeling as well as the formal analysis of role-based systems. In particular, we
discuss approaches that allow for a compositional modeling of adaptive systems and
a modularization of adaptations. The body of work tailored specifically to role-based
systems is rather limited. Therefore, we also consider approaches for aspect-oriented
systems and feature-oriented systems, since the adaptation techniques used there are
conceptually similar to those applied for role-based systems. In order to demonstrate the
expressiveness of the RBA-approach presented in this thesis, we also discuss possible
embeddings of related approaches.

8.3.1 Role-based approaches
The Objects with Roles [Per90] approach employs the role concept to capture the evolving
behavior of objects. Within this approach, objects may play one or more roles simul-
taneously, even multiple roles of the same type. Only the behavioral aspect of roles is
addressed, i.e., neither role relationships nor context-dependent roles are considered. The
behavior of objects and roles is specified uniformly using state transition rules over states,
roles, and messages. Similar to guarded commands, a rule may specify a guard in the
form of a required source state and optionally an incoming message. If the conditions of
a rule are satisfied, it may update the local state, instantiate or destroy roles, and send

158



8.3 Related work

a message. Given an initial state, repeated application of the rules induces a transition
system with message-labeled edges, called role state diagrams. The concept of a complex
abstract state of an object is introduced which contains the object’s own local state as
well as the state of each role the object plays. If a role is added to an object, the state
transition rules of the object and the role are joined. In any given complex abstract state
there is a nondeterministic choice among the applicable rules. Therefore, object and role
behaviors may run concurrently (via interleaving). A role may adapt the behavior of
an object using special rules that inhibit certain messages or even remove whole rules
from the object’s set of rules. By removing rules and adding new ones in their place, a
modification of object behavior is possible. This is similar to the approach within RBA,
where certain transitions of the player can be blocked and new transitions are added
instead. In addition to the state transition rules, a model may also include integrity rules
to define invariants. However, the approach makes no assumptions on how the violation
of the integrity rules is handled. In particular, the paper focuses purely on the modeling
aspect and no verification approach is presented.

The superimposition control structure introduced by Katz [Kat93] facilitates the mod-
ularization of distributed (reactive) systems, but is general enough to be applicable to
other kinds of systems as well. The construct specifically targets the modularization of
cross-cutting concerns such as the fulfillment of a common (temporary) subtask that
requires multiple processes to collaborate. A superimposition declaration comprises the
basic processes and several role types that capture the collaboration-specific behavior of a
process. Using a combination operator, a role type of a superimposition is composed with
a basic process. The role and the basic process operate on the same local state. A role
type may define additional behavior, but is also able to adapt the existing behavior of the
basic process. For that, it may declare rewrite rules that operate directly on the abstract
syntax tree (AST) defining the process behavior which enables arbitrary modifications.
This makes the superimposition construct quite general and allows it to be integrated
into various modeling and programming languages. A notable instance is its use within
feature-oriented systems as in the approach of Plath and Ryan [PR01]. Here, the super-
imposition construct is applied to integrate feature behavior into the base system. The
construct is tailored to the input language of the model checker NuSMV and allows for
two kinds of rewrite rules. Using the treat keyword, each read access to a variable can
be replaced by another expression (which may involve the variable itself). The impose
keyword, on the other hand, allows the modification of every write access, i.e., update, of
a specific variable. Both kinds of rewrites can also be applied conditionally depending on
the system’s state. In contrast to the binding operator on RBA which operates directly on
the transitions of the RBA, the combination operator of the superimposition construct
modifies the behavior on the level of rules or guarded commands (which is also the case
for the previously mentioned Objects with Roles approach). The consequence is that
within the RBA approach only the observable behavior of the player, i.e., its actions, can be
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modified, while superimposition also allows for arbitrary changes of the internal behavior.
Note that this requires knowledge about the implementation of the adapted process which
may lead to a tighter coupling between the role type and the adapted process. Another
prominent application of superimposition is delta-oriented programming [Sch+10] where
it is utilized to amend object-oriented programs when integrating features into a base
system.

Allen and Garlan [AG97] applied the role concept in architectural modeling. They
proposed the architecture description languageWRIGTHwhich treats connectors between
system components as a first-class concept. A connector is defined in terms of a set of
roles and the so-called glue that defines the interaction between the roles. The interface
between a component and a connector are a set of ports that can be filled by roles.
Conceptually, a role defines the expected behavior or obligations of a component, or
more specifically, a component port, in an interaction. As such, they are not used as an
abstraction for context-dependent adaptations. The expected behavior of a component
for filling a certain role and the connector glue is formally defined in terms of a CSP-style
process algebra. The compatibility of a role and a port is formalized by a refinement
relation. Since the description language is based on CSP, both the conformance and the
absence of deadlocks within connector protocols can be checked using standard tools,
including CSP model checkers.

In theHelena approach byHennicker andKlarl [HK14], roles are played by components
within ensembles to collaborate towards fulfilling a common goal. Components can play
multiple roles in different ensembles simultaneously. Furthermore, the approach includes
explicit relationships in the form of role connectors which define the messages that can be
sent between roles. Components serve as storage for data and provide operations that
can be invoked by their respective roles. However, a component does not exhibit any
active behavior and cannot communicate with another component without the use of
its roles. For that reason, roles in Helena do not and cannot adapt the behavior of their
player. Ensembles which are specified in HelenaLight [Kla15], a simplified variant of the
approach, can be formally verified using the SPIN model checker. For that an ensemble
specification is translated into Promela, the input language of SPIN. Role behavior is given
in terms of process expressions. The limited interaction between roles and components in
Helena can be easily modeled in the RBA approach using synchronization over actions
representing the component’s operations.

Roles are a prominent modeling concept for designing and implementing multi-agent
systems [Cab+10]. Here, a role is an abstraction of the expected behavior of an agent
or a set of agents and defined in terms of capabilities, obligations, and requirements.
Role-based approaches for multi-agent systems are not compositional in the sense that
the combination of a role with an agent adapts the agent’s behavior. Rather, it is assumed
that an agent acquiring a certain role already exhibits the necessary behavior. Some
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Figure 8.12: Sequential composition of a base system with an extension

approaches propose a refinement of the abstract role behavior to create the concrete agent
behavior, e.g. [RS02].

Several model-checking approaches for role-based access control (RBAC) policies have
been presented in the literature, e.g., [AT03; RB09; ZRG05]. In this context, roles are
mainly associated with rights and exhibit no behavior themselves. In particular, roles
are usually assigned to users and do not adapt the behavior of system components. The
analysis of policies is mainly focused on whether it is possible for a user to gain access to
a resource for a given set of roles and if so, which sequence of steps it takes.

8.3.2 Aspect-oriented approaches

Fisler and Krishnamurthi presented a methodology for the modular verification of collab-
oration-based software [FK01]. It relies on a quasi-sequential composition of extensions
with a base system where both the base system and the extensions may arise from the
parallel composition of several transition systems. Each base system provides an exten-
sion interface comprising an exit state and a reentry state that redirect the control flow
into an extension and serve as a return point, respectively. The composition of a base
system with an extension takes the union of the base system’s and the extension’s state
spaces and connects the exit state with the initial state of the extension as well as the
final state of the extension with the reentry state, as shown in Figure 8.12. Extensions
may only add states and transitions, but cannot remove or modify existing states and
transitions in the base system. The modular model checking of a collaboration proceeds
in three steps. First, CTL model checking is applied to the base system only and the
subformulas that are satisfied in the interface states are stored. Second, the extension
is checked under the assumption that the subformulas that hold in the exit and reentry
states of the base system are also satisfied in the initial and final states of the extension.
Finally, it is checked whether the labeling of the extension’s final state has been preserved
by the CTL model checking procedure. If so, it can be concluded that the combination of
the base system with the extension also satisfies the considered CTL formula. A similar
approach has been applied for the verification of aspects that are inlined into the control
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flow of a program [KFG04]. The approach has later been extended by Thang et al. to allow
for a more flexible modeling [TK03b]. In the improved approach a base system may have
multiple exit and reentry states. Furthermore, the transitions redirecting the control flow
into the extension may be prioritized. This allows for an adaptation of the base system’s
behavior by suppressing certain transitions and replacing them with transitions of the
extension. Even though the RBA formalism utilizes a parallel composition of role and
player behavior, a sequential composition is achievable as well. Redirecting the control
flow into the role is easily accomplished using overriding transitions. Once the control
flow has reached the role, all actions of the player are blocked such that only the role
behavior is executed.

In [Sip03], the formalization of aspects for modular transition systems is considered.
Modular transition systems are specified using a first-order representation of transitions
over the variables comprising the state space, similar to a description using guarded
commands. Aspects, i.e., modularized modifications of a base system, are defined by a
set of additional variables and a set of modification instructions. There are two kinds of
modifications. An abstraction projects out one or more variables resulting in a weakening
of guards and the removal of variable updates, effectively adding new behavior. Abstrac-
tion may be followed with the second kind of modification, restriction. A restriction
strengthens guards and possibly adds variable updates. Therefore, it removes behavior
from the system. The combination of abstraction and restriction allows for a modification
of the base system’s behavior when applying an aspect. The formalization is general
enough to cover most of the constructs offered by AspectJ [Kic+01], an aspect-oriented
extension of the Java programming language. The approach has a strong resemblance
to superimposition, so the discussion of the relation to the RBA formalism given in
Section 8.3.1 applies here as well.

8.3.3 Feature-oriented approaches

A notable similarity between features and roles is the effect they have if added to a base
system and acquired by a player, respectively. In both instances the base behavior may
be extended or modified. The similarities are even more profound in the case of dynamic
features that can be added and removed during runtime of the system in order to adapt to
changing requirements. A prominent formal model for feature-oriented systems tailored
to an analysis using model checking are FTS [Cla+10]. The transitions of an FTS are
annotated with feature guards that define in which feature combinations a transition
is available. Thus, an FTS is a family model that represents a whole product line. The
parallel composition operator on transition systems can be extended straightforwardly to
FTS. However, the FTS formalism does not provide a composition operator for integrating
an additional feature into an existing FTS. Instead, the superimposition construct has
been applied to define FTS in a modular fashion [Cla+11; Cla+14]. For modeling adaptive
systems and dynamic software product lines Cordy et al. introduced A-FTS [Cor+13a]. In
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an A-FTS the feature guard is not only defined over the current feature combination, but
also the feature combination in the successor state.

The role annotations in RBA are conceptually and structurally similar to the feature
guards in FTS. This raises the question on how both formalisms compare w.r.t. their
expressiveness. To answer this question, we define an embedding of FTS into RBA. For
that, we first recall the definition of FTS. In the following, let 𝑁 = { 𝑓0, 𝑓1, . . . , 𝑓𝑛 } denote
the set of features.

Definition 8.1 (Featured transition system [Cla+11]). An FTS is a tuple
fts = (𝑆,Act, trans, 𝑑,𝛾, 𝑆 init) where

• 𝑆 is a finite set of states,
• Act is a set of actions,
• trans ⊆ 𝑆 × Act × 𝑆 is a set of transitions,
• 𝑑 ⊆ P(𝑁 ) is a feature model,
• 𝛾 : trans →

(︁
{0, 1} |𝑁 | → {0, 1}

)︁
is a function labeling each transition with a feature

expression, and
• 𝑆 init ⊆ 𝑆 is the set of initial states.

We now turn to the transformation of an FTS into an RBA. The main idea here is to
treat an active feature as a role that is actively played. Since a feature guard is a Boolean
expression over features, and thus represents multiple feature combinations symbolically,
but role annotations describe role-playings explicitly, an FTS-transition may correspond
to multiple RBA-transitions. We define the corresponding role annotation of a feature
combination 𝑝 ∈ P(𝑁 ) as 𝑋 (𝑝) =

{︁
𝑓 : 𝑓 ∈ 𝑝

}︁
∪
{︁
𝑓 : 𝑓 ∉ 𝑝

}︁
.

Definition 8.2 (RBA induced by an FTS). The corresponding RBA of an FTS
fts = (𝑆,Act, trans, 𝑑,𝛾, 𝑆 init) is defined as

A[fts] =
(︁
𝑆, Act, ⟨𝑁,∅⟩, −→, 𝑆 init

)︁
where −→ is the smallest transition relation fulfilling the following rule.

(𝑠, 𝛼, 𝑠′) ∈ trans 𝛾
(︁
(𝑠, 𝛼, 𝑠′)

)︁ (︁
[𝑓1 ∈ 𝑝], [𝑓2 ∈ 𝑝], . . . , [𝑓𝑛 ∈ 𝑝]

)︁
= 1 𝑝 ∈ P(𝑁 )

𝑠
𝛼/𝑋 (𝑝)
−−−−−→ Dirac(𝑠′)

As it is the case with FTS, the resulting RBA represents the whole product line. Towards
a family-based analysis, the lifting approach [PS08] can be applied to encode the feature
combination into the state space of the model. In particular, the set of all valid feature
combinations constitutes the state space of the role-playing coordinator.

Definition 8.3 (Coordinator arising from a feature model). The coordinator arising from
the feature model of an FTS fts = (𝑆,Act, trans, 𝑑,𝛾, 𝑆 init) is defined as

C =
(︁
𝑑, Act, ⟨𝑁,∅⟩, −→, 𝑑

)︁
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where −→ =
{︁ (︁

𝑝, 𝛼, 𝑋 (𝑝), 𝑝
)︁
: 𝑝 ∈ 𝑑, 𝛼 ∈ Act

}︁
.

A coordinator state for a feature combination 𝑝 ∈ P(𝑁 ) has self-loops annotated with
the corresponding role annotation for the feature combination 𝑝 . Then, the composition of
the coordinator with the RBA arising from the FTS ensures that only the roles associated
with the selected feature combination are played. With that, the coordinator fulfills the
same purpose as the feature controller in the work of Dubslaff et al. [DBK15]. Utilizing
this representation of the feature combination, modeling a dynamic software product line
amounts to simply adding transitions between the states of the coordinator such that
the configuration can be changed during the runtime of the system. A similar approach
has also been applied in delta-oriented programming where the construct was named
reconfiguration automaton [DS11]. In summary, FTS can be fully embedded into RBA.
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9 Conclusion
The goal of this thesis was to adopt the concepts of features and roles that have been
introduced to design and implement variability-intensive as well as adaptive systems in the
context of formal modeling and analysis. In particular, the focus was on a compositional
definition of system models or model families and on a quantitative analysis by means
of probabilistic model checking. The proposed formal approaches are complemented by
suitable modeling languages and accompanying tooling, aiming to support the software
development process.

For modeling and analyzing feature-oriented systems, the tool ProFeat has been extended
in various directions. Support for feature attributes has been added which allow a
more compact definition of product lines with numerical parameters. Furthermore, the
implementation has been extended with the option of a one-by-one analysis where each
instance of a system family is analyzed individually. The appropriate analysis method,
i.e., either an all-in-one or a one-by-one analysis, can be chosen freely without requiring
any modification of the model definition. An empirical evaluation comparing the analysis
approaches revealed that none of them is clearly superior in all cases. For the considered
systems, an all-in-one analysis was significantly faster for system families comprising
numerous variants sharing a lot of common behavior. The one-by-one analysis was
superior for systems defined in terms of parameters and with little sharing between
instances. As a result of the translational approach of ProFeat, analysis results are
ultimately provided by the utilized model checker and refer to the translated model. For
an improved comprehensibility, a post-processing step has been added that transforms
the results such that they correspond to the original ProFeat model. Moreover, ProFeat
can generate a symbolic representation of the analysis results in terms of a propositional
formula or an MTBDD. In case study involving a body sensor network product line, the
MTBDD-representation proved to be useful for drawing high-level conclusions about
the influence of certain features on the reliability of the system. Further case studies
have shown the practical applicability of ProFeat for the analysis of product lines and
other system families. Moreover, the usefulness of the feature concept for defining single
systems has been shown where the adaptivity of the system was captured using dynamic
features.

Role-based automata have been introduced to define the operational behavior of role-
based systems. The compositional modeling approach provides an operator for role-
binding which formalizes the interplay between a role and its player. The coordination of
role-playing is captured by an automata-based component, the role-playing coordinator.
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The semantics of an RBA representing the behavior of a role-based system under a
coordinator is given in terms of an MDP. For describing systems involving roles succinctly,
a role-oriented modeling language has been introduced. This language can be seen as
an extension of PRISM’s input language extended with various constructs for defining
role-specific behavior. The implementation leverages PRISM for the quantitative analysis
by translating a role-based model into the input language of PRISM. The translation
encodes role-playing annotations into the action labels within the translated PRISM
model which makes role-playing explicit. In case a system violates its specification,
this explicit encoding of the involved roles facilitates the detection of interactions in
counterexample traces. Furthermore, since roles belong to specific compartments that
provide the context in which roles are played, the detection of interactions between
different contexts is possible. The latter has been demonstrated in the analysis of a
peer-to-peer file transfer protocol where interactions only occurred in the combination
of several networks, but not within isolated networks. A second experimental study
demonstrated the potential of detecting interactions that only influenced the efficiency of
the system, but did not compromise its functional correctness. For the declarative and
compositional definition of role-playing coordinators, an approach utilizing the channel-
based exogenous coordination language Reo has been presented. The quantitative analysis
of systems consisting of stochastic modules coordinated by a Reo connector is enabled by
a prototype implementation which translates a textual description of a Reo circuit into
an extended version of the PRISM language. This implementation is also applicable for
analyzing role-based systems with exogenous coordination, as has been demonstrated by
a second experimental study of the file-transfer protocol.

Future work. The work on feature-oriented systems presented in this thesis can be
extended in several directions. The ProFeat language allows decomposing the behavior
of a feature-oriented system into feature modules. However, within feature modules the
definition of feature-specific behavior follows the annotative approach, i.e., commands are
explicitly guarded by specific feature combinations. Thus, cross-cutting features cannot
be cleanly modularized. To overcome this limitation, a superimposition construct [Kat93]
could be integrated into the ProFeat language. Using the framework presented in [Dub19],
the implementation can be extended accordingly to support both parallel composition
and superimposition.

Another possible extension of the translation is the integration of an automated sym-
metry reduction for multi-features. Since instances of a multi-feature are created from a
common template, they are potentially symmetric which allows replacing them with a
generic representative [DM06]. For this it has to be investigated under which conditions
the reduction may be safely applied.

Conceptually, it is possible to combine the all-in-one and one-by-one analysis ap-
proaches. For that the set of feature combinations is partitioned into a set of “sub-families”.
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The sub-families are analyzed one-by-one where the analysis of each sub-family utilizes
the all-in-one approach. Von Rhein [Rhe16] reported that the combined approach uses
less time than the one-by-one approach and less memory than the all-in-one approach
for selected (non-probabilistic) models. ProFeat currently has rudimentary support for
this combined analysis. It could be investigated whether the results reported by von
Rhein can also be replicated for stochastic system families and whether a heuristic for
the optimal number of partitions can be derived.

The symbolic result representations provided by ProFeat are only applicable for static
product lines. In the future, theory and an implementation for meaningful explanations
for dynamic feature-oriented systems could be developed. The approach may benefit from
an explicit encoding of active feature behavior, similar to the role-playing annotations in
RBA which make role interactions explicit.

A possible extension of the work on role-based systems is to consider a transfer of
the concepts to timed automata or probabilistic timed automata for reasoning about
real-time properties. Another direction for future work is the investigation under which
conditions and restrictions a compositional reasoning or assume-guarantee reasoning is
possible for RBA. Furthermore, the formalism may be combined with an explicit context
model. Currently, contexts and context changes are only implicitly specified as part of
the role-playing coordinator. An explicit modeling of contexts enables reasoning about
context-changes and their impact on quantitative properties of the system.

Several extensions of the implementation are possible. Encoding of role-playing into
the state space of the translated model is already possible, but the counterpart on the logic
side is missing. The property specification language of PRISM could be extended with
operators for reasoning about role-playing. An automated translation into the standard
property language could be added by applying the techniques described in [DV90].

167





List of Figures

3.1 Feature diagram for a simple car product line . . . . . . . . . . . . . . . . 17
3.2 The feature-oriented development process . . . . . . . . . . . . . . . . . 18
3.3 Producer-consumer running example . . . . . . . . . . . . . . . . . . . . 21
3.4 Feature diagram of the producer-consumer system . . . . . . . . . . . . . 21
3.12 ProFeat workflow overview . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.13 A feature module and its translation . . . . . . . . . . . . . . . . . . . . . 33
3.16 Translation of synchronization with controller . . . . . . . . . . . . . . . 35
3.19 MTBDD representations of analysis results . . . . . . . . . . . . . . . . . 39

4.1 MTBDD sizes of producer-consumer models . . . . . . . . . . . . . . . . 43
4.2 Analysis time of producer-consumer model (buffer size) . . . . . . . . . . 44
4.3 Analysis time of producer-consumer model (workers) . . . . . . . . . . . 44
4.4 Analysis time of producer-consumer model (distributions) . . . . . . . . 45
4.5 Feature diagram for the body sensor network product line . . . . . . . . 48
4.8 MTBDD representation of BSN analysis results . . . . . . . . . . . . . . . 50
4.9 Network system with cube topology . . . . . . . . . . . . . . . . . . . . . 53
4.12 Probability of mapping failure in network model . . . . . . . . . . . . . . 55
4.13 Minimal required energy in network model . . . . . . . . . . . . . . . . . 56
4.16 Probability of successful adaptation . . . . . . . . . . . . . . . . . . . . . 59

5.1 CROM graphical notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Role model for the banking example . . . . . . . . . . . . . . . . . . . . . 71
5.3 RBA for an Account instance . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4 RBA for Target and Checking roles . . . . . . . . . . . . . . . . . . . . . 73
5.5 Rules for the parallel composition of RBA . . . . . . . . . . . . . . . . . . 74
5.6 Rules for role-binding in RBA . . . . . . . . . . . . . . . . . . . . . . . . 75
5.7 Results of binding Checking and Target roles . . . . . . . . . . . . . . . . 76
5.8 Example for non-commuting role-binding . . . . . . . . . . . . . . . . . 80
5.9 Example showing different orders of role-binding . . . . . . . . . . . . . 81
5.10 A role-playing coordinator for the banking example . . . . . . . . . . . . 82
5.11 Rules for the composition of an RBA and a coordinator . . . . . . . . . . 83
5.12 MDP for banking system . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1 Overview for analysis of role-based systems . . . . . . . . . . . . . . . . 85
6.2 Type definitions for the banking scenario . . . . . . . . . . . . . . . . . . 87

169



List of Figures

6.3 Instantiation of a role-based system within the banking scenario . . . . . 88
6.6 Decision tree for extending an incomplete system . . . . . . . . . . . . . 91
6.8 Banking systems satisfying a set of constraints . . . . . . . . . . . . . . . 93
6.13 A module implementing a component and the corresponding RBA . . . . 96
6.15 A module implementing a role component and the corresponding RBA . 99
6.17 Coordinator impementation and RBA for the banking example . . . . . . 101
6.23 Approaches for the composition of RBA . . . . . . . . . . . . . . . . . . . 106
6.24 Rules for the parallel composition of maMDPs . . . . . . . . . . . . . . . 108
6.25 maMDPs for Account natural and Checking role . . . . . . . . . . . . . . 110
6.26 Resulting maMDP for role-binding . . . . . . . . . . . . . . . . . . . . . . 110
6.27 Rules for the composition of an maMDP with a coordinator maMDP . . . 114
6.28 Rules for the parallel composition of PRISM modules . . . . . . . . . . . 116
6.29 Composition of modules with multi-actions . . . . . . . . . . . . . . . . 117
6.35 Translation for encoding the visible action 𝛼 into the state space . . . . . 123
6.36 Translation for encoding role-playing of roles s and t into the state space 124

7.1 ReoCompiler overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.2 Reo node types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.3 Alternator in Reo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.4 Constraint automaton for a FIFO1 channel . . . . . . . . . . . . . . . . . 131
7.5 Rules for the product of constraint automata . . . . . . . . . . . . . . . . 132
7.6 Rules for role-binding in CA . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.7 Role-binding patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.5 Overlapping networks with a shared station . . . . . . . . . . . . . . . . 144
8.7 Relative analysis times for role-based models . . . . . . . . . . . . . . . . 147
8.8 An automated production cell with three robots . . . . . . . . . . . . . . 148
8.9 Maximal probability of fully processing 𝑛 workpieces . . . . . . . . . . . 149
8.10 Two automated production cells sharing a robot . . . . . . . . . . . . . . 150
8.11 A station component and its bound role components . . . . . . . . . . . 152
8.12 Sequential composition of a base system with an extension . . . . . . . . 161

170



List of Tables

4.1 Sizes of parametrized models . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Analysis for paramtrized benchmark models . . . . . . . . . . . . . . . . 47
4.3 Sizes of elevator models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Analysis times for elevator product lines . . . . . . . . . . . . . . . . . . 52

5.1 Ontological characterization of meta-types . . . . . . . . . . . . . . . . . 68

8.1 Model sizes and analysis times for file-transfer model . . . . . . . . . . . 147
8.2 Expected throughput of production cells . . . . . . . . . . . . . . . . . . 150
8.3 Analysis results for the file-transfer model with 3 stations . . . . . . . . 153
8.4 Model sizes and analysis times for the file-transfer model with 3 stations 154

171





List of Listings

3.5 Excerpt of the feature model for the producer-consumer system . . . . . 22
3.6 Declaration and implementation of the Worker feature . . . . . . . . . . 24
3.7 Feature controller for the producer-consumer system . . . . . . . . . . . 25
3.8 Parametrization of the producer-consumer model . . . . . . . . . . . . . 26
3.9 A FIFO buffer implementation parametrized over the capacity . . . . . . 27
3.10 Definition of a Worker’s energy consumption . . . . . . . . . . . . . . . 28
3.11 Property specifications utilizing ProFeat’s language extensions . . . . . . 29
3.14 Feature controller of the producer-consumer system . . . . . . . . . . . . 34
3.15 Translated feature controller command . . . . . . . . . . . . . . . . . . . 34
3.17 Simple feature-oriented model . . . . . . . . . . . . . . . . . . . . . . . . 37
3.18 ProFeat analysis output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.6 Analysis results for BSN model . . . . . . . . . . . . . . . . . . . . . . . . 49
4.7 Post-processed analysis results for BSN model . . . . . . . . . . . . . . . 49
4.10 Deactivation of links in the network system controller . . . . . . . . . . 54
4.11 Nondeterministic task mapping in the network system model . . . . . . 54
4.14 Feature module for asynchronous message passing . . . . . . . . . . . . 58
4.15 Command for sending message . . . . . . . . . . . . . . . . . . . . . . . 58

6.4 Binding multiple roles using nested binding . . . . . . . . . . . . . . . . 88
6.5 Incomplete set of constraints for instantiating multiple systems . . . . . 90
6.7 Completed set of constraints for banking example . . . . . . . . . . . . . 92
6.9 Description of a banking system . . . . . . . . . . . . . . . . . . . . . . . 93
6.10 Type-restricted quantifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.11 An implementation declaration linking a module and a component type . 94
6.12 Shorthand notation for providing an implementation for a type . . . . . 95
6.14 Application of indexed action labels . . . . . . . . . . . . . . . . . . . . . 97
6.16 Module for an Account with internal actions . . . . . . . . . . . . . . . . 100
6.18 Definition of role priorities . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.19 Function definition examples . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.20 Coordinator for transactions . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.21 Quantification over action labels . . . . . . . . . . . . . . . . . . . . . . . 105
6.22 Definition of rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.30 Modules defining behavior of Account natural and Checking role . . . . 118

173



List of Listings

6.31 Translated modules for Account natural and Checking role . . . . . . . . 119
6.32 Generated module for preventing the synchronization of non-role actions 120
6.33 Coordinator specifying a temporal constraint . . . . . . . . . . . . . . . . 122
6.34 Translated role-playing coordinator . . . . . . . . . . . . . . . . . . . . . 123
6.37 Source-level translation for encoding role-playing into the state space . . 125

8.1 Definition of a unidirectional ring network topology . . . . . . . . . . . . 140
8.2 Module implementing a station . . . . . . . . . . . . . . . . . . . . . . . 141
8.3 Module implementing a server role . . . . . . . . . . . . . . . . . . . . . 142
8.4 Coordinator for server roles . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.6 Action trace for a property violation . . . . . . . . . . . . . . . . . . . . . 145

174



Acronyms

AST abstract syntax tree

BDD binary decision diagram

CA constraint automaton

CDNF canonical disjunctive normal form

CROI Compartment Role Object Instance

CROM Compartment Role Object Model

CTL computation-tree logic

CTMC continuous-time Markov chain

DSPL dynamic software product line

DTMC discrete-time Markov chain

FOL first-order logic

FTS featured transition system

LTL linear temporal logic

maMDP Markov decision process with multi-actions

MDP Markov decision process

MTBDD multi-terminal binary decision diagram

PCA probabilistic constraint automaton

PCTL probabilistic computation tree logic

RBA role-based automaton

RBAC role-based access control

SPCA simple probabilistic constraint automaton

175



Acronyms

SPL software product line

TVL Textual Variability Language

176



Bibliography
[Ach+09] Mathieu Acher, Philippe Collet, Franck Fleurey, Philippe Lahire, Sabine

Moisan, and Jean-Paul Rigault. “Modeling Context and Dynamic Adaptations
with Feature Models”. In: 4th International Workshop Models@run.time at
Models 2009 (MRT’09). 2009, p. 10.

[AD90] Rajeev Alur and David L. Dill. “Automata For Modeling Real-Time Systems”.
In: Automata, Languages and Programming, 17th International Colloquium,
ICALP90, Warwick University, England, UK, July 16-20, 1990, Proceedings.
Ed. by Mike Paterson. Vol. 443. Lecture Notes in Computer Science. Springer,
1990, pp. 322–335. doi: 10.1007/BFb0032042.

[AG97] Robert Allen and David Garlan. “A Formal Basis for Architectural Con-
nection”. In: ACM Trans. Softw. Eng. Methodol. 6.3 (1997), pp. 213–249. doi:
10.1145/258077.258078.

[AH96] Rajeev Alur and Thomas A. Henzinger. “Reactive Modules”. In: Proceedings,
11th Annual IEEE Symposium on Logic in Computer Science, New Brunswick,
New Jersey, USA, July 27-30, 1996. 1996, pp. 207–218. doi: 10.1109/LICS.
1996.561320.

[AHK03] Suzana Andova, Holger Hermanns, and Joost-Pieter Katoen. “Discrete-Time
RewardsModel-Checked”. In: FormalModeling and Analysis of Timed Systems:
First International Workshop, FORMATS 2003, Marseille, France, September
6-7, 2003. Revised Papers. Ed. by Kim Guldstrand Larsen and Peter Niebert.
Vol. 2791. Lecture Notes in Computer Science. Springer, 2003, pp. 88–104.
doi: 10.1007/978-3-540-40903-8_8.

[AK09] Sven Apel and Christian Kästner. “An Overview of Feature-Oriented Soft-
ware Development”. In: Journal of Object Technology 8.5 (2009), pp. 49–84.

[Ake78] Sheldon B. Akers. “Binary Decision Diagrams”. In: IEEE Transactions Com-
puters 27.6 (June 1978), pp. 509–516. issn: 0018-9340. doi: 10.1109/TC.
1978.1675141.

[AKL09] Sven Apel, Christian Kästner, and Christian Lengauer. “FEATUREHOUSE:
Language-independent, automated software composition”. In: 31st Inter-
national Conference on Software Engineering, ICSE 2009, May 16-24, 2009,
Vancouver, Canada, Proceedings. IEEE, 2009, pp. 221–231. doi: 10.1109/
ICSE.2009.5070523.

177

https://doi.org/10.1007/BFb0032042
https://doi.org/10.1145/258077.258078
https://doi.org/10.1109/LICS.1996.561320
https://doi.org/10.1109/LICS.1996.561320
https://doi.org/10.1007/978-3-540-40903-8_8
https://doi.org/10.1109/TC.1978.1675141
https://doi.org/10.1109/TC.1978.1675141
https://doi.org/10.1109/ICSE.2009.5070523
https://doi.org/10.1109/ICSE.2009.5070523


Bibliography

[Ape+11] Sven Apel, Hendrik Speidel, Philipp Wendler, Alexander von Rhein, and
Dirk Beyer. “Detection of Feature Interactions Using Feature-aware Veri-
fication”. In: Proceedings of the 2011 26th IEEE/ACM International Confer-
ence on Automated Software Engineering. ASE ’11. Washington, DC, USA:
IEEE Computer Society, 2011, pp. 372–375. isbn: 978-1-4577-1638-6. doi:
10.1109/ASE.2011.6100075.

[Ape+13a] Sven Apel, Alexander von Rhein, Thomas Thüm, and Christian Kästner.
“Feature-interaction detection based on feature-based specifications”. In:
Comput. Networks 57.12 (2013), pp. 2399–2409. doi: 10.1016/j.comnet.
2013.02.025.

[Ape+13b] Sven Apel, Alexander von Rhein, Philipp Wendler, Armin Größlinger, and
Dirk Beyer. “Strategies for Product-line Verification: Case Studies and Ex-
periments”. In: Proceedings of the 2013 International Conference on Software
Engineering. ICSE ’13. San Francisco, CA, USA: IEEE Press, 2013, pp. 482–491.
isbn: 978-1-4673-3076-3.

[Ape07] Sven Apel. “The role of features and aspects in software development: simi-
larities, differences, and synergetic potential”. PhD thesis. Otto-von-Guericke
University Magdeburg, Germany, 2007. isbn: 978-3-8364-3344-0. url: http:
//diglib.uni-magdeburg.de/Dissertationen/2007/sveapel.htm.

[Arb03] Farhad Arbab. “Abstract Behavior Types: A Foundation Model for Compo-
nents and Their Composition”. English. In: Formal Methods for Components
and Objects. Ed. by FrankS. de Boer, Marcello M. Bonsangue, Susanne Graf,
and Willem-Paul de Roever. Vol. 2852. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2003, pp. 33–70. isbn: 978-3-540-20303-2. doi:
10.1007/978-3-540-39656-7_2.

[Arb04] Farhad Arbab. “Reo: a channel-based coordination model for component
composition”. In: Mathematical Structures in Computer Science 14 (03 June
2004), pp. 329–366. issn: 1469-8072. doi: 10.1017/S0960129504004153.

[Asi+11] Patrizia Asirelli, Maurice H. ter Beek, Stefania Gnesi, and Alessandro Fan-
techi. “Formal Description of Variability in Product Families”. In: Software
Product Lines - 15th International Conference, SPLC 2011, Munich, Germany,
August 22-26, 2011. Ed. by Eduardo Santana de Almeida, Tomoji Kishi, Christa
Schwanninger, Isabel John, and Klaus Schmid. IEEE Computer Society, 2011,
pp. 130–139. doi: 10.1109/SPLC.2011.34.

[AT03] Tanvir Ahmed and Anand R. Tripathi. “Static verification of security re-
quirements in role based CSCW systems”. In: Proceedings of the eighth ACM
symposium on Access control models and technologies. ACM. 2003, pp. 196–
203.

178

https://doi.org/10.1109/ASE.2011.6100075
https://doi.org/10.1016/j.comnet.2013.02.025
https://doi.org/10.1016/j.comnet.2013.02.025
http://diglib.uni-magdeburg.de/Dissertationen/2007/sveapel.htm
http://diglib.uni-magdeburg.de/Dissertationen/2007/sveapel.htm
https://doi.org/10.1007/978-3-540-39656-7_2
https://doi.org/10.1017/S0960129504004153
https://doi.org/10.1109/SPLC.2011.34


Bibliography

[BA12] Fernando Sérgio Barbosa and Ademar Aguiar. “Modeling and Programming
with Roles: Introducing JavaStage”. In: New Trends in Software Methodologies,
Tools and Techniques - Proceedings of the Eleventh SoMeT ’12, Genoa, Italy,
September 26~28, 2012. 2012, pp. 124–145. doi: 10.3233/978-1-61499-125-
0-124.

[BA95] Andrea Bianco and Luca de Alfaro. “Model checking of probabilistic and
non-deterministic systems”. In: FSTTCS’95. Vol. 1026. LNCS. 1995, pp. 499–
513.

[Bab+05] Özalp Babaoglu, Márk Jelasity, Alberto Montresor, Christof Fetzer, Stefano
Leonardi, and Aad P. A. van Moorsel. In: Self-star Properties in Complex
Information Systems, Conceptual and Practical Foundations [the book is a result
from a workshop at Bertinoro, Italy, Summer 2004]. Ed. by Özalp Babaoglu,
Márk Jelasity, Alberto Montresor, Christof Fetzer, Stefano Leonardi, Aad P. A.
van Moorsel, and Maarten van Steen. Vol. 3460. Lecture Notes in Computer
Science. Springer, 2005, pp. 1–20. doi: 10.1007/11428589_1.

[Bah+93] R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico
Macii, Abelardo Pardo, and Fabio Somenzi. “Algebraic decision diagrams
and their applications”. In: Proceedings of the 1993 IEEE/ACM International
Conference on Computer-Aided Design, 1993, Santa Clara, California, USA,
November 7-11, 1993. Ed. by Michael R. Lightner and Jochen A. G. Jess. IEEE,
1993, pp. 188–191. doi: 10.1109/ICCAD.1993.580054.

[Bai+06] Christel Baier, Marjan Sirjani, Farhad Arbab, and Jan Rutten. “Modeling com-
ponent connectors in Reo by constraint automata”. In: Science of Computer
Programming 61.2 (2006). Second International Workshop on Foundations of
Coordination Languages and Software Architectures (FOCLASA’03), pp. 75–
113. issn: 0167-6423. doi: 10.1016/j.scico.2005.10.008.

[Bai+10] Christel Baier, Tobias Blechmann, Joachim Klein, Sascha Klüppelholz, and
Wolfgang Leister. “Design and Verification of Systems with Exogenous Co-
ordination Using Vereofy”. English. In: Leveraging Applications of Formal
Methods, Verification, and Validation. Ed. by Tiziana Margaria and Bernhard
Steffen. Vol. 6416. Lecture Notes in Computer Science. Springer Berlin Hei-
delberg, 2010, pp. 97–111. isbn: 978-3-642-16560-3. doi: 10.1007/978-3-
642-16561-0_15.

[Bai+13] Christel Baier, Benjamin Engel, Sascha Klüppelholz, Steffen Märcker, Hen-
drik Tews, and Marcus Völp. “A Probabilistic Quantitative Analysis of
Probabilistic-Write/Copy-Select”. In: NASA Formal Methods, 5th International
Symposium, NFM 2013, Moffett Field, CA, USA, May 14-16, 2013. Proceedings.
Ed. by Guillaume Brat, Neha Rungta, and Arnaud Venet. Vol. 7871. Lecture

179

https://doi.org/10.3233/978-1-61499-125-0-124
https://doi.org/10.3233/978-1-61499-125-0-124
https://doi.org/10.1007/11428589_1
https://doi.org/10.1109/ICCAD.1993.580054
https://doi.org/10.1016/j.scico.2005.10.008
https://doi.org/10.1007/978-3-642-16561-0_15
https://doi.org/10.1007/978-3-642-16561-0_15


Bibliography

Notes in Computer Science. Springer, 2013, pp. 307–321. doi: 10.1007/978-
3-642-38088-4_21.

[Bai+14] Christel Baier, Marcus Daum, Clemens Dubslaff, Joachim Klein, and Sascha
Klüppelholz. “Energy-Utility Quantiles”. In: NASA Formal Methods - 6th
International Symposium, NFM 2014, Houston, TX, USA, April 29 - May 1, 2014.
Proceedings. Ed. by Julia M. Badger and Kristin Yvonne Rozier. Vol. 8430.
Lecture Notes in Computer Science. Springer, 2014, pp. 285–299. doi: 10.
1007/978-3-319-06200-6_24.

[Bai+18] Christel Baier, Philipp Chrszon, Clemens Dubslaff, Joachim Klein, and Sascha
Klüppelholz. “Energy-Utility Analysis of Probabilistic Systems with Exoge-
nous Coordination”. In: It’s All About Coordination - Essays to Celebrate
the Lifelong Scientific Achievements of Farhad Arbab. 2018, pp. 38–56. doi:
10.1007/978-3-319-90089-6_3.

[Bai05] Christel Baier. “Probabilistic Models for Reo Connector Circuits”. In: J. UCS
11.10 (2005), pp. 1718–1748. doi: 10.3217/jucs-011-10-1718.

[Bat04] Don S. Batory. “Feature-Oriented Programming and the AHEAD Tool Suite”.
In: 26th International Conference on Software Engineering (ICSE 2004), 23-28
May 2004, Edinburgh, United Kingdom. Ed. by Anthony Finkelstein, Jacky
Estublier, and David S. Rosenblum. IEEE Computer Society, 2004, pp. 702–
703. doi: 10.1109/ICSE.2004.1317496.

[Bat05] Don Batory. “Feature Models, Grammars, and Propositional Formulas”. En-
glish. In: Software Product Lines. Ed. byHenkObbink andKlaus Pohl. Vol. 3714.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2005, pp. 7–
20. isbn: 978-3-540-28936-4. doi: 10.1007/11554844_3.

[Bäu+98] Dirk Bäumer, Dirk Riehle, Wolf Siberski, and Martina Wulf. “The role object
pattern”. In: Washington University Dept. of Computer Science. Citeseer. 1998.

[BBT06] Matteo Baldoni, Guido Boella, and Leendert W. N. van der Torre. “Roles as a
Coordination Construct: Introducing powerJava”. In: Electron. Notes Theor.
Comput. Sci. 150.1 (2006), pp. 9–29. doi: 10.1016/j.entcs.2005.12.021.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development - Coq’Art: The Calculus of Inductive Constructions. Texts in
Theoretical Computer Science. An EATCS Series. Springer, 2004. isbn: 978-
3-642-05880-6. doi: 10.1007/978-3-662-07964-5.

[BD77] Charles W. Bachman and Manilal Daya. “The Role Concept in Data Models”.
In: Proceedings of the Third International Conference on Very Large Data Bases
- Volume 3. VLDB ’77. Tokyo, Japan: VLDB Endowment, 1977, pp. 464–476.
url: http://dl.acm.org/citation.cfm?id=1286580.1286629.

180

https://doi.org/10.1007/978-3-642-38088-4_21
https://doi.org/10.1007/978-3-642-38088-4_21
https://doi.org/10.1007/978-3-319-06200-6_24
https://doi.org/10.1007/978-3-319-06200-6_24
https://doi.org/10.1007/978-3-319-90089-6_3
https://doi.org/10.3217/jucs-011-10-1718
https://doi.org/10.1109/ICSE.2004.1317496
https://doi.org/10.1007/11554844_3
https://doi.org/10.1016/j.entcs.2005.12.021
https://doi.org/10.1007/978-3-662-07964-5
http://dl.acm.org/citation.cfm?id=1286580.1286629


Bibliography

[Bei90] Boris Beizer. Software testing techniques (2. ed.) Van Nostrand Reinhold, 1990.
isbn: 978-0-442-20672-7.

[Ben+95] Johan Bengtsson, Kim Guldstrand Larsen, Fredrik Larsson, Paul Pettersson,
and Wang Yi. “UPPAAL - a Tool Suite for Automatic Verification of Real-
Time Systems”. In: Hybrid Systems III: Verification and Control, Proceedings of
the DIMACS/SYCON Workshop on Verification and Control of Hybrid Systems,
October 22-25, 1995, Ruttgers University, New Brunswick, NJ, USA. Ed. by
Rajeev Alur,Thomas A. Henzinger, and Eduardo D. Sontag. Vol. 1066. Lecture
Notes in Computer Science. Springer, 1995, pp. 232–243. doi: 10.1007/
BFb0020949.

[Bey+07] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. “The
software model checker Blast”. In: International Journal on Software Tools for
Technology Transfer 9.5-6 (2007), pp. 505–525. doi: 10.1007/s10009-007-
0044-z.

[BG10] Stephanie Balzer and Thomas R. Gross. “Modular reasoning about invariants
over shared state with interposed data members”. In: Proceedings of the
4th ACM Workshop Programming Languages meets Program Verification,
PLPV 2010, Madrid, Spain, January 19, 2010. 2010, pp. 49–56. doi: 10.1145/
1707790.1707794.

[BGE07] Stephanie Balzer, Thomas R. Gross, and Patrick Eugster. “A Relational Model
of Object Collaborations and Its Use in Reasoning About Relationships”.
English. In: ECOOP 2007 – Object-Oriented Programming. Ed. by Erik Ernst.
Vol. 4609. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2007, pp. 323–346. isbn: 978-3-540-73588-5. doi: 10.1007/978-3-540-
73589-2_16.

[Bie+99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.
“Symbolic Model Checking without BDDs”. In: Tools and Algorithms for
Construction and Analysis of Systems, 5th International Conference, TACAS
’99, Held as Part of the European Joint Conferences on the Theory and Prac-
tice of Software, ETAPS’99, Amsterdam, The Netherlands, March 22-28, 1999,
Proceedings. Ed. by Rance Cleaveland. Vol. 1579. Lecture Notes in Computer
Science. Springer, 1999, pp. 193–207. doi: 10.1007/3-540-49059-0_14.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. The MIT
press, 2008.

[BK11] Dirk Beyer and M. Erkan Keremoglu. “CPAchecker: A Tool for Configurable
Software Verification”. In: Computer Aided Verification - 23rd International
Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings. Ed.
by Ganesh Gopalakrishnan and Shaz Qadeer. Vol. 6806. Lecture Notes in

181

https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1145/1707790.1707794
https://doi.org/10.1145/1707790.1707794
https://doi.org/10.1007/978-3-540-73589-2_16
https://doi.org/10.1007/978-3-540-73589-2_16
https://doi.org/10.1007/3-540-49059-0_14


Bibliography

Computer Science. Springer, 2011, pp. 184–190. doi: 10.1007/978-3-642-
22110-1_16.

[BK98] Christel Baier and Martha Kwiatkoswka. “Model Checking for a Probabilistic
Branching Time Logic with Fairness”. In: Distributed Computing 11.3 (1998),
pp. 125–155.

[BMS12] Maurice H. ter Beek, Franco Mazzanti, and Aldi Sulova. “VMC: A Tool for
Product Variability Analysis”. In: FM 2012: FormalMethods - 18th International
Symposium, Paris, France, August 27-31, 2012. Proceedings. 2012, pp. 450–454.
doi: 10.1007/978-3-642-32759-9_36.

[BO92] Don S. Batory and Sean W. O’Malley. “The Design and Implementation of
Hierarchical Software Systems with Reusable Components”. In: ACM Trans.
Softw. Eng. Methodol. 1.4 (1992), pp. 355–398. doi: 10.1145/136586.136587.

[Boc+04] Christoph Bockisch, Michael Haupt, Mira Mezini, and Klaus Ostermann.
“Virtual machine support for dynamic join points”. In: Proceedings of the 3rd
International Conference on Aspect-Oriented Software Development, AOSD
2004, Lancaster, UK, March 22-24, 2004. Ed. by Gail C. Murphy and Karl J.
Lieberherr. ACM, 2004, pp. 83–92. doi: 10.1145/976270.976282.

[Boc+12] Christoph Bockisch, Andreas Sewe, Haihan Yin, Mira Mezini, and Mehmet
Aksit. “An In-Depth Look at ALIA4J”. In: Journal of Object Technology 11.1
(2012), pp. 1–28. doi: 10.5381/jot.2012.11.1.a7.

[Bry86] Randal E. Bryant. “Graph-based algorithms for boolean function manipula-
tion”. In: IEEE Transactions on Computers 100.8 (1986), pp. 677–691.

[BTR05] David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. “Automated
reasoning on feature models”. In: Advanced Information Systems Engineering.
Springer. 2005, pp. 491–503.

[Bur+92] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and
L. J. Hwang. “Symbolic Model Checking: 1020 States and Beyond”. In: Inf.
Comput. 98.2 (1992), pp. 142–170. doi: 10.1016/0890-5401(92)90017-A.

[Cab+10] Giacomo Cabri, Letizia Leonardi, Luca Ferrari, and Franco Zambonelli. “Role-
based software agent interaction models: a survey”. In: The Knowledge Engi-
neering Review 25.04 (2010), pp. 397–419.

[Cal+03] Muffy Calder, Mario Kolberg, Evan H. Magill, and Stephan Reiff-Marganiec.
“Feature interaction: a critical review and considered forecast”. In: Comput.
Networks 41.1 (2003), pp. 115–141. doi: 10.1016/S1389-1286(02)00352-
3.

[CBH11] Andreas Classen, Quentin Boucher, and Patrick Heymans. “A text-based
approach to feature modelling: Syntax and semantics of TVL”. In: Science of
Computer Programming 76.12 (2011), pp. 1130–1143.

182

https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-32759-9_36
https://doi.org/10.1145/136586.136587
https://doi.org/10.1145/976270.976282
https://doi.org/10.5381/jot.2012.11.1.a7
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1016/S1389-1286(02)00352-3
https://doi.org/10.1016/S1389-1286(02)00352-3


Bibliography

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative programming -
methods, tools and applications. Addison-Wesley, 2000. isbn: 978-0-201-30977-
5.

[CE81] Edmund M. Clarke and E. Allen Emerson. “Design and Synthesis of Syn-
chronization Skeletons Using Branching-Time Temporal Logic”. In: Logics
of Programs, Workshop, Yorktown Heights, New York, USA, May 1981. Ed. by
Dexter Kozen. Vol. 131. Lecture Notes in Computer Science. Springer, 1981,
pp. 52–71. doi: 10.1007/BFb0025774.

[CGP01] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking.
MIT Press, 2001. isbn: 978-0-262-03270-4. url: http://books.google.de/
books?id=Nmc4wEaLXFEC.

[CHE05] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. “Formalizing
cardinality-based feature models and their specialization”. In: Software Pro-
cess: Improvement and Practice 10.1 (2005), pp. 7–29.

[Chr+16a] Philipp Chrszon, Clemens Dubslaff, Christel Baier, Joachim Klein, and Sascha
Klüppelholz. “Modeling Role-Based Systems with Exogenous Coordination”.
In: Theory and Practice of Formal Methods - Essays Dedicated to Frank de Boer
on the Occasion of His 60th Birthday. 2016, pp. 122–139. doi: 10.1007/978-
3-319-30734-3_10.

[Chr+16b] Philipp Chrszon, Clemens Dubslaff, Sascha Klüppelholz, and Christel Baier.
“Family-Based Modeling and Analysis for Probabilistic Systems - Featuring
ProFeat”. In: Fundamental Approaches to Software Engineering - 19th Interna-
tional Conference, FASE 2016, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands,
April 2-8, 2016, Proceedings. 2016, pp. 287–304. doi: 10.1007/978-3-662-
49665-7_17.

[Chr+18] Philipp Chrszon, Clemens Dubslaff, Sascha Klüppelholz, and Christel Baier.
“ProFeat: feature-oriented engineering for family-based probabilistic model
checking”. In: Formal Aspects of Computing 30.1 (2018), pp. 45–75. doi: 10.
1007/s00165-017-0432-4.

[Chr+20] Philipp Chrszon, Christel Baier, Clemens Dubslaff, and Sascha Klüppelholz.
“From features to roles”. In: SPLC ’20: 24th ACM International Systems and
Software Product Line Conference, Montreal, Quebec, Canada, October 19-23,
2020. ACM, 2020, 19:1–19:11. doi: 10.1145/3382025.3414962.

[Chr14] Philipp Chrszon. “Quantitative Analyse von Produktlinien mit PRISM”. MA
thesis. Technische Universität Dresden, Germany, 2014.

183

https://doi.org/10.1007/BFb0025774
http://books.google.de/books?id=Nmc4wEaLXFEC
http://books.google.de/books?id=Nmc4wEaLXFEC
https://doi.org/10.1007/978-3-319-30734-3_10
https://doi.org/10.1007/978-3-319-30734-3_10
https://doi.org/10.1007/978-3-662-49665-7_17
https://doi.org/10.1007/978-3-662-49665-7_17
https://doi.org/10.1007/s00165-017-0432-4
https://doi.org/10.1007/s00165-017-0432-4
https://doi.org/10.1145/3382025.3414962


Bibliography

[Cim+00] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco
Roveri. “NUSMV: A New Symbolic Model Checker”. In: International Journal
on Software Tools for Technology Transfer 2.4 (2000), pp. 410–425. doi: 10.
1007/s100090050046.

[Cla+10] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay, and
Jean-François Raskin. “Model checking lots of systems: efficient verification
of temporal properties in software product lines”. In: Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume 1, ICSE
2010, Cape Town, South Africa, 1-8 May 2010. Ed. by Jeff Kramer, Judith Bishop,
Premkumar T. Devanbu, and Sebastián Uchitel. ACM, 2010, pp. 335–344. doi:
10.1145/1806799.1806850.

[Cla+11] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, and Axel Legay.
“Symbolic model checking of software product lines”. In: Proceedings of the
33rd International Conference on Software Engineering, ICSE 2011, Waikiki,
Honolulu , HI, USA, May 21-28, 2011. Ed. by Richard N. Taylor, Harald C. Gall,
and Nenad Medvidovic. ACM, 2011, pp. 321–330. doi: 10.1145/1985793.
1985838.

[Cla+12] Andreas Classen, Maxime Cordy, Patrick Heymans, Axel Legay, and Pierre-
Yves Schobbens. “Model checking software product lines with SNIP”. In:
International Journal on Software Tools for Technology Transfer 14.5 (2012),
pp. 589–612. issn: 1433-2787. doi: 10.1007/s10009-012-0234-1.

[Cla+13] A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans, A. Legay, and J.-F.
Raskin. “Featured Transition Systems: Foundations for Verifying Variability-
Intensive Systems and Their Application to LTL Model Checking”. In: Soft-
ware Engineering, IEEE Transactions on 39.8 (Aug. 2013), pp. 1069–1089. issn:
0098-5589. doi: 10.1109/TSE.2012.86.

[Cla+14] Andreas Classen, Maxime Cordy, Patrick Heymans, Axel Legay, and Pierre-
Yves Schobbens. “Formal semantics, modular specification, and symbolic
verification of product-line behaviour”. In: Science of Computer Programming
80 (2014), pp. 416–439.

[Cla+93] E. M. Clarke, M. Fujita, P. C. McGeers, K. L. McMillan, J. C.-Y. Yang, and
X.-J. Zhao. “Multi-terminal binary decision diagrams: An efficient data struc-
ture for matrix representation”. In: Proc. International Workshop on Logic &
Synthesis. 1993.

[Cla+96] Edmund M. Clarke, Somesh Jha, Reinhard Enders, and Thomas Filkorn. “Ex-
ploiting Symmetry in Temporal Logic Model Checking”. In: Formal Methods
Syst. Des. 9.1/2 (1996), pp. 77–104. doi: 10.1007/BF00625969.

184

https://doi.org/10.1007/s100090050046
https://doi.org/10.1007/s100090050046
https://doi.org/10.1145/1806799.1806850
https://doi.org/10.1145/1985793.1985838
https://doi.org/10.1145/1985793.1985838
https://doi.org/10.1007/s10009-012-0234-1
https://doi.org/10.1109/TSE.2012.86
https://doi.org/10.1007/BF00625969


Bibliography

[CN02] P.C. Clements and L.M. Northrop. Software Product Lines: Practices and Pat-
terns. The SEI series in software engineering. Addison Wesley Professional,
2002. isbn: 9780201703320.

[Cor+13a] Maxime Cordy, Andreas Classen, Patrick Heymans, Axel Legay, and Pierre-
Yves Schobbens. “Model Checking Adaptive Software with Featured Transi-
tion Systems”. In: Assurances for Self-Adaptive Systems - Principles, Models,
and Techniques. 2013, pp. 1–29. doi: 10.1007/978-3-642-36249-1_1.

[Cor+13b] Maxime Cordy, Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens,
andAxel Legay. “ProVeLines: A Product Line of Verifiers for Software Product
Lines”. In: Proceedings of the 17th International Software Product Line Confer-
ence Co-located Workshops. SPLC ’13 Workshops. Tokyo, Japan: ACM, 2013,
pp. 141–146. isbn: 978-1-4503-2325-3. doi: 10.1145/2499777.2499781.

[Cor+13c] Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, and Axel Legay.
“Beyond boolean product-line model checking: dealing with feature at-
tributes and multi-features”. In: 35th International Conference on Software
Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26, 2013. Ed. by David
Notkin, Betty H. C. Cheng, and Klaus Pohl. IEEE Computer Society, 2013,
pp. 472–481. doi: 10.1109/ICSE.2013.6606593.

[CR14] James O. Coplien and Trygve Reenskaug. “The DCI Paradigm: Taking Object
Orientation into the Architecture World”. In: Agile Software Architecture.
Ed. by Muhammad Ali Babar, Alan W. Brown, and Ivan Mistrik. Morgan
Kaufmann, 2014, pp. 25–62. isbn: 978-0-12-407772-0. doi: 10.1016/B978-
0-12-407772-0.00002-2.

[DA18] Kasper Dokter and Farhad Arbab. “Treo: Textual Syntax for Reo Connectors”.
In: Proceedings of the 1st International Workshop on Methods and Tools for
Rigorous System Design, MeTRiD@ETAPS 2018, Thessaloniki, Greece, 15th April
2018. Ed. by Simon Bliudze and Saddek Bensalem. Vol. 272. EPTCS. 2018,
pp. 121–135. doi: 10.4204/EPTCS.272.10.

[DBK15] Clemens Dubslaff, Christel Baier, and Sascha Klüppelholz. “Probabilistic
Model Checking for Feature-Oriented Systems”. In: LNCS Transactions on
Aspect Oriented Software Development 12 (2015), pp. 180–220. doi: 10.1007/
978-3-662-46734-3_5.

[Dim+15] Aleksandar S. Dimovski, Ahmad Salim Al-Sibahi, Claus Brabrand, and An-
drzej Wasowski. “Family-Based Model Checking Without a Family-Based
Model Checker”. In:Model Checking Software - 22nd International Symposium,
SPIN 2015, Stellenbosch, South Africa, August 24-26, 2015, Proceedings. 2015,
pp. 282–299. doi: 10.1007/978-3-319-23404-5_18.

185

https://doi.org/10.1007/978-3-642-36249-1_1
https://doi.org/10.1145/2499777.2499781
https://doi.org/10.1109/ICSE.2013.6606593
https://doi.org/10.1016/B978-0-12-407772-0.00002-2
https://doi.org/10.1016/B978-0-12-407772-0.00002-2
https://doi.org/10.4204/EPTCS.272.10
https://doi.org/10.1007/978-3-662-46734-3_5
https://doi.org/10.1007/978-3-662-46734-3_5
https://doi.org/10.1007/978-3-319-23404-5_18


Bibliography

[Din+10] T. Dinkelaker, R. Mitschke, K. Fetzer, and M. Mezini. “A Dynamic Software
Product Line Approach Using Aspect Models at Runtime”. In: Proc. of the 1st
Workshop on Composition and Variability. 2010.

[DKB14] Clemens Dubslaff, Sascha Klüppelholz, and Christel Baier. “Probabilistic
model checking for energy analysis in software product lines”. In: 13th
International Conference on Modularity, MODULARITY ’14, Lugano, Switzer-
land, April 22-26, 2014. Ed. by Walter Binder, Erik Ernst, Achille Peternier,
and Robert Hirschfeld. ACM, 2014, pp. 169–180. doi: 10.1145/2577080.
2577095.

[DM06] Alastair F. Donaldson and Alice Miller. “Symmetry Reduction for Prob-
abilistic Model Checking Using Generic Representatives”. In: Automated
Technology for Verification and Analysis, 4th International Symposium, ATVA
2006, Beijing, China, October 23-26, 2006. Ed. by Susanne Graf and Wenhui
Zhang. Vol. 4218. Lecture Notes in Computer Science. Springer, 2006, pp. 9–
23. doi: 10.1007/11901914_4.

[DPZ02] Mohamed Dahchour, Alain Pirotte, and Esteban Zimányi. “A Generic Role
Model for Dynamic Objects”. In: Advanced Information Systems Engineering,
14th International Conference, CAiSE 2002, Toronto, Canada, May 27-31, 2002,
Proceedings. Ed. by Anne Banks Pidduck, John Mylopoulos, Carson C. Woo,
and M. Tamer Özsu. Vol. 2348. Lecture Notes in Computer Science. Springer,
2002, pp. 643–658. doi: 10.1007/3-540-47961-9_44.

[DS11] Ferruccio Damiani and Ina Schaefer. “Dynamic Delta-oriented Program-
ming”. In: Proceedings of the 15th International Software Product Line Con-
ference, Volume 2. SPLC ’11. ACM, 2011, 34:1–34:8. isbn: 978-1-4503-0789-5.
doi: 10.1145/2019136.2019175.

[Dub19] Clemens Dubslaff. “Compositional Feature-Oriented Systems”. In: Software
Engineering and Formal Methods - 17th International Conference, SEFM 2019,
Oslo, Norway, September 18-20, 2019, Proceedings. Ed. by Peter Csaba Ölveczky
and Gwen Salaün. Vol. 11724. Lecture Notes in Computer Science. Springer,
2019, pp. 162–180. doi: 10.1007/978-3-030-30446-1_9.

[DV90] Rocco De Nicola and Frits W. Vaandrager. “Action versus State based Logics
for Transition Systems”. In: Semantics of Systems of Concurrent Processes,
LITP Spring School on Theoretical Computer Science, La Roche Posay, France,
April 23-27, 1990, Proceedings. 1990, pp. 407–419. doi: 10.1007/3-540-
53479-2_17.

[FGR94] Alessandro Fantechi, Stefania Gnesi, and Gioia Ristori. “Model Checking
for Action-Based Logics”. In: Formal Methods in System Design 4.2 (1994),
pp. 187–203. doi: 10.1007/BF01384084.

186

https://doi.org/10.1145/2577080.2577095
https://doi.org/10.1145/2577080.2577095
https://doi.org/10.1007/11901914_4
https://doi.org/10.1007/3-540-47961-9_44
https://doi.org/10.1145/2019136.2019175
https://doi.org/10.1007/978-3-030-30446-1_9
https://doi.org/10.1007/3-540-53479-2_17
https://doi.org/10.1007/3-540-53479-2_17
https://doi.org/10.1007/BF01384084


Bibliography

[FK01] Kathi Fisler and Shriram Krishnamurthi. “Modular verification of collabora-
tion-based software designs”. In: Proceedings of the 8th European Software
Engineering Conference held jointly with 9th ACM SIGSOFT International
Symposium on Foundations of Software Engineering 2001, Vienna, Austria,
September 10-14, 2001. 2001, pp. 152–163.

[FK92] David Ferraiolo and Richard Kuhn. “Role-Based Access Control”. In: In 15th
NIST-NCSC National Computer Security Conference. 1992, pp. 554–563.

[Gen07] Valerio Genovese. “A meta-model for roles: Introducing sessions”. In: Pro-
ceedings of the 2nd Workshop on Roles and Relationships in Object Oriented
Programming, Multiagent Systems, and Ontologies. 2007, pp. 27–38.

[GH03] Hassan Gomaa and Mohamed Hussein. “Dynamic Software Reconfiguration
in Software Product Families”. In: Software Product-Family Engineering, 5th
International Workshop, PFE 2003, Siena, Italy, November 4-6, 2003, Revised
Papers. Ed. by Frank van der Linden. Vol. 3014. Lecture Notes in Computer
Science. Springer, 2003, pp. 435–444. doi: 10.1007/978-3-540-24667-
1_33.

[GØ02] Kasper B. Graversen and Kasper Østerbye. “Aspect modelling as role mod-
elling”. In: OOPSLA 2002 Workshop on TS4AOSD. 2002.

[GØ03] Kasper B. Graversen and Kasper Østerbye. “Implementation of a role lan-
guage for object-specific dynamic separation of concerns”. In: AOSD03 Work-
shop on Software-engineering Properties of Languages for Aspect Technologies.
2003.

[God96] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent
Systems - An Approach to the State-Explosion Problem. Vol. 1032. Lecture Notes
in Computer Science. Springer, 1996. isbn: 3-540-60761-7. doi: 10.1007/3-
540-60761-7.

[GOR06] Matthias Güdemann, Frank Ortmeier, and Wolfgang Reif. “Formal Modeling
and Verification of Systemswith Self-x Properties”. In:Autonomic and Trusted
Computing, Third International Conference, ATC 2006, Wuhan, China, Septem-
ber 3-6, 2006, Proceedings. 2006, pp. 38–47. doi: 10.1007/11839569_4.

[Gri00] Martin L. Griss. “Implementing product-line features with component reuse”.
In: Software Reuse: Advances in Software Reusability. Springer, 2000, pp. 137–
152.

[GS13] Carlo Ghezzi and Amir Molzam Sharifloo. “Model-based verification of quan-
titative non-functional properties for software product lines”. In: Information
and Software Technology 55.3 (2013). Special Issue on Software Reuse and
Product Lines Special Issue on Software Reuse and Product Lines, pp. 508–
524. issn: 0950-5849. doi: 10.1016/j.infsof.2012.07.017.

187

https://doi.org/10.1007/978-3-540-24667-1_33
https://doi.org/10.1007/978-3-540-24667-1_33
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/11839569_4
https://doi.org/10.1016/j.infsof.2012.07.017


Bibliography

[Gui+04] Giancarlo Guizzardi, Gerd Wagner, Nicola Guarino, and Marten van Sin-
deren. “An Ontologically Well-Founded Profile for UML Conceptual Mod-
els”. English. In: Advanced Information Systems Engineering. Ed. by Anne
Persson and Janis Stirna. Vol. 3084. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2004, pp. 112–126. isbn: 978-3-540-22151-7. doi:
10.1007/978-3-540-25975-6_10.

[Gui05] Giancarlo Guizzardi. “Ontological foundations for structural conceptual
models”. PhD thesis. Enschede, 2005. url: http://doc.utwente.nl/
50826/.

[GW00] Nicola Guarino and Christopher Welty. “A Formal Ontology of Properties”.
English. In: Knowledge Engineering and Knowledge Management Methods,
Models, and Tools. Ed. by Rose Dieng and Olivier Corby. Vol. 1937. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2000, pp. 97–112.
isbn: 978-3-540-41119-2. doi: 10.1007/3-540-39967-4_8.

[GW12] Giancarlo Guizzardi and Gerd Wagner. “Conceptual simulation modeling
with onto-UML”. In:Winter Simulation Conference, WSC ’12, Berlin, Germany,
December 9-12, 2012. Ed. by Oliver Rose and Adelinde M. Uhrmacher. WSC,
2012, 5:1–5:15. doi: 10.1109/WSC.2012.6465328.

[Hah+10] Ernst Moritz Hahn, Holger Hermanns, Björn Wachter, and Lijun Zhang.
“PARAM: A model checker for parametric Markov models”. In: Computer
Aided Verification. Springer. 2010, pp. 660–664.

[Hah+14] Ernst Moritz Hahn, Yi Li, Sven Schewe, Andrea Turrini, and Lijun Zhang.
“iscasMc: A Web-Based Probabilistic Model Checker”. In: FM 2014: Formal
Methods - 19th International Symposium, Singapore, May 12-16, 2014. Proceed-
ings. Ed. by Cliff B. Jones, Pekka Pihlajasaari, and Jun Sun. Vol. 8442. Lecture
Notes in Computer Science. Springer, 2014, pp. 312–317. doi: 10.1007/978-
3-319-06410-9_22.

[Hal05] TerryA. Halpin. “ORM2”. In:On theMove toMeaningful Internet Systems 2005:
OTM 2005 Workshops, OTM Confederated International Workshops and Posters,
AWeSOMe, CAMS, GADA, MIOS+INTEROP, ORM, PhDS, SeBGIS, SWWS, and
WOSE 2005, Agia Napa, Cyprus, October 31 - November 4, 2005, Proceedings.
Vol. 3762. Lecture Notes in Computer Science. Springer, 2005, pp. 676–687.
doi: 10.1007/11575863_87.

[HCN08] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. “Context-oriented
Programming”. In: Journal of Object Technology 7.3 (2008), pp. 125–151. doi:
10.5381/jot.2008.7.3.a4.

188

https://doi.org/10.1007/978-3-540-25975-6_10
http://doc.utwente.nl/50826/
http://doc.utwente.nl/50826/
https://doi.org/10.1007/3-540-39967-4_8
https://doi.org/10.1109/WSC.2012.6465328
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.1007/11575863_87
https://doi.org/10.5381/jot.2008.7.3.a4


Bibliography

[He+06] Chengwan He, Zhijie Nie, Bifeng Li, Lianlian Cao, and Keqing He. “Rava:
Designing a Java Extensionwith Dynamic Object Roles”. In: 13th Annual IEEE
International Conference and Workshop on Engineering of Computer Based
Systems (ECBS 2006), 27-30 March 2006, Potsdam, Germany. 2006, pp. 453–459.
doi: 10.1109/ECBS.2006.57.

[Hen+20] Christian Hensel, Sebastian Junges, Joost-Pieter Katoen, Tim Quatmann,
and Matthias Volk. “The Probabilistic Model Checker Storm”. In: CoRR
abs/2002.07080 (2020). eprint: 2002.07080. url: https://arxiv.org/
abs/2002.07080.

[Her02] Stephan Herrmann. “Object Teams: Improving Modularity for Crosscutting
Collaborations”. In: Objects, Components, Architectures, Services, and Applica-
tions for a Networked World, International Conference NetObjectDays, NODe
2002, Erfurt, Germany, October 7-10, 2002, Revised Papers. 2002, pp. 248–264.
doi: 10.1007/3-540-36557-5_19.

[Her07] Stephan Herrmann. “A precise model for contextual roles: The programming
language ObjectTeams/Java”. In: Applied Ontology 2.2 (2007), pp. 181–207.

[HH14] Arnd Hartmanns and Holger Hermanns. “The Modest Toolset: An Integrated
Environment for Quantitative Modelling and Verification”. In: Tools and
Algorithms for the Construction and Analysis of Systems - 20th International
Conference, TACAS 2014, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014.
Proceedings. Ed. by Erika Ábrahám and Klaus Havelund. Vol. 8413. Lecture
Notes in Computer Science. Springer, 2014, pp. 593–598. doi: 10.1007/978-
3-642-54862-8_51.

[HK14] Rolf Hennicker and Annabelle Klarl. “Foundations for Ensemble Modeling
– The Helena Approach”. In: Specification, Algebra, and Software. Ed. by
Shusaku Iida, José Meseguer, and Kazuhiro Ogata. Vol. 8373. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2014, pp. 359–381.

[Hol97] Gerard J. Holzmann. “The Model Checker SPIN”. In: IEEE Trans. Software
Eng. 23.5 (1997), pp. 279–295. doi: 10.1109/32.588521.

[HP00] Klaus Havelund and Thomas Pressburger. “Model Checking JAVA Programs
using JAVA PathFinder”. In: International Journal on Software Tools for Tech-
nology Transfer 2.4 (2000), pp. 366–381. doi: 10.1007/s100090050043.

[HQR98] Thomas A. Henzinger, Shaz Qadeer, and Sriram K. Rajamani. “You Assume,
We Guarantee: Methodology and Case Studies”. In: Computer Aided Ver-
ification, 10th International Conference, CAV ’98, Vancouver, BC, Canada,
June 28 - July 2, 1998, Proceedings. Ed. by Alan J. Hu and Moshe Y. Vardi.

189

https://doi.org/10.1109/ECBS.2006.57
2002.07080
https://arxiv.org/abs/2002.07080
https://arxiv.org/abs/2002.07080
https://doi.org/10.1007/3-540-36557-5_19
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1109/32.588521
https://doi.org/10.1007/s100090050043


Bibliography

Vol. 1427. Lecture Notes in Computer Science. Springer, 1998, pp. 440–451.
doi: 10.1007/BFb0028765.

[HU02] Stefan Hanenberg and Rainer Unland. “Roles and Aspects: Similarities, Dif-
ferences, and Synergetic Potential”. In: Object-Oriented. Information Systems,
8th International Conference, OOIS 2002, Montpellier, France, September 2-5,
2002, Proceedings. 2002, pp. 507–520. doi: 10.1007/3-540-46102-7_53.

[JA12] Sung-Shik TQ Jongmans and Farhad Arbab. “Overview of Thirty Semantic
Formalisms for Reo”. In: Sci. Ann. Comp. Sci. 22.1 (2012), pp. 201–251.

[Jör+12] Sven Jörges, Anna-Lena Lamprecht, Tiziana Margaria, Ina Schaefer, and
Bernhard Steffen. “A constraint-based variability modeling framework”. In:
International Journal on Software Tools for Technology Transfer 14.5 (2012),
pp. 511–530. doi: 10.1007/s10009-012-0254-x.

[JSM97] He Jifeng, K. Seidel, and A. McIver. “Probabilistic models for the guarded
command language”. In: Science of Computer Programming 28.2 (1997). For-
mal Specifications: Foundations, Methods, Tools and Applications, pp. 171–
192. issn: 0167-6423.

[Kan+90] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and
A. Spencer Peterson. Feature-oriented domain analysis (FODA) feasibility
study. Tech. rep. Carnegie-Mellon University Software Engineering Institute,
1990.

[Kat+11] Joost-Pieter Katoen, Ivan S. Zapreev, Ernst Moritz Hahn, Holger Hermanns,
and David N. Jansen. “The ins and outs of the probabilistic model checker
MRMC”. In: Performance Evaluation 68.2 (2011), pp. 90–104. doi: 10.1016/
j.peva.2010.04.001.

[Kat93] Shmuel Katz. “A superimposition control construct for distributed systems”.
In: ACM Transactions on Programming Languages and Systems (TOPLAS)
15.2 (1993), pp. 337–356.

[Kel76] Robert M. Keller. “Formal Verification of Parallel Programs”. In: Communica-
tions of the ACM 19.7 (1976), pp. 371–384. doi: 10.1145/360248.360251.

[KFG04] Shriram Krishnamurthi, Kathi Fisler, and Michael Greenberg. “Verifying
aspect advice modularly”. In: Proceedings of the 12th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, 2004, Newport
Beach, CA, USA, October 31 - November 6, 2004. 2004, pp. 137–146. doi:
10.1145/1029894.1029916.

[Kic+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. “Getting started with ASPECTJ”. In: Commun. ACM
44.10 (2001), pp. 59–65. doi: 10.1145/383845.383858.

190

https://doi.org/10.1007/BFb0028765
https://doi.org/10.1007/3-540-46102-7_53
https://doi.org/10.1007/s10009-012-0254-x
https://doi.org/10.1016/j.peva.2010.04.001
https://doi.org/10.1016/j.peva.2010.04.001
https://doi.org/10.1145/360248.360251
https://doi.org/10.1145/1029894.1029916
https://doi.org/10.1145/383845.383858


Bibliography

[Kic+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Videira Lopes, Jean-Marc Loingtier, and John Irwin. “Aspect-Oriented Pro-
gramming”. In: ECOOP’97 - Object-Oriented Programming, 11th European
Conference, Jyväskylä, Finland, June 9-13, 1997, Proceedings. Ed. by Mehmet
Aksit and Satoshi Matsuoka. Vol. 1241. Lecture Notes in Computer Science.
Springer, 1997, pp. 220–242. doi: 10.1007/BFb0053381.

[Kla15] Annabelle Klarl. “From Helena Ensemble Specifications to Promela Verifica-
tion Models”. In: Model Checking Software - 22nd International Symposium,
SPIN 2015, Stellenbosch, South Africa, August 24-26, 2015, Proceedings. 2015,
pp. 39–45. doi: 10.1007/978-3-319-23404-5_4.

[Kle+18] Joachim Klein, Christel Baier, Philipp Chrszon, Marcus Daum, Clemens Dub-
slaff, Sascha Klüppelholz, Steffen Märcker, and David Müller. “Advances
in Probabilistic Model Checking with PRISM: Variable Reordering, Quan-
tiles and Weak Deterministic Büchi Automata”. In: International Journal
on Software Tools for Technology Transfer 20.2 (2018), pp. 179–194. doi:
10.1007/s10009-017-0456-3.

[KNP02] Marta Kwiatkowska, Gethin Norman, and David Parker. “PRISM: Probabilis-
tic symbolic model checker”. In: Computer Performance Evaluation: Modelling
Techniques and Tools. Springer, 2002, pp. 200–204.

[KNP11] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. “PRISM 4.0: Veri-
fication of Probabilistic Real-Time Systems”. In: Computer Aided Verification
- 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings. 2011, pp. 585–591. doi: 10.1007/978-3-642-22110-1_47.

[KNP12] M. Z. Kwiatkowska, G. Norman, andD. Parker. “The PRISMBenchmark Suite”.
In: Proc. Quantitative Evaluation of Systems (QEST’12). https://github.
com/prismmodelchecker/prism-benchmarks/. IEEE, 2012, pp. 203–204.

[Kru+15] Christian Krupitzer, Felix Maximilian Roth, Sebastian VanSyckel, Gregor
Schiele, and Christian Becker. “A survey on engineering approaches for self-
adaptive systems”. In: Pervasive and Mobile Computing 17, Part B (2015). 10
years of Pervasive Computing’ In Honor of Chatschik Bisdikian, pp. 184–206.
issn: 1574-1192. doi: http://dx.doi.org/10.1016/j.pmcj.2014.09.
009.

[KST14] Matthias Kowal, Ina Schaefer, and Mirco Tribastone. “Family-Based Perfor-
mance Analysis of Variant-Rich Software Systems”. English. In: Fundamental
Approaches to Software Engineering. Ed. by Stefania Gnesi and Arend Rensink.
Vol. 8411. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2014, pp. 94–108. isbn: 978-3-642-54803-1. doi: 10.1007/978-3-642-
54804-8_7.

191

https://doi.org/10.1007/BFb0053381
https://doi.org/10.1007/978-3-319-23404-5_4
https://doi.org/10.1007/s10009-017-0456-3
https://doi.org/10.1007/978-3-642-22110-1_47
https://github.com/prismmodelchecker/prism-benchmarks/
https://github.com/prismmodelchecker/prism-benchmarks/
https://doi.org/http://dx.doi.org/10.1016/j.pmcj.2014.09.009
https://doi.org/http://dx.doi.org/10.1016/j.pmcj.2014.09.009
https://doi.org/10.1007/978-3-642-54804-8_7
https://doi.org/10.1007/978-3-642-54804-8_7


Bibliography

[KT10] Tetsuo Kamina and Tetsuo Tamai. “A Smooth Combination of Role-based
Language and Context Activation”. In: FOAL 2010 Proceedings (2010), pp. 15–
24.

[Küh+14] Thomas Kühn, Max Leuthäuser, Sebastian Götz, Christoph Seidl, and Uwe
Aßmann. “A Metamodel Family for Role-Based Modeling and Programming
Languages”. In: Software Language Engineering. Springer, 2014, pp. 141–160.

[Küh+15] Thomas Kühn, Stephan Böhme, Sebastian Götz, and Uwe Aßmann. “A com-
bined formal model for relational context-dependent roles”. In: Proceedings
of the 2015 ACM SIGPLAN International Conference on Software Language
Engineering, SLE 2015, Pittsburgh, PA, USA, October 25-27, 2015. 2015, pp. 113–
124. doi: 10.1145/2814251.2814255.

[Küh+16] Thomas Kühn, Kay Bierzynski, Sebastian Richly, andUweAßmann. “FRaMED:
full-fledge role modeling editor (tool demo)”. In: Proceedings of the 2016 ACM
SIGPLAN International Conference on Software Language Engineering, Am-
sterdam, The Netherlands, October 31 - November 1, 2016. Ed. by Tijs van
der Storm, Emilie Balland, and Dániel Varró. ACM, 2016, pp. 132–136. url:
http://dl.acm.org/citation.cfm?id=2997371.

[Küh17] Thomas Kühn. “A Family of Role-Based Languages”. PhD thesis. Dresden
University of Technology, Germany, 2017. url: https://nbn-resolving.
org/urn:nbn:de:bsz:14-qucosa-228027.

[Kul16] Vidyadhar G. Kulkarni.Modeling and analysis of stochastic systems. Crc Press,
2016.

[LA15] Max Leuthäuser and Uwe Aßmann. “Enabling View-based Programming
with SCROLL: Using roles and dynamic dispatch for etablishing view-based
programming”. In: Proceedings of the 2015 Joint MORSE/VAO Workshop on
Model-Driven Robot Software Engineering and View-based Software-Engineering.
ACM. 2015, pp. 25–33.

[Lee59] C. Y. Lee. “Representation of Switching Circuits by Binary-Decision Pro-
grams”. In: Bell System Technical Journal 38.4 (1959), pp. 985–999. issn:
1538-7305. doi: 10.1002/j.1538-7305.1959.tb01585.x.

[LH09] Mengchi Liu and Jie Hu. “Information Networking Model”. English. In: Con-
ceptual Modeling - ER 2009. Ed. by AlbertoH.F. Laender, Silvana Castano,
Umeshwar Dayal, Fabio Casati, and Jos√©PalazzoM. de Oliveira. Vol. 5829.
Lecture Notes in Computer Science. Springer BerlinHeidelberg, 2009, pp. 131–
144. isbn: 978-3-642-04839-5. doi: 10.1007/978-3-642-04840-1_12.

192

https://doi.org/10.1145/2814251.2814255
http://dl.acm.org/citation.cfm?id=2997371
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-228027
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-228027
https://doi.org/10.1002/j.1538-7305.1959.tb01585.x
https://doi.org/10.1007/978-3-642-04840-1_12


Bibliography

[Lie+10] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and Michael
Schulze. “An analysis of the variability in forty preprocessor-based software
product lines”. In: Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering - Volume 1, ICSE 2010, Cape Town, South Africa,
1-8 May 2010. Ed. by Jeff Kramer, Judith Bishop, Premkumar T. Devanbu,
and Sebastián Uchitel. ACM, 2010, pp. 105–114. doi: 10.1145/1806799.
1806819.

[LMT07] Ruggero Lanotte, Andrea Maggiolo-Schettini, and Angelo Troina. “Para-
metric probabilistic transition systems for system design and analysis”. In:
Formal Aspects of Computing 19.1 (2007), pp. 93–109. doi: 10.1007/s00165-
006-0015-2.

[LPT09] K. Lauenroth, K. Pohl, and S. Toehning. “Model Checking of Domain Artifacts
in Product Line Engineering”. In: Automated Software Engineering, 2009. ASE
’09. 24th IEEE/ACM International Conference on. Nov. 2009, pp. 269–280. doi:
10.1109/ASE.2009.16.

[LPY95] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. “Model-Checking for
Real-Time Systems”. In: Fundamentals of Computation Theory, 10th Interna-
tional Symposium, FCT ’95, Dresden, Germany, August 22-25, 1995, Proceedings.
Ed. by Horst Reichel. Vol. 965. Lecture Notes in Computer Science. Springer,
1995, pp. 62–88. doi: 10.1007/3-540-60249-6_41.

[Mae87] Pattie Maes. “Concepts and Experiments in Computational Reflection”. In:
Conference on Object-Oriented Programming Systems, Languages, and Appli-
cations (OOPSLA’87), Orlando, Florida, USA, October 4-8, 1987, Proceedings.
Ed. by Norman K. Meyrowitz. ACM, 1987, pp. 147–155. doi: 10.1145/38765.
38821.

[McC56] Edward J. McCluskey. “Minimization of Boolean Functions*”. In: Bell System
Technical Journal 35.6 (1956). doi: 10.1002/j.1538-7305.1956.tb03835.
x.

[McM93] Kenneth L. McMillan. Symbolic model checking. Kluwer, 1993. isbn: 978-0-
7923-9380-1. doi: 10.1007/978-1-4615-3190-6.

[MKK12] Riichiro Mizoguchi, Kouji Kozaki, and Yoshinobu Kitamura. “Ontological
analyses of roles”. In: Computer Science and Information Systems (FedCSIS),
2012 Federated Conference on. IEEE. 2012, pp. 489–496.

[MSB11] Glenford J. Myers, Corey Sandler, and Tom Badgett.The art of software testing.
John Wiley & Sons, 2011.

[NK14] Tobias Nipkow and Gerwin Klein. Concrete Semantics - With Isabelle/HOL.
Springer, 2014. isbn: 978-3-319-10541-3. doi: 10.1007/978-3-319-10542-
0.

193

https://doi.org/10.1145/1806799.1806819
https://doi.org/10.1145/1806799.1806819
https://doi.org/10.1007/s00165-006-0015-2
https://doi.org/10.1007/s00165-006-0015-2
https://doi.org/10.1109/ASE.2009.16
https://doi.org/10.1007/3-540-60249-6_41
https://doi.org/10.1145/38765.38821
https://doi.org/10.1145/38765.38821
https://doi.org/10.1002/j.1538-7305.1956.tb03835.x
https://doi.org/10.1002/j.1538-7305.1956.tb03835.x
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1007/978-3-319-10542-0
https://doi.org/10.1007/978-3-319-10542-0


Bibliography

[OMG11] Object Management Group OMG. Unified Modeling Language (UML): Su-
perstructure Version 2.4.1. http://www.omg.org/spec/UML/2.4.1/Superstruc-
ture/PDF/. Aug. 2011.

[PA98] George A. Papadopoulos and Farhad Arbab. “Coordination Models and
Languages”. In: ed. by Marvin V. Zelkowitz. Vol. 46. Advances in Computers.
Elsevier, 1998, pp. 329–400. doi: 10.1016/S0065-2458(08)60208-9.

[Pel93] Doron A. Peled. “All from One, One for All: on Model Checking Using Rep-
resentatives”. In: Computer Aided Verification, 5th International Conference,
CAV ’93, Elounda, Greece, June 28 - July 1, 1993, Proceedings. Ed. by Costas
Courcoubetis. Vol. 697. Lecture Notes in Computer Science. Springer, 1993,
pp. 409–423. doi: 10.1007/3-540-56922-7_34.

[Per90] Barbara Pernici. “Objects with Roles”. In: SIGOIS Bull. 11.2-3 (Mar. 1990),
pp. 205–215. issn: 0894-0819. doi: 10.1145/91478.91542.

[Plo04] Gordon D. Plotkin. “A structural approach to operational semantics”. In: J.
Log. Algebraic Methods Program. 60-61 (2004), pp. 17–139.

[Pnu77] Amir Pnueli. “The Temporal Logic of Programs”. In: 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31 October
- 1 November 1977. IEEE Computer Society, 1977, pp. 46–57. doi: 10.1109/
SFCS.1977.32.

[Pnu84] Amir Pnueli. “In Transition From Global to Modular Temporal Reasoning
about Programs”. In: Logics and Models of Concurrent Systems - Conference
proceedings, Colle-sur-Loup (near Nice), France, 8-19 October 1984. Ed. by
Krzysztof R. Apt. Vol. 13. NATO ASI Series. Springer, 1984, pp. 123–144. doi:
10.1007/978-3-642-82453-1_5.

[PR01] Malte Plath and Mark Ryan. “Feature integration using a feature construct”.
In: Science of Computer Programming 41.1 (2001), pp. 53–84.

[PS08] Hendrik Post and Carsten Sinz. “Configuration Lifting: Verification meets
Software Configuration”. In: 23rd IEEE/ACM International Conference on
Automated Software Engineering (ASE 2008), 15-19 September 2008, L’Aquila,
Italy. IEEE Computer Society, 2008, pp. 347–350. doi: 10.1109/ASE.2008.
45.

[Put94] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley Series in Probability and Statistics. Wiley, 1994. isbn:
978-0-47161977-2. doi: 10.1002/9780470316887.

194

https://doi.org/10.1016/S0065-2458(08)60208-9
https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.1145/91478.91542
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-642-82453-1_5
https://doi.org/10.1109/ASE.2008.45
https://doi.org/10.1109/ASE.2008.45
https://doi.org/10.1002/9780470316887


Bibliography

[QS82] Jean-Pierre Queille and Joseph Sifakis. “Specification and verification of
concurrent systems in CESAR”. In: International Symposium on Programming,
5th Colloquium, Torino, Italy, April 6-8, 1982, Proceedings. Ed. by Mariangiola
Dezani-Ciancaglini and Ugo Montanari. Vol. 137. Lecture Notes in Computer
Science. Springer, 1982, pp. 337–351. doi: 10.1007/3-540-11494-7_22.

[RB09] Hind Rakkay and Hanifa Boucheneb. “Security Analysis of Role Based Access
Control Models Using Colored Petri Nets and CPNtools”. In: Transactions
on Computational Science IV. Ed. by MarinaL. Gavrilova, C.J.Kenneth Tan,
and EdwardDavid Moreno. Vol. 5430. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2009, pp. 149–176. isbn: 978-3-642-01003-3. doi:
10.1007/978-3-642-01004-0_9.

[Reo] Reo. The Reo Compiler. https://github.com/ReoLanguage/Reo.

[Rhe+15] Alexander von Rhein, Alexander Grebhahn, Sven Apel, Norbert Siegmund,
Dirk Beyer, and Thorsten Berger. “Presence-Condition Simplification in
Highly Configurable Systems”. In: 37th IEEE/ACM International Conference
on Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1.
Ed. by Antonia Bertolino, Gerardo Canfora, and Sebastian G. Elbaum. IEEE
Computer Society, 2015, pp. 178–188. doi: 10.1109/ICSE.2015.39.

[Rhe16] Alexander von Rhein. “Analysis Strategies for Configurable Systems”. PhD
thesis. University of Passau, 2016.

[Rie+02] Matthias Riebisch, Kai Böllert, Detlef Streitferdt, and Ilka Philippow. “Ex-
tending feature diagrams with UML multiplicities”. In: Proceedings of the
Sixth Conference on Integrated Design and Process Technology (IDPT 2002),
Pasadena, CA. Vol. 50. 2002.
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