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Summary  

Understanding and explaining spatio-temporal dynamics of ecological communities and their 

interaction with the environment is a central goal in ecology, but at the same time a very 

challenging task. Functional traits are a promising concept to achieve a better mechanistic 

understanding of variations in community structure. Traits are characteristics of organisms that 

directly or indirectly influence fitness and vary largely between different species. As traits 

functionally link communities with their bio-geochemical environment, they are well suited for 

explaining how community structure changes in response to changing environmental conditions, 

and how in turn communities shape their surrounding environment. Despite the potential of trait-

based approaches to mechanistically explain the relationship between communities and their 

environment, they have rarely been applied in freshwater ecology. Therefore, this thesis explores 

spatio-temporal dynamics in functional traits of freshwater phytoplankton communities and their 

interaction with the environment, using the Rappbode Reservoir in Germany as a case study.  

Phytoplankton community data from a seasonally resolved dataset with 50 years of observation 

from the Rappbode Reservoir were used to translate taxonomic composition into ecologically 

meaningful functional trait values. The studied functional traits showed consistent, reoccurring 

seasonal developments that clearly mirrored environmental pressures over the year. From late 

autumn to spring nutrients and turbulence were high. Hence small celled, fast growing species that 

are able to rapidly incorporate existing nutrients and tolerate poor light conditions dominated 

(dominant traits: maximum growth rate, light affinity). In contrast, when turbulence and nutrients 

were low in summer, large cell size and more complex mechanisms to efficiently exploit mineral 

nutrients or acquire previously unexploited nutrient pools were key ecological strategies (dominant 

traits: phosphate affinity, mixotrophy, motility, nitrogen fixation). The similarity in observed trait 

patterns over several years indicates that despite the diversity and complexity of phytoplankton 

species dynamics, the seasonal succession is a highly ordered, predictable process, driven by trade-

offs between different ecological strategies.  

During the 50 years of observation, nutrient concentrations in the Rappbode Reservoir decreased 

strongly (oligotrophication). A comparison between nutrient-rich and nutrient-deficient years 

revealed that the general intra-annual succession patterns of phytoplankton functional traits 

remained the same. However, the intra-annual succession patterns were more pronounced in 
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nutrient-rich years. While functional community composition in summer changed little after 

oligotrophication, spring communities were largely affected by nutrient reductions and functional 

traits in spring became more similar to the ones in summer. Based on the quantitative analysis of 

functional traits, the thesis could generalize the existing patterns to provide a quantitative, 

functional template for seasonal succession patterns in lake ecosystems under nutrient-rich and 

nutrient-deficient conditions.     

Over the entire observation period, phytoplankton biomass did not respond to reduced phosphorus 

concentrations. This unexpected resistance of algal biomass against reductions in the limiting 

resource phosphorus was caused by changes in internal processes and functional traits of the 

phytoplankton community, allowing them to adapt to lower nutrient levels without a loss in total 

biomass. The main casual mechanism for the decoupling of inorganic nutrients from 

phytoplankton biomasses was an increase in phagotrophic mixotrophs and their ability to make 

bacterial phosphorus available for the entire phytoplankton community. Further, in nutrient-

deficient years biomass losses in spring were compensated by high biomasses in summer. Higher 

summer biomasses compared to spring biomasses in nutrient-deficient years were probably also 

linked to a decrease in diatoms in spring. Diatoms are characterized by high sinking velocities. 

This trait in combination with phosphorus uptake by diatom cells leads to high downward nutrient 

exports from the pelagic zone. The decrease of diatoms in nutrient-poor years was related to less 

phosphorus losses over the season, leaving more nutrients for summer phytoplankton. The effect 

of species with high sinking velocities on seasonal phosphorus processing illustrates the 

importance of functional trait composition on biogeochemical cycling.  

A one-year monitoring campaign with a high temporal and depth resolution at Rappbode Reservoir 

allowed to investigate the impact of vertical phytoplankton trait distributions on the geochemical 

environment. During summer, a phytoplankton mass development occurred at the depth of the 

metalimnion, mainly represented by the cyanobacterium Planktothrix rubescens. The positive net 

growth at larger depth of this metalimnetic species is enabled through the possession of specific 

traits, e.g. buoyancy regulation and the ability for efficient light harvesting. The data indicated that 

the occurrence of metalimnetic species was connected to the formation of a metalimnetic oxygen 

minimum. The oxygen minimum occurred after the metalimnetic algae peak disappeared from the 

thermocline. Metalimnetic phytoplankton induced oxygen depletion probably through one of the 
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following processes: Oxygen consumption by bacteria related to the degradation of dead organic 

material from metalimnetic algae or internal respiration of metalimnetic algae towards the end of 

the growing season leading to net oxygen losses due to the continuation of algal respiration. This 

constitutes a previously undiscovered mechanism for the development of metalimnetic oxygen 

minima.  

In conclusion, the thesis illustrates how trait-based approaches enhance ecological understanding 

of phytoplankton community dynamics. The trait-based approaches shed light on how 

phytoplankton communities respond to environmental gradients and how communities can affect 

their geochemical environment. The thesis also shows that functional traits can be used to reduce 

the complexity of communities through converting species information into ecologically 

meaningful functions and that they allow to link changes in community composition to 

corresponding features in the biogeochemical environment. The quantitative, trait-based 

approaches used in this study therefore improve our mechanistic understanding of community 

dynamics and are a step forward to higher predictability and generality in limnology. 
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1 Scientific background 

1.1 The importance of phytoplankton 

Phytoplankton are unicellular, photoautotrophic organisms drifting with the currents in the water 

bodies of lakes, rivers and the ocean. Phytoplankters are too small to be seen individually with the 

unaided eye, but they are highly diverse, varying from photosynthesizing prokaryotic bacteria 

(cyanobacteria) to eukaryotic diatoms and green algae. Cyanobacteria were the first primary 

producers that evolved at least 2.7 billion years ago, when the atmosphere of the earth was still 

anoxic (Bekker et al., 2004;  Holland, 2006). It was their photosynthetic activity that converted 

carbon dioxide to oxygen and organic carbon. Oxygen was released into the atmosphere and thus 

provided the foundation for the evolution of aerobic, heterotrophic life. Later in time, other clades 

of phytoplankton developed through endosymbiosis, such as red and green algae, followed by 

diatoms and dinoflagellates (Falkowski et al., 2004). They further contributed to oxygen release 

and when the first terrestrial plants evolved about 500 million years ago the concentration of 

oxygen in the atmosphere was already more than 50 percent of today’s level (Wellman, Osterloff 

& Mohiuddin, 2003;  Holland, 2006).  

Phytoplankton is a major primary producer on the global scale and is important to global-scale 

biogeochemical cycling of elements in freshwater and marine ecosystems (Falkowski, Barber & 

Smetacek, 1998;  Field et al., 1998). As phytoplankters provide the basal energy input to pelagic 

food chains, they represent a main component of aquatic ecosystems and their abundance and 

community structure largely affect higher trophic levels (Hallegraeff, 1993;  Chassot et al., 2010). 

Despite the local and global importance of phytoplankton, their excessive growth has severe 

negative consequences. Algal blooms can cause anoxia (Diaz & Rosenberg, 2008), fish kills 

(Shumway, 1990;  Burkholder, Glasgow Jr & Hobbs, 1995) and problems for drinking water 

quality  (Qin et al., 2010). A good understanding of phytoplankton distribution and dynamics, their 

response to changes in the environment as well as their impact on ecosystem processes is therefore 

crucial to face today´s challenges for aquatic ecosystems, such as climate change, altered nutrient 

loads and the assurance of high drinking water quality (Paerl & Huisman, 2008).  
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1.2 Conceptual approaches for phytoplankton communities 

1.2.1 Taxonomic approaches 

The simplest and most commonly used way to approach phytoplankton communities is by 

aggregation to total biomass (or alternatively to total chlorophyll a), which provides satisfactory 

quantification for many purposes (Vollenweider, 1971;  Scheffer et al., 2003;  Sommer et al., 

1986). Nonetheless, phytoplankton communities can be extremely diverse, often consisting of 

many different species with diverse ecological properties and functions. For instance, 

phytoplankter vary from small picocyanobacteria of less than 2 µm length (e.g. Synenococcus) to 

large dinoflagellates, such as Ceratium hirundinella with a size of up to 400 µm. Some species 

consist of single cells (e.g. Cryptopmonas), others of chains (e.g. Planktothrix.) or loose colonies 

(e.g. Microcystis), some are able to move through flagella (e.g. Chlamydomonas) or gas vacuoles 

(e.g. Aphanizomenon), and others are able to fix atmospheric nitrogen to overcome nitrogen 

limitation (cyanobacteria such as Anabaena). Species also differ in their physiological processes, 

e.g. in their growth rates (Banse, 1976) or light affinities (Schwaderer et al., 2011). However, the 

analysis of phytoplankton communities at biomass level does not consider this diversity and gives 

no information about structural shifts in the plankton community, which is often necessary to 

understand the response of plankton to external factors (Schindler, 1990) and their impact on 

higher trophic levels and geochemical cycling. The species composition is also highly relevant for 

water management, human health and finally also has economical relevance, since some species 

produce toxins (e.g. cyanobacteria such as Planktothrix) or taste and odor (e.g. Synura), while 

others are rather harmless (Carmichael, 2001;  Paterson et al., 2004). Therefore it is sometimes 

inevitable to take a closer look at the phytoplankton community through the lens of a microscope.  

Characterizing phytoplankton communities by their species composition (Tilman, Kilham & 

Kilham, 1982), gives the most complete information in terms of taxonomy, but a functional 

information can only be derived once the niche of a species is understood. However, since 

predictions at species level are difficult or maybe even impossible (Reynolds, 2000) and general 

principles about whole communities can rarely be derived (Simberloff, 2004), numerous attempts 

have been made to aggregate the high number of species into fewer ecologically meaningful 

groups. Traditionally, freshwater phytoplankton species have been grouped according to their 
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broader taxonomic affiliation into diatoms, cyanobacteria, chlorophytes, cryptophytes, 

dinoflagellates, chrysophytes and desmids (Kalff, 2002). These coarse aggregations allowed for a 

few generalizations, e.g. the decrease in chrysophytes in nutrient rich lakes (Jeppesen et al., 2005) 

or the increase in cyanobacteria with lake warming (Winder & Sommer, 2012) and eutrophication 

(Jeppesen et al., 2005). However, taxonomic classifications have the drawback that the ecological 

functions of the species are heterogenous within these higher taxonomic units and hence often do 

not reflect their ecological niche. On the one hand a taxonomic group might include species with 

very different ecological adaptations, since even very closely related species can be functionally 

very different. For example, Synura petersenii releases ketones and aldehydes from their cells that 

cause a fish-like odor and taste, while there is no such evidence from other Synura species 

(Nicholls & Gerrath, 1985). Another example is the taxonomic group of diatoms, which contains 

species with small single cells, while others form large colonies or chains. On the other hand 

species from different taxonomic groups can share the same ecological strategy and hence 

functions can overlap between different groups (Salmaso, Naselli-Flores & Padisák, 2015).  For 

instance, the mixotrophic strategy occurs in species from several taxonomic groups, including 

cryptophytes, chrysophytes and dinoflagellates, but not all species in these groups are mixotrophs.  

1.2.2 Empirically derived functional groups 

To overcome the limitations of taxonomic classifications, more recent approaches classify 

phytoplankton based on specific functional properties that species share. A classification according 

to function might be superior in describing the role of phytoplankton communities in an ecosystem 

and predicting their response to changing environments (Litchman & Klausmeier, 2008). One 

method of establishing functional groups is based on the assumption that species with similar 

functional properties often occur simultaneously and have similar environmental sensitivities and 

tolerances (Reynolds, 1980). When species increase or decrease in abundance at the same time or 

place, they may be grouped together, as they are assumed to respond similarly to changing 

environmental conditions. Hence, the occurrence of a certain functional group reflects the physical, 

chemical or biological conditions of the habitat and vice versa the habitat characteristics provide 

information about the occurrence of certain functional groups. The method of functional grouping 

was first applied in freshwater ecology by Reynolds (1980), who identified 14 functional groups 

of phytoplankton based on observations from field data. This system was later expanded 
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(Reynolds, 1984a) and now includes 40 associations described by Reynolds et al. (2002) and 

Padisák, Crossetti and Naselli-Flores (2008). Reynold´s approach of functional groups has been 

shown to give a good proxy for phytoplankton responses to environmental conditions (Kruk et al., 

2017;  Kruk et al., 2002) and has been used to describe seasonal developments (Rychtecký & 

Znachor, 2010). Since groups of species in Reynolds´s approach were identified based on similar 

dynamic behavior of species in the observed lakes, the classification is a posteriori and empirically 

derived.  

1.2.3 Trait based approaches 

Functional groups can also be derived a priori based on specific properties (e.g. morphology, 

behavior) or physiologic capabilities that species possess (Salmaso & Padisák, 2007;  Litchman & 

Klausmeier, 2008). These morphological, behavioral and physiological characteristics of 

organisms can be called traits. Traits directly or indirectly influence fitness (growth, reproduction 

or survival) and largely differ between various algal species (Violle et al., 2007). Traits evolved 

in response to abiotic conditions and biotic interactions and are therefore differently distributed 

across environmental gradients (Zakharova, Meyer & Seifan, 2019). Functional approaches that 

are based on the measurement of traits have been developed in terrestrial ecology (Grime, 1977;  

Weiher & Keddy, 1995;  Díaz & Cabido, 1997;  Chapin et al., 1996;  Weiher et al., 1999;  McGill 

et al., 2006) and these concepts were later adopted to aquatic ecosystems (Weithoff, 2003;  

Litchman & Klausmeier, 2008). An early example for the classification based on functional 

properties of phytoplankton species is the C-R-S concept, where C represents the competitive, R 

the ruderal and S the stress tolerant strategy (Reynolds, 1988). This approach is trait-based since 

the functional groups were derived based on common features, e.g. functional growth and 

morphometric attributes. Another example is the work by Salmaso and Padisák (2007), who used 

morphological and functional characteristics (size, form, mobility, nutrient requirements, 

mixotrophy) to classify species into discrete functional groups with the use of multivariate 

methods. 

Besides the usage of traits to derive functional groups, functional traits can be examined 

individually, e.g. in order to obtain averaged trait values for the whole community. While for 

discrete functional groups species are grouped because they use similar strategies, the use of 
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continuous functional traits focuses on the similar characteristics underlying those strategies 

(Zakharova, Meyer & Seifan, 2019). Important functional traits which directly influence fitness of 

phytoplankton are maximum growth rate, nutrient affinity, light affinity and grazing resistance 

(Litchman & Klausmeier, 2008;  Schwaderer et al., 2011;  Edwards et al., 2012). Information 

about these traits have mainly been derived from physiological measurements on species grown in 

laboratory cultures. Obtaining these traits is very laborious and it is therefore notoriously difficult 

to get a complete list of trait values for all species (Edwards et al., 2012). In order to bridge these 

gaps, models have been developed to estimate missing trait values (e.g. Bruggeman, Heringa & 

Brandt, 2009;  Bruggeman, 2011;  Edwards, 2016).  

Most studies however choose functional traits that are easier to measure, e.g. morphological traits 

such as mobility, cell size or shape (e.g. Weithoff, 2003;  Kruk et al., 2011;  Stanca, Cellamare & 

Basset, 2012;  Acevedo-Trejos et al., 2015). These morphological and behavioral traits indirectly 

influence fitness, since they are related to many physiological traits. For instance, cell size sets the 

physical and physiological limits to many processes within cells and can be used as some kind of 

master trait (Litchman et al., 2010). Cell size is moreover positively correlated with grazing 

resistance (Thingstad et al., 2005) and nutrient uptake affinity (Litchman, Edwards & Klausmeier, 

2015), but scales negatively with maximum growth rate (Banse, 1976) and light affinity (Edwards 

et al., 2015).  

Though trait-based approaches are still in their early stages, characterizing communities by their 

trait distributions has been argued to give new insights into the temporal and spatial dynamics of 

plankton communities, reveal mechanisms that structure biological communities and facilitate 

scaling physiological processes to global scales (Litchman et al., 2007;  Litchman & Klausmeier, 

2008;  Zakharova, Meyer & Seifan, 2019). The use of functional traits has also been suggested to 

create a more quantitative and predictive community ecology that is capable of addressing issues 

of increasing relevance, such as the consequences of land-use and climate change for ecosystem 

processes (McGill et al., 2006). Especially ecological modelling may benefit from trait based 

approaches, since mean trait values are less complex and difficult to predict than the dynamics of 

species (e.g. Wirtz & Eckhardt, 1996;  Acevedo-Trejos et al., 2015;  Berge et al., 2017). Trait-

based libraries can also be used to identify relevant parameter values for phytoplankton community 

modules within lake models and by that enhance the transferability of such models. Hence 
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rebuilding community ecology from functional traits may help to reduce the complex nature of 

communities while keeping important ecological information. This can help to find general rules, 

which is the central goal of science (McGill et al., 2006).  

1.3 Seasonal, vertical and inter-annual changes in phytoplankton 

communities 

As species differ in their ecological preferences and functional traits, they respond differently to 

changing environmental conditions (Levasseur, 1984;  Sterner, 1989). In freshwater ecosystems, 

major gradients in the abiotic environment exist along the seasonal and inter-annual time scale as 

well as along the vertical axis. The seasonal and vertical gradients are mainly caused by variations 

in nutrient and light availability as well as temperature.  

Temperature is a main driver of vertical and seasonal heterogeneity. Towards summer, increasing 

surface water temperature leads to thermal stratification due to a change in water density with 

temperature. Seasonal thermal stratification is typical for lakes and reservoirs in temperate regions. 

It divides the water body into three layers: The warm top layer (epilimnion), the cold bottom layer 

(hypolimnion) and the layer in between (metalimnion or thermocline), which contains a steep 

temperature gradient (Boehrer & Schultze, 2008). The steep density gradient in a stratified lake 

implies that vertical exchange across gradients is limited and requires large mixing energy. As a 

consequence, vertical gradients of many environmental variables remain stable over the warm 

season and can only disappear by mixing when autumnal cooling has removed or diminished the 

temperature gradient.  

Vertical fluxes of solutes, e.g. nutrients, are small during the stratified season. As nutrients are 

usually supplied from the sediment or deep unproductive layers, the water body is separated into 

the nutrient poor epilimnion and a nutrient richer hypolimnion. This changes in autumn when 

decreasing surface temperatures lead to an increasingly deeper recirculation in the lake through 

successive inclusion of deep water layers and their nutrients into the upper mixed water layers. 

Finally, nutrients become rather homogenously distributed over the water column once the 

recirculation has included the entire water body. These seasonal and vertical variations in 

environmental conditions shape seasonally re-occurring spatio-temporal dynamics in 

phytoplankton communities.  
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1.3.1 Seasonal developments 

Understanding the distribution of species along the seasonal gradient has long been a major focus 

of freshwater biologists. The most popular and widely cited theoretical models about seasonal 

succession of phytoplankton species were developed by Margalef (1978) and by the plankton 

ecology group (PEG model;  Sommer et al., 1986). Margalef (1978) described seasonal succession 

by the occurrence of different life-forms, which are placed in a nutrient and turbulence space. Each 

group is associated with a different regime and ecological strategy (r- versus K-strategists).  

The concept for the r and K selection strategies was first proposed in terrestrial ecology by Wilson 

and MacArthur (1967) and Margalef (1978) applied it to phytoplankton. Small sized 

phytoplankton species with high maximum growth rates, the ability to respond quickly to the 

availability of environmental resources are categorized as r-strategists. In contrast K-strategists are 

characterized by slower growth rates and higher nutrient affinities and thus higher tolerance against 

resource limitation. Margalef (1978) predicts that nutrient rich environments with high turbulence, 

as they exist during mixing in spring, select for r-strategists, while K-strategists are selected in 

summer under nutrient-poor, stratified conditions. The r-K selection strategy was applied to 

explain phytoplankton distribution patterns (e.g. Kilham & Hecky, 1988;  Sommer, 1981) and was 

later extended by Reynolds (1988) to the C-R-S model.  

In 1986, the plankton ecology group (PEG) model was developed (Sommer et al., 1986). It is a 

conceptual model describing the factors driving seasonal changes and providing a verbal template 

for the intra-annual development of phyto- and zooplankton biomass and community composition 

in eutrophic and oligotrophic (deep) lakes of the temperate zone. According to the PEG model, in 

winter and early spring phytoplankton growth is limited by light availability, since turbulence is 

excessive and algal cells get dispersed out of the photic zone. Due to the deep mixing, cells spend 

most of the time in the dark and cannot absorb enough light for growth, even though ample 

nutrients are available (Sverdrup, 1953). As soon as temperature increases and stratification sets 

on, phytoplankton spends a greater proportion of time closer to the surface in better light conditions 

and phytoplankton blooms can develop (Sverdrup, 1953). The spring bloom mainly consists of 

fast-growing, small, edible species with high tolerances towards low light (Sommer et al., 1986;  

Reynolds et al., 2002). Due to the intensive algal growth, biomass is produced which zooplankton 

can feed on and zooplankton biomass can increase. Nutrient depletion and high grazing pressure 
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result in a breakdown of the spring bloom and phytoplankton biomass drops to very low levels for 

an extended period, called the clearwater phase (Lampert et al., 1986). After this clearwater phase, 

algae develop that can cope with the increased nutrient limitation and grazing pressure: The 

community composition then shifts towards larger, inedible cells with higher grazing resistance 

and higher nutrient competitive ability (Sommer et al., 1986). With decreasing temperatures in 

autumn, complete mixing of the water column recharges the surface layers with nutrients, which 

may induce another small growth phase of fast growing algae. But ultimately low light conditions 

during the mixing phase hamper phytoplankton growth. The description of drivers of plankton 

seasonal succession in the PEG model was later extended by other factors, such as food quality 

limitation and the role of parasites (Sommer et al., 2012). 

1.3.2 Vertical distribution and deep chlorophyll maxima 

Along the vertical axis, the distribution of phytoplankton species is strongly shaped by a trade-off 

between light and nutrient availability (Klausmeier & Litchman, 2001;  Jäger, Diehl & Emans, 

2010;  Mellard et al., 2011).  Theoretical studies predict that different species with different 

competitive abilities can coexist along the vertical gradient (Huisman & Weissing, 1995;  

Yoshiyama et al., 2009;  Ryabov & Blasius, 2011;  Kerimoglu, Straile & Peeters, 2012). These 

predictions are supported by field enclosure experiments (Jäger, Diehl & Schmidt, 2008) and a 

survey of lakes in southern Québec (Beisner & Longhi, 2013), indicating vertical niche partitioning 

of algal species along opposing  gradients of light and nutrients in the water column. The 

proportion of algae with high maximum growth rates, high metabolic respiration, better nutrient 

utilization, but lower nutrient storage capacity and lower sinking velocity decreases along the 

vertical gradient from the surface to the bottom layer (Jäger, Diehl & Emans, 2010).  

A special feature of vertical phytoplankton distributions are deep chlorophyll maxima (DCM). A 

DCM is an absolute maximum of phytoplankton biomass along the vertical profile that can be 

found in deep layers of stratified lakes. DCMs usually form in the metalimnion or in the upper 

hypolimnion during the stratification period in summer. The formation of these maxima would not 

be possible during the mixing period, since turbulence prevents the accumulation of phytoplankton 

at a certain depth (Camacho, 2006;  Leach et al., 2017). DCMs are usually found in meso- and 

oligotrophic lakes, since in these lakes nutrients get depleted in the epilimnion during the stratified 
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period, allowing light to penetrate deeper into the meta- and upper hypolimnion (Reynolds, 1992;  

Moll, Brache & Peterson, 1984). There the simultaneous availability of inorganic nutrients (from 

the sediments or from recycling of organic material that settled down from upper layers) and 

sufficient light from above favors the growth of certain phytoplankton species that are adapted to 

the low light conditions in this habitat (Gervais, 1997;  Gong et al., 2015). Populations of these 

species can accumulate in high densities in the metalimnion, while the growth of possible 

competitors is inhibited by low light availability. In addition to the vertical distribution of 

resources, different grazing pressure in the different lake strata have been proposed as a mechanism 

forming DCMs (e.g. Tittel et al., 2003). Hartwich, Wacker and Weithoff (2010) suggested that a 

lower food quality of algae in deeper layers prevents zooplankton from exploiting this 

quantitatively rich food resource, contributing to the formation of the DCM. However, modelling 

studies claim that zooplankton grazing determines the magnitude of the DCM, but do not initiate 

its formation (White & Matsumoto, 2012;  Pannard, Planas & Beisner, 2015).  

The DCM is normally formed by one or very few species (Selmeczy et al., 2015). These species 

possess special traits, allowing them to develop population maxima in the metalimnion of stratified 

lakes. One important feature is the ability to harvest enough light for photosynthesis under the low-

light conditions existing in such deeper layers (Vila & Abella, 2001). The light arriving in deeper 

layers of the water column mainly consists of the central part of the PAR spectrum, since light 

selectively gets extinct in upper layers (Camacho, 2006). Wavelength of the central PAR spectrum 

can be harvested by the accessory pigments phycobilins, such as phycoerythrin and phycocyanin 

(Callieri et al., 1996). Hence, the possession of these phycobilins gives a competitive advantage 

under low light availability in deeper layers (Gervais, 1997;  Camacho, Vicente & Miracle, 2000;  

Camacho, Vicente & Miracle, 2001). Another important trait for the formation of DCMs in the 

metalimnion is the capacity for vertical movement. Mobility is either obtained by flagella or by 

buoyancy mechanisms and enables algae to migrate across the strong chemical and physical 

gradients in the metalimnion and to position themselves in the depth with optimal growth 

conditions. The mechanism of vertical movement allows algae to get nutrients from deeper water 

layers and then migrate to upper layers with higher light availability (Salonen, Jones & Arvola, 

1984;  Camacho, Vicente & Miracle, 2001). Since both traits, the ability to regulate their vertical 

position in the water column and the capacity to synthesize phycobilins for light harvesting, 
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simultaneously occur in some cyanobacteria and cryptophytes, they are the prominent algae groups 

forming DCMs.  

1.3.3 Inter-annual trajectories 

In addition to variations in distribution patterns along the seasonal and vertical axis, phytoplankton 

community composition can also fluctuate from year to year. Inter-annual variations can have 

several causes, including changes in nutrient inputs (Jeppesen et al., 2005), land use (Katsiapi et 

al., 2012;  Friese et al., 2014), acidification (Findlay & Kasian, 1986;  Findlay, 2003), water level 

fluctuations (Nõges, Nõges & Laugaste, 2003) or changing climate (Winder & Sommer, 2012).  

The effects of climate change are in the current focus of environmental science. Changing climatic 

conditions can impact phytoplankton community composition in many different ways (Adrian et 

al., 2009), e.g. via warmer water temperatures (Paerl & Huisman, 2008), changes in stratification 

patterns (Yankova et al., 2017), changes in rainfall and drought (Harris & Baxter, 1996;  Findlay 

et al., 2001), changes in wind (Mi et al., 2018) or changes in runoff and therefore nutrient loading 

(Jeppesen et al., 2009). Most studies predict that climate change favors cyanobacteria (Mooij et 

al., 2005;  Carey et al., 2012;  Paerl & Huisman, 2008;  Elliott, Jones & Thackeray, 2006), firstly 

because they grow better at higher temperatures (Jöhnk et al., 2008;  Reynolds, 2006), secondly 

because increased nutrient discharge may favor their growth (Paerl & Huisman, 2008) and thirdly 

because reduced vertical mixing allows the buoyant cells of cyanobacteria to float upward and 

accumulate in dense surface blooms, suppressing the underlying non-buoyant species through light 

reduction (Huisman & Hulot, 2005).  

In addition, oligotrophication is another important driver of inter-annual shifts in plankton 

composition, since nutrient inputs to freshwaters were reduced in many developed countries over 

the last decades as a result of combating external nutrient loading (Sas, 1990), sometimes 

combined with additional in-lake restoration measures such as chemical-physical methods (Cooke 

et al., 2016) or biomanipulation (Mehner et al., 2002). Several studies show inter-annual changes 

in phytoplankton community composition in response to nutrient reductions, sometimes even if no 

changes in total biomass were detected (Dokulil & Teubner, 2005;  Ruggiu et al., 1998;  Anneville 

et al., 2010;  Gaedke & Schweizer, 1993;  Sommer, Gaedke & Schweizer, 1993). The 

oligotrophication process usually favored dinophytes, cryptophytes and chrysophytes (Sommer, 
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Gaedke & Schweizer, 1993;  Jeppesen et al., 2005;  Kamjunke, Straile & Gaedke, 2009;  Anneville 

et al., 2010;  Anneville, Gammeter & Straile, 2005), algal groups that are mobile, mixotrophic or 

adapted to low nutrient concentrations. A review of 35 re-oligotrophication studies found that 

cyanobacteria declined in deep lakes, but showed no response in shallow lakes in response to 

reduced nutrient concentrations (Jeppesen et al., 2005). In shallow lakes there was a tendency 

towards an increased share of diatoms during oligotrophication, probably due to a relaxation of 

silica limitation (Jeppesen et al., 2005). However, different pressures often interactively influence 

the inter-annual development of phytoplankton communities and combined effects are possible or 

even likely. For example, empirical data (Horn, 2003;  Pomati et al., 2015;  Horn et al., 2015) and 

modelling studies (Huber, Adrian & Gerten, 2008;  Elliott, Jones & Thackeray, 2006) showed that 

effects of oligotrophication on plankton communities are modified by climate change and 

disentangling both effects is often a challenging task.  

1.4 Impact of phytoplankton communities and their traits on the 

geochemical environment  

Plankton is influenced by its abiotic environment, but it also shapes its environment. As major 

aquatic primary producers phytoplankton significantly impact oxygen concentrations in the 

atmosphere (Field et al., 1998) as well as in the water body (Stefan et al., 1995) by producing 

oxygen and organic carbon from water and carbon dioxide during photosynthesis. Also the 

underwater light climate strongly depends on phytoplankton biomass, since phytoplankton absorbs 

light and thus changes light quantity and quality in the water layers below (Kalff, 2002). Moreover, 

phytoplankton affects nutrient concentrations in the water body by using nutrients for their own 

metabolism. For example, the commonly observed nutrient depletion in summer in the epilimnion 

is caused by nutrient uptake by phytoplankton. For phosphorus, it is even often the case that 

phytoplankters take up more phosphorus than they need (luxury uptake) in order to store it for later 

times. This overproportional P-uptake can be an important component shaping vertical profiles of 

phosphorus concentrations (Frassl, Rothhaupt & Rinke, 2014). 

Sometimes the effect on the environment not only depends on the concentration of phytoplankton 

in the water body, but also on the functional traits that the species in the community possess. As 

different functional groups differ in their nutrient requirements and stoichiometry, they also shape 
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the chemical composition of their environment differently (Finkel et al., 2006;  Boyd, 2013;  

Litchman et al., 2015). For example, fast growing species invest more resources into ribosomes 

and since ribosomes are relatively rich in phosphorus, they acquire more phosphorus from the 

environment than slowly growing species (Elser et al., 1996;  Klausmeier et al., 2004;  Litchman, 

Edwards & Klausmeier, 2015). As another example, the unique metabolic requirements of diatoms 

for silica result in reduced silica concentrations in the water body when diatoms are abundant 

(Schelske & Stoermer, 1971). The high sinking rates of diatoms (Sommer, 1984) contribute to the 

removal of nutrients from the epilimnion and their burial in the sediments, as shown for e.g. carbon, 

silica and phosphorus (Benndorf, 1968;  Nelson et al., 1995;  Tréguer & De La Rocha, 2013;  

Frassl, Rothhaupt & Rinke, 2014;  Horn et al., 2015). Thus diatoms with their high sinking velocity 

significantly affect biogeochemical cycles. Moreover, the nutrient concentrations in the water are 

affected by differences in nutrient uptake kinetics, such as higher or lower nutrient uptake rates 

and affinities (Litchman et al., 2007), or the ability to acquire nutrients from substrates that are not 

accessible for the whole community, such as the uptake of bacteria by phagotrophic mixotrophs 

(Mitra et al., 2014) or the capacity to fix atmospheric nitrogen (Mahaffey, Michaels & Capone, 

2005). Also the mobility of organisms affects nutrient distributions, especially along vertical 

gradients. For example, it has been shown that motile species impact the phosphorus distribution 

in lakes by transporting nutrients from the hypolimnion upwards into the epilimnion during regular 

vertical migration (Salonen, Jones & Arvola, 1984). All these examples lead to the conclusion that 

the geochemical environment of aquatic ecosystems is largely influenced by the dynamics of 

phytoplankton communities and their functional composition. 
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2 Motivation and objectives: How to exploit the trait based 

approach to gain a better understanding of plankton 

dynamics 

A good mechanistic understanding is required to better grasp the complexity of ecosystems and 

their spatio-temporal dynamics. This can be achieved by functional traits, since they reduce the 

complexity and directly link changes of communities with changes in their environment via 

functions. However, trait based approaches have rarely been applied to quantify seasonal, vertical 

and long-term dynamics of freshwater ecosystems. Therefore this thesis focuses on spatio-

temporal trait dynamics of phytoplankton communities and their interaction with the environment. 

Chapter 3 and 4 focus on the importance of the biotic and abiotic environment for phytoplankton 

trait dynamics, while chapter 5 addresses the impact of species with specific functional 

characteristics on the geochemical environment. The thesis covers different temporal and spatial 

gradients (seasonal: chapter 3 and 5; inter-annual: chapter 3 and 4; vertical: chapter 5) and several 

functional traits (see table 2.1 for an overview). As a study site, Germany´s largest drinking water 

reservoir, the Rappbode Reservoir, was chosen, since I could make use of a seasonally and 

vertically resolved dataset from the local water-company ranging back to 1961, which has never 

been subject to scientific studies before. Moreover, the Rappbode Reservoir was suitably located 

for additional field work. Chapter 3 and 4 are based on the long-term dataset from the local-water 

company. These data were digitalized and brought into a useful format by myself. Most data for 

chapter 5 were collected on our own monitoring program during a one-year field campaign. The 

overall goals of the thesis are: 

• Establish a methodology for translating taxonomic information into functional trait 

information. 

• Use traits to gain a better mechanistic understanding of phytoplankton dynamics and aquatic 

ecosystems in general. 

• Quantitatively investigate the seasonal succession of functional traits. 

• Examine the long-term response of phytoplankton functional traits to nutrient reductions. 

• Identify mechanisms for the decoupling of phytoplankton biomass from nutrient 

concentrations with the help of functional traits. 
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• Investigate the impact of functional traits on the geochemical environment, especially on 

oxygen dynamics. 

The following sections describe the motivation, research gaps and objectives of the three main 

chapters in more detail. 

Table 2.1: Overview about phytoplankton functional traits used in this thesis, including 

their trait type, definition and ecological function. Trait type and ecological function are 

assigned according to Litchman and Klausmeier (2008). The last column states in which 

chapter of the thesis the traits are addressed. 

Trait Trait type Definition Ecological 

function 

Addressed in 

chapter 

Cell size Morphological Volume of a single cell  Reproduction, 

resource 

acquisition and 

predator 

avoidance 

3 

Edibility for 

Daphnia 

Behavioral and 

morphological 

Susceptibility against predation by 

Daphnia. The rate of prey 

consumption relative to the rate at 

which the favorite prey is consumed. 

Predator 

avoidance 

3 

Maximum 

growth rate 

Physiological Ability for fast uptake of nutrients 

and fast growth. Competitive ability 

under high nutrient concentrations. 

Resource 

acquisition 

3 

Phosphate 

affinity 

Physiological Ratio of maximum growth rate to 

half-saturation coefficient. 

Phosphorus uptake ability. 

Competitive ability under phosphate 

limitation. 

Resource 

acquisition 

3 

Light affinity Physiological Initial slope of the growth-irradiance 

curve. Growth ability under light 

limitation. Ability to tolerate low 

irradiances. 

Resource 

acquisition 

3, 5 
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Motility Behavioral  The possession of flagella. Ability to 

actively move in the water column to 

a position with optimal conditions. 

Resource 

acquisition and 

predator 

avoidance 

3, 4 

Buoyancy Behavioral Possession of gas vacuoles. Ability to 

adjust position in the water column to 

a depth with optimal conditions. 

Resource 

acquisition and 

predator 

avoidance 

3, 4, 5 

Mixotrophy  Physiological 

and behavioral 

Potential to ingest bacteria 

(phagotrophy) 

Resource 

acquisition 

3, 4 

Silica use Physiological Need to use silica as cell wall 

material 

Resource 

acquisition 

3, 4 

Nitrogen 

fixation  

Physiological Potential to fix atmospheric nitrogen. 

Competitive advantage under 

nitrogen limitation. 

Resource 

acquisition 

3 

Chain and 

colony 

formation 

Morphological The potential to form colonies or 

chains. 

Resource 

acquisition and 

predator 

avoidance 

3 

Possession of 

phycobilins 

Physiological The possession of phycobilins (the 

accessory pigments phycocyanin or 

phycoerythrin) increases the range of 

the usable light spectrum. 

Resource 

acquisition 

5 

2.1 Using trait based approaches to understand temporal dynamics 

of plankton communities 

Identifying generalized rules for spatio-temporal dynamics in phytoplankton communities by 

using functional traits is a logical step towards a more quantitative, predictive aquatic ecology. In 

terrestrial ecology, a growing body of work applies trait based approaches to understand changes 

in natural communities across environmental gradients. For instance, Cornwell and Ackerly (2009) 

showed that plant traits shifted in regular ways across gradients in soil water content in coastal 

California, while Swenson and Weiser (2010) found a correlation of mean trait values of forest 

communities with climate variables in North America. However, in aquatic ecosystems trait based-

approaches have rarely been applied to study seasonal, vertical or inter-annual dynamics in 
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phytoplankton communities, despite increasing knowledge about relevant ecological traits directly 

or indirectly affecting the fitness (Litchman & Klausmeier, 2008). Some studies focused on the 

temporal dynamics of easily identifiable traits indirectly influencing fitness, such as morphological 

or behavioral traits. Weithoff and Gaedke (2016) studied the seasonal dynamics of the 

phytoplankton community in Lake Constance and found a distinct recurrent annual pattern within 

a multi-dimensional trait space. In their study, they aggregated the traits cell size, longest linear 

dimension, motility, mixotrophy and silica demand to one community trait mean, but did not look 

at dynamics of individual traits. Klais et al. (2017) studied the seasonal dynamics of individual 

traits (cell size, silica demand, formation of chains or colonies, motility, accessory pigment 

composition, ability to fix atmospheric nitrogen, mixotrophy) along a gradient from marine to 

brackish waters in the Baltic Sea. The traits used in Klais et al. (2017) are morphological and 

behavioral. I am aware of only two articles studying the spatio-temporal dynamics of physiological 

traits in aquatic ecosystems. Edwards, Litchman and Klausmeier (2013a) tested whether 

physiological traits could explain seasonal dynamics in phytoplankton communities in a marine 

ecosystem. They showed that responses in the lab-measured traits light utilization, nitrate 

utilization and maximum growth rate could be related to variations in the limiting resources light 

and nitrate. In a second study, Edwards, Litchman and Klausmeier (2013b) studied the response 

of phytoplankton functional traits to gradients of light and phosphorus across lakes in the United 

States. Again, they could predict the response of the physiological traits light utilization and 

maximum growth rate to the availability of resources. Both studies support the idea that functional 

traits, including traits measured on laboratory cultures, can result in a better understanding of the 

structure and dynamics of phytoplankton communities in natural environments.  

In lakes and reservoirs, the seasonal succession has traditionally been analyzed from a taxonomic 

point of view (e.g. Padisak, 1992;  Tallberg et al., 1999;  Kalff, 2002;  Rychtecký & Znachor, 

2010). When traits were considered in the description of seasonal succession, this was done in a 

descriptive, qualitative way (Sommer, 1985;  Sommer et al., 1986), but the seasonal development 

of traits has never been quantitatively analyzed. Hence the objective of chapter 3 is the application 

of trait-based approaches to the seasonal succession of phytoplankton. The goal is to provide a 

quantitative trait-based template for seasonal succession patterns under eutrophic and oligotrophic 

conditions. I use a more than 50-year long seasonally resolved dataset from the Rappbode 
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Reservoir, which experienced an abrupt shift in nutrient conditions, to address the following 

questions: 

• Are there reoccurring seasonal patterns in phytoplankton trait dynamics? How does the 

occurrence and dominance of specific trait combinations develop along the season? (Q1.1) 

• Does the trait composition mirror biotic and abiotic environmental pressures along the season? 

(Q1.2) 

• Are there differences in the seasonal succession of traits between nutrient rich and nutrient 

deficient years? (Q1.3) 

• Is the functional trait composition of phytoplankton communities influenced by nutrient 

reductions? (Q1.4) 

2.2 Using trait based approaches to identify causal relationships for 

the decoupling of nutrients from its ecological response 

While chapter 3 focused on seasonal dynamics of functional traits, chapter 4 concentrates on long-

term trends. Phosphorous is the main limiting element for phytoplankton growth in the Rappbode 

Reservoir (other nutrients such as nitrogen can be excluded), like in most other freshwater systems 

(Hecky & Kilham, 1988). After phosphorus concentrations have been reduced around 1990 in the 

Rappbode Reservoir, phytoplankton biomass did not decrease in the long run. This decoupling of 

nutrients from its biological response is unexpected given Vollenweider´s (1971) assumption of a 

linear response of phytoplankton biomass to phosphorus concentrations. However, just like the 

Rappbode Reservoir, a considerable number of other lakes and reservoirs deviate from 

Vollenweider´s rule, showing no response of phytoplankton biomass to decreasing nutrient 

concentrations. The reasons for these nonlinearities are largely unresolved (Jeppesen et al., 2005;  

Tadonleke et al., 2009;  Weyhenmeyer & Broberg, 2014;  Horn et al., 2015), though highly 

relevant, since regulatory frameworks are based upon the assumption that ecosystem processes are 

reversible and hence reductions in nutrients lead to ecological improvements. Therefore, by using 

a trait-based approach, chapter 4 aims to shed light on the processes and mechanisms leading to a 

decoupling of nutrient availability (total phosphorus) from phytoplankton biomass. The following 

questions will be addressed: 
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• In which way did the phytoplankton community quantitatively react to strong nutrient 

reductions? (Q2.1) 

• What do the results from Rappbode Reservoir imply for the reversibility of ecosystems? (Q2.2) 

• What causes the decoupling of phytoplankton biomass from inorganic nutrients? Can a 

functional approach help to shed light on the mechanisms preventing a decrease in biomass 

after phosphorus decreased? (Q2.3) 

2.3 Using trait-based approaches to understand the impact of 

phytoplankton composition on the geochemical environment 

While chapters 3 and 4 focus on the impact of the abiotic environment on phytoplankton functional 

traits and their dynamics, chapter 5 studies how phytoplankton shapes its geochemical 

environment, especially the distribution of oxygen. As outlined before in section 1.4, the dynamics 

of phytoplankton communities and their functional traits also influence the abiotic environment, 

e.g. the distribution of nutrients in the water column and their burial in the sediments. Also the 

concentrations and distribution of oxygen in the water body are largely influenced by 

phytoplankton. It is well studied, that microbial degradation of dead phytoplankton that has settled 

to the bottom sediments can cause oxygen depletion in the lower hypolimnion (Kalff, 2002). It is 

also well known, that autotrophic organisms can cause supersaturation with oxygen in the 

epilimnion when mixing is absent and photosynthetic activity is high (Kalff, 2002). Oxygen 

maxima also commonly occur in the metalimnion of lakes (Leach et al., 2017) and have been 

attributed to oxygen production by photosynthesizing phytoplankton, which form a deep 

chlorophyll maxima in the metalimnion (Parker, Wenkert & Parson, 1991;  Stefan et al., 1995;  

Wilkinson et al., 2015). The phytoplankton species, which are responsible for metalimnetic 

oxygen maxima, possess specific functional traits to be able to grow in the metalimnion of lakes. 

Already Reynolds et al. (2002) grouped a couple of species to form a functional group that is 

typical for metalimnia. As mentioned in section 1.3.2, these metalimnetic species are characterized 

by low light requirements and the possession of phycobilin pigments, which facilitates the use of 

a wider range of the light spectrum (Vila & Abella, 2001;  Camacho, 2006). The ability for vertical 

movement through flagella or buoyancy is another important trait for metalimnetic species in order 

to migrate between nutrient-rich deeper layers and upper layers with higher light availability 
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(Salonen, Jones & Arvola, 1984;  Camacho, Vicente & Miracle, 2001). While the effect of 

metalimnetic species on the occurrence of oxygen maxima in the metalimnion is rather well 

studied, it is unknown if metalimnetic species could also be indirectly responsible for metalimnetic 

oxygen minima by loading the metalimnion with organic biomass that can sustain high oxygen 

consumption rates. Metalimnetic oxygen minima are a phenomenon commonly observed in 

stratifying lakes during summer, but the reasons for their formation are to my surprise only rarely 

studied (Wetzel, 2001;  Kreling et al., 2017). Hence, in chapter 5 of this thesis I want to close this 

knowledge gap and investigate if metalimnetic oxygen minima can be caused by metalimnetic 

algae and their functional traits. The following questions will be addressed: 

• Is there evidence from the Rappbode Reservoir that phytoplankton traits shape their abiotic 

environment? (Q3.1) 

• What implication has the vertical distribution of phytoplankton and their functional traits for 

oxygen depletion? Does the functional group of metalimnetic species contribute to the 

formation of metalimnetic oxygen minima? (Q3.2) 
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3.1 Abstract 

1. Understanding and explaining the structure of communities in response to environmental 

gradients is a central goal in ecology. Trait-based approaches are promising but yet rarely 

applied to understand community dynamics in response to changing environmental conditions.  

2. Here we investigate seasonal succession patterns of functional traits in phytoplankton 

communities and how nutrient reductions (oligotrophication) alter these patterns. We used 

phytoplankton data from 40 years of observation from the Rappbode Reservoir (Germany), 

which underwent a strong shift in trophic conditions, and translated taxonomic composition 

into functional traits by assigning trait values compiled from the literature.  

3. All studied traits (morphological, behavioral and physiological traits) responded to changing 

environmental conditions and showed consistent, reoccurring seasonal developments. The 

seasonal succession of phytoplankton communities was shaped by a trade-off between small 

celled, fast growing species that are able to rapidly incorporate existing resources (r-strategists) 

and large celled species with more complex and efficient mechanisms to exploit scarce mineral 

nutrients or acquire previously unexploited nutrient pools (k-strategists). In summer, when 

nutrients were scarce, the k-strategy was prevailing (important traits:  phosphate affinity, 

nitrogen fixation, motility and mixotrophy). During the rest of the year, nutrients and 

turbulence were high and r-strategists dominated (important traits: maximum growth rate, light 

affinity).  
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4. A comparison between eutrophic and oligotrophic years revealed that the main features of 

functional trait succession were largely preserved, but intra-annual fluctuations from spring to 

summer were stronger during eutrophic years. Nutrient reductions mainly affected functional 

traits and biomass in spring, while in summer the functional community composition changed 

little.  

5. Synthesis. This study provides for the first time a quantitatively supported functional template 

for trait-based succession patterns in lakes under different nutrient conditions.  By translating 

taxonomic composition into trait information, we demonstrate that the quantification of 

functional characteristics enables ecological interpretation of observed community dynamics 

and provides not only a testable template but also a powerful tool towards a more mechanistic 

understanding. The quantification of functional traits further improves the predictability of 

community shifts in response to changing environmental conditions and thus opens new 

perspectives for predictive limnology using lake-ecosystem models. 

3.2 Introduction 

Understanding and explaining the structure and dynamics of biotic communities in response to 

environmental gradients is a central goal in ecology. As planktonic organisms in aquatic systems 

have short generation times (Collins, Rost & Rynearson, 2014), are very dynamic and are highly 

influenced by abiotic factors as well as biotic interactions, they are well-suited to study the reaction 

of communities to environmental changes. In temperate lake ecosystems, seasonal changes in 

environmental factors such as temperature, light intensity, nutrient concentration or grazers induce 

shifts in phytoplankton abundance and species composition (Tilman, Kilham & Kilham, 1982;  

Bergquist, Carpenter & Latino, 1985;  Vrede et al., 1999;  Stomp et al., 2007), referred to as 

seasonal succession. Explaining and predicting these distinct, reoccurring seasonal patterns has 

long been in the focus of freshwater ecologists (Sommer et al., 1986;  Margalef, 1978;  Reynolds, 

1984a). Early theoretical models describe phytoplankton succession mainly as a consequence of 

turbulence and nutrient availability (Margalef, 1978;  Reynolds, 1988). They predict the 

occurrence of r-strategists, which are characterized by small cell sizes and high maximum growth 

rates, under high nutrient and high turbulence conditions, as they prevail during spring.  In summer, 

when nutrient availability and turbulence are low, k-strategists with larger cells, slow growth, but 
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high nutrient affinities and diverse strategies for nutrient acquisition (e.g. mixotrophy, nitrogen 

fixation) are expected to dominate (Margalef, 1978;  Reynolds, 1988). The most popular and 

widely cited conceptual model about plankton succession is the verbally formulated plankton 

ecology group (PEG) model, which provides a standard template to describe dynamics of total 

biomass and composition of plankton communities in response to specific driving environmental 

factors in the temperate zone (Sommer et al., 1986;  Sommer et al., 2012). For example, the PEG 

model predicts a shift from small, edible algae in spring towards larger, inedible algae in summer 

as a response to increased grazing pressure from zooplankton. Besides changes along the seasonal 

development, the species composition of phytoplankton communities has also been shown to vary 

along nutrient gradients, e.g. during oligotrophication (Gaedke, 1998;  Anneville et al., 2002b;  

Jeppesen et al., 2005). Interestingly, studies about oligotrophication focus mostly on inter-annual 

changes, while intra-annual changes in succession patterns with trophic status have rarely been 

addressed.  

Community dynamics of phytoplankton along seasonal or along nutrient gradients are traditionally 

described taxonomically. As the basal level in taxonomy, species can be conceptualized by a 

characteristic information about morphological and physiological features, however predictions at 

species level are notoriously difficult or maybe even impossible to make (Reynolds, 2000). 

Therefore, higher taxonomic units (e.g. diatoms, cyanobacteria) are widely used to evaluate 

phytoplankton distributions (Wetzel, 2001). However, phylogenetic classifications of organisms 

have the disadvantage that their ecological functions are heterogeneous within these higher 

taxonomic units and hence often do not reflect their ecological niche. For instance species from 

the same taxonomic group might show very different ecological adaptations, while species from 

different taxonomic groups can share similar ecological strategies  (e.g. mixotrophy or the ability 

to form colonies; Salmaso, Naselli-Flores & Padisák, 2015).  

Trait-based approaches are a promising tool to overcome these drawbacks and to better reflect the 

ecological properties of (and diversity within) a community. While much work has been done on 

classifying species into functional groups (e.g. Reynolds, 1984a;  Reynolds et al., 2002;  Reynolds, 

1980;  Padisák, Crossetti & Naselli-Flores, 2008;  Kruk et al., 2002;  Kruk et al., 2017;  Salmaso, 

Naselli-Flores & Padisák, 2015), the study of individual functional trait dynamics in natural 

communities and their links to abiotic drivers as well as to fitness and survival (e.g. maximum 
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growth rate or phosphate affinity) is still in its early stages in aquatic ecology (Litchman et al., 

2007;  Litchman & Klausmeier, 2008;  Litchman et al., 2012;  Weithoff, 2003). Functional traits 

can provide a mechanistic foundation for understanding and predicting community structure and 

dynamics across environmental gradients (Edwards, Litchman & Klausmeier, 2013b;  Thomas et 

al., 2012) and bridge from the level of organisms to that of ecosystems (Falkowski, Barber & 

Smetacek, 1998;  Litchman et al., 2015). However, studies about the seasonal dynamics of 

phytoplankton traits are rare, especially for physiological traits requiring detailed lab-

measurements. We are only aware of Edwards, Litchman and Klausmeier (2013a) and Edwards 

(2016), who studied the seasonality of maximum growth rate, light and nutrient utilization traits  

in a marine ecosystem.  

To the best of our knowledge there are no studies investigating the seasonal dynamics of eco-

physiological traits (i.e. derived from quantitative lab-measurements, for simple binary traits refer 

to Weithoff, Rocha & Gaedke, 2015) in a freshwater habitat. Our study aims at closing this 

knowledge gap and investigates to which extent eco-physiological traits conceptualize functional 

changes in phytoplankton communities along inter- and intra-annual environmental gradients in 

lakes. Additionally, we analyze how the impact of nutrient reductions alters the seasonal patterns 

of these functional traits. We take advantage of a 50-year long, seasonally resolved data set from 

the German Rappbode Reservoir, which underwent a strong and abrupt shift in trophic conditions 

in the nineties (Wentzky et al., 2018). This allows us to analyze functional trait succession under 

nutrient deficient and under enriched conditions (average TP concentrations: 0.13 mg/L and 0.02 

mg/L respectively), without the confounding effects of geographical location and lake 

morphometry that are problematic when making cross-system comparisons (e.g. Edwards, 

Litchman & Klausmeier, 2013b). In contrast to previous studies (Edwards, Litchman & 

Klausmeier, 2013b;  Edwards, Litchman & Klausmeier, 2013a;  Klais et al., 2017;  Kruk et al., 

2015;  Weithoff & Gaedke, 2016), we describe phytoplankton communities by a variety of relevant 

traits from independent categories, including morphological, behavioral and physiological traits 

(cell size, silica use, mixotrophy, motility, nitrogen fixation, buoyancy, ability to form chains and 

colonies, edibility for Daphnia, maximum growth rate, phosphate affinity and light affinity). With 

our trait-based approach we intend to achieve an understanding of the composition and dynamics 

of freshwater phytoplankton communities in response to seasonal and long-term environmental 

changes. Moreover, our goal is to generalize the existing patterns in order to provide a functional 
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template for trait-based succession patterns in temperate lake ecosystems, which is quantitative 

and therefore largely extends the verbally formulated PEG model. Such a trait-based, quantitative 

approach will push forward research about seasonal phytoplankton developments, since it allows 

for a predictive community ecology that can be statistically tested and is capable of making 

comparisons across different environments.  

3.3 Methods 

3.3.1 Study site and sampling 

The Rappbode Reservoir is Germany´s largest drinking water reservoir and is located in Harz 

Mountains, a mid-mountain reach in central northern Germany. The Rappbode Reservoir is a 

mono- to dimictic water body, which underwent a re-oligotrophication process around 1990. 

Within a very short time period of 2-3 years total phosphorus concentrations in the epilimnion 

declined from approximately 0.12 to 0.02 mg/L (Wentzky et al., 2018). For more details about the 

Rappbode system we refer to Rinke et al. (2013), Friese et al. (2014) and Wentzky et al. (2019). 

For this study, we used water samples collected at 0, 5 and 10 m depth between 1970 and 2016 

approximately six times a year in monthly intervals during the growing season (March until 

October). Additionally, mixed samples were taken in the water layer from 0 to 10 m depth every 

week between 1980 and 2016 for environmental abiotic parameters and between 1980 and 2008 

for phytoplankton. More details about sampling methods and sample analysis are given in 

Wentzky et al. (2018). For further analysis, we calculated depth-weighted average values from the 

data collected at 0, 5 and 10 m depth in order to make them comparable with the mixed water 

samples collected at 0 to 10 m depth and both data sets were merged. These measurements cover 

most of the epilimnetic layer. In this study, we used data for phytoplankton community 

composition, soluble reactive phosphorus (SRP), water temperature, nitrate (NO3), silica (Si), 

oxygen, pH and secchi depth (for details on measurement methods see Wentzky et al., 2018).  

3.3.2 Trait selection 

For the present study we selected functional traits that are considered crucial for survival, growth 

or reproduction of phytoplankton (see Table 3.1): Size of individual cells, phosphate affinity, light 
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affinity, maximum growth rate, silica use, motility, buoyancy, mixotrophy, nitrogen fixation, 

ability to form chains/colonies and edibility for Daphnia. Detailed descriptions of the selected 

phytoplankton traits and their importance for fitness are given in Table 3.1 and in Weithoff (2003), 

Litchman and Klausmeier (2008), Litchman et al. (2010) and Klais et al. (2017). For each species 

in the dataset the mentioned functional trait values were assigned. Cell sizes were taken from local 

measurements conducted on the organisms present in the Rappbode Reservoir. The cell size 

always refers to the volume of one single cell, even when organisms form chains or colonies, and 

hence does not exactly represent grazing resistance of algae. Trait values for morphological and 

behavioral traits (motility, mixotrophy, buoyancy, nitrogen fixation, silica use and chain and 

colony formation) were assigned based on available trait compilations (e.g. 

https://www.riinaklais.com/phytotraits, Weithoff (2003)) and additional literature review and web 

search. These latter traits are binary, where a value of 1 means possession of this trait and 0 means 

absence. While information about morphological and behavioral traits were relatively easy to 

compile, physiological trait values only exist for a subset of species, since they are measured on 

cultures in the laboratory. Hence, to be able to assign trait values to every member of  the 

community we took advantage of a method developed by Bruggeman, Heringa and Brandt (2009) 

and Bruggeman (2011) allowing to estimate the missing values for the traits maximum growth 

rate, phosphate affinity, light affinity and edibility for Daphnia. Missing trait values were inferred 

from available laboratory measurements on related species with the help of phylogenetic 

relationships and morphology-based power-law relationships. For this study, Bruggeman´s model 

was extended to estimate the light affinity trait, since it was originally not included. For more 

details on the model see supporting information S9.1. 

Table 3.1: Overview about phytoplankton functional traits used in this study, including their 

trait type, range and categories, definition and ecological function. Trait type and 

ecological function are assigned according to (Litchman & Klausmeier, 2008). 

Trait Trait type Range and 

categories 

Definition Ecological 

function 

Cell size Morphological 8 - 200000 

µm3 

Volume of a single cell  Reproduction, 

resource 

https://www.riinaklais.com/phytotraits
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acquisition and 

predator 

avoidance 

Phosphate 

affinity 

Physiological 1.52 – 

1504.98 L  

µmol-1 d-1 

Ratio of maximum 

growth rate to half-

saturation coefficient. 

Phosphorous uptake 

ability. Competitive 

ability under phosphate 

limitation. 

Resource 

acquisition 

Light 

affinity 

Physiological 0.004-0.07 

µmol 

quanta-1 m2 

s day-1 

Initial slope of the 

growth-irradiance curve. 

Growth ability under 

light limitation. Ability 

to tolerate low 

irradiances. 

Resource 

acquisition 

Maximum 

growth rate 

Physiological 0.20 - 1 .18 

d-1 

Ability for fast uptake of 

nutrients and fast 

growth. Competitive 

ability under high 

nutrient concentrations. 

Resource 

acquisition 

Silica use Physiological Presence or 

absence 

Need to use silica as cell 

wall material 

Resource 

acquisition 

Motility Behavioral Presence or 

absence 

The possession of 

flagella. Ability to 

actively move in the 

water column to position 

with optimal conditions. 

Resource 

acquisition and 

predator 

avoidance 
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Mixotrophy  Physiological 

and behavioral 

Presence or 

absence 

Potential to ingest 

bacteria (phagotrophy) 

Resource 

acquisition 

Buoyancy Behavioral Presence or 

absence 

Possession of gas 

vacuoles. Ability to 

adjust position in the 

water column to depth 

with optimal conditions. 

Resource 

acquisition and 

predator 

avoidance 

Nitrogen 

fixation  

Physiological Presence or 

absence 

Potential to fix 

atmospheric nitrogen. 

Competitive advantage 

under nitrogen 

limitation. 

Resource 

acquisition 

Chain and 

colony 

Morphological Presence or 

absence 

The potential to form 

colonies or chains 

Resource 

acquisition and 

predator 

avoidance 

Edibility 

for 

Daphnia 

Behavioral 0.07 – 2.5  Susceptibility against 

predation by daphnia. 

The rate of prey 

consumption relative to 

the rate at which the 

favorite prey is 

consumed. 

Predator 

avoidance 

 

3.3.3 Phytoplankton community data 

To compare the seasonal development between nutrient rich and nutrient poor years, the dataset 

was split into two periods of equal length, based on TP concentrations:  The eutrophic period 

covered the nutrient rich years between 1970 and 1990. During the eutrophic period the annual 
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mean TP concentration was on average 0.13 mg/L and ranged from 0.11 to 0.20 mg/L. The 

oligotrophic period covered the nutrient poor years from 1996 till 2016, with an average annual 

mean TP concentration of 0.022 mg/L, a minimum of 0.006 mg/L and a maximum of 0.048 mg/L. 

The number of phytoplankton samples (after aggregation of vertically resolved samples into 

vertically averaged values between 0-10 m) was 555 for the eutrophic period and 596 for the 

oligotrophic period. For environmental parameters, 557 samples were available for the eutrophic 

period and 1050 samples for the oligotrophic period.  

To compare different seasons (see section: Synthesis of seasonal differences in trait composition), 

the dataset was further divided into spring, clearwater, summer and winter phase. The  spring phase 

covered the months March, April and May (DOY 60-151); summer was defined as the period from 

July until October (DOY 182-304), winter from December until February (DOY 305-59); in June 

usually the clearwater phase appeared (DOY 152-181). The number of available samples during 

the eutrophic period was 158 for spring, 67 for clearwater phase, 215 for summer and 115 for 

winter season. For the oligotrophic period 161 samples were available for spring, 63 for clearwater 

phase, 238 for summer and 134 for winter months. The most abundant species during the different 

seasons in the Rappbode Reservoir are presented in Table S.9.2.1 in the supporting information. 

3.3.3.1 Ecological trait space of the phytoplankton community 

After assigning trait values to each species, we transformed this trait matrix of species into a 

distance matrix using principal components analysis (PCA) based on Euclidean distances, which 

is an ordination technique used for visualization of multivariate data. The PCA result can be 

interpreted as a functional trait space, where the species are separated according to their ecological 

traits. This trait space gives information about the location of species in relation to their traits and 

shows how close different traits are related. There were 87 species with unique trait combinations 

present in the dataset. Species in the PCA plot were phylogenetically aggregated into one of the 

following groups: diatoms, cyanobacteria, chlorophytes, dinoflagellates, cryptophytes, 

chrysophytes, euglenophytes and desmids.  
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3.3.3.2 Seasonal development of environmental parameters, phytoplankton biomass 

and traits  

The taxonomic composition of each sample in our data set was translated into a matrix of trait 

values by adding the characteristic combination of traits to each species. This converted the list of 

species and their corresponding biovolumes into a matrix of biovolumes and trait values. 

Subsequently, community-weighted mean (CWM) values were calculated for each sample and 

each functional trait, in order to describe temporal variability of the individual traits. For 

quantitative traits and cell size the CWM is the biomass-weighted mean trait value (or mean cell 

size, respectively) of organisms in the sample.  For the qualitative traits the CWM represents the 

biomass proportion of species possessing the trait value 1, hence the CWM will have a value 

between 0 and 1.   

For comparison of the seasonal development of environmental parameters and individual trait 

values between the eutrophic and oligotrophic period, generalized additive models (GAM) were 

fitted to the intra-annual development of environmental variables and community-weighted mean 

trait values, using the method gam() from the R-package mgcv (Wood, 2017). In a GAM, 

relationships between predictors and dependent variables follow smooth patterns and can be 

nonlinear. Due to their flexible predictor functions and their easy interpretation, GAMs can 

uncover hidden patterns in the data, particularly in case of non-linearities and abrupt changes, and 

are hence an attractive tool for analyzing environmental time series. Since the dependent variable 

was specified by a Gaussian normal distribution (default setting for family chosen in the mgcv 

package), the GAM fit can have negative values. 

3.3.3.3 Synthesis of seasonal differences in trait composition 

As a graphical method to synthesize the information obtained from the individual traits and to 

evaluate the importance of selected traits for the eutrophic and oligotrophic period, radar charts 

were created for each season, using the “radarchart” function from the R-package fmsb (Nakazawa 

& Nakazawa, 2018). In radar charts, multiple variables, here traits, can be represented on axes 

starting from the center. The axes have equal distances between each other and are arranged 

radially around the center. For the charts, the average of the community-weighted mean trait values 

was calculated for each period (eutroph vs. oligotroph) and each phase (spring, clearwater, 
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summer, winter). These trait mean values were drawn into the radar chart, where the data length 

of a spoke is proportional to the magnitude of the trait value relative to the maximum magnitude 

across all sampling points. Minima and maxima of the axes are the same for all plots.  

3.4 Results 

3.4.1 Ecological trait space spanned by the species 

Separating the phytoplankton species according to their functional traits in a PCA (Fig. 3.1) 

yielded 27 % and 20 % of explained variation in the first two principal components. The traits 

buoyancy and nitrogen fixation were closely related because both only occurred in cyanobacteria. 

The silica use trait was located opposite of the traits nitrogen fixation and buoyancy, indicating a 

good separation between diatoms (mostly in the upper half of Fig. 3.1) and cyanobacteria (lower 

half of Fig. 3.1). Larger cell size was associated with motile and mixotrophic species. In contrast, 

species with smaller cell size occurred together with higher maximum growth rate, edibility for 

Daphnia, light affinity and chain and colony forming ability. The traits mixotrophy and motility 

were ordinated in far distance to high maximum growth rate indicating a trade-off between 

mixotrophy and fast growth, or in other words, characterize mixotrophs as K-strategists. Species 

from the taxonomic groups diatoms and chlorophytes, dinoflagellates, desmids, chrysophytes and 

cryptophytes showed different degrees of overlap in trait-space. While most of the groups were 

well separated and obviously occupy specialized areas in the trait space, e.g. diatoms, 

dinoflagellates and cyanobacteria, the chlorophytes apparently cover a wider trait space and 

constitute the most trait-diverse phylogenetic group in our analysis. This implies that species from 

different phylogenetic groups can share similar functional traits. Among the well separated groups, 

diatoms and cyanobacteria stand out in terms of the large area they occupied in the trait space 

while dinoflagellates, chrysophytes and euglenophytes remain relatively constrained to a narrower 

trait space. This observation has a sampling bias because far more diatom and cyanobacterial 

species are in the data set than species from the other groups; but nevertheless it is worth 

mentioning that trait diversity in our 46 years long record of phytoplankton communities are higher 

for diatoms and cyanobacteria compared to the other groups. Phylogenetic relatedness was 
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therefore a poor predictor for functional characterization, particularly for chlorophyte and diatom 

species.  

Fig. 3.1: Trait based ordination (PCA) of phytoplankton species along the two main 

axes, representing the 2-dimensional trait space. The different colors represent the 

algal group, where the species belongs to.  

3.4.2 Seasonal development of environmental variables and phytoplankton 

biomass 

The phytoplankton biomass and environmental parameters, including water temperature, soluble 

reactive phosphorus, nitrate, silica, oxygen, pH and secchi depth showed clear seasonal patterns 

(Fig. 3.2) and seasonality explained between 3.6 % (Secchi depth) and 94.6 % (water temperature) 

of variability in the data (Table S.9.2.2 supporting information). As indicated by the GAMs, the 

annual time series of biomass during the eutrophic period differed substantially from that of the 
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oligotrophic period (Fig. 3.2a). While eutrophic years showed a clear biomass maximum during 

spring between day 100 and 150, followed by a biomass minimum, representing the clearwater 

phase, seasonal fluctuations were less pronounced during oligotrophic years and biomass was more 

equally distributed over the season. Water temperature was very well explained by seasonality 

(>90% explained deviance, Table S.9.2.2 supporting information). Temperatures were higher 

during the oligotrophic period, especially in summer (Fig. 3.2b). This points towards increased 

summer stratification due to climate warming during recent years.  

SRP concentrations in the epilimnion were high during winter and early spring, decreased after 

the spring bloom from day 150 onwards, and then increased again in autumn after the offset of 

stratification when nutrients got re-mixed into upper water layers (Fig. 3.2c). Besides higher SRP 

concentrations during the whole year in eutrophic years, the seasonal differences in SRP 

concentrations were also far more pronounced than during oligotrophic years. Nitrate 

concentrations peaked around day 100 and decreased from then on until late summer (Fig. 3.2d) 

but never reached limiting concentrations for algae. The seasonality for both periods showed 

synchronous dynamics, with higher NO3 concentrations during eutrophic years. Silica 

concentrations during the eutrophic period were higher in spring and lower in summer compared 

to the oligotrophic period (Fig. 3.2e). The lower Si concentrations in eutrophic summers were 

associated with higher shares of silica using phytoplankton in spring, which removed Si from the 

epilimnion due to sedimentation.  

Oxygen concentrations in the epilimnion were higher during eutrophic years (Fig. 3.2f). Also a 

more pronounced oxygen peak was visible in spring from day 100 to 150, which indicated higher 

photosynthetic activity during eutrophic years. This corresponds to a stronger seasonality of pH 

during high nutrient years, the highest pH values were found in eutrophic summers (Fig. 3.2g). 

The light conditions were poorest at the time of the spring bloom around day 140 for both periods, 

as indicated by low secchi depths (Fig. 3.2h). Secchi depth increased afterwards and peaked in late 

summer during the time of maximum stratification. The seasonality in secchi depths for the 

eutrophic period was not as clear as for other environmental parameters, as displayed by wide 

confidence intervals and low explanatory power of the annual GAM. In summary, phytoplankton 

biovolume and most of the abiotic environmental variables showed a stronger seasonal 
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development in eutrophic years while dynamics during the oligotrophic years remained lower, and 

in some variables no clear seasonal patterns could be identified under nutrient-poor conditions.  

  

  

  

  
Fig. 3.2: Seasonal development of (a) phytoplankton biomass and environmental 

parameters, including (b) water temperature, (c) soluble reactive phosphorus (SRP), (d) 

nitrate (NO3), (e) silica (Si), (f) oxygen, (g) pH and (h) light conditions (secchi depth), 
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during the eutrophic (red) and oligotrophic (blue) period in the Rappbode Reservoir. The 

solid lines are the smooth terms from the generalized additive models fitted to the data; the 

shades indicate the confidence intervals of these fits. 

3.4.3 Seasonal development of phytoplankton functional traits 

Many individual functional traits exhibited a recurrent seasonal pattern during the eutrophic as 

well as during the oligotrophic period, depicted by the GAMs of the annual time series (Fig. 3.3). 

The variation in trait data explained by seasonality, varied between 5 % and 48.9 % (Table S.9.2.2 

supporting information). Similar to the seasonal variations in abiotic variables, for most traits a 

more pronounced seasonality was found during eutrophic years. This was indicated by the larger 

differences in trait composition between spring and summer, shown by the radar plots (Fig. 3.4), 

as well as by the higher explanatory power of the GAMs during nutrient-rich compared to nutrient-

poor years (Table S.9.2.2 supporting information). For many traits, the values for the eutrophic 

and oligotrophic time series were very different during spring, while they became more similar in 

summer. This higher overlap in summer was also visible in the GAMs (Fig. 3.3, e.g. for the traits 

maximum growth rate, P-affinity, light affinity, motility, silica use) and in the radar plots (Fig. 

3.4). This converging trait composition towards summer indicates that nutrient limitation is a 

dominant driver of phytoplankton community composition irrespective of the trophic state. In 

contrast to this, the diverging trait composition between oligotrophic and eutrophic states during 

spring clearly reflects the difference in nutrient availability. While oligotrophic spring 

communities were already under the influence of nutrient limitation, eutrophic spring communities 

showed no sign of nutrient limitation and were selected for r-strategists having high maximum 

growth rates and high light utilization.  
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Fig. 3.3: Seasonal development of different phytoplankton traits, including (a) size of 

individual cells, (b) phosphate affinity, (c) light affinity, (d) maximum growth rate, (e) need 

to use silica for cell walls, (f) motility, (g) mixotrophy, (h) buoyancy, (i) ability to fix 

nitrogen, (j) ability to form chains or colonies, (k) edibility for Daphnia, during the 

eutrophic (red) and oligotrophic (blue) period in the Rappbode Reservoir. The solid lines 

are the smooth terms from the generalized additive models fitted to the data; the shades 

indicate the confidence intervals of these fits.  

At the same time, the general succession patterns of plankton traits along the season also displayed 

some similarities between nutrient-rich and nutrient-poor years (Fig. 3.3 and 3.4). Independent of 

nutrient status, the spring community was characterized by algae with small size of individual 

cells, higher maximum growth rates, higher light affinities, the need to use silica and the ability to 

form chains and colonies. Towards summer these traits became less important and the abundance 

in large, phosphate affine, motile, mixotrophic, nitrogen fixing and buoyant species increased. For 

example, from spring to summer the average size of individual cells increased from around 1500 

to 8000 µm3 and phosphate affinity from around 100 to 240 L µmol-1 d-1, while maximum growth 

rate decreased from around 0.86 to 0.73 d-1 and the share of silica users from almost 100 to 45 %. 

In winter, the community developed back towards higher maximum growth rate and light affinity 
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and a higher share of silica users and colonial algae - a community composition similar to spring. 

Noteworthy, the seasonal trends in coloniality were mainly shaped by diatoms, as the community 

changed from a dominance of chain- forming diatoms in spring (e.g. Asterionella formosa and 

Tabellaria fenestrata) towards a more diverse community in summer with lower shares of colonial 

diatoms, but higher shares of single celled organisms such as Cryptomonas, Ceratium hirundinella 

or Peridinium. Throughout the year, mobile and mixotrophic species as well as algae edible for 

Daphnia were more abundant during the oligotrophic period (Fig. 3.3f, 3.3g and 3.3k). Especially 

the increase in mixotrophy with oligotrophication was very prominent, which have gone up from 

less than 10 % throughout the year in eutrophic years to almost 30 % in nutrient-poor summers. In 

summary, the calculation of community-averaged traits (Fig. 3.3 and 3.4) allowed for a 

quantitative assessment of changes in functional characteristics of the plankton community over 

seasonal and nutrient gradients.  

 

   

  



3 Seasonal succession of functional traits in phytoplankton communities and their interaction 
with trophic state 

 

38 
  

Fig. 3.4: The radar charts represent the importance of selected phytoplankton traits (each 

spoke represents one trait) for the eutrophic (red) versus the oligotrophic period (blue), 

during (a) spring (March, April, May), (b) clearwater phase (June), (c) summer (July, 

August, September, October) and (d) winter (November, December, January, February).  

The data length of a spoke is proportional to the magnitude of the trait value relative to the 

maximum magnitude across all data points. The axis minima and maxima are the same for 

all plots. 

3.5 Discussion 

The trait space spanned by the phytoplankton species (Fig. 3.1) showed that phosphate affinity, 

mixotrophy and motility increased with increasing cell size, while maximum growth rate and light 

affinity decreased (Banse, 1976;  Finkel, 2001;  Tang, 1995;  Edwards et al., 2015). This basically 

indicates a trade-off between r strategists (small cell size, high maximum growth rate and light 

affinity, low efficiency of resource use) and larger celled k strategists with slower growth rates, 

but more complex mechanisms for survival (high mixotrophy, motility, N-fixation) and high 

efficiency to use mineral nutrients (high P-affinity) (Leibold, 1997;  Huisman & Weissing, 1995;  

Grover, 1991;  Litchman & Klausmeier, 2001;  Sommer, 1986b). These trade-offs among 

functional traits drive species replacements along environmental gradients and are therefore the 

basis for the seasonal succession patterns observed in Rappbode Reservoir.  

3.5.1 Functional traits quantitatively show a change from r to k strategists from 

spring to summer 

The development of phytoplankton traits showed distinct reoccurring patterns over the season, 

which are conceptualized in Fig. 3.5. These successional trait patterns were largely retained with 

trophic status, which is considerable given the large differences in nutrient concentrations between 

the two trophic periods (average TP concentrations: 0.13 mg/L for eutrophic and 0.02 mg/L for 

oligotrophic years). All traits, except the edibility for Daphnia trait (which is discussed separately 

below), clearly mirrored the environmental pressures over the year, e.g. high P-affinity during P 

limitation in summer and high light affinity during light limitation in spring. Major differences in 

functional trait composition exist between the summer period, when the reservoir was strongly 

stratified, and times when a large mixing layer was present. In spring, when turbulence and nutrient 
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input was high, species with small cell sizes and high growth rates (r strategists) dominated 

(Reynolds, 1984b;  Sommer et al., 1986;  Gaedke, 1992). Silica users were also most abundant 

under well-mixed conditions such as in spring. This was probably because silica users have high 

sedimentation velocities due to their siliceous cell wall and were therefore favored by turbulence 

preventing them from sinking out of the photic zone (Sommer, 1984;  Trimbee & Harris, 1984). 

The mixing of the water column and the poor light conditions in spring gave a competitive 

advantage to species with high light affinities (Yoshiyama et al., 2009;  Edwards, Litchman & 

Klausmeier, 2013a), i.e. the ability for more efficient utilization of low light, since they are better 

adapted to fluctuating light conditions. Phosphate affinity and alternative strategies for mineral 

nutrient acquisition, such as the traits nitrogen fixation and mixotrophy were less relevant in 

spring, since nutrient availability was high. Also the proportion of motile and buoyant species was 

lower in spring since cells were moved upwards towards the light by turbulence and hence 

investing in motility was not necessary (Jäger, Diehl & Schmidt, 2008;  Visser et al., 1996). 

  
Fig. 3.5: Seasonal patterns of phytoplankton biomass and the importance of different 

phytoplankton traits during eutrophic (left) and oligotrophic (right) years. The 

thickness of the horizontal bars indicates the seasonal change in relative importance 
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of the phytoplankton  traits cell size, maximum growth rate, light affinity, silica use, 

phosphate affinity, nitrogen fixation, motility and mixotrophy.  

In contrast, turbulence and nutrients were low in summer and light penetrated deeper into the water 

column. In response to the changed environmental conditions phytoplankton developed different 

functional strategies to survive. In agreement with predictions from ecological theory (Margalef, 

1978;  Wirtz & Eckhardt, 1996;  Litchman & Klausmeier, 2001), the summer community shifted 

towards slower growing species with larger cell sizes and higher tolerances towards periods of 

nutrient stress (k strategists). The nutrient limitation in summer provided opportunities for 

phosphate affine phytoplankton and the development of more complex nutrient acquisition 

strategies such as mixotrophy and nitrogen fixation. Organisms also invested in motility, which 

was either realized by the possession of flagella or by the regulation of buoyancy to overcome 

sedimentation losses and nutrient deficiency by migrating to deeper waters, which are important 

stressors during stratification in summer. This agrees with experiments, which observed a 

replacement of sinking taxa with buoyant and flagellated taxa with decreasing mixing depth (Jäger, 

Diehl & Schmidt, 2008;  Reynolds et al., 1983).  

In summary, our results quantitatively show a shift from r strategists (small cell size, high 

maximum growth rate, low efficiency of nutrient use) in spring to k strategists (large cell size, slow 

growth rate, complex mechanisms of resource acquisition) in summer, which is in line with verbal 

descriptions of the typical successional sequence observed in temperate lakes (Reynolds, 1984a;  

Sommer et al., 1986;  Margalef, 1978). The major advancement of our analysis is to put these 

findings into a quantitative framework using functional traits. This allows not only to provide a 

quantitatively characterized functional template for trait-based succession patterns (Fig. 3.5) but 

moreover provides a testable framework that is prone to advanced statistical and experimental 

analysis. 

3.5.2 Edibility trait shows unexpected seasonal pattern 

The seasonal development of the edibility trait, i.e. the susceptibility towards grazing by Daphnia, 

as well as the ability of algae to form chains and colonies was surprising as it was contrary to 

expectations and widespread belief. Theories about plankton succession, observations from lakes 

as well as modelling studies, predict that the edibility of phytoplankton decreases after the 
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clearwater phase towards summer and the algae composition responds to the increased grazing 

pressure by changing to less-edible, grazing resistant species (Lampert et al., 1986;  Sommer et 

al., 1986;  Vanni & Temte, 1990;  Gaedke, 1998;  Wirtz & Eckhardt, 1996) , which is e.g. attained 

by the ability to form chains, colonies or filaments (Gliwicz, 1977). We observed the opposite 

pattern with low edibility and high coloniality during spring and an increase in algae edible for 

Daphnia and low coloniality later in the year, when grazing pressure is expected to be high 

(Sommer et al., 1986), both in nutrient rich and deficient years. In line with our observation, also 

studies from other lakes reported an increase of inedible algae in the absence of severe grazing and 

higher shares of edible algae when grazing pressure was high (Agrawal, 1998;  Carpenter et al., 

1993), which contradicts predictions of defense theory (Coley, Bryant & Chapin, 1985;  

Fagerstrom, Larsson & Tenow, 1987;  Porter, 1973). Agrawal (1998) hypothesizes that this 

paradox outcome might be explained by selective and size-specific grazing by zooplankton. As 

herbivores vary in their ability to consume the same phytoplankton species (Lundstedt & Brett, 

1991), taxa that are edible to one grazer may be inedible to another. Hence edibility and resistance 

are specific to the particular grazer species, which can have opposing impacts on the phytoplankton 

composition (Sommer et al., 2001;  Knisely & Geller, 1986). In the present study edibility by 

Daphnia herbivores was considered. Possibly grazing pressure by other grazers, such as 

protozoans and calanoid or cyclopoid copepods, had an higher impact, resulting in algae being 

more edible towards Daphnia in summer. For example Rhodomonas spp. (130 µm3 cell volume) 

and Cryptomonas spp. (1500 µm3 cell volume) were characterized as rather edible to Daphnia, but 

have been shown to be spared by copepod grazing (Sommer et al., 2001). Hence high grazing 

pressure by copepods in summer might have triggered an increase in those algae species, which 

were inedible to copepods, but edible to Daphnia.  

This shows that the edibility of algae is predator-specific and thus difficult to define, making  

generalizations about the edibility of algae as proposed by the PEG model (Sommer et al., 1986) 

difficult. Moreover, it is possible that the unexpected trends in the colony formation and edibility 

for Daphnia trait were due to reasons other than grazing pressure. E.g. the low abundance of 

colonial and filamentous organisms during summer stratification might be related to higher sinking 

velocities of colonies (Reynolds, 2006) rather than to grazing pressure. Since different traits are 

not completely independent from each other and therefore not freely combinable, the unexpected 

trends in coloniality and edibility might have been shaped by trends in other more important traits. 
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This would indicate that losses by grazing were not as important in shaping the phytoplankton 

communities (top-down) and that the seasonal phytoplankton dynamics in the Rappbode system 

were primarily regulated by resource availability (bottom-up).  

3.5.3 Nutrient reductions affect biomass and functional traits mainly during 

spring 

While the general succession patterns of functional traits were independent of nutrient regime, the 

extent of the seasonal changes of functional traits from spring to summer clearly differed with 

trophic status. Phytoplankton biomass and functional traits exhibited lower fluctuations along the 

season during oligotrophic years, as the differences between the traits in spring and summer were 

relatively small. In contrast, in eutrophic years seasonality of biomass and traits was more 

pronounced and the differences between spring and summer conditions were large. The increase 

in seasonal changes of traits with nutrient concentration was expected, as eutrophic systems 

usually show larger seasonal fluctuations in biomass and phytoplankton cell size spectra and more 

successional stages (Sommer et al., 1986;  Sommer, 1986a;  Kalff, 2002;  Gaedke, Seifried & 

Adrian, 2004).  

Comparing the seasonal biomass development between the two trophic states, it became also 

evident that the strong phytoplankton spring bloom found in eutrophic years vanished with 

oligotrophication, while summer biomass changed little (or even became higher). This contradicts 

the PEG model which expects the disappearance of summer blooms with oligotrophication, while 

the magnitude of the spring bloom is less affected (Sommer et al., 1986). Internal lake processes 

might be a reason for the differences in biomass patterns between the Rappbode Reservoir and, for 

example, Lake Constance, which was a major study site for the development of the PEG model. 

While in Lake Constance internal nutrient regeneration was rather important, allowing higher 

biomasses in summer in eutrophic years (Tilzer et al., 1991;  Gaedke & Straile, 1994), in the 

Rappbode Reservoir nutrient recycling was not as significant during eutrophic years, since strong 

diatom blooms in spring removed nutrients from the epilimnion preventing the recycling of 

nutrients and thus the development of strong summer blooms (Wentzky et al., 2018). The loss of 

the pronounced spring bloom in the Rappbode Reservoir with oligotrophication was likely due to 

lower nutrient availability. In contrast, in Lake Constance the phytoplankton biomass during spring 
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did not change significantly with decreasing nutrients, probably because zooplankton-grazer 

biomass has decreased (Tilzer et al., 1991), which was not the case in Rappbode Reservoir 

(unpublished data).  

A study from Lake Constance also showed that differences in the functional composition after 

nutrient reduction were most apparent during nutrient limitation in summer (Weithoff & Gaedke, 

2016). In contrast, in the Rappbode Reservoir the largest changes with changing trophic status 

occurred in the spring community, while the traits in summer largely overlapped in the eutrophic 

and oligotrophic period. Hence, in oligotrophic years the functional composition of spring 

communities resembled summer communities, while in eutrophic years spring and summer 

communities were functionally very different. Intense nutrient limitation, which already occurred 

in spring during oligotrophic years, forced the community to adapt to low nutrient levels earlier in 

the year. This observation may provide an explanation for the relatively high summer biomasses 

observed in oligotrophic years in the Rappbode Reservoir (Wentzky et al., 2018). Since species 

adapted to low nutrient availabilities were already present in significant amounts in spring, they 

had longer time to develop high abundances during summer. In summary, our study shows that 

trophic status strongly affected biomass and functional composition during spring, contradicting 

previous theories and observations that expect the largest changes in summer (Sommer et al., 1986;  

Weithoff & Gaedke, 2016).   

3.5.4 Traits as a unifying concept in ecology 

Trait-based approaches allow for comparisons across different environments and habitats, despite 

different taxa, as taxonomic complexity is reduced to the unifying unit of functional traits. For 

example, comparing the results from this study with observations from marine habitats, the traits 

silica use, nitrogen fixation, buoyancy and mixotrophy (Klais et al., 2017) as well as light affinity 

and maximum growth rate (Edwards, 2016) exhibited similar seasonal patterns in freshwater and 

marine systems. Cell size, however, showed opposing seasonal patterns in marine and freshwater 

habitats. While cells were smaller in spring and larger in summer in freshwater systems, the reverse 

trend for cell size was observed in marine and brackish habitats (Acevedo-Trejos et al., 2015;  

Klais et al., 2017). In this way trait-based approaches can serve as a unifying concept in plankton 

ecology. In line with Weithoff and Beisner (2019), we encourage researchers to take advantage of 
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traits as a common currency to assess phytoplankton community structure across different 

gradients and systems, e.g. ranging from marine, over brackish to freshwater habitats. 

3.6 Conclusions 

The study provides a quantitatively supported functional template for phytoplankton succession in 

temperate lakes under different nutrient regimes (Fig. 3.5). In line with conceptual models 

(Margalef, 1978;  Sommer et al., 1986), we quantitatively showed that succession patterns of 

plankton communities were mainly driven by a trade-off between small celled, fast growing 

species that are able to incorporate existing resources at a reasonable short time (r-strategists) and 

large celled species with more complex and efficient mechanisms to exploit scarce mineral 

nutrients or acquire previously unexploited nutrient pools (k-strategists). Moreover, the seasonal 

development of functional traits mirrored environmental pressures over the year. For example 

phosphate affinity and mixotrophy peaked during phosphorous limitation in summer, while 

maximum growth rate and light affinity were high during the mixing season when light was 

limiting but nutrients were highly available. Noteworthy, the main features of functional trait 

succession were independent of nutrient regime and the seasonal development of functional 

properties of the community was similar during oligotrophic and eutrophic conditions. Distinct 

changes in functional composition occurred however, and seasonal differences during oligotrophic 

years were generally less pronounced over the year. Spring communities in the oligotrophic state 

moreover showed clear sign of nutrient limitation and therefore showed more functional 

resemblance with summer communities than under eutrophic conditions. In summary, translating 

species into functional traits by assigning trait values compiled from the literature provides a 

powerful method towards a more predictive community ecology. Functional traits can be applied 

to translate information about taxonomic composition into ecologically interpretable functions and 

eco-physiological processes that can be linked to resource competition, succession, and ecosystem 

dynamics. It enables ecological interpretation of observed phytoplankton community dynamics by 

quantification of functional characteristics and improves the predictability of community shifts in 

response to changing environmental conditions. This should open also new perspective for 

predictive limnology using lake ecosystem models. 
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4.1 Summary 

1. To counteract the severe consequences of eutrophication on water quality and ecosystem 

health, nutrient inputs have been reduced in many lakes and reservoirs during the last decades. 

Contrary to expectations, in some lakes phytoplankton biomass did not decrease in response 

to oligotrophication (nutrient reduction). The underlying mechanisms preventing a decrease in 

biomass in these lakes are the subject of ongoing discussion.  

2. We used a hitherto unpublished long-term data set ranging from 1961 until 2016 from a 

German drinking water reservoir (Rappbode Reservoir) to investigate the underlying 

mechanisms preventing a decrease in biomass. Total phosphorus (TP) concentrations in the 

Rappbode Reservoir dropped abruptly in 1990 from 0.163 mg L-1 to 0.027 mg L-1 within three 

consecutive years, as a result of banning phosphate-containing detergents. Despite substantial 

reductions in TP, total annual phytoplankton biomass did not decline in the long-run and 

therefore the yield of total phytoplankton biomass per unit phosphorus largely increased.  

3. Regression analysis revealed a positive association between the yield and potentially 

phagotrophic mixotrophs (R2=0.465, p<0.001). We infer that by ingesting bacteria, 

mixotrophic species were capable of exploiting additional P sources that are not accessible to 

obligate autotrophic phytoplankton, eventually preventing a decrease in algal biomass after TP 

reductions.  
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4. Long-term epilimnetic phosphorus concentrations during the winter mixing period decreased 

to a greater degree than summer phosphorus concentrations. Apparently, TP losses over the 

season were less intense. Spring diatom biomass also markedly decreased after 

oligotrophication. In fact, spring diatom biomass was positively related to the TP loss over the 

season suggesting diatoms play an important role in P reduction. However, this intraannual P 

processing was not the primary factor when focusing on the average yearly yield, which 

remained to be fully explained by mixotrophs. 

5. Our study demonstrates this ecosystem´s ability to compensate for changes in resource 

availability through changes in phytoplankton community composition and functional 

strategies. We conclude that an increase in mixotrophy and the ability to make bacterial 

phosphorus available for phytoplankters were the main factors that allowed the phytoplankton 

community of the Rappbode Reservoir to adapt to lower nutrient levels without a loss in total 

biomass. 

4.2 Introduction 

The growth and production of phytoplankton in lakes and reservoirs is known to be limited by 

inorganic nutrients, most importantly phosphorus (P), causing eutrophication when overly 

supplied (Correll, 1998;  Schindler, 2012). Therefore the implicit assumption of many scientific 

and regulatory frameworks is that aquatic ecosystems impacted by eutrophication can be reverted 

to its original condition by a reduction in phosphorus concentration, which hereafter we refer to as 

“oligotrophication”, although an oligotrophic status is not achieved at the end of our observations. 

A decrease in nutrients towards a lower trophic state can be generally called oligotrophication 

(Jeppesen et al., 2005). In fact, the majority of case studies about oligotrophication show a decline 

in phytoplankton biomass after phosphorus reductions, supporting the assumption that the 

trajectory of an ecosystem is reversible (Jeppesen et al., 2005;  Cooke et al., 2016;  Edmondson, 

1994;  Jeppesen, Jensen & Søndergaard, 2002;  Schindler, 2012). However, there are also a 

substantial number of exceptions where a reduction in nutrients was not followed by a drop in 

biomass. A review by Jeppesen et al. (2005) revealed that 25% of the studied lakes did not show 

the expected response. Phytoplankton biomass showed no response to reduced nutrient loadings 

in four of the study lakes (Damhussøen, Denmark; Bryrup, Denmark; Maggiore, Italy; Vättern, 
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Sweden), while an increase in biomass was even observed in three lakes (Võrtsjärv, Estonia; 

Peipsi, Estonia; Tystrup, Denmark). In addition, an increase in algal biomass after 

oligotrophication was evident in Lake Geneva, Switzerland (Anneville & Pelletier, 2000;  

Tadonleke et al., 2009), in Sweden´s largest lake, Lake Vänern (Weyhenmeyer & Broberg, 2014), 

and in Germany´s Saidenbach Reservoir (Horn et al., 2015). These findings are in conflict with 

the assumption that biomass forms a linear relationship with phosphorus, i.e. the yield of biomass 

per unit phosphorus should be constant (representing the slope of this relationship) and 

independent of the absolute nutrient concentrations (Vollenweider, 1971).  

The relationship between phosphorus concentration, e.g. as given by the total phosphorus 

concentration during spring overturn, and summer chlorophyll concentration has been intensively 

studied (Dillon & Rigler, 1974;  Jones & Bachmann, 1976;  Canfield Jr & Bachmann, 1981). 

Several authors showed linear relationships on a double-log scale with relatively high coefficients 

of determination (around 0.9). Back-transformed to the original scale, however, a substantial 

variation of chlorophyll content is notable at a given nutrient concentration. In the work of Dillon 

and Rigler (1974), for example, a phosphorus concentration of 50 µg L-1 is associated with 

chlorophyll content in a confidence interval from 7.5 to 60 µg Chl L-1. Based on these statistical 

findings we argue that there is a considerable plasticity of algal abundance at a given nutrient 

content. Accordingly, ecological properties and trophic interactions of the plankton community 

can be expected to shape the algal biomass yield per unit of phosphorus. This was already 

demonstrated by Mazumder and Havens (1998) who showed chlorophyll-TP relationships to be 

dependent on the presence or absence of large herbivores. Microbial food web architectures are 

another influential component affecting nutrient and carbon fluxes in pelagic environments (Mitra 

et al., 2014).  

While a weak (or no) responsiveness of phytoplankton biomass to decreasing nutrient 

concentrations has been observed in several lakes, the underlying mechanisms are often not 

known. In fact limnologists are puzzled by the phenomenon that some lake ecosystems are highly 

resilient against changes in nutrient conditions while others react promptly (Jeppesen et al., 2005;  

Carpenter & Cottingham, 1997). However, understanding the driving factors for the disconnection 

between nutrient reductions and phytoplankton biomass is of great importance for setting reliable 
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restoration targets in water management in such systems. This study investigates the mechanisms 

that could prevent a drop in biomass after P reductions.  

We use an exceptionally long data set ranging from 1961 until today from Germany´s largest 

drinking-water reservoir, the Rappbode Reservoir. This deep reservoir is located in a mountain 

range in former East Germany. The data were collected by the local water supply works and have 

never been used for scientific purposes. It has been documented that phosphorus concentrations in 

the Rappbode Reservoir decreased strongly within a few years after the reunification of East and 

West Germany in 1990, mainly due to the reduced use of phosphate-containing detergents (Skibba 

& Matthes, 2005;  Umweltbundesamt, 1994;  Germanus, Krings & Stelter, 1995). Contrary to 

expectations, phytoplankton biomass did not significantly decline in the long-run and the yield of 

phosphorus per unit phytoplankton biomass even increased after oligotrophication.  Since the 

nutrient reduction took place in a rather sudden shift, i.e. the time scale of this change was very 

short, this data set offers an excellent opportunity to study the resistance, adaptability and 

regulatory mechanisms of ecosystems. Long-term case histories of lake recovery are very 

important, because they provide the only reliable evidence about the response to reduced nutrient 

concentrations (Schindler, 2012). Here we explore the long-term trends in the main nutrients, water 

temperature, light conditions and phytoplankton biomass in the Rappbode Reservoir. Moreover, 

we analyze which mechanisms could have prevented the decrease in biomass after phosphorus 

reductions and enabled the increase in phytoplankton yield after 1990.  

In this study we first present the long-term trends observed in the monitoring data for the Rappbode 

Reservoir. We found a strong decline in phosphorus concentrations in 1990. While total annual 

phytoplankton biomass did not decrease in response to this nutrient reduction, phytoplankton 

community composition did change. Based on these findings we examine the following 

observations and explore possible reasons leading to the unexpected response of algal biomass to 

phosphorus concentrations:  

1. More mixotrophs: The phytoplankton community changed towards phagotrophic 

mixotrophs, which have a competitive advantage under low nutrient conditions, since they can 

use bacteria as an alternative energy and nutrient source (Nygaard & Tobiesen, 1993;  Isaksson 

et al., 1999). By exploiting additional P sources, they make nutrient sources available which 
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are otherwise not accessible to phytoplankton. Therefore the overall yield of phytoplankton 

biomass per unit phosphorus can increase (Mitra et al., 2014;  Bird & Kalff, 1987).  

2. More motile species: The phytoplankton community changed towards species that are motile 

and can thus optimize light and nutrient limitation. Using flagella or the ability to adjust the 

position in the water colomn (buoyancy), motile species can migrate to the hypolimnion to 

overcome nutrient limitation or to the surface to overcome light limitation (Klausmeier & 

Litchman, 2001;  Jäger, Diehl & Schmidt, 2008). By transporting nutrients from the nutrient-

rich hypolimnion to the epilimnion, they increase the yield in the epilimnion.  

3. Less nutrient losses in spring due to declining diatom biomass: Lower nutrient 

concentrations during mixing lead to reduced diatom blooms in spring. Diatoms suffer from 

higher sinking velocities compared to other taxa and are therefore very efficient in removing 

nutrients from the photic zone (Sommer, 1984;  Reynolds, 2006). Hence, when diatom biomass 

decreases, less nutrients are removed from the epilimnion by sedimenting algal cells and 

consequently more nutrients stay available for the summer period (Horn et al., 2015;  

Benndorf, 1968;  Frassl, Rothhaupt & Rinke, 2014). A more even distribution of resources 

over the entire growing season results in biomass also being more evenly distributed. This 

affects the seasonal variability of phytoplankton biomass. Increasing biomass in summer 

compensates in part for decreasing biomass in spring and consequently the overall annual 

phytoplankton biomass does not drop after P reductions.  

4.3 Methods 

4.3.1 Study site 

The Rappbode Reservoir is Germany´s largest drinking water reservoir (in terms of volume) and 

supplies drinking water for over one million people. It is located in central northern Germany in 

the small mid-mountain reach of the Harz Mountains, at a crest elevation of 423.6 m a.s.l. (Fig. 

4.1). The annual precipitation in the mainly forested Harz region is higher than in the surrounding 

areas and at some places exceeds 1000 mm yr-1 (Rinke et al., 2013). The Rappbode Reservoir was 

constructed between 1952 and 1959 and has the tallest dam wall (106 m) in Germany. It is fed by 

three pre-dams (Königshütte Reservoir, Hassel pre-reservoir and Rappbode pre-reservoir) (Tittel 
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et al., 2015), which were constructed for the purpose of sediment and nutrient trapping. The water 

of the Rappbode Reservoir discharges into the Wendefurth Reservoir, where it is used for energy 

production and energy storage by a pump-storage-station (Friese et al., 2014). The Rappbode 

Reservoir is elongated in shape with a length of 8 km, a maximum surface area of 3.95 km2, an 

inflow volume of 120×106 m3 a-1 and a residence time of 344 days. The mean depth is 28.6 m and 

the maximum depth is 89 m. As a dimictic water body it stratifies in summer, in some years freezes 

in winter and completely mixes in spring and autumn. The water level fluctuates during the year 

by about 15 m (Bocaniov et al., 2014). After its construction, it took until 1964 to completely fill 

the reservoir to its full storage capacity.  

 

Figure 4.1: Map of Germany with its federal states (top left). The red point indicates the 

location of the Rappbode Reservoir within Germany. Bathymetric map of the Rappbode 

Reservoir (right). The red point indicates the sampling site (N51.73891 E10.89147). 

Geologic data are taken from © GeoBasis-DE / LVermGeo LSA (2016).  
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4.3.2 Sampling and sample analysis 

The data presented here cover the period from 1961 to 2016 and were collected and analyzed by 

the local water supply works Wasserwerk Wienrode (today belonging to the company 

Fernwasserversorgung Elbaue-Ostharz GmbH) for the purpose of drinking water quality control. 

Over the whole investigation period, measurements were conducted at the deepest point of the 

basin close to the dam wall (N51.73891° E10.89147°, Fig. 4.1). Data were collected approximately 

six times a year from 1961-2016, usually between March and October in monthly intervals, at up 

to 11 different depths (0, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80 m), depending on the water level. 

Samples were collected at the desired depth with an open cylinder sampler (2 L standard water 

sampler according to Ruttner from Hydro-Bios GmbH). In addition to this base sampling program, 

from 1980 to 2016 samples were taken once a week in the upper water column as a mixed sample 

from 0-10 m, except for phytoplankton, of which the time series ends in 2008. Samples were taken 

using a pipe, which was lowered to a depth of 10 m and then closed at the bottom, in order to get 

a representative integral sample of the upper water column. The total number of sampling dates 

was 1538 for plankton and 1942 for water chemistry data. In addition to these sampling dates, the 

surface water temperature was monitored on a daily basis since 1980 at a sampling point close to 

the shore. Water transparency was measured with a Secchi disc from 1972 onwards. Air 

temperature measurements were conducted by the German weather service (DWD) at the station 

Harzgerode.  

The following variables were used for data analysis: Total phosphorus (TP), soluble reactive 

phosphorus (SRP), dissolved inorganic nitrogen (DIN), silica (Si), light availability (Secchi depth), 

water temperature, phytoplankton biomass and community composition. Nutrients (total 

phosphorus, soluble reactive phosphorus, silica, ammonia, nitrate and nitrite) were analyzed by 

accredited methods according to German standards (see Legler, 1988). DIN was calculated as the 

sum of ammonia, nitrate and nitrite concentrations. Water temperature at different depth was 

measured with a thermometer inside the sampler before 2009 and with a multiparameter probe 

from 2009 onwards (both methods were compared and gave similar results). Daily surface 

temperature was measured using a manual thermometer. 

Algae samples were preserved with Lugol´s solution for microscopic cell counting. For 

concentrating the plankton sample, the sedimentation technique developed by Utermöhl (1958) 
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was used from 2002 onwards. Before 2002, a first phytoplankton sub-sample was either directly 

counted (if > 1000 cells per mL) or concentrated by sedimentation and subsequent decantation 

(from 10 mL to 5 mL). A second sub-sample for the quantification of larger microplankton 

organisms was concentrated using gauze with a mesh opening of 55 µm (von Tümpling & 

Friedrich, 1999;  Breitig, 1982). From 1961-2000 taxonomic composition and species abundance 

were determined under a conventional microscope using Kolkwitz counting chambers. At least 

four chambers (two chambers from the first sub-sample and two chambers from the second sub-

sample) were counted with a minimum of 15 fields of view each. After 2000 phytoplankton was 

counted under an inverted light microscope, using the common plankton sedimentation and 

counting chambers (Hydro-Bios GmbH) according to Utermöhl (1958). In 1998 a methodological 

study including several other laboratories revealed that results from the method used before 2000 

were comparable to the results obtained by the Utermöhl method, except for the smallest algae. 

Algae in the size range between 1-3 µm were underrepresented in the method used before 2000. 

However, for the data analysis in this study, algae smaller than 3 µm were not relevant. The cell 

number of filamentous and colonial algae was estimated by measuring the dimensions of one 

filament or colony and dividing by an average number of cells per unit. The specific cell volumes 

of each taxonomic unit (mostly at species level) were derived from average cell dimension 

measurements and simple geometric approximations (Hillebrand et al., 1999). Using the specific 

cell volumes, cell numbers could be converted to phytoplankton biovolume or wet-weight biomass 

respectively, assuming a specific density of 1.0.  

4.3.3 Data preparation and statistical analysis 

For data analysis, data collected at depths of 0, 5 and 10 m were combined to average epilimnion 

values (depth-weighted) in order to allow comparison with the mixed water samples taken from 0-

10 m. Since the measurements of the depth integrated and depth resolved data-series fit well 

together, merging them appeared reasonable. Values exceeding four times the inter quartile range 

were considered as extreme outliers (e.g. typing error) and were removed from the TP and DIN 

data. The extreme outliers accounted for less than 0.5 % of the data. Data were aggregated to either 

annual means, spring means, summer means, or mean values during the mixing period. Annual 

means were calculated using data from March until October, because this period is the growing 

season for phytoplankton and because the winter period was not always (in 19 out of 56 years) 
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sampled. Including the winter months (when present) in the annual mean would have lowered the 

phytoplankton biomass by 13 % on average. Spring was defined as the period from March until 

May, summer from July until October and the mixing period from January until April (spring 

mixing typically finished in the end of April). The onset of stratification was calculated from daily 

temperature data and was defined as the day when the surface water temperature exceeds 7 °C and 

the water body remains stratified. In the Rappbode Reservoir, the hypolimnion temperature 

remains close to 4 °C while surface water temperature rises steeply from the onset of stratification 

onwards. In addition, we visually assessed the temperature development over the season for each 

year, to ensure that the calculation was not affected by outliers (for examples see supporting 

information Fig. S9.3.2). The day of stratification onset could be calculated only from 1980 

onwards, since no daily surface temperature data were available prior to that. To assess the relative 

importance of phosphorus and nitrogen as limiting nutrients, the N:P ratio was used. As an 

indicator for discriminating between N and P limitation, we used the DIN:TP ratio, which has been 

identified as the best predictor for phytoplankton nutrient limitation (Bergström, 2010;  Ptacnik, 

Andersen & Tamminen, 2010;  Dolman, Mischke & Wiedner, 2016). Above a ratio of 3.4, 

phytoplankton usually shifts from nitrogen to phosphorus limitation. DIN:TP mass ratios were 

evaluated for all sampling dates to allow the detection of short-term nutrient limitation. The yield 

of phytoplankton biomass per unit phosphorus was calculated by dividing annual phytoplankton 

biomass by TPmix. 

For assessing changes in community composition, species were grouped into chlorophytes, 

chrysophytes, cryptophytes, cyanobacteria, dinoflagellates and diatoms. Moreover, we classified 

algal species according to the functional trait mixotrophy. We define mixotrophy as the ability to 

perform phototrophy and phagotrophy within a single cell, but we did not consider osmotrophy, 

i.e. the uptake of dissolved organics, here. The biomass of mixotrophs was calculated as the sum 

of all species considered potentially mixotrophic. We only included species that have been proven 

to be able to ingest bacteria in laboratory experiments. Species of the following genera were 

characterized as mixotrophs: Cryptomonas, Dinobryon, Gymnodinium, Peridinium, 

Pseudopedinella and Uroglena (Sanders, 1991;  Tranvik, Porter & Sieburth, 1989;  Gerea et al., 

2016). Even though food vacuoles and feeding have been reported in Ceratium hirundinella, this 

species was not categorized as a phagotroph, since existing reports are questionable (Stoecker, 

1999). Moreover we classified algal species according to their motility. We characterized species 
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as motile that are able to actively adjust their position in the water column. Therefore species that 

either possess flagella or can regulate their buoyancy were included in the biomass of motile 

organisms. 

For time series analysis generalized additive models (GAM) were fitted to the data using the 

method gam from the R-package mgcv (Wood, 2017). GAMs are a common tool used for 

analyzing environmental and plankton time series, allowing nonlinear relationships by fitting 

smoothing functions (Thackeray, Jones & Maberly, 2008;  Jochimsen, Kümmerlin & Straile, 

2013). The smooth terms fitted to the data as well as their confidence intervals are visualized in 

Fig. 4.2. For further statistical testing only data after 1970 were included in the analysis in order 

to ensure that a stable phytoplankton community had established after the reservoir was filled to 

full capacity. The significance of long-term trends in the studied variables was investigated using 

Kendall´s τ test. As a non-parametric test, Kendall´s τ test does not depend on any assumptions 

regarding the distribution between dependent and independent variables. The test gives a rank 

correlation coefficient (Kendall´s τ, ranging from -1 to 1), which is expected to be approximately 

0 when there is no change over time. Moreover, the time series of TP during spring mixing was 

statistically analyzed for significant shifts using the breakpoints-method from the package 

strucchange (Zeileis et al., 2003;  Zeileis et al., 2001). Number and timing of significant shifts 

were identified using the Bayesian Information Criteria (BIC). The structural change was tested 

by the method sctest from the same package, using a linear model approach based on F-statistics 

as outlined in Zeileis et al. (2001). To identify single factors and processes controlling 

phytoplankton biomass, linear regression analysis was carried out. For analyzing the combined 

effect of different processes in controlling phytoplankton biomass, the relevant factors 

(mixotrophs, diatoms in spring and air temperature as a climate signal) were used as explanatory 

variables in a multiple regression model with the yield of phytoplankton biomass per unit 

phosphorus as a response variable. Competing models were compared in a standard model 

selection procedure by selecting the most informative model based on the Bayesian information 

criterion (BIC). The lower the BIC value, the better the model. All data analysis and graphics were 

performed using the R statistics program version 3.3.2 (R Core Team, 2016) with a significance 

level of α=0.05.  
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4.4 Results 

4.4.1 Long-term trends  

A significant increase was detected for air temperatures (Fig. 4.2a) as well as for surface water 

temperatures (see Fig. S9.3.1b supporting information) in the Rappbode Reservoir, especially in 

summer, pointing to significant climatic warming over the past decades (Kendall´s τ test, Table 

4.1). As a direct consequence of this warming, the statistical analysis furthermore revealed an 

earlier onset of stratification (day 141 in 1980 to day 96 in 2016, Fig. S9.3.1f). In contrast to 

summer surface water temperatures, the hypolimnion temperatures in summer (measured at a 

depth of 50 m) showed a slightly decreasing trend (Table 4.1, Figure S9.3.1e). This suggests an 

increase in stratification stability in summer. The light conditions in the surface layer, as indicated 

by the Secchi depth, showed decreasing water clarity from 1972 until 1985 and stayed at a rather 

constant level thereafter (see Fig. S9.3.1a supporting information).  

The results of Kendall´s τ test revealed a strongly decreasing trend in total phosphorus 

concentrations during the spring mixing period (Table 4.1, Fig. 4.2b). The development of TPmix 

over time was characterized by a significant shift between 1991 and 1992 (breakpoint analysis: 

BIC = -159.2163, sctest: p< 0.001), no other shifts were detected before or after this major change. 

Until 1991, TPmix remained at a high concentration with an average concentration of 0.163 mg L-

1. From 1992 onwards, TPmix dropped to an average concentration of 0.027 mg L-1 and remained 

at this lower level until the end of the observation period. The maximum observed TPmix value was 

found in 1973 (0.305 mg L-1) and the minimum value in 2011 (0.004 mg L-1). Similar to TPmix, 

SRPmix values decreased strongly after 1990 (Fig. S9.3.1k supporting information). Total dissolved 

inorganic nitrogen concentrations during mixing slowly increased until 1988 and showed a 

moderately decreasing trend thereafter (Fig. 4.2c). The DIN:TP mass ratio was above the critical 

DIN:TP ratio of 3.4 for all sampling dates (Fig. 4.2d), suggesting phosphorus as the main limiting 

nutrient in the Rappbode Reservoir. Also silicate was usually not limiting the growth of diatoms, 

as in 99.8 % of the sampling dates silicate was above the critical value of 0.109 mg L-1 (Reynolds, 

2006). In conclusion, we focused on phosphorus as the primary limiting nutrient for phytoplankton 

growth. Similar to TPmix and SRPmix, the TP and SRP concentrations during summer (TPsummer, 

SRPsummer) also strongly decreased since 1990, but to a lesser extent, as indicated by a τ value 
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closer to zero (Table 4.1). Hence, the difference between TPmix and TPsummer (SRPmix and SRPsummer 

respectively) decreased over time, indicating a higher availability of phosphorus in summer 

relative to spring after oligotrophication (Fig. 4.2e, Fig. S9.3.1l supporting information). Similar 

to surface phosphorus concentrations, TP and SRP concentrations in the hypolimnion in summer 

also strongly decreased after 1990 (Fig. S9.3.1m-n supporting information). Moreover the 

hypolimnion never went anoxic in summer during the investigation period (Fig. S9.3.1o supporting 

information). Both variables suggest that internal loading of phosphorus from the sediment was 

not significant in the Rappbode Reservoir.  

Despite the substantial reductions in phosphorus, total annual phytoplankton biomass did not 

decrease in the long-term and even increased during the last decade (Fig. 4.2f, Table 4.1). Algal 

biomass showed no significant relationship with TPmix (Table 4.2). While biomass during spring 

slightly decreased, biomass in summer significantly increased (Table 4.1, see Fig. S9.3.1g 

supporting information). Hence, also the difference between spring and summer algal biomass 

exhibited a significant decline over time (Fig. 4.2g, Table 4.1). While phytoplankton biomass was 

more equally distributed over the entire growing season after 2000, the maximum algal biomass 

slightly decreased (Fig. S9.3.1p supporting information). As a consequence of strongly reducing 

TP and not changing total annual phytoplankton biomass, the yield of biomass per phosphorus 

dramatically increased after 1990, both when excluding and including mixotrophs in the 

calculation of total biomass (Fig. 4.2h, Table 4.1). Diatoms during spring markedly decreased after 

oligotrophication from 1995-2005. In the past decade, however, spring diatoms steadily increased 

in biomass (Fig. 4.2i). This changing trend was associated with species replacements within the 

diatom community (Table S9.3.1 supporting information). While Tabellaria fenestrata and 

Urosolenia longiseta, which are rather tolerant towards nutrient deficiency (Reynolds et al., 2002), 

became more dominant during the last two decades, Asterionella formosa and Stephanodiscus 

hantzschii, which are diatoms typical for eutrophic lakes, got less important. Mixotrophs and 

motile organisms significantly increased after nutrient reductions (Fig. 4.2j, for information on 

species composition see Table S9.3.1). However, when mixotrophs were excluded from the 

biomass of motile organisms, no detectable long term trend for motile species remained (Table 

4.1, see Figure S9.3.1i). Cyanobacteria were never a dominant algae group in the Rappbode 

Reservoir (they usually accounted for less than 10% of the total phytoplankton biomass), even 

during the period with high nutrient concentrations. 
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Figure 4.2: Long-term development of air temperature, mineral nutrients and phytoplankton 

at the Rappbode Reservoir. The solid, colored lines are the smoothers from the generalized 

additive models fitted to the data and the shades are the confidence intervals of these fits. 

(a) Mean air temperatures. (b) Mean concentrations of total phosphorus during mixing 

(TPmix). The horizontal lines show the average value of the two periods identified by 

breakpoint analysis. (c) Mean concentrations of dissolved inorganic nitrogen during mixing 

(DINmix). (d) DIN:TP ratio of all surface samples. The red line indicates a ratio of 3.4, 

above which no nitrogen limitation is expected (Bergström, 2010). (e) Difference in total 

phosphorus concentrations between the mixing and the summer period. (f) Annual mean 

phytoplankton biomass.  (g) Difference in phytoplankton biomass between spring and 

summer period. (h) Yield of phytoplankton biomass per unit phosphorus. (i) Diatom biomass 

in spring. (j) Annual mean biomass of motile species (red) and potentially mixotrophic 

species (blue).  
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Table 4.1: Means (± standard deviation) of the variables over the period 1971-2016, results 

of the Kendall´s τ statistics for detection of long-term trends (Kendall´s τ ) and probability 

of the Kendall´s test (p-value). Results of generalized additive models (GAM) from 1961-

2016, giving the deviance explained (Dev. exp.) in percent, the estimated degrees of freedom 

(edf) and statistical sigificance judged by F-tests (p-value). 

  Kendall´s τ GAM   

Variables Overall mean 

(SD) 

Kendall´s τ p-value 

 

Dev. 

exp. 

edf p-

value 

Air temperature (°C) 11.9 (0.7) 0.436 <0.001 33.4 2.05 <0.001 

Surface water temperature (°C) 12.4 (1.9) 0.382 <0.001 29.8 2.55 <0.001 

Surface water temperaturespring (°C) 7.0 (1.4) 0.292 0.004 26.3 2.57 <0.001 

Surface water temperaturesummer (°C) 16.59 (1.5) 0.581 <0.001 62.7 2.63 <0.001 

Hypolimnion water temperaturesummer 

(°C) 

5.5 (0.7) -0.264 0.010 13.7 2.00 <0.001 

Stratification onset (days) 119.7 (11.03) -0.564 <0.001 57.3 1 <0.001 

Secchi depth (m) 3.690 (0.596) -0.266  0.010 48 6.33 <0.001 

TPmix (mg L-1) 0.090 (0.076) -0.626 <0.001 83.4 7.50 <0.001 

SRPmix (mg L-1) 0.013 (0.010) -0.591 <0.001 74.1 7.43 <0.001 

Dissolved inorganic nitrogen (mg L-1) 6.476 (0.976) -0.417 <0.001 56.1 7.57 <0.001 

TPsummer (mg L-1) 0.065 (0.053) -0.565 <0.001 84.3 7.08 <0.001 

SRPsummer (mg L-1) 0.006 (0.005) -0.540 <0.001 54.0 3.78 <0.001 

TPmix-TPsummer (mg L-1) 0.024 (0.037) -0.393 <0.001 44.1 7.12 <0.001 

SRPmix-SRPsummer (mg L-1) 0.007 (0.007) -0.477 <0.001 53.1 4.22 <0.001 

Phytoplankton biomass (mg L-1) 1.164 (0.643) -0.109 0.291 55.9 7.90 <0.001 

Phytoplankton biomassspring (mg L-1) 1.869 (1.50) -0.270 0.008 35 4.44 <0.001 
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Phytoplankton biomasssummer (mg L-1) 0.757 (0.537) 0.228  0.027 47.7 7.95 <0.001 

Phytoplanktonspring– Phytoplanktonsummer 

(mg L-1) 

1.092 (1.647) -0.388 <0.001 25.5 3.66 <0.001 

Max. phytoplankton biomass (mg L-1) 5.470 (4.667) -0.230 0.023 30.1 2.67 0.001 

Yield (Biomass : TPmix) 39.08 (67.26) 0.462 <0.001 59.0 6.98 <0.001 

Yield excluding mixotrophs 

(Biomassexcluding mixotrophs : TPmix) 

30.59 (47.78) 0.406 

 

<0.001 

 

50.3 5.01 <0.001 

Diatomsspring (mg L-1) 1.648 (1.426) -0.386 <0.001 38.2 4.15 <0.001 

Mixotrophic species (mg L-1) 0.135 (0.210) 0.602  <0.001 81.6 8.20 <0.001 

Motile species (mg L-1) 0.294 (0.320) 0.347 <0.001 61.5 8.49 <0.001 

Motile species excluding mixotrophs       

(mg L-1) 

0.159 (0.187) 0.059 0.572 2.14 1 <0.001 

4.4.2 Potential mechanisms preventing a decrease in total biomass 

4.4.2.1 Observations 1 and 2: More mixotrophic and motile species 

Regression analysis revealed a significant negative relationship between phosphorus 

concentrations and the biomass of mixotrophs (Table 4.2). In line with our observation, the ratio 

of total phytoplankton biomass to total phosphorus (yield) was positively related to the biomass of 

potentially mixotrophic species (R2=0.465, p<0.001, Table 4.2). In contrast, there is no evidence 

for any influence of mobility on the yield, since the influence of mobility disappeared when 

mixotrophic species were excluded from this group (Table 4.2). We also found no evidence that 

motile, non-mixotrophic species increased over time, indicating that mixotrophy, and not motility, 

is the relevant trait here (compare Table 4.1).   

4.4.2.2 Observation 3: Less nutrient losses in spring due to declining diatom biomass 

Reduced phosphorus concentrations during mixing were associated with lower diatom biomass in 

spring (R2=0.306, p<0.001, Table 4.2). As mentioned above, the difference between TPmix and 

TPsummer decreased after oligotrophication (Fig.4. 2e). Obviously, less nutrients could be removed 
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from the epilimnion by phosphorus sedimentation in spring and hence more nutrients remained 

available for the summer period. Differences between TPmix and TPsummer were positively related 

to diatom biomass in spring (R2=0.354, p<0.001, Table 4.2). Hence cellular P uptake by diatoms 

mediates not only the transfer of dissolved P into particulate P but also facilitates a subsequent, 

fast P sedimentation. The more efficient P recycling over the season in years with lower 

phosphorus concentrations might therefore be explained by the lower diatom abundances during 

these years. It is interesting to note that the difference between spring and summer phytoplankton 

biomass was also associated with differences between TPmix and TPsummer (R2=0.288, p<0.001, 

Table 4.2) and likewise with diatoms in spring (R2=0.846, p<0.001, Table 4.2). According to these 

findings, we conclude that lowered TP losses in spring due to sedimenting diatom cells resulted in 

higher TP availability in summer, promoting more intense phytoplankton growth during the 

summer period. Increasing algal biomass in summer compensated for decreasing biomass in spring 

and consequently the overall annual phytoplankton biomass did not drop after P reductions (Table 

4.1). 

Table 4.2: Results of linear regressions, testing the predictions of observations. Reported 

are the equation of the linear models (Estimate ± standard error), the proportion of the 

variability in the dependent variable explained by the independent variable (R2) as well as 

a significance statement, including the degrees of freedom (DF) and the significance level 

(p-value). 

Dependent variable Explanatory variable Estimate (±SE) DF R2 p-value 

Phytoplankton biomass TPmix 2.008 (1.318) 41 0.054 0.135 

Mixotrophs TPmix -1.228 (0.370) 41 0.212 0.002 

Yield  Mixotrophs  225.920 (37.873) 41 0.465 <0.001 

Yield  Motile species  102.448 (28.088) 41 0.245 <0.001 

Yield  Motile species excluding 

mixotrophs 

40.93 (54.24) 41 

 

0.014 0.455 

Diatomsspring  TPmix 9.987 (2.348) 41 0.306 <0.001 

TPmix-TPsummer  Diatomsspring  0.016 (0.003) 41 0.354 <0.001 
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Phytoplanktonspring– 

Phytoplanktonsummer  

TPmix - TPsummer  22.844 (5.674) 40 0.288 <0.001 

Phytoplanktonspring– 

Phytoplanktonsummer 

Diatomsspring -0.627 (0.149) 43 0.846 <0.001 

 

4.4.2.3 Analysis of combined effects 

Regression analysis revealed a significant positive effect of the biomass of potentially mixotrophic 

species on the ratio of total phytoplankton biomass to total phosphorus (yield) (Table 4.2). In a 

multiple linear regression model, we tested whether the addition of diatom biomass in spring and 

air temperature as a climate signal, would contribute to explaining the variation in yield (Table 

4.3). This turned out not to be the case and they were not significantly related to the yield. Using 

the difference between TPmix and TPsummer or the difference between the spring and summer 

biovolume instead of diatomsspring as a factor in the model did not give significant results either. 

Therefore, as indicated by BIC the variability in yield was best explained by mixotrophs alone. 

Diatomsspring and air temperature added no further information to the model. 

Table 4.3: Results of multiple linear regressions, testing the combined effect of different 

processes on the ratio of total phytoplankton biomass to total phosphorus (yield). Reported 

are the equation of the models (Estimate ± standard error), the proportion of the variability 

in the dependent variable explained by the independent variable (R2) as well as a 

significance statement, including the degrees of freedom (DF) and the significance level (p-

value). Different models are compared using the Bayesian information criterion (BIC). 

Dependent 

variable 

Explanatory 

variables 

Estimate (±SE) Single  

p-values 

Overall 

p-value 

Overall 

DF 

Overall 

R2 

Overall 

BIC 

Yield  Mixotrophs  

Diatomsspring  

Air temperature 
 

201.916 (42.104) 

4.384 (5.840) 

16.601 (11.935) 

<0.001 

0.457 

0.172 

<0.001 39 0.492 472.7 

Yield  Mixotrophs  

Air temperature 

 

203.25 (41.84) 

14.16 (11.42) 

<0.001 

0.222 

<0.001 40 0.4844 469.5 

Yield  Mixotrophs 225.920 (37.873) <0.001 <0.001 41 0.465 467.4 
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4.5 Discussion 

4.5.1 Response of phytoplankton biomass to phosphorus reductions 

The hitherto unstudied long-term data set on phytoplankton dynamics in the Rappbode Reservoir 

adds a valuable case study to the research on the responsiveness of algal communities to nutrient 

reductions because of its unusual response. The Rappbode Reservoir underwent a strong and 

abrupt shift in phosphorus concentrations from approximately 0.163 mg L-1 to 0.027 mg L-1 after 

1990, as a result of banning phosphate-containing detergents after the reunification of East and 

West Germany. The construction of a wastewater treatment plant in 2000 led to even slightly lower 

phosphorus concentrations during the last two decades, sometimes with TP concentrations below 

0.01 mg L-1 during mixing. These P concentrations seem sufficient to reduce phytoplankton 

biomass. Substantial declines in chlorophyll were observed in several lakes with intermediately 

high P concentrations (Jeppesen, Jensen & Søndergaard, 2002;  Köhler, Behrendt & Hoeg, 2000). 

Also in Lake Constance (Germany) a response of phytoplankton biomass was found at TP 

concentrations below 0.04 mg L-1 (Jochimsen, Kümmerlin & Straile, 2013). The TP concentrations 

in the Rappbode Reservoir fell below this threshold already from 1991 onwards. However, in the 

Rappbode Reservoir the phytoplankton biomass does not follow the expected patterns after 

nutrient concentrations were reduced. Despite reductions in P by a factor of 5 within 3 years, total 

annual biomass did not decline in the long-run and even increased during the last decade. Annual 

mean biomass was unrelated to phosphorus concentrations during mixing. This is in contrast to 

classical eutrophication models and loading concepts (Vollenweider, 1971) and to most previous 

studies of oligotrophication in lakes, which found a decline in phytoplankton biomass usually 

within 10 years after P reductions (Jeppesen et al., 2005). Our study sought to reveal the 

mechanisms preventing such a reduction in phytoplankton biomass in response to declining 

phosphorus.  

Limnologists differentiate between external and internal P loading and numerous studies 

documented that a reduction in external phosphorus load is ineffective on algal standing stocks 

when internal loading is intense (e.g. Søndergaard, Jensen & Jeppesen, 1999;  Cymbola, Ogdahl 

& Steinman, 2008). Internal loading is usually associated with critically low redox potentials at 

the sediment-water interface, e.g. during anoxia in summer. This can be excluded as a possible 
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explanation in case of the Rappbode Reservoir since the hypolimnion never went anoxic during 

summer. Moreover, our data refer to P concentrations. Any internal loading from the sediment 

would have become immediately detectable in hypolimnetic P concentrations. In the Rappbode 

Reservoir, summer phosphorus concentrations moreover decreased in the hypolimnion after 1990, 

indicating that internal loading did not play a significant role. 

4.5.2 Mixotrophs increase yield 

In line with ourobservation, we found that the higher yield of biomass per phosphorus after 

oligotrophication could be partly explained by an increase of potentially mixotrophic species. 

Mixotrophs make use of nutrient resources that would not be accessible otherwise, by ingesting 

bacteria as an additional P source. Predation of bacteria by phytoplankton seems to be a powerful 

strategy for gaining nutrients under P-depleted conditions, since bacteria are very phosphorus rich 

particles (Nygaard & Tobiesen, 1993;  Vadstein et al., 1993). Besides their ability to use bacteria 

as a supplementary resource, mixotrophs also have the competitive advantage of possessing 

flagella. By actively moving along the opposing vertical gradient of nutrient and light availability, 

motile species can adjust their position to a depth with optimized growth conditions and can select 

the appropriate environment in the water column (Klausmeier & Litchman, 2001;  Jäger, Diehl & 

Schmidt, 2008). Hence they are able to increase the yield by transporting nutrients from the 

hypolimnion to the surface. However, since the biomass of other, non-mixotrophic motile species 

did not change over time we infer that the trait of mobility was less important than phagotrophy in 

providing additional P sources for phytoplankton under nutrient-depleted conditions.  

Our results match well with other studies showing the relation between trophic state and the 

importance of mixotrophic species in the phytoplankton community. The competitive advantage 

of phagotrophic species when dissolved nutrients are low has been shown in experimental studies 

(Isaksson et al., 1999;  Katechakis & Stibor, 2006;  Palsson, 2004) as well as in studies comparing 

aquatic systems of differing trophic status (Saad et al., 2016;  Stoecker et al., 2017). In accordance 

with the data from the Rappbode Reservoir, an increase in potentially mixotrophic species (mainly 

cryptophytes, dinophytes and chrysophytes) was also observed in other lakes after 

oligotrophication, including those where no decrease in total biomass was found after nutrient 

reductions (Jeppesen et al., 2005;  Jeppesen, Jensen & Søndergaard, 2002;  Kamjunke, Henrichs 
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& Gaedke, 2006;  Weyhenmeyer & Broberg, 2014;  Gaedke, 1998;  Anneville, Gammeter & 

Straile, 2005;  Anneville, Ginot & Angeli, 2002;  Findlay et al., 2001). While these studies clearly 

show the relation between trophic state and importance of the mixotrophic strategy, the mechanism 

by which mixotrophs increase with oligotrophication remains partly unclear: Due to their ability 

to prey on bacteria, mixotrophs are relieved from direct competition for inorganic phosphorus with 

obligate phototrophs. However, the reason why they do not build up high abundances in eutrophic 

waters remains open and to be tested experimentally.  

Even though our results show that mixotrophs significantly explain the observed increased yield 

after oligotrophication, they are not the only explanation for the missing response of biomass to 

nutrient reductions. When calculating the yield while excluding mixotrophic species from the total 

biomass, the yield showed an increasing trend too, indicating that obligate autotrophic species also 

contributed to the increase in yield. Possibly the presence of mixotrophs stimulated the growth of 

other species by making nutrients available to the autrotrophs. One possible mechanism could be 

their low sinking velocity, keeping P in the photic zone for a longer time (Ptacnik, Diehl & Berger, 

2003;  Reynolds, 2006;  Findlay et al., 2001). Moreover it has been shown that mixotrophs can 

either retain or release phosphorus (Rothhaupt, 1996). By releasing nutrients into the environment, 

they could facilitate the growth of phototrophs. Some evidence for a positive effect of mixotrophs 

on the standing stock of non-mixotrophic algae is provided by the increasing phytoplankton 

biomass in the Rappbode Reservoir in the past decade. The continuous increase in total 

phytoplankton biomass since 2005 (about 2 mg L-1 in magnitude) is not entirely realized by the 

mixotrophic community. In fact, about half of the biomass increase can be directly assigned to 

increasing biomass of mixotrophs and the other half is attributable to changing non-mixotrophic 

algal groups, e.g. diatoms that increased in spring biomass (Fig. 4.2i). This increase in non 

mixotrophs that goes parallel to increasing mixotroph biomass may be taken as an indication for 

nutrient recycling by mixotrophs. In this respect, the access of mixotrophs on bacterial phosphorus 

has enhanced the P-flux towards mixotrophs and the non-mixotrophs can partly profit from this 

phosphorus by nutrient recycling by the mixotrophs. In addition, increasing protozoan biomass in 

the past years could also have contributed to P recycling towards obligate autotrophs (see below). 

However, whether phototrophs benefit from P recycling by mixotrophs is controversial in the 

literature. In experiments, Sanders et al. (2001) observed that phosphate and ammonia were rapidly 

released by the mixotrophic flagellate Ochromonas grown on bacteria in the light and in the dark. 
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They concluded that Ochromonas was unable to store or utilize N and P in excess of the quantities 

required for heterotrophic growth. Also Grover (2000) saw some evidence for an increase of 

phototrophs in response to recycling of bacteria nutrients because in four out of five cultures the 

net growth rate of the phototroph was higher in the presence than in the absence of Ochromonas. 

In contrast to this, Rothhaupt (1997) found that under nutrient limited situations, Ochromonas 

retained P for its own photosynthesis and did not stimulate other phytoplankton species.  

4.5.3 Less nutrient losses in spring due to declining diatom biomass 

In agreement with our observation we identified a positive relationship between diatom abundance 

and removal rates of phosphorus during summer. During the oligotrophication phase in the 

Rappbode Reservoir we observed a decrease in diatom biomass in spring, probably caused by 

lower TP concentrations during spring turnover and to some extent also an earlier onset of 

stratification (possible effects of climate change are discussed below). Diatoms have high sinking 

velocities due to their siliceous frustules (Sommer, 1984;  Reynolds, 2006;  Trimbee & Harris, 

1984) but are relatively slowly re-mineralized (Elster, 1963;  Krause, 1964). As a result of both 

traits, diatom cells sink out of the photic zone before they can be re-mineralized and therefore lead 

to high nutrient losses by sedimentation. Empirical evidence for the effect of sinking algae on 

phosphorus concentrations is, for example, also given by Benndorf (1968) and Horn et al. (2015). 

Due to the decreasing dominance of diatoms during oligotrophication the P removal by 

sedimentation in the Rappbode Reservoir has most probably diminished.  

In a modelling study, Frassl, Rothhaupt and Rinke (2014) demonstrated that the uptake of 

phosphorus by sedimenting algae has an effect on phosphate depletion in Lake Constance. They 

showed that the depletion of phosphate in the surface layer was highest during the season when 

phytoplankton species with high phosphorus storage capacities and settling velocities, mainly 

belonging to the group of diatoms, dominated. In line with their modelling results, the reduced 

diatom biomass in spring in the Rappbode Reservoir may explain the lower removal of nutrients 

from the productive zone by sedimentation processes and hence more P resources stayed available 

for the summer period. As a result, higher phytoplankton biomass was realized in summer during 

the oligotrophic phase compensating for biomass losses in spring. As a consequence, 

phytoplankton biomass was more equally distributed over the season. This documents the 
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importance of interactions between phytoplankton traits, phytoplankton community dynamics and 

biogeochemical processing. 

The reduction in seasonal variability of biomass in nutrient poor waters is in line with general 

observations from lakes of different trophic status (Smith, 1990) as well as with the classical model 

of  seasonal succession of plankton in fresh waters, the PEG (Plankton Ecology Group) model. 

The PEG model expects that under oligotrophic conditions, i.e. when resources for a pronounced 

spring bloom formation are lacking, the resources are more evenly available over the season, 

leading to a more even distribution of biomass over the year (Sommer et al., 1986).  

Moreover the PEG model predicts more successive stages in eutrophic lakes compared to 

oligotrophic ones, since nutrient limitation in eutrophic lakes occurs at shorter intervals in the 

season resulting in a higher heterogeneity of nutrient conditions and thus ecological niches 

(Sommer et al., 1986). A changing seasonal development of phytoplankton species has also been 

observed in Lake Geneva and the Saidenbach Reservoir (Anneville, Ginot & Angeli, 2002;  Horn 

et al., 2015). A feature they have in common with the Rappbode Reservoir is that phytoplankton 

biomass resisted nutrient reductions and even increased after nutrient concentrations dropped. 

While this study demonstrated that the seasonal development of biomass has changed during 

oligotrophication, future studies should investigate the change in seasonal dynamics of algal 

functional traits (Weithoff & Gaedke, 2016) as well as potential self-stabilizing mechanisms 

(Jochimsen, Kümmerlin & Straile, 2013) in more detail. 

Although we clearly identified associations between diatom biomass in spring, P recycling over 

the season and a changed seasonal development of biomass, it is important to note that these 

observations were not significantly related to the yield (Table 4.3). This suggests that, in contrast 

to the effect of mixotrophs, the effect of P sedimentation by diatoms was not the major mechanism 

preventing a decrease in total annual phytoplankton biomass over the course of oligotrophication. 

4.5.4 The role of zooplankton 

So far, we focused our analysis of the mechanisms preventing a phytoplankton biomass decline on 

bottom-up effects. However, top-down effects by higher trophic levels on the structure and 

productivity of aquatic ecosystems must also be taken into consideration (Mazumder & Havens, 
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1998;  Kerimoglu, Straile & Peeters, 2013;  Urabe, Nakanishi & Kawabata, 1995). In the Rappbode 

Reservoir, total zooplankton biomass and the most important grazer groups (Daphnia and other 

crustaceans) varied largely from year to year, but showed no significant trend over time (Wentzky, 

unpublished data). Since zooplankton biomass and hence grazing did not decrease since 1990, it 

appears unlikely that they prevented the decrease in phytoplankton biomass after P reductions or 

contributed to the increase in algal biomass during the last decade. However, a significant increase 

in protozoan biomass was detected since 2003 (Kendall´s τ=0.463, p<0.001). Protozoa efficiently 

graze on bacteria and have been shown to strongly increase the remineralization of mineral 

nutrients, particularly phosphorus, which is then available for phytoplankton growth (Bloem et al., 

1989;  Hambright, Zohary & Güde, 2007). Increased excretion of nutrients by protozoa possibly 

contributed to the lower difference between TPmix and TPsummer after 1990, in addition to reduced 

P losses from the productive zone due to sedimentation of diatoms. Thus higher protozoan biomass 

in the Rappbode Reservoir might have enhanced summer phytoplankton production through a 

more efficient P recycling. The start of the protozoan biomass increase, however, does not fit to 

the start of phytoplankton biomass increase making a major influence of protozoans rather 

unlikely. 

4.5.5 Effects of climate change  

Climate change has the potential to contribute to the resilience of phytoplankton biomass. It can 

alter primary productivity, phytoplankton taxonomic composition and seasonal dynamics in 

different ways (Winder & Sommer, 2012). Climate change can directly affect phytoplankton via 

physiology or indirectly by altering the physical structure of the water body (Winder & Sommer, 

2012). As an indicator of climate change, an increase in air temperature was observed during the 

last decades at the Rappbode Reservoir. In agreement with observations from other lakes and 

reservoirs we found an earlier onset of thermal stratification and higher surface water temperatures, 

probably resulting in an increased stability of stratification (Adrian et al., 2009;  Jones & Brett, 

2014). Besides the effects on the physical structure, climate warming has a strong effect on the 

duration of the stratified season, during which the phytoplankton biomass is generally higher than 

during the non-stratified period (Sommer et al., 1986). In the case of the Rappbode Reservoir, the 

growing season – defined as the time between stratification onset and winter mixing – is about two 
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months longer nowadays than in the 1970s. Therefore a prolongation of the growing seasons 

necessarily leads to higher annually averaged phytoplankton biomass. 

By altering the position of algae cells in the water column relative to light and nutrients, vertical 

mixing has been shown to strongly affect the performance of phytoplankton species (Winder & 

Sommer, 2012). In the Rappbode Reservoir, the earlier onset of stratification might have 

negatively or positively affected diatom biomass in spring, resulting in reduced P sedimentation 

losses in spring (see paragraph above). Diatoms are well adapted to low light conditions and cold 

temperatures and accordingly may profit when the growing season starts earlier in the year. On the 

other hand, diatoms have high sinking velocities and therefore depend on turbulence to remain 

suspended  in the photic zone (Ptacnik, Diehl & Berger, 2003;  Huisman et al., 2004;  Jäger, Diehl 

& Schmidt, 2008). Intensified stratification strengths and earlier onset of stratification are 

associated with reduced mixing intensity. As a consequence, diatoms have a competitive 

disadvantage and can be outcompeted by algae better adapted to stratified water bodies. The 

diatom dynamics in Rappbode Reservoir in fact showed strong reductions and similarly strong 

increases in the times after nutrient reduction took place (see Fig. 4.2i). These dynamics are 

associated with species replacements in the diatom community (see above) and it remains to be 

analyzed which physiological traits are associated with these community changes and in which 

respect these trait dynamics may explain the observed dynamics in diatom biomass. 

4.5.6 Combined effects and conclusions 

An increase in potentially mixotrophic species capable of exploiting additional P sources was 

speculated to be the main mechanism explaining why overall phytoplankton biomass did not drop 

after P reductions. Furthermore we found that reduced P losses by diatoms sedimenting out of the 

photic zone, led to higher biomass in summer compared to spring biomass. Climate change, 

manifested as increased air and surface water temperature, an earlier onset of thermal stratification 

and stronger stratification stability might have supported these processes via effects on community 

composition. However, the combined analysis of the mentioned mechanisms on the yield of 

phytoplankton biomass per unit of phosphorus revealed that only mixotrophs significantly affected 

the yield. This suggests that losses in total biomass were primarily prevented by changes in the 

microbial food web including the mixotrophs and their ability to make bacterial phosphorus 
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available for photosynthetic organisms (Vadstein et al., 1993;  Rothhaupt, 1992). Changes in 

seasonal biogeochemical cycling of nutrients within the pelagic zone as well as climate change are 

evident, but play a minor part in preventing losses in total biomass. In conclusion, the results show 

that the phytoplankton community in the Rappbode Reservoir was able to adapt to lower nutrient 

levels without a loss in total biomass. This study demonstrates the ecosystem´s ability to 

compensate for changes in resource availability through changes in internal processes and 

functional strategies. 
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5.1 Highlights 

• A metalimnetic oxygen minimum (MOM) down to 40% saturation was observed in summer 

• The MOM was not imported from the sediment at the side walls 

• The MOM was a consequence of pelagic processes, such as respiration in the metalimnion 

• We hypothesize that Planktothrix rubescens in the metalimnion caused the MOM 

5.2 Abstract 

Dissolved oxygen is a key player in water quality. Stratified water bodies show distinct vertical 

patterns of oxygen concentration, which can originate from physical, chemical or biological 

processes. We observed a pronounced metalimnetic oxygen minimum in the low-nutrient 

Rappbode Reservoir, Germany. Contrary to the situation in the hypolimnion, measurements of 

lateral gradients excluded the sediment contact zone from the major sources of oxygen depletion 

for the metalimnetic oxygen minimum. Instead, the minimum was the result of locally enhanced 

oxygen consumption in the open water body. A follow-up monitoring included multiple 

chlorophyll a fluorescence sensors with high temporal and vertical resolution to detect and 

document the evolution of phytoplankton. While chlorophyll fluorescence sensors with multiple 

channels detected a mass development of the phycoerythrin-rich cyanobacterium Planktothrix 
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rubescens in the metalimnion, this species was overlooked by the commonly used single-channel 

chlorophyll sensor. The survey indicated that the waning P. rubescens fluorescence was 

responsible for the oxygen minimum in the metalimnion. We hypothesize that pelagic processes, 

i.e., either oxygen use through decomposition of dead organic material originating from P. 

rubescens or P. rubescens extending its respiration beyond its photosynthetic activity, induced the 

metalimnetic oxygen minimum. The deeper understanding of the oxygen dynamics is mandatory 

for optimizing reservoir management.  

5.3 Introduction  

Dissolved oxygen is a key variable for nearly all organisms in the aquatic environment. Especially 

in stratified lakes, vertical transport of dissolved substances is limited, which can result in sharp 

vertical gradients of oxygen concentration. Usually in direct contact with the atmosphere, the 

epilimnion shows a gas pressure that is close to equilibrium with the atmosphere, while the 

hypolimnion has trapped a limited amount of oxygen, which is subjected to depletion over the 

summer months until the thermal stratification breaks and deep recirculation recharges the 

hypolimnion with oxygen (e.g. Boehrer & Schultze, 2008).  

In many cases, however, a more complex picture is observed. Especially in the thermocline, where 

high density gradients restrict the vertical exchange, gradients of dissolved substances are formed 

and sustained due to small vertical transport. Both metalimnetic oxygen maxima and metalimnetic 

oxygen minima can be found. Though both features are commonly encountered, oxygen maxima 

have been dealt with in more detail in the literature (Wilkinson et al., 2015). Here we concentrate 

on the case of metalimnetic oxygen minima, which often get attributed to eutrophic lakes (e.g. 

Lake Arendsee: Boehrer & Schultze, 2008;  in general see also Wetzel, 2001) or reservoirs (Zhang 

et al., 2015); however, also lakes of lower trophic state can show metalimnetic oxygen minima 

(e.g. Joehnk & Umlauf, 2001). 

Metalimnetic maxima can appear as an artefact when trapped water warms and hence saturation 

levels increase due to lower solubility of oxygen at higher temperatures (e.g. Wilkinson et al., 

2015). Alternatively, oxygen maxima can originate from oxygen production by photosynthesising 

phytoplankton (Parker, Wenkert & Parson, 1991;  Stefan et al., 1995), which form a deep 

chlorophyll maximum in the metalimnion. Deep chlorophyll maxima can be observed in many 
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lakes (Leach et al., 2017). In contrast to metalimnetic oxygen maxima, metalimnetic oxygen 

minima cannot be the consequence of diffusive heating from the surface and hence must result 

from oxygen depletion. When a minimum forms, the shape of the oxygen profile depends on both: 

the oxygen depletion at the respective depth as well as vertical transport from the layers above and 

below (Kreling et al., 2017).   

Both, oxygen depletion in the open water and at the sediment surface can be responsible for the 

formation of a metalimnetic oxygen minimum. Modelling approaches include one oxygen 

depletion rate in the water column and one value for the oxygen depletion rate per sediment surface 

(e.g. Livingstone & Imboden, 1996;  Weber et al., 2017). Often oxygen consumption by the 

sediment is considered as the leading part. In addition, advective processes like inflows with high 

oxygen demand have been claimed to be important: flood waters with easily degradable organic 

material often find their way into the metalimnion of a stratified water body (as shown by Nix, 

1981; DeGray Reservoir, Arkansans, USA). As oxygen depletion in a lake is usually attributed to 

the sediment contact zone, it has been reasoned that the oxygen minimum can be an effect of 

oxygen depletion at the side boundaries, which is advected into the main body of the lake on 

isopycnal (constant density) surfaces. The corresponding lake morphometry may be supportive of 

different depletion rates (Shapiro, 1960;  Wetzel, 2001) due to variable ratios of sediment area to 

layer volume with depth and varying temperatures with depth.  

Despite its low trophic status, a reoccurring metalimnetic oxygen minimum was observed in the 

Rappbode Reservoir (see Fig. 5.7). Hence we planned an investigation of the metalimnetic oxygen 

minimum, to find clues about possible reasons. Understanding oxygen depletion is essential for a 

proper management of reservoirs. Low oxygen conditions interfere with water quality and can 

thereby largely increase costs of drinking water treatment. Too low oxygen concentrations are also 

risky for biota within the lake depending on a sufficient oxygen supply, like fish (Rice et al., 2013). 

The Rappbode Reservoir harbours a managed stock of lake trout (Salmo trutta f. lacustris), which 

are sensitive to low oxygen levels and, therefore, concentrations below 4 mg L-1 should be avoided.  

To shed light on the causes of the metalimnetic oxygen minimum in the Rappbode Reservoir, we 

organised our investigation in three distinct steps, over two years: 
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(1) The horizontal and vertical variability of the oxygen minimum was studied on one single 

day in September 2015 to determine the location of the most intense oxygen depletion 

(possibly the sediment surface?). 

(2) The temporal and spatial evolution of the oxygen in 2016 was documented by 

measurements of multiparameter profiles of high resolution. 

(3) The ecological evolution was studied by multichannel fluorescence profiles with fine 

vertical resolution and water samples for identification of organisms with microscopy. 

5.4 Field Site, Measurements and Methods 

The Rappbode Reservoir is located in the Harz Mountains in Northern Germany (coordinates 

51°44’N 10°54’E) and is the largest drinking water reservoir in Germany (in terms of volume), 

providing water to about 1 million people. The catchment is covered by forest and farmland (Friese 

et al., 2014). The dam has been constructed in the 1950s forming a lake of a complex shape with 

an 8 km long main channel towards south-west and two side arms facing north and south (Fig. 

5.1). Water enters via three pre-dams, which have been built for the purpose of sediment and 

nutrient retention (Rinke et al., 2013). The reservoir has a maximum depth of 89 m and a mean 

depth of 28.6 m. As typical for deep temperate water bodies, the Rappbode Reservoir completely 

mixes in late autumn and spring. It always stratifies in summer, but only occasionally in winter 

during the last years, due to the lack of ice cover. Since 1991, phosphorus concentrations have 

been low enough to expect a mesotrophic to oligotrophic waterbody (on average 0.014 mg L-1 

total phosphorus during the last 10 years, Wentzky et al., 2018). More information about the major 

ion composition and physicochemical properties of Rappbode water can be found in Moreira et al. 

(2016). Details about dissolved organic carbon composition are given in Tittel et al. (2015) and 

Morling, Herzsprung and Kamjunke (2017).  



5 Metalimnetic oxygen minimum and the presence of Planktothrix rubescens in a low-nutrient 
drinking-water reservoir 

 

76 
  

   

Figure 5.1: Bathymetric map of the Rappbode Reservoir with sampling stations. Measuring 

stations L1-L16 belong to the longitudinal transect, while measuring stations T1-T7 belong 

to the transversal transect. The location of the automatic profiler is indicated by the star. 

Geologic data were taken from © GeoBasis-DE / LVermGeo LSA (2016).   

Taking advantage of the morphometric complexity of the reservoir, we measured two transects: 

longitudinally (L16-L1 in Fig. 5.1), following the thalweg as closely as possible from the dam wall 

to the beginning of the backwater, and laterally from one side arm across the main channel towards 

the steep opposite side wall (T1-T7 in Fig. 5.1). We used a multiparameter probe (CTD90M Sea 

and Sun Technology, Trappenkamp, Germany, serial number: 644) with sensors for chlorophyll a 

fluorescence (Cyclops 7, model number: 2100-000, excitation wavelength 460 nm), temperature 

(PT100), electrical conductivity, pressure (for depth) and dissolved oxygen (optical sensor, Rinko 

III) with a response time of about 2 s. The species Planktothrix rubescens is almost invisible for 

the Cyclops 7 sensor with blue excitation, since the fluorescence yield of P. rubescens for this 

sensor´s excitation wavelength (460 nm) is very low. The reasons for this low fluorescence yield 

is low chlorophyll a content in photosystem II and the lack of alternative pigments that absorb light 

at the applied short wavelengths. The investigation was conducted in late summer (10th September 

2015) when the metalimnetic oxygen minimum had enough time to develop, but clearly before 

any large-scale cooling driven recirculation set in. 
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We further made use of a regular monitoring programme, in which multiparameter probe profiles 

(as in Fig. 5.2) were measured at fortnightly intervals during the entire year 2016 (from 19th 

January 2016 to 19th December 2016). The multiparameter probe mentioned above was used. 

Additionally, a multi-channel fluorescence probe (FluoroProbe, bbe moldaenke GmbH, Germany, 

serial number: 2101) was used to detect phytoplankton and to characterise the algal community. 

The FluoroProbe measured fluorescence emitted from chlorophyll a in the PS II (at wavelength 

685 nm), which was triggered through the excitation at different wavelengths (370, 470, 525, 570, 

590 and 610 nm). The signal at 370 nm excitation wavelength was used to correct for the 

fluorescence of dissolved organic matter. The other wavelengths referred to different accessory 

pigments present in phytoplankton, which allowed discrimination into four algal groups: (1) Green 

algae (rich in chlorophyll a/b), (2) diatoms/dinoflagellates (containing xanthophyll and chlorophyll 

c), (3) phycocyanin-rich cyanobacteria and (4) phycoerythrin-rich cyanobacteria and cryptophytes 

(for more information on the measurement principle we refer to Beutler et al., 2002a;  Beutler et 

al., 2002b). We used the probe measurements, and more precisely the signal of the red group 

(cryptophytes and phycoerythrin-rich cyanobacteria, excitation wavelength 570 nm), for assessing 

the vertical distribution of the phycoerythrin-rich cyanobacterium Planktothrix rubescens in the 

water column (for more information on occurrence of cyanobacteria in general see Carey et al., 

2012;  and specifically for stratified lakes see Cuypers et al., 2011). 

To get a clearer picture of the short-term dynamics and spatio-temporal distribution patterns, in 

the following year (2016), we installed an automatic profiler system (for location of profiler see 

Fig. 5.1) with a multiparameter probe (YSI 6820 V2-2 O) including sensors for dissolved oxygen 

(YSI 6150), temperature (YSI 6560), and two sensors for chlorophyll fluorescence: one sensor 

measuring chlorophyll a fluorescence directly (YSI 6025, excitation wavelength 470 nm) and one 

measuring chlorophyll fluorescence via exciting phycocyanin (YSI 6131, excitation wavelengths 

565-605 nm). Besides phycoerythrin, P. rubescens also contains phycocyanin and hence could 

also be detected by the phycocyanin sensor. The profiler covered the upper 26 m of the water 

column with depth-intervals of 0.25 m between 0-20 m and 0.5 m from 20-26 m. Profiles were 

measured at intervals of three hours. Operation began on 4th August 2016 and ran until 9th 

November 2016.  
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For microscopic species determination, phytoplankton samples were preserved with Lugol´s 

solution, concentrated using the sedimentation technique developed by Utermöhl (1958) and 

counted under an inverted light microscope. Most phytoplankton taxa were counted as cells. An 

exception was filamentous phytoplankton, such as P. rubescens, which was counted by measuring 

the filament length. Biovolumes for each species were derived from average cell dimension 

measurements and simple geometric shapes (Hillebrand et al., 1999). Phytoplankton biovolume 

was converted to biomass assuming a specific density of 1.0.  

To assess the long-term development of oxygen in the Rappbode Reservoir, weekly oxygen 

profiles were taken between 2009 and 2016. Oxygen concentrations and temperatures were 

measured with the DS5 multiparameter probe from Hydrolab. (An overview about all probes and 

sensors used in this study, including information about their characteristics, can be found in Table 

S9.4.1 in the supporting information.)   

As a stability quantity of stratification, the square buoyancy frequency (N2) was calculated from 

CTD90M profiles, using the formula 

𝑁𝑁2 = −
𝑔𝑔
𝜌𝜌
∙

d𝜌𝜌
d𝑧𝑧

 

where density ρ was calculated using a specific formula for the Rappbode Reservoir from Moreira 

et al. (2016), g was the earth acceleration (9.81 m/s²) and z was the vertical coordinate. In discrete 

steps, 

𝑁𝑁2 = −
𝑔𝑔

𝜌𝜌(𝑧𝑧) ∙
𝜌𝜌(𝑧𝑧 + 𝑎𝑎) − 𝜌𝜌(𝑧𝑧 − 𝑎𝑎)

(𝑧𝑧 + 𝑎𝑎) − (𝑧𝑧 − 𝑎𝑎)  

        = −
𝑔𝑔

𝜌𝜌(𝑧𝑧)
∙
𝜌𝜌(𝑧𝑧 + 𝑎𝑎) − 𝜌𝜌(𝑧𝑧 − 𝑎𝑎)

2𝑎𝑎
 

where a~1m was the vertical resolution of the calculation. For other quantities on stability see 

MacIntyre et al. (2009), Boehrer and Schultze (2009) and Read et al. (2011). 

Chlorophyll a fluorescence values obtained by the FluoroProbe and the multi-parameter CTD90M 

probe were supplied as µg L-1 of chlorophyll by the manufacturer. However, before using the 

chlorophyll a fluorescence data quantitatively, they were compared with high pressure liquid 
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chromatography (HPLC) measurements to evaluate the accuracy of the probe measurements. 

Samples for HPLC analysis were taken biweekly at the same sampling dates as the vertical probe 

profiles. Samples were collected at discrete depths (0, 2.5, 5, 10, 15, 20, 25, 30, 40, 50, 60, 70 m) 

using an open cylinder water sampler (4.2 L standard water sampler from Limnos). The total 

number of water samples used for analysis was 229. For chlorophyll a quantification, 1.5 L of 

sample water was filtered using glass fibre filters and extracted with 5 mL ethanol and several 

freezing/thawing cycles. Subsequently 20 µL of extract was measured by HPLC (for details on 

method see Van Pinxteren et al., 2017). For comparison, the probe data were aggregated to the 

same discrete depth levels as the HPLC samples. To test for relationships between chlorophyll a 

data obtained by fluorescence sensors (CTD90M and FluoroProbe) and data from HPLC 

measurements, linear regression analysis was performed: The coefficients of determination (R2) 

described the relationship between both variables and indicated the goodness of fit (R2=0: no 

relationship; R2=1: perfect relationship), while the p-values for the coefficients quantified the 

statistical significance of this relationship.  

For a quantitative estimate of possible oxygen depletion through the deep chlorophyll maximum, 

we converted the maximum observed chlorophyll a concentration from the FluoroProbe into 

carbon, using a specific Planktothrix C:Chl-a conversion factor of 90 mg C/mg Chl-a (Copetti et 

al., 2006). Secondly, we calculated the concentration of possible oxygen depletion by assuming 1 

mol C (12 g C) of carbon biomass requires 1 mol O2 (32 g O2) for oxidation. 

5.5  Results 

5.5.1 Local extension of the metalimnetic oxygen minimum 

To localize places of particularly high oxygen depletion, we firstly investigated the horizontal and 

vertical distribution of the metalimnetic oxygen minimum throughout the Rappbode Reservoir. 

During our campaign in September 2015, the Rappbode Reservoir showed vertical gradients 

typical for temperate stratified water bodies (Fig. 5.2). Below the 10 m thick epilimnion, a density 

gradient stabilized the water column limiting vertical exchange between the epilimnion and deeper 

layers. The reservoir showed relatively low conductivity, neutral pH, a chlorophyll a maximum in 

the epilimnion and a pronounced metalimnetic oxygen minimum.  
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Figure 5.2: Profiles of (a) temperature, (b) electrical conductivity C25, (c) density, 

(d) squared buoyancy frequency (calculated), (e) oxygen saturation, (f) pH and (g) 

fluorescence of chlorophyll a in the Rappbode Reservoir on 10th September 2015 

measured at the deep sampling location L16 close to the dam wall (see Fig. 5.1). 

Surface waters showed oxygen concentrations close to the equilibrium with the atmosphere. On 

the transversal transect (Fig. 5.3a), the oxygen curve below 10 m was similar for all profiles. 

Differences between profiles occurred at deep sites at depths below 20 m. In the longitudinal 

transect, vertical oxygen profiles varied between different stations (Fig. 5.3b). The upper edge of 

the gradient varied by about four meters over the entire length of the reservoir, which could be 

attributed to uplift and internal waves due to wind stress along the lake (see Bocaniov et al., 2014). 

All profiles captured a metalimnetic oxygen minimum at depths between 11 and 13 m, oxygen 

levels of about 55% saturation and documented higher oxygen concentrations in the deep water. 

Only at station T1, the water depth was too shallow to show the complete structure. Hence the 

metalimnetic oxygen minimum can be verified throughout the water body at the depth of the 

maximum density gradient (see Figs. 5.2c and d). 

Below the metalimnetic oxygen minimum, i.e. below 20 to 30 m depth, we found differences of 

oxygen concentration between profiles: shallower water depths (see shorter profiles) corresponded 

with lower concentrations of oxygen in the hypolimnion. This fact was indicative of higher oxygen 

depletion due to a higher sediment area to water volume ratio at the shallow sites, i.e. oxygen 

depletion imported from the side walls (e.g. Müller et al., 2012;  Dadi et al., 2016). This 
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observation agreed with the approach taken in numerical models, which implement oxygen uptake 

at the sediment surface as an important contribution for oxygen depletion. Horizontal mixing in 

the waterbody was obviously not sufficient to remove these oxygen gradients within the 

hypolimnion. The observation of lower oxygen saturation at stations with a higher sediment 

influence was visible in both the longitudinal and the lateral transect (Fig. 5.3).  

The depth and extent of the metalimnetic oxygen minimum was identical in all profiles of the 

lateral transect and also nearly identical in the longitudinal transect from the dam wall (L16) up to 

at least station L8. Further above, along the thalweg towards the inflow, the water was very shallow 

and differences between the profiles became visible. In conclusion, there was no indication that 

oxygen depletion in the metalimnion would vary between locations throughout most of the water 

body and no horizontal gradients were observable as seen in the hypolimnetic oxygen levels. 

Hence, the prevailing oxygen depleting process in the metalimnion was the same along the 

horizontal axes of the water body. As the sediment contact area in the side arm was larger than in 

the main channel or at the rock wall, the leading process for oxygen uptake could not significantly 

be connected to the sediment. In conclusion, the measurements indicated that the metalimnetic 

oxygen minimum in the Rappbode Reservoir was the consequence of pelagic processes.  

 

Figure 5.3: Profiles of oxygen on a transversal (a) and a longitudinal (b) transect 

measured on 10th September 2015. See Fig. 5.1 for locations of measuring stations. 
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5.5.2 Temporal evolution of the metalimnetic oxygen minimum 

The results of the transect measurements clearly showed that no horizontal gradient was visible in 

the metalimnetic oxygen minimum. Accordingly, measurements at one single pelagic site were 

sufficient to investigate the temporal evolution.  

Temperature stratification in 2016 was typical for the location (Wentzky et al., 2018). The summer 

stagnation period started in April after day of the year (DOY) 100 (see contour lines Figs. 5.4a-c) 

and lasted until December. During summer, the major temperature gradient was located at around 

10 m depth, which deepened slightly over time. Phytoplankton (chlorophyll fluorescence, Figs. 

5.4a and b) increased after thermal stratification had started. Later in summer, a strong 

phytoplankton peak occurred in the metalimnion, as indicated by the chlorophyll fluorescence 

measured by the multi-channel FluoroProbe (Fig. 5.4b). This deep phytoplankton peak was not 

visible in the chlorophyll a profile measured by the Cyclops 7 sensor of the CTD90M probe, which 

used only one single excitation wavelength and cannot detect phycoerythrin-rich cyanobacteria 

like Planktothrix (Fig. 5.4a). 
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Figure 5.4: Seasonal and vertical development (depth vs. time) during the year 2016. Color 

contours of fortnightly profiles of  (a) chlorophyll a fluorescence measured by CTD90M 

probe at excitation wavelength 460 nm, (b) summed chlorophyll a fluorescence measured by 

FluoroProbe at excitation wavelengths 470, 525, 570, 590 and 610 nm, (c) chlorophyll a 

fluorescence measured by FluoroProbe at excitation wavelength 570 nm (proxy for 

phycoerythrin-rich cyanobacteria and cryptophytes), (d) dissolved oxygen (mg L-1). Contour 

lines indicate water temperature (°C) (in Fig. 5.4a-c) or chlorophyll a fluorescence 

measured by FluoroProbe at excitation wavelength 570 nm (proxy for phycoerythrin-rich 

cyanobacteria and cryptophytes, in Fig. 5.4d).  

Specific in situ fluorescence measurements of the “red channel” of the FluoroProbe (representing 

phycoerythrin-rich cyanobacteria and cryptophytes) indicated the development of the 

phycoerythrin-rich cyanobacterium P. rubescens in the metalimnion (Fig. 5.4c). This fluorescence 

signal was present from DOY 200 (18th July) to DOY 230 (17th August) and faded out over further 

40 days (until DOY 270). Likewise, phycocyanin fluorescence was recorded at the thermocline 

depth and hardly ever at other depths or other times (Fig. 5.5c). Microscopic inspection of the 

phytoplankton confirmed the occurrence and dominance of P. rubescens at the respective depths 
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(Fig. S9.4.1 supporting information). In addition, the cyanobacteria Oscillatoria limnetica and 

Limnothrix redekei, which contain phycocyanin but not phycoerythrin, were observed in the 

metalimnion, but at very low abundances. In conclusion, the signal of the “red channel” of the 

FluoroProbe and the phycocyanin fluorescence measured by the automatic profiler system could 

mainly be attributed to P. rubescens.  

Oxygen concentrations were high during deep recirculation in winter and early spring due to cold 

temperatures and mixis of re-oxygenated water from the surface (Fig. 5.4d). In the epilimnion, 

oxygen concentrations during summer dropped due to higher temperatures and hence lower 

solubility. In the hypolimnion, oxygen was confined and subject to gradual depletion. As in the 

previous year, a clear minimum appeared at the thermocline after DOY 230 (17th August) and 

ended when the recirculation included the oxygen depleted layers into the surface mixed layer. 

Minimal oxygen levels in the metalimnion reached down to 4 mg L-1 around DOY 270 (26th 

September). Towards the end of the stratification period, low oxygen concentrations were found 

at the lake bed until the deep recirculation also removed this minimum. In some summer profiles, 

we observed small distinct local oxygen maxima of up to 0.5 m thickness at the upper edge of the 

metalimnion, directly above the oxygen minimum (Fig. S9.4.2 supporting information). These 

peaks were an indicator for oxygen production by photosynthetic organisms. Due to the small 

extent of the peaks, they were not visible in the contour plots.   

The formation of the metalimnetic oxygen minimum coincided with the breakdown of the 

metalimnetic P. rubescens population (Fig. 5.4d and Fig. S9.4.1 in supporting information). 

Moreover, the layer thickness of the oxygen minimum resembled the thickness of the Planktothrix 

layer before and looked like the continuation of the previous feature.  

The high-resolution data from the automatic profiler confirmed the upper edge of the metalimnetic 

oxygen minimum as the lower boundary of the epilimnion (Figs. 5.5a and d). The oxygen 

minimum was clearly terminated by the gradual inclusion of the oxygen depleted layer into the 

epilimnion. The high resolution data also revealed additional features, such as elevated chlorophyll 

a fluorescence at the time and depth where phycocyanin occurred (Figs. 5.5b and c).  

The disappearance of phycocyanin (mainly representing P. rubescens) coincided with the strong 

oxygen depletion, which stopped at a saturation level of about 40% (or 4 mg O2 L-1) (Figs. 5.5c 
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and d). Since the stratification persisted for longer, oxygen concentrations could have dropped 

further, if oxygen depletion had continued. A downward track of phycocyanin indicated that layers 

were drawn down due to shrinking hypolimnetic volume as a consequence of withdrawal through 

the bottom outlet. Notably, the oxygen minimum followed this downward trend.  
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Figure 5.5:  Seasonal and vertical development (depth vs. time) during the year 2016. Color 

contours display 3-hourly profiles of (a) water temperature (b) chlorophyll a fluorescence 

excited at 470 nm (c) chlorophyll a fluorescence excited through phycocyanin at 565-605 

nm (d) dissolved oxygen.  

5.5.3 Comparison of chlorophyll a quantification methods based on 

fluorescence with HPLC 

Chlorophyll a values obtained by the CTD90M probe and FluoroProbe during the monitoring in 

2016 were in good agreement with HPLC measurements from discrete sampling (Fig. 5.6). The fit 

of the correlation with HPLC was higher for the FluoroProbe (R2=0.78, p<0.001) than for the 

CTD90M (R2=0.63, p<0.001). The FluoroProbe and the CTD90M probe were also significantly 

correlated (R2=0.62, p<0.001). As a result of the good correlation between chlorophyll a 

fluorescence of the probes and chlorophyll a concentrations measured by HPLC, the values of the 

FluoroProbe were later used for a quantitative estimate on phytoplankton carbon biomass.   

                

Figure 5.6: Relationship of different chlorophyll a quantification methods (n=229). 

Correlation between (a) HPLC and CTD90M probe, (b) HPLC and FluoroProbe, (c) 

FluoroProbe and CTD90M probe. The black line shows the regression line. The dashed line 

corresponds to the 1:1 relationship.  

5.5.4 Calculation of potential oxygen depletion from available phytoplankton 

carbon biomass 

Our calculations showed that 3.1 mg O2 L-1 oxygen could be depleted from the available 

phytoplankton carbon biomass in the metalimnion (12.79 µg chl-a L-1 or respectively 1.15 mg C 



5 Metalimnetic oxygen minimum and the presence of Planktothrix rubescens in a low-nutrient 
drinking-water reservoir 

 

87 
  

L-1). In 2016, we observed an oxygen depletion of about 5 mg O2 L-1 in the Rappbode Reservoir 

(Fig. 5.4a). Since the calculated and the observed oxygen depletion were in a similar range, the 

Planktothrix biomass in the metalimnion could be connected to the metalimnetic oxygen minimum 

formation. 

5.6 Discussion 

A pronounced metalimnetic oxygen minimum, which reached down to only 40% saturation level, 

was documented in the meso- to oligotrophic Rappbode Reservoir. The distinctiveness of the 

metalimnetic minimum was surprising, given the low trophic state of the reservoir and the low 

phytoplankton abundance. The oxygen depleted water volume showed a sharp upper edge to the 

epilimnion and extended about 5 m into the stratified waterbody below. The oxygen minimum 

endured from the middle of August, when a population of P. rubescens disappeared at the same 

depth, to the end of October, when deep recirculation removed the metalimnion by inclusion into 

the epilimnion. 

The small horizontal variability observed in September 2015 (Fig. 5.3) indicated that the forming 

process was not significantly connected to side wall effects, such as oxygen depletion at the 

sediment surface, inflows or side wall mixing providing water that could have intruded the 

metalimnion. The oxygen depletion had to be mainly attributed to depletion in the open water 

body. Hence the further investigation focused on finding reasons for oxygen depletion in the 

pelagial.  

There was evidence for a connection of the metalimnetic oxygen minimum to the phycocyanin 

fluorescence maximum measured by the automatic profiler (as well as to the signal of the “red 

channel” of the FluoroProbe) and thus organisms related to this fluorescence (Figs. 5.4d and 5.5c-

d): firstly the oxygen minimum formed in the same water layers, secondly the oxygen depletion 

started with the disappearance of the phycocyanin (and the signal of the “red channel” of the 

FluoroProbe respectively) and thirdly the depletion stopped at 40% of oxygen saturation. Hence 

there seemed to be a limited reservoir of oxygen demand. Phycocyanin fluorescence and the signal 

detected by the “red channel” of the FluoroProbe could be related to a P. rubescens mass 

development, which was microscopically confirmed in the Rappbode Reservoir at the respective 
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depths. Most likely, the oxygen depletion was related to the discontinuation of photosynthetic 

activity of the Planktothrix population.  

A metalimnetic P. rubescens maximum has also been observed in other lakes (Walsby & Schanz, 

2002;  Cuypers et al., 2011). P. rubescens populations commonly form at this depth, since gas 

vesicles allow regulating their position within the depth of optimal growth conditions (Walsby et 

al., 2004). Their preference for the metalimnion is due to physiological traits that differ from those 

of other bloom forming species: P. rubescens favours low temperatures (Dokulil & Teubner, 2000;  

Holland & Walsby, 2008) and is adapted to low light conditions (Walsby & Schanz, 2002;  Walsby 

& Juttner, 2006). Its ability to use organic compounds as a carbon source under extremely low 

irradiances (photoheterotrophy) allows for survival and even slow growth in the metalimnion 

(Zotina, Köster & Jüttner, 2003). As in the Rappbode Reservoir, P. rubescens has been found to 

be a dominant species in the metalimnion even under low nutrient conditions (Steinberg & 

Hartmann, 1988;  Posch et al., 2012). 

While the P. rubescens peak was detected by the multi-channel FluoroProbe (excitation 

wavelengths 470, 525, 570, 590 and 610 nm, Fig. 5.4b), it was not captured by the single-channel 

chlorophyll a fluorescence measurements of the Cyclops-7 sensor of the CTD90M probe 

(excitation wavelength 460 nm, Fig. 5.4a) and chlorophyll a fluorescence YSI sensor of the 

automatic profiler (excitation wavelength 470 nm, Fig. 5.5b), which are sensor types commonly 

used for lake monitoring to estimate phytoplankton biomass (Brentrup et al., 2016). Given the 

importance of phycoerythrin-rich species such as P. rubescens for biogeochemical processes, 

important information might be missed by using chlorophyll a fluorescence sensors with only one 

single excitation wavelength to quantify chlorophyll a or phytoplankton biomass. This finding 

agrees well with other studies showing that chlorophyll a concentration and phytoplankton 

biovolume were better estimated by the FluoroProbe than by chlorophyll sensors measuring only 

at a single wavelength, especially in case of cyanobacterial blooms (e.g. Gregor & Marsalek, 2004;  

Catherine et al., 2012). Given the fact that P. rubescens is almost invisible for chlorophyll 

fluorescence sensors based on blue excitation implies that the occurrence of this highly relevant 

cyanobacteria can be overlooked in monitoring campaigns. Hence, for a more complete picture of 

the organisms the use of fluorescence sensors based on multiple wavelengths instead of single-
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wavelength sensors is recommended. This is particularly important when microscopic cell counts 

are not conducted and phytoplankton monitoring is entirely based on fluorescence measurements. 

Moreover the FluoroProbe had been shown to strongly correlate with the standard ISO method for 

chlorophyll a quantification (r2 = 0.97, p < 0.05, Gregor & Marsalek, 2004) as well as with 

phytoplankton biovolume obtained by microscopic analysis (r2 = 0.89, p-value < 0.001, Catherine 

et al., 2012). This was valid also for cyanobacteria dominated waters: for instance, Leboulanger et 

al. (2002) found that P. rubescens cell counts from discrete sampling were closely correlated with 

data obtained by the FluoroProbe (r2 = 0.89, p < 0.01, Leboulanger et al., 2002). Also during the 

monitoring in 2016 in the Rappbode Reservoir chlorophyll a fluorescence measured by the 

FluoroProbe compared well with chlorophyll a concentrations determined by the HPLC method 

(R2=0.78, p<0.001, Fig. 5.6b). In conclusion, we used chlorophyll a fluorescence measurements 

from the FluoroProbe to get a rough quantitative estimate of phytoplankton carbon biomass. Using 

this approximation of phytoplankton carbon biomass, our calculations showed that it could deplete 

approximately 3.1 mg O2 L-1. Considering that this value was just a rough estimate, it compared 

rather well with the observed oxygen depletion in the metalimnion of 5 mg O2 L-1. Nevertheless, 

a reason for the discrepancy between calculated and observed value might lie in the fact that the 

peak of the Planktothrix biomass was not recorded by our biweekly monitoring programme.  

The oxygen minimum in the metalimnion in late summer was a reoccurring feature in the 

Rappbode Reservoir (Fig. 5.7). Phytoplankton count data verified the presence of P. rubescens 

during summer at the thermocline since 2009, usually with a peak at a depth around 10 m. The 

occurrence of P. rubescens in previous years and the simultaneous observation of a metalimnetic 

oxygen minimum supported our hypothesis, that both features were connected.  
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Fig. 5.7: Seasonal and vertical (depth vs. time) oxygen levels from 2009 to 2016. Color 

contours display oxygen profiles (oxygen saturation in %) and contour lines indicate water 

temperature (°C). 

Both features, the colonization by P. rubescens and the persistence of a metalimnetic oxygen 

minimum were connected to the presence of density stratification: a) for P. rubescens to allow for 
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depth control by buoyancy, b) for the metalimnetic oxygen minimum to limit the diffusive 

exchange with neighbouring layers at higher oxygen concentration. Hence we displayed both 

features within the stratification (Fig. 5.8), where we calculated the square buoyancy frequency 

(N²) from CTD90M profiles. Both, the P. rubescens fluorescence and the oxygen minimum 

followed the depths of high density gradients. 

 

Fig. 5.8: Position within the stratification represented as contour lines of the squared 

buoyancy frequency N² [s-2] during 2016 of (a) chlorophyll a fluorescence measured by 

FluoroProbe at excitation wavelength 570 nm (proxy for phycoerythrin-rich cyanobacteria 

and cryptophytes) and (b) oxygen concentration.  

Prior to this study, the connection between metalimnetic P. rubescens mass developments and 

metalimnetic oxygen depletion had not been studied nor documented in similar detail. However, 

we found hints in the literature that also in other lakes low metalimnetic oxygen levels occurred 

simultaneously with the predominance of P. rubescens, supporting our hypothesis of a causal 

relationship between both. For example, in Lake Zürich (Switzerland), known for its recurrent 

mass developments of P. rubescens in summer (Micheletti, Schanz & Walsby, 1998), a 
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metalimnetic oxygen minimum developed subsequent to a Planktothrix bloom in the metalimnion 

(Van den Wyngaert et al., 2011). Moreover, profile measurements conducted in Crooked Lake 

(USA) in the summer of 1979 showed a metalimnetic Planktothrix peak accompanied by a 

decrease in oxygen (Konopka, 1980). In Lake Ammersee (Germany) a gradual depletion of oxygen 

to very low levels was reported, slightly below a Planktothrix peak (Ernst, Hitzfeld & Dietrich, 

2001;  Hofmann & Peeters, 2013).  

We could think of three reasonable cases that produced an oxygen depletion with the disappearance 

of photosynthetic activity in the metalimnion: (1) Planktothrix rubescens died and microbial 

degradation of its biomass required oxygen (2) P. rubescens perpetuated respiration longer than 

photosynthetic activity (3) heterotrophic organisms requiring oxygen for respiration (Shapiro, 

1960;  Raateoja et al., 2010), which was disguised while Planktothrix was photosynthetically 

active in the metalimnion. However, firstly the quantitative estimate of possible oxygen depletion 

through Planktothrix, as well as secondly the local confinement of the oxygen depletion to the 

same depths as the deep chlorophyll maximum and thirdly the termination of oxygen depletion at 

40% saturation indicate that process (3) is probably of subordinate importance.  

Considering that mass developments in the metalimnion of P. rubescens were favoured by lake 

warming (Posch et al., 2012;  Yankova et al., 2017), metalimnetic oxygen minima might increase 

simultaneously with Planktothrix blooms during the next decades, causing severe problems for 

water quality. Given the importance of oxygen for water quality, the connection between P. 

rubescens in the metalimnion and oxygen depletion should be studied further and analysed also in 

other lakes. 

5.7 Conclusions 

• A reoccurring metalimnetic oxygen minimum was observed in the low nutrient Rappbode 

Reservoir (Germany) during late summer. It was characterized by a sharp edge towards the 

epilimnion and a thickness of about 5 m.  

• Oxygen depletion in the metalimnion was a consequence of processes occurring in the 

pelagic water and was not imported from the sediment on the side walls nor by inflows.  
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• The emergence of the metalimnetic oxygen minimum was connected to the disappearance 

of a Planktothrix rubescens population in the metalimnion.  

• The available phytoplankton carbon biomass could suffice to deplete oxygen in the 

observed range. This suggested that biological activity induced by the end of a Planktothrix 

mass development was an essential factor in forming the oxygen minimum in the Rappbode 

Reservoir. 

• The presence of P. rubescens was responsible for the later appearance of the metalimnetic 

oxygen minimum either through bacterial decomposition of dead P. rubescens cells, or 

respiration of P. rubescens beyond their photosynthetic activity. The presented data 

showed no evidence for significant oxygen consumption in the metalimnion from sources 

other than the deep chlorophyll maximum. 
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6 Overall discussion and conclusions 

The following sections pick up the main findings of this thesis in order to illustrate, how they 

contribute to a better understanding of phytoplankton dynamics and their interactions with the 

abiotic environment. I moreover discuss which implications can be derived from my results for 

trait-based research and for lake management practices. I refer to the questions raised in chapter 

“2 Motivation and objectives” and the respective numbers of the corresponding questions are 

added in brackets. Finally, further research needs are discussed.  

6.1 Seasonal dynamics in phytoplankton functional traits 

The results of the thesis add a quantitative mechanistic understanding of seasonal succession of 

phytoplankton communities. Even though the study of phytoplankton seasonal succession has a 

long tradition in freshwater sciences, phytoplankton community dynamics along the seasonal 

gradient are complex and still difficult to predict (Reynolds, 2000). One reason for this might be 

the focus on phylogeny, e.g. on species or higher taxonomic units (e.g. Padisak, 1992;  Tallberg et 

al., 1999;  Kalff, 2002;  Rychtecký & Znachor, 2010), which impede ecological interpretation and 

general statements. Trait-based approaches are seen as a way towards higher generality, 

predictability and a better ecological interpretation of phytoplankton dynamics (Litchman & 

Klausmeier, 2008).  

In this thesis, the taxonomic composition of the phytoplankton community was combined with 

morphological, behavioral and physiological trait measurements collected from the literature in 

order to translate them into community-weighted mean trait values. These values provide a 

quantification of the aggregated trait attributes of the community and were used to analyze the 

seasonal succession of phytoplankton. As the use of functional traits facilitates ecological 

interpretation of the observed patterns, they are a major advancement compared to taxonomic 

approaches. From a functional perspective, the seasonal succession patterns in temperate lakes 

have been described verbally by the r- versus K-strategy continuum (Margalef, 1978;  Reynolds, 

1984a) and the PEG model (Sommer et al., 1986). The findings from this thesis about the seasonal 

development of functional traits mainly agree with their verbal models. However, as the approach 

used in this thesis allows for quantification of functional characteristics of the phytoplankton 
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community, the results obtained in this thesis are a major advancement in contrast to verbal 

descriptions, since they allow for quantitative statements and statistical analysis. Also ecosystem 

models can benefit from this trait-based approach, since the aggregation of species information 

into trait values reduces the complexity and overcomes the problem of models being limited in the 

number of modelled species. Traits also facilitate parametrization and scaling-up of models and, 

compared with species-based models, usually produce more generalizable results that can be 

projected to other ecosystems, since traits function as a unifying currency across scales 

(Zakharova, Meyer & Seifan, 2019). 

As species cannot invest into all ecological strategies at the same time, trade-offs exist between 

different functional traits, resulting in different species being characterized by different trait 

combinations. A quantification of traits, as done in this thesis, can reveal these trade-offs. The data 

showed that small cell size was associated with high maximum growth rates (Banse, 1976;  Finkel, 

2001;  Tang, 1995), light affinity (O’Farrell, de Tezanos Pinto & Izaguirre, 2007;  Edwards et al., 

2015), susceptibility to grazing (Thingstad et al., 2005) and the ability to form chains and colonies. 

In contrast, phytoplankton species with larger cell sizes were related to higher phosphate affinity, 

mixotrophy and mobility – traits that give a competitive advantage under low nutrient conditions. 

In line with literature, trade-offs were identified between nutrient and light competitive abilities as 

well as between nutrient competitive abilities and maximum growth rate (Leibold, 1997;  Huisman 

& Weissing, 1995;  Grover, 1991;  Litchman & Klausmeier, 2001;  Sommer, 1986b). These trade-

offs between traits were reflected in the seasonal succesion of phytoplankton communities in 

Rappbode Reservoir. In agreement with the verbal model by Margalef (1978), the seasonal 

development was mainly shaped by a trade-off between on the one hand fast growing species with 

small cells and the ability to rapidly incorporate existing resources (r-strategy) and, on the other 

hand, species with more efficient and complex mechanisms to exploit scarce mineral nutrients or 

acquire previously unexploited nutrient pools (K-strategy). While the exact species composition 

may vary from year to year, the functional characteristics of phytoplankton communities showed 

distinct reoccurring seasonal patterns (Q1.1).  

With gradually changing environmental conditions along the season, different traits become 

important and hence species and trait replacements took place. In spring, when turbulence and 

nutrient concentrations were high, r-strategists dominated. They are characterized by high 
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maximum growth rates, high light affinities and a high proportion of silica users. The dominance 

of these traits can easily be ecologically interpreted: Due to a high surface to volume ratio, small 

cells can quickly take up the available nutrients, allowing them to grow very fast in spring. High 

light affinities were also an important trait in spring, since the ability to efficiently use light is 

beneficial during fluctuating light conditions as they exist during high turbulence (Yoshiyama et 

al., 2009;  Edwards, Litchman & Klausmeier, 2013a). Turbulence prevents the silica users from 

sinking out of the photic zone and hence favors them under well-mixed conditions, e.g. in spring 

(Reynolds, 2006). The dominance of silica users finishes when stratification is becoming more 

stable and they are fast removed from the photic zone through their high sinking velocities due to 

their heavy siliceous cell wall (Trimbee & Harris, 1984;  Sommer, 1984) (Q1.1). 

In contrast to this, in summer turbulence and nutrients are low and K-strategists dominated, 

characterized by high phosphate affinity, the capacity to fix atmospheric nitrogen, motility, 

buoyancy control and the ability to ingest bacteria (mixotrophy). For example, from spring to 

summer the phosphorus affinity of the phytoplankton community increased from around 100 to 

240 L µmol-1 d-1 and motility from less than 10 % to more than 30 %. At the same time, maximum 

growth rate decreased from around 0.86 to 0.73 d-1 and the share of silica users from on average 

90 % to 45 %. This change in functional strategy can be interpreted as a reaction to the changed 

environmental conditions. As a response to the low nutrient concentrations during summer species 

with higher tolerances towards nutrient stress are favored, while fast growth was no advantage. 

Phosphate affine algae with the ability to efficiently take up phosphorus even under low nutrient 

concentrations dominate the community. More complex nutrient acquisition strategies such as 

nitrogen fixation and phagotrophic mixotrophy also become ecologically important traits to 

overcome the scarcity in mineral nutrients. Another ecologically meaningful strategy to survive 

nutrient limitation in the epilimnion during stratification in summer was motility: The possession 

of flagella and the regulation of buoyancy reduces sedimentation losses and allows the algae to 

migrate to deeper water layers below the thermocline to take up nutrients (Visser et al., 1996;  

Jäger, Diehl & Schmidt, 2008) (Q1.1).  

These results show that the occurrence and dominance of specific trait combinations along the 

season can be ecologically interpreted and that intra-annual changes in trait composition clearly 

mirror changes in environmental pressures (Q1.2). For example, light affinity was highest during 
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light limitation, maximum growth rates were highest when nutrients were abundant and phosphate 

affinity peaked during phosphorus limitation in summer. While the seasonal development of all 

mentioned traits agreed well with conceptual models about plankton succession (Margalef, 1978;  

Sommer, 1985;  Sommer et al., 2012), the edibility traits (ability to form chains/colonies and 

edibility towards Daphnia) showed unexpected seasonal patterns, as they did not reflect grazing 

pressure as proposed by theory.  In contrast to theory and previous observations, the edibility traits 

were highest during summer, when grazing is expected to be high (Lampert et al., 1986;  Sommer 

et al., 1986;  Vanni & Temte, 1990;  Wirtz & Eckhardt, 1996). This unexpected pattern was 

possibly caused by other reasons than grazing pressure, since traits are not completely independent 

from each other. It can be speculated that grazing losses were not the most important factor shaping 

the phytoplankton community of the Rappbode Reservoir, but instead resource availability was 

the primary regulator of phytoplankton dynamics. This would indicate that the Rappbode 

Reservoir is a primarily bottom-up regulated system, while top-down effects are of subordinate 

importance.   

6.2 Impact of nutrient reductions on seasonal and long-term 

trajectories of phytoplankton traits  

Phytoplankton community composition does not only change along the season, but also inter-

annually, particularly if environmental conditions undergo major changes. For instance, the 

increase and reduction of nutrients (eutrophication and oligotrophication) can cause changes in 

total biomass (Jeppesen et al., 2005) as well as in species composition of the communities 

(Sommer, Gaedke & Schweizer, 1993;  Kamjunke, Straile & Gaedke, 2009;  Anneville, Gammeter 

& Straile, 2005). Previous studies mainly focused on changes in phytoplankton structure on a 

yearly-aggregated basis, while changes in the seasonal cycle in response to changed nutrient loads 

were rarely looked at (but see Anneville et al., 2002a). This thesis, for the first time, analyzes the 

impact of nutrient reductions on the long-term development as well as on the seasonal succession 

of phytoplankton communities, using functional traits. The 50-year long, seasonally resolved data 

set from Rappbode Reservoir provided a unique study site for this research topic, since it 

underwent a strong and abrupt shift in trophic conditions in the nineties (average TP concentration 

was 0.12 mg/L for eutrophic years and 0.021 mg/L for oligotrophic years). In contrast to 
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comparisons across lakes (e.g. Edwards, Litchman & Klausmeier, 2013b), using long-term data-

series from one single study site allow studying the response to altering nutrient regimes without 

the confounding effects of other factors, such as morphometry, geology or geographical setting. 

The thesis shows that the general seasonal patterns of phytoplankton functional traits, such as the 

shift from r-strategists in spring to K-strategists towards summer, were the same for nutrient-rich 

and nutrient-deficient years and were thus independent of trophic status (Q1.3). Given the large 

differences in nutrient concentrations between the two trophic periods, the high similarity in 

seasonal succession is remarkable. It indicates that the recurrent character of the succession of 

seasonal events is a highly conserved process, which is maintained not only by seasonal nutrient 

limitation, but also by other physical factors (e.g. mixing regime and light availability) and biotic 

interactions.  

While the general succession patterns in functional traits were largely retained despite differing 

nutrient status, eutrophic and oligotrophic years also showed clear differences. First, nutrient 

reductions modified the extent of the seasonal succession of functional traits. In nutrient-rich years 

the differences in functional traits between spring and summer were very pronounced, while in 

nutrient-deficient years, traits exhibited lower fluctuations and were more evenly distributed along 

the season (Q1.3). For example, under eutrophic conditions P-affinity increased from around 60 L 

µmol-1 d-1 in spring to 240 L µmol-1 d-1 in summer, while in nutrient-poor years the difference 

between spring and summer was less strong and increased only from 140 to 240 L µmol-1 d-1. The 

weaker seasonal changes of functional traits after nutrient reductions agreed well with previous 

studies showing a decrease in seasonal fluctuations in biomass, cell size spectra and the number of 

successional stages with oligotrophication (Sommer et al., 1986;  Sommer, 1986a;  Kalff, 2002;  

Gaedke, Seifried & Adrian, 2004).  

Second, nutrient reductions affected functional traits mainly during spring, while the traits in 

summer largely matched in eutrophic and oligotrophic years (Q1.3). For example, the share of 

silica users was around 45 % in summer, both in eutrophic and in oligotrophic years. In summer, 

however, the share of silica users was almost 100 % in nutrient-rich years, while it was only around 

75 % in nutrient-deficient years. Hence, during the oligotrophic period the functional properties of 

the spring community resembled the summer community, while the functional properties of spring 

and summer communities during the eutrophic period were very different. An ecological 
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interpretation of this observation might be that the phytoplankton community had to adapt to low 

nutrient concentrations already early in the year during nutrient-deficient years, since nutrient 

limitation already occurred in spring after oligotrophication. Moreover, due to higher phosphorus 

removal from the epilimnion from spring to summer in eutrophic years (see chapter 6.3 for details), 

nutrient concentrations were rather low in the summer of eutrophic years. Hence the nutrient 

conditions of eutrophic summers were similar to the ones in nutrient-poor years, providing a 

further hypothesis why the functional traits of the phytoplankton community in eutrophic summers 

were similar to those in nutrient-deficient years. However, these results opposed previous theories 

and observations from Lake Constance, which found the largest changes after nutrient reductions 

during nutrient limitation in summer (Sommer et al., 1986;  Weithoff & Gaedke, 2016). Whether 

nutrient reductions mostly affected phytoplankton composition in spring or in summer probably 

depends on the specific lake ecosystem.   

Examples of traits which changed in spring, but not in summer after oligotrophication, were cell 

size, light affinity, maximum growth rate, P-affinity, mixotrophy and motility. In oligotrophic 

years the spring community consisted of phytoplankton with larger cell size, higher P-affinity and 

motility, while the maximum growth rate and light affinity were lower. The competitive advantage 

of algae with high nutrient affinities and larger cell size at the expense of species with high 

maximum growth rate and good light competition abilities under nutrient poor conditions agreed 

with experiments and observations from other lakes (Reynolds, 1984b;  Reynolds, 2006;  

Yoshiyama et al., 2009;  Gaedke, 1992;  Margalef, 1978). 

While for most traits, only the spring community was affected by reduced nutrient concentrations, 

some traits changed during all parts of the season (Q1.4). The most eye-catching change with 

oligotrophication was the increased share of potentially mixotrophic species, which was much 

higher throughout the year during oligotrophic years. The increase in mixotrophic species with 

decreased nutrient concentrations has been reported before for other lakes (Gaedke, 1998;  

Jeppesen et al., 2005;  Kamjunke, Henrichs & Gaedke, 2006;  Anneville, Ginot & Angeli, 2002) 

and seems to be a key feature of oligotrophication. The success of phagotrophic mixotrophs in 

nutrient poor environments can be explained by their ability to ingest bacteria as an alternative 

mineral nutrient source (Bird & Kalff, 1987;  Nygaard & Tobiesen, 1993).  
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Based on these findings about seasonal phytoplankton trait dynamics under different nutrient 

regimes, I could generalize the existing patterns and provide a quantitatively supported functional 

template for seasonal succession patterns under eutrophic and oligotrophic conditions in temperate 

lake ecosystems (see Fig.6.1). The conceptual model developed in this thesis largely extends the 

verbally formulated PEG model (Sommer et al., 1986;  Sommer et al., 2012), since it is based on 

quantitative data and can therefore be statistically tested and used for predictions using lake-

ecosystem models.  

  

Figure 6.1: Conceptualization of seasonal patterns of phytoplankton biomass and the importance of 

different phytoplankton traits during eutrophic (left) and oligotrophic (right) years. The thickness of the 

horizontal bars indicates the seasonal change in relative importance of the phytoplankton  traits cell size, 

maximum growth rate, light affinity, silica use, phosphate affinity, nitrogen fixation, motility and 

mixotrophy.  

6.3 Identifying causes for the resistance of phytoplankton biomass to 

react to nutrient reductions using functional traits 

As a next step, the thesis investigates whether functional traits are useful to identify causal 

relationships and mechanisms leading to a decoupling of phytoplankton biomass from nutrient 



6 Overall discussion and conclusions 
 

101 
  

concentrations.  Understanding the oligotrophication process is a highly relevant topic, especially 

for lake management, since much effort and money has been invested into reducing nutrient inputs 

to aquatic ecosystems during the last decades in order to mitigate the damaging effects of 

eutrophication on water quality and ecosystem health. The expected response to reduced 

phosphorus loads is a decrease in algal biomass, since phosphorus is the main limiting element in 

freshwater systems (Hecky & Kilham, 1988) and the linearity between phosphorus and biomass is 

widely accepted (Vollenweider, 1971). Many scientific and regulatory frameworks are based upon 

this assumption that an ecosystem impacted by eutrophication can be reverted to its original 

condition by phosphorus reductions (e.g. EU-WFD, 2000/60/EC). Also a number of 

oligotrophication studies support this idea, showing a decline in algal biomass after phosphorus 

has been reduced (Edmondson, 1994;  Jeppesen, Jensen & Søndergaard, 2002;  Jeppesen et al., 

2005;  Schindler, 2012;  Cooke et al., 2016). However, in this thesis, I show that the trajectory of 

an ecosystem is not always reversible: In case of the Rappbode Reservoir, where phosphorus 

concentrations were reduced by a factor of six within a very short time period, annual mean 

phytoplankton biomass did not respond in the long run and there was no linear relationship 

between biomass and phosphorus (Fig. 6.2) (Q2.1).     

Actually, the Rappbode Reservoir is no exception, as the resistance against nutrient reductions has 

been shown in many other aquatic ecosystems, such as lakes (Anneville & Pelletier, 2000;  

Jeppesen et al., 2005;  Tadonleke et al., 2009;  Weyhenmeyer & Broberg, 2014), reservoirs (Horn 

et al., 2015), rivers (Jarvie et al., 2013;  Westphal et al., 2019) and estuaries (Duarte et al., 2008). 

Already in the early work of Dillon and Rigler (1974), who studied the relationship between 

phosphorus concentration and chlorophyll-a concentrations, for example a phosphorus 

concentration of 50 mg m-3 was associated with chlorophyll-a values in a 90% confidence interval 

from 7.5 to 60 mg m-3 and 100 mg TP m-3 with a confidence interval of 20 – 162 mg chl-a m-3. 

Their findings illustrated that there was a substantial variability of algal abundance at a given 

nutrient concentration.  

This thesis adds to the growing awareness that algal growth responses can decouple from 

phosphorus concentrations and hence their pressure-response trajectory is not always fully 

reversible (Duarte et al., 2008;  Jarvie et al., 2013;  Westphal et al., 2019). Non-reversible 

trajectories, where the recovery differs from the degradation pathway, have also been observed for 
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other ecosystem components, e.g. for the recovery of watersheds from nutrient loads (Goyette, 

Bennett & Maranger, 2018) and for the lacking recovery of submerged vegetation after increased 

water transparency (Jeppesen et al., 2005;  Kemp et al., 2005;  Hilt et al., 2006;  Sand-Jensen et 

al., 2008). This suggests that flexible community patterns can exist at the same pressure level and 

that ecosystems may not return to an anticipated reference status after removing or lowering the 

pressure (Q2.2). 

 

Figure 6.2: Long-term trajectory of annual mean phytoplankton biomass versus annual mean total 

phosphorus (TP) concentration in the Rappbode Reservoir from 1963 untill 2016. The nutrient-rich 

(eutrophic) years are highlighted in red, the nutrient-poor (oligotrophic) years in blue. The solid black line 

shows the linear regression between phytoplankton biomass and TP, indicating that there is no significant 

relationship between both parameters.  

Despite the evidence for this obvious resistance of phytoplankton biomass against nutrient 

reduction and its relevance for setting realistic restoration targets and developing effective 

management strategies, the reasons for the decoupling of algal growth from its limiting nutrient 

resource are not well understood. Previous discussions and speculations about causes for 

nonlinearities in the chlorophyll-TP relationships in lakes include changes in trophic interactions, 

such as the presence or absence of herbivorous fish (Mazumder & Havens, 1998;  Anneville et al., 

2019), effects of global warming, including altered mixing and stratification patterns, on 
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community structure and dynamics (Anneville, Ginot & Angeli, 2002;  Horn et al., 2015), self-

stabilizing mechanisms and compensatory dynamics of the phytoplankton community (Jochimsen, 

Kümmerlin & Straile, 2013) as well as changes in ecological properties of the community towards 

mobile species with low-light tolerances, which can migrate below the P-depleted layer 

(Anneville, Ginot & Angeli, 2002). 

In case of the Rappbode Reservoir, losses in total biomass during oligotrophication were primarily 

prevented by internal changes in the functional structure of the community (Fig. 6.3). The thesis 

identified an increase in the functional group of phagotrophic mixotrophs as the most important 

mechanism, as the yield of biomass per unit phosphorus was significantly correlated with the 

biomass of mixotrophic species (Q2.3). By ingesting bacteria as a supplementary nutrient and 

energy resource, mixotrophs can make nutrient sources available that would not be accessible 

otherwise (Isaksson et al., 1999;  Nygaard & Tobiesen, 1993). Consequently, mixotrophy is a 

powerful functional strategy for gaining nutrients under P-depleted conditions, explaining high 

total algal biomasses despite P-reductions in the Rappbode Reservoir. Studies indicate that 

mixotrophs not only increase their own yield via bacterial supplementation, but can also stimulate 

the growth of non-mixotrophic species by releasing excess P to the environment (Grover, 2000;  

Sanders et al., 2001). In addition, mixotrophs are characterized by low sinking velocities, keeping 

P in the photic zone for a longer time (Findlay et al., 2001;  Ptacnik, Diehl & Berger, 2003;  

Reynolds, 2006).  Consequently, the access of mixotrophs on bacterial phosphorus has enhanced 

the P-flux towards mixotrophs and non-mixotrophs can partly profit from this phosphorus via 

nutrient recycling. This was probably also the case in the Rappbode Reservoir, since not only 

mixotrophs, but also obligate autotrophic species contributed to the increased yield of biomass per 

unit phosphorus over time.  An increase in the taxonomic groups of cryptophytes, dinophytes and 

chrysophytes, which include mixotrophic species, has also been observed in other lakes, including 

those where no decrease in total biomass was found after nutrient concentrations decreased 

(Gaedke, 1998;  Findlay et al., 2001;  Jeppesen, Jensen & Søndergaard, 2002;  Anneville, Ginot 

& Angeli, 2002;  Anneville, Gammeter & Straile, 2005;  Jeppesen et al., 2005;  Kamjunke, 

Henrichs & Gaedke, 2006;  Weyhenmeyer & Broberg, 2014). This indicates that also in other lakes 

the mixotrophy trait could be an important ecological mechanism explaining the resistance of total 

algal biomass to respond to nutrient reductions.  
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A second, but subordinate, mechanism leading to constant total algal biomasses after P reductions 

were changes in the seasonal biogeochemical cycling of nutrients within the pelagic zone, which 

were triggered by altered abundances of species with high sinking velocities (Fig. 6.3). I could 

show that the decrease in diatom blooms in spring with oligotrophication was related to less 

phosphorus losses over the season, allowing for higher biomasses in summer (Q2.3): Diatoms 

suffer from high sinking velocities due to their siliceous frustules (Trimbee & Harris, 1984;  

Reynolds, 2006), but are relatively slowly remineralized (Elster, 1963;  Krause, 1964). As a result 

of both traits, diatoms lead to high sedimentation losses, since they sink out of the photic zone 

before their nutrients can be released by mineralization (empirical evidence is given by Benndorf, 

1968;  Horn et al., 2015;  Frassl, Rothhaupt & Rinke, 2014). Due to the decreasing dominance of 

diatoms in spring caused by nutrient reductions in the Rappbode Reservoir, less phosphorus was 

removed from the productive zone by sedimentation processes and hence more nutrients stayed 

available for the summer period. As a result, phytoplankton biomass was more evenly distributed 

over the season during the oligotrophic period and higher summer biomasses compensated 

biomass losses in spring. This illustrates the importance of the interplay between phytoplankton 

traits, community dynamics and biogeochemical processing for a better mechanistic understanding 

of the resistance of phytoplankton biomass to nutrient reductions.   

 

Figure 6.3: Conceptualization of the long-term trajectory of phytoplankton biomass during eutrophication 

and oligotrophication (left) and reasons for the missing response in biomass after total phosphorus (TP) 
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decreased (right) in Rappbode Reservoir. The reasons for the resistance of phytoplankton biomass to react 

to nutrient reductions are A) an increase in mixotrophs and B) less nutrient removal by sedimenting diatoms 

in spring, leaving more nutrients for phytoplankton in summer.   

In conclusion, a shift in the functional structure allowed the phytoplankton community to adapt to 

lower nutrient levels without a loss in total biomass and explained the decoupling of inorganic 

nutrients from its ecological response. This case study demonstrates the ecosystem´s ability to 

compensate for changes in resource availability through changes in internal processes and 

functional strategies, leading to a non-reversible eutrophication-trajectory. This, however, does not 

mean that restoration efforts have no positive effect on eutrophication symptoms at all: For 

example, the undesired high biomass peaks during spring blooms diminished with 

oligotrophication in the Rappbode Reservoir. Also the summer peaks of nitrogen fixing 

cyanobacteria became less. 

Moreover, the case study from Rappbode Reservoir exemplifies how functional traits can be used 

to identify casual relationships and mechanisms to gain a better understanding of ecosystem 

processes. Hence this thesis supports studies claiming that functional traits are a promising 

approach towards a higher generality and predictability in ecology (Weithoff, 2003;  McGill et al., 

2006;  Litchman & Klausmeier, 2008) (Q2.3).  

6.4 Impact of functional traits on the geochemical environment  

So far, the thesis mainly focused on the response of phytoplankton functional traits to changes in 

the abiotic environment. However, phytoplankton communities also shape their surrounding 

environment and therefore affect geochemical cycles. For example, the results from Rappbode 

Reservoir show an increase in pH during the growing season when phytoplankton biomass is high. 

This is most likely caused by higher primary production, since photosynthesis removes CO2 and 

consequently the pH value increases (Kalff, 2002). The Rappbode Reservoir also shows lower 

nutrient concentrations (e.g. phosphorus, nitrogen and silica) in summer in the epilimnion as a 

result of nutrient uptake by algae, which require nutrients for their metabolism (Kalff, 2002), and 

consecutive nutrient removal by sinking of algae cells.  

While these examples illustrate the impact of phytoplankton abundance on their geochemical 

environment, the functional composition of the community can also be of importance in 
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controlling ecosystem processes. Functional traits, which simultaneously respond to 

environmental conditions (response traits) and at the same time directly affect biogeochemical 

processes (effect traits), tightly link community structure with their environment and hence may 

enhance predictability of ecosystem functioning (Lavorel & Garnier, 2002;  Litchman, Edwards 

& Klausmeier, 2015). An example from Rappbode Reservoir of how phytoplankton traits affect 

biogeochemical cycling is the effect of high sedimentation velocities of diatoms (Trimbee & 

Harris, 1984) on the spatial distribution of nutrients. Since diatom cells sink very quickly out of 

the photic zone, they lead to high removal of nutrients from the upper water column and high burial 

in the sediment, as shown in previous studies for phosphorus, silica and carbon (Benndorf, 1968;  

Nelson et al., 1995;  Tréguer & De La Rocha, 2013;  Frassl, Rothhaupt & Rinke, 2014;  Horn et 

al., 2015). This effect is also supported by the results from Rappbode Reservoir, showing a higher 

removal of silica and phosphorus during eutrophic years when diatom concentrations were high in 

spring (Q3.1). The removal rate of nutrients, in turn, affected summer biomasses (as discussed in 

section 6.3), illustrating the feedback effects between biology and geochemistry.  

While the effects of functional composition on nutrient concentrations have been shown before in 

other studies, this thesis provides novel evidence about the importance of the functional 

composition of metalimnetic phytoplankton communities for the formation of metalimnetic 

oxygen minima and hence adds a completely new example to the research about the impact of 

functional traits on the geochemical environment (reviewed by Litchman et al., 2015) (Q3.1). 

Metalimnetic taxa, i.e. the functional group of species forming a biomass maximum in the 

metalimnion or upper hypolimnion during the stratification period in summer, are equipped with 

a special set of traits to be able to grow under the low light environment in the thermocline 

(Reynolds et al., 2002). As outlined in detail in section 1.3.2, metalimnetic taxa are characterized 

by low light requirements and the ability to utilize a wide range of the light spectrum by possessing 

phycobilin pigments (Vila & Abella, 2001;  Camacho, 2006). Also their ability for vertical 

movement through flagella or buoyancy are important traits of metalimnetic species, allowing 

them to migrate between upper water layers with higher light availability and nutrient-rich deeper 

layers (Salonen, Jones & Arvola, 1984;  Camacho, Vicente & Miracle, 2001). While it is known 

that the occurrence of the functional group of metalimnetic taxa highly depends on environmental 

conditions, e.g. a stratified water body (Camacho, 2006), light penetration into the metalimnion 

(Reynolds, 1992;  Moll, Brache & Peterson, 1984) and the availability of nutrients in or below the 
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thermocline (Gervais, 1997;  Gong et al., 2015), the effect of this functional group on the 

geochemical environment is not well studied.  

For the first time, the thesis gives empirical evidence that metalimnetic taxa, in case of the 

Rappbode Reservoir mainly represented by the cyanobacterium Planktothrix rubescens, provide 

an important contribution for the emergence of oxygen minima, which are a phenomena described 

in many lakes and reservoirs worldwide (Wetzel, 2001;  Joehnk & Umlauf, 2001;  Boehrer & 

Schultze, 2008;  Zhang et al., 2015) (Q3.2). Using a temporally and vertically highly resolved 

monitoring system, including multiple chlorophyll-a fluorescence sensors with the ability to detect 

phycoerythrin-rich algae such as P. rubescens, I could show that the disappearance of P. rubescens 

florescence was connected to the emergence of a metalimnetic oxygen minimum in the Rappbode 

Reservoir (Fig. 6.4). Moreover, I showed that the available phytoplankton carbon biomass in the 

metalimnion was sufficient to cause the observed oxygen depletion in the metalimnion. This 

supports the assumption that biological activity induced by the end of the P. rubescens bloom was 

an essential factor for the formation of the metalimnetic oxygen minimum. While the thesis 

provides clear evidence that the waning of P. rubescens fluorescence was associated with the 

emergence of the oxygen minimum in the metalimnion, the exact processes inducing the oxygen 

depletion remain open to speculation: Both, oxygen use through bacterial decomposition of dead 

organic material originating from P. rubescens or P. rubescens extending its respiration beyond 

its photosynthetic activity are possible explanations for the formation of the metalimnetic oxygen 

minimum.  

The connection between metalimnetic taxa, whose occurrence highly depends on the presence of 

a strong thermocline as well as other environmental conditions (Gervais, 1997;  Camacho, 2006;  

Gong et al., 2015), and oxygen depletion in the metalimnion illustrate that organisms and their 

abiotic environment are tightly coupled through functional traits. Moreover, it displays how 

important the functional composition of the community is for the effect of phytoplankton on the 

geochemical environment: Without the possession of a specific trait combination (e.g. mobility 

and ability for efficient light harvesting) the group of metalimnetic taxa could not survive and grow 

in the metalimnion and consequently no oxygen minimum could develop. Hence I conclude that 

functional trait composition is an important factor controlling ecosystem processes and 

functioning.  
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Figure 6.4: Oxygen distribution along the season and depth shows the development 

of a metalimnetic oxygen minimum after the disappearance of fluorescence from the 

Planktothrix rubescens bloom (black contour lines) in the Rappbode Reservoir.  

However, the effect of the DCM forming algae on oxygen dynamics not only exemplifies how 

functional traits affect the geochemical environment, but also identifies a previously undiscovered 

mechanism for the development of metalimnetic oxygen minima. So far, four factors had been 

discussed in literature that may lead to enhanced oxygen depletion in the metalimnion (Fig. 6.5):  

(1) Inflows carrying oxygen depleted water or water with easily degradable material with 

high oxygen demand that find their way into the metalimnion (Nix, 1981). 

(2) Oxygen depletion at the sediment contact zone, which is advected into the metalimnion 

at the side boundaries, especially when the slope of the lake basin is very gentle (Shapiro, 

1960;  Wetzel, 2001). 

(3) Respiration of dense populations of non-migrating copepods in the metalimnion 

(Shapiro, 1960;  Raateoja et al., 2010). 

(4) Decomposition of organic algal material sinking from the epilimnion (Müller et al., 

2012).  

This thesis identifies the end of the mass development of metalimnetic taxa as a fifth factor that 

can trigger the formation of metalimnetic oxygen minima (Fig. 6.5), either through bacterial 

decomposition of their dead material or through respiration beyond their photosynthetic activity.  
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Figure 6.5: Schematic overview about possible mechanisms leading to the formation of 

metalimnetic oxygen minima.  

The finding that oxygen deficits can be caused by mass developments of metalimnetic algae is  

highly relevant for lake management, as low oxygen concentrations can have severe consequences 

for ecosystem functioning (Magee et al., 2019), biodiversity (Wetzel, 2001;  Schindler, 2017), 

water quality and human health (North et al., 2014;  Harke et al., 2016). Rice et al. (2013) for 

example showed that metalimnetic hypoxia can cause fish kills. The Rappbode Reservoir harbors 

a managed stock of lake trout, which is sensitive to low oxygen levels, and therefore very low 

oxygen levels in the metalimnion should be avoided. With climate warming oxygen concentrations 

in lakes and reservoirs are generally predicted to decline, due to reduced gas solubility (Benson & 

Krause, 1984) and increased thermal stability preventing the replenishment of oxygen from surface 

to deep-waters (Livingstone, 2003;  Jankowski et al., 2006;  North et al., 2014). Lake warming has 

also been shown to favor the development of P. rubescens in the metalimnion (Posch et al., 2012;  

Yankova et al., 2017). Consequently, metalimnetic oxygen minima might increase simultaneously 

with P. rubescens blooms in the future, adding upon the previously mentioned mechanisms of 

oxygen decline due to climate change.   

Based on these findings, reservoir operators could optimize their management to avoid negative 

consequences for water quality. One possible option to counteract the effects of climate warming 

is the modification of water column stability via selective withdrawal depth to prevent a further 

increase in P. rubescens blooms in the metalimnion and the resulting oxygen depletion (see Mi et 

al. (2019) for possibilities to change stratification patterns via selective withdrawal). Another idea 
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is withdrawal of water at the depth where the P. rubescens population peaks, resulting in a decrease 

of P. rubescens biomass and their negative effects on water quality.  

6.5 Conclusions and implications for trait-based ecology 

Since the dynamics of individual species are often complex and hard to predict (Reynolds, 2000), 

taxonomical ecology often tends to have restricted rules and special cases (Lawton, 1999). To 

discover general patterns, laws and rules in nature, the use of traits has been claimed to be a 

promising tool (McGill et al., 2006;  Litchman & Klausmeier, 2008), since they reduce the 

complexity and directly link changes of communities with changes in the environment via 

functions. The work conducted in this thesis strongly supports this assertion. I could show that 

during the 50 years of observation in the Rappbode Reservoir the studied functional traits mirrored 

environmental pressures over the year and showed consistent, reoccurring seasonal developments, 

which could be ecologically interpreted. Bottom-up effects, including nutrient and light 

availability, seemed to be the most important factors shaping the functional structure of the 

community along the season, while top-down effects of grazers were probably less important. 

While the main features of functional trait succession were independent of trophic status, the 

seasonal differences in trait composition were less pronounced after oligotrophication. Based on 

the observed trait patterns, this thesis provided a functional template for trait based succession 

patterns under eutrophic and oligotrophic conditions for temperate lakes. This trait based template 

largely extends the verbally formulated PEG model (Sommer et al., 1986;  Sommer et al., 2012), 

since it is based on a quantification of functional properties and thus allows for statistical testing 

and modelling.  

Similar seasonal dynamics were observed in all studied traits, even though they originated from 

different sources and belonged to different trait categories (morphological, behavioral and 

physiological traits, continuous vs. binary traits). This supports the reliability of the observed 

patterns and demonstrates that different trait types can detect functional shifts in phytoplankton 

communities (e.g. morphological traits used by Kruk et al. (2011), Stanca, Cellamare and Basset 

(2012) and Acevedo-Trejos et al. (2015), physiological traits used by Edwards, Litchman and 

Klausmeier (2013) or binary traits used by Klais et al. (2017)). These results show that translating 

species into functional traits by assigning trait values compiled from the literature is a powerful 
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method to enable ecological interpretation of observed phytoplankton community dynamics by 

quantification of functional characteristics. This is remarkable as all traits (except cell size) were 

measured on laboratory cultures (e.g. phosphate affinity) or refer to the potential to express a 

specific trait (e.g. the potential for mixotrophy).  

The quantitative approach based on traits presented in this thesis can open new perspectives for 

predictive ecology using lake ecosystem models. Models that can realistically represent the 

adaptive response of diverse plankton communities are urgently needed to understand how aquatic 

ecosystems and the biogeochemical cycles that they mediate are impacted by environmental 

changes, such as climate change and oligotrophication. However, most available phytoplankton 

models are limited in the number of modelled phytoplankton species or species groups (Mooij et 

al., 2010). Formulating functional groups (e.g. Reynolds, Alex Elliott & Frassl, 2014) or 

aggregating species information by describing them by their traits (e.g. Wirtz & Eckhardt, 1996;  

Smith et al., 2014;  Acevedo-Trejos et al., 2015;  Berge et al., 2017) overcomes this problem and 

also reduces complexity allowing for more generalized statements and higher predictability 

(McGill et al., 2006;  Litchman & Klausmeier, 2008).   

In contrast to taxonomic approaches, where the presence of species largely differs from habitat to 

habitat, the trait-based approaches used in this study allow for comparisons across different 

environmental systems, since taxonomic complexity is reduced to the unifying unit of functional 

traits. Comparing the results of this thesis to the results of recent studies from brackish and marine 

habitats reveals that the seasonal succession patters for the traits silica use, nitrogen fixation, 

mixotrophy and buoyancy (Klais et al., 2017) as well as maximum growth rate and light affinity 

(Edwards, 2016) are similar in freshwater and marine systems, while cell size shows opposing 

seasonal developments (Acevedo-Trejos et al., 2015;  Klais et al., 2017). In this way, trait-based 

approaches can serve as a common currency in ecology and traits can be used to assess 

phytoplankton community structure across different gradients and environments, as also suggested 

by Kilham and Hecky (1988) and Weithoff and Beisner (2019). 

The thesis indicates that functional traits link organisms with their bio-geochemical environment, 

allowing for an ecological interpretation of how phytoplankton community dynamics are shaped 

by their environment, but also how in turn community dynamics influence the geochemical 

environment (biogochemical impacts of phytoplankton traits are revievied by Litchman et al., 
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2015). For instance, evidence is provided that the functional group of metalimnetic species can 

cause oxygen minima in the metalimnion, indicating the importance of the vertical distribution of 

phytoplankton traits for biogeochemical processes. Phytoplankton traits can also shape spatial 

resource distributions, as shown by the effect of diatoms with high sinking velocities on nutrient 

losses from the photic zone. The effects of the sedimentation velocity trait on nutrient distribution 

in turn contributed to the unexpected resistance of total phytoplankton biomass after nutrient 

reductions. Also mixotrophs and their ability to make bacterial phosphorus available provided an 

important explanation for the decoupling of inorganic nutrients from total biomass concentrations, 

demonstrating the usefulness of functional traits for a better mechanistic understanding of aquatic 

ecosystems. Obviously, functional composition is an important factor in controlling 

biogeochemical processes and ecosystem functioning and hence trait-based approaches could 

provide a framework to identify biotic mechanisms relevant for the delivery of ecosystem services.   

In conclusion, the trait-based approaches presented in this thesis enhance ecological understanding 

of the observed phytoplankton community dynamics, their response to environmental gradients 

(intra-annual, inter-annual and vertical) as well as their impact on the geochemical environment, 

by focusing on the mechanisms that govern interactions between biota and the surrounding 

environment. I show that functional traits can be applied to translate information about taxonomic 

composition into ecologically meaningful functions and eco-physiological processes that can be 

used to understand e.g. seasonal succession patterns, long-term community changes in response to 

environmental pressures (e.g. nutrient loads) or previously unresolved phenomena in the abiotic 

(e.g. metalimnetic oxygen minima) and biotic environment (e.g. unexpected high biomasses). The 

quantitative, trait-based approaches used in this thesis give more generality and predictability than 

traditional taxonomic approaches and are hence a step forward towards a more predictive 

community ecology based on a mechanistic foundation. The trait-based approaches developed in 

aquatic ecology can also advance other fields of research, such as medicine, as shown by Guittar, 

Shade and Litchman (2019), who used trait-based approaches to understand the mechanisms of 

community assembly and succession of the infant gut microbiome. 

In addition to the advances for trait-based approaches, the thesis for the first time studies 

phytoplankton-dynamics in the Rappbode Reservoir and hence provides detailed process-

knowledge about this system. This gives the opportunity to further use the Rappbode Reservoir as 



6 Overall discussion and conclusions 
 

113 
  

a well-studied research site for future investigations. Moreover, the new insights gained through 

using the 50-year dataset from the Rappbode Reservoir illustrate the enormous value of conducting 

and maintaining long-term monitoring to assess the impact of changing environmental conditions 

on ecosystems. Many important aspects studied in this thesis, such as the recovery-response and 

resistance behavior of the ecosystem after nutrient-pressures diminished, cannot be studied 

experimentally or by cross-system comparisons. Facing future challenges such as climate change, 

I want to explicitly encourage the maintenance and further collection of long-term datasets, even 

though it is costly, time-consuming and does not immediately lead to publication success.   

6.6 Future directions 

The thesis provides new insights into phytoplankton dynamics and their interaction with 

geochemical processes by using functional traits and it exemplifies how functional traits can be 

used to gain a better mechanistic understanding of aquatic ecosystems. However, there are still 

many open questions remaining and further research needs to be conducted regarding the usage of 

functional traits. Here I give a small selection of topics that need further investigation.  

This thesis provides a template for seasonal succession patterns of functional traits under eutrophic 

and oligotrophic conditions. This template should also be applied in other lakes in order to evaluate 

if the patterns are similar in specific groups of lakes or if there are deviations. In case of differences, 

possible reasons should be identified with the final goal to develop functional templates for 

seasonal succession for all different lake types (e.g. eutrophic vs. oligotrophic as provided by this 

thesis, deep vs. shallow lakes, temperate vs. tropical lakes, brown vs. transparent lakes). Research 

should also further exploit the advantages of traits as a common currency in ecology to assess 

community structure across different habitats, gradients and ecosystems. Traits as a unifying 

concept in ecology not only allow for comparisons between different aquatic habitat types, such 

as marine, brackish and freshwater habitats, but also between aquatic and terrestrial ecosystems. 

The thesis illustrates that the translation of taxonomic information into functional information by 

using trait values obtained from physiological measurements of laboratory cultures is a useful 

method to increase ecosystem understanding. However, for many species no trait values are 

available, since obtaining them is very labor intensive. Given the potential of these trait data, more 

studies should anyway collect trait measurements to finally create a complete species-trait table. 
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Also methods for inferring missing trait data could be further developed (e.g. as shown by 

Bruggeman, Heringa & Brandt, 2009;  Edwards, 2016). An important aspect is intraspecific trait 

variability, which is not considered in this thesis as I assigned static trait values to each algal 

species. However, traits can be plastic and differ depending on environmental conditions and the 

presence of grazers (Rhee, 1974;  Van Donk & Hessen, 1993;  Yoshida, Hairston & Ellner, 2004;  

Malerba et al., 2016), time of the year (Morabito et al., 2007) or between different isolates of the 

same species (Bolius, Wiedner & Weithoff, 2017). Malerba et al. (2016) showed that representing 

a species by their mean trait value could underestimate their physiological performance by one 

order of magnitude due to within-species trait variability. Given these results, further research 

should focus on incorporating intraspecific trait plasticity into trait-based approaches. 

While this thesis focused on the effect of nutrient reductions on phytoplankton, other trophic levels 

are also important parts of lake ecosystems. It remains open whether and how the changes in 

phytoplankton community composition after oligotrophication affected higher trophic levels. It is 

well known that abundance and composition of zooplankton is largely influenced by 

phytoplankton community structure, since algae differ in their grazing resistance (Van Donk, 

Ianora & Vos, 2010) as well as in their nutritional value and fatty acid composition  (Arnold, 1971;  

Spijkerman et al., 2012;  Taipale et al., 2013;  Galloway et al., 2014). To investigate the effect of 

oligotrophication on the phytoplankton food quality and changes in energy transfer to higher 

trophic levels, the fatty-acid composition of single algal species could be translated into a 

community-averaged food quality trait value. This food quality trait could link changes in the 

phytoplankton community directly with changes in higher trophic levels and could be used to 

analyze the effect of nutrient reductions on the zooplankton and fish community.  

Based on the findings about the connection between metalimnetic algal blooms and the 

development of oxygen minima in the metalimnion, a logical next step would be to investigate the 

mechanisms causing this connection. The thesis provides several hypotheses how the 

disappearance of P. rubescens fluorescence could lead to the observed oxygen depletion (see 

section 6.4), but they still remain to be proven. Further investigations should also focus on 

disentangling the effect of different mechanisms on the formation of metalimnetic oxygen 

depletion (for mechanisms see section 6.4), as the contribution of each process to the metalimnetic 

oxygen depletion is probably lake-specific. While I excluded a major contribution of sediment 
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oxygen demand and inflows to the metalimnetic oxygen minimum in the Rappbode Reservoir, the 

effect of algae sedimenting from the epilimnion should be further evaluated.  

The results from Rappbode Reservoir as well as observations from other lakes (Gaedke, 1998;  

Findlay et al., 2001;  Jeppesen, Jensen & Søndergaard, 2002;  Anneville, Ginot & Angeli, 2002;  

Anneville, Gammeter & Straile, 2005;  Jeppesen et al., 2005;  Kamjunke, Henrichs & Gaedke, 

2006;  Weyhenmeyer & Broberg, 2014) show that mixotrophs increase with oligotrophication. 

However, the mechanisms by which mixotrophs increase with decreasing nutrient concentrations 

remains partly unclear: As mixotrophs are relieved from direct competition for inorganic nutrients 

due to their ability to feed on bacteria, they should be able to grow under all nutrient conditions. 

Therefore the reasons why they do not build up high biomasses under eutrophic conditions remain 

open and should be experimentally tested. 

Further, the observations from Rappbode Reservoir indicate that P-recycling by mixotrophs makes 

phosphorus accessible for the whole phytoplankton community and thus stimulates the growth of 

phototrophs. This mechanism is important as it might contribute to the resistance of phytoplankton 

biomass to react to nutrient reductions. However, if phototrophs actually profit from P-recycling 

by mixotrophs is controversial. While some experiments indicate that phototrophs benefit from the 

access of mixotrophs on bacterial phosphorous (Grover, 2000;  Sanders et al., 2001), other 

experiments come to opposing conclusions (Rothhaupt, 1997). Therefore further experiments on 

P-recycling by mixotrophs and their effect on non-mixotrophs are required for clarification. 

Since the good or very good ecological status, as required by the EU Water Framework Directive, 

is currently only achieved in 53.6% of Europe´s and in 26,1% of Germany´s lakes (European 

Environment Agency, 2018), future research should also focus on transferring ecological 

knowledge to water management by providing ideas how to enhance restoration success or how to 

set more realistic targets. For example, this thesis provides evidence that the resistance of 

phytoplankton biomass to react to reduced phosphorus loads was related to nutrient 

supplementation by mixotrophs ingesting bacteria. Further research could take this as a starting 

point to first investigate if a reduction in bacterial biomass would lead to less mixotrophs and then 

how the results could be translated into management practice. For instance, as bacteria can use 

DOC as a carbon source, DOC promotes bacterial growth (Tranvik, 1988). Hence DOC-rich lakes 

can support higher bacterial biomasses than DOC-poor lakes (Jones, 1992;  Lennon & Pfaff, 2005;  
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Berggren et al., 2010;  Roiha et al., 2011). Possibly increased DOC loads during the recent decades 

promoted bacterial growth and thus mixotrophy in the Rappbode Reservoir. In that case, measures 

could focus on reducing DOC inputs to the reservoir to prevent the transfer of bacterial phosphorus 

into algal biomass.  

Moreover, modelling studies could investigate the possibility of changing stratification patterns 

via selective withdrawal depth in reservoirs (e.g. see Mi et al., 2019) as a possible mechanism to 

reduce 1) the growth of mixotrophs and thus total algal biomass and 2) the growth of metalimnetic 

algae (e.g. P. rubescens) to prevent the development of metalimnetic oxygen minima and harmful 

cyanotoxins. As both functional groups, mixotrophs as well as metalimnetic species, profit from 

stratified conditions (Jäger, Diehl & Schmidt, 2008;  Walsby et al., 2004), an increased mixing 

regime could prevent their growth. However, negative effects of increased turbulence should be 

carefully evaluated, e.g. increased nutrient resuspension from the sediment and deeper layers into 

the photic zone (Pierson & Weyhenmeyer, 1994;  Song et al., 2013) and  higher productivity of 

diatoms which are favoured by destratification (Jäger, Diehl & Schmidt, 2008). In addition to 

changes in stratification patterns, selective withdrawal of algal peaks from the metalimnion is an 

option to prevent metalimnetic oxygen minima and their negative consequences for water quality. 

Lake ecosystem models could be used to evaluate this option and to quantitatively determine to 

which extent selective withdrawal could help to reduce metalimnetic algal blooms and the 

development of oxygen deficits. 

While knowledge gained in this dissertation through the use of functional traits provides an 

important step towards a better understanding of phytoplankton community dynamics and their 

responses to and impact on the surrounding environment, much more research needs to be done to 

achieve a more complete picture of lake ecosystem dynamics and develop general rules to be able 

to predict how lake ecosystems behave under changing environmental conditions.  
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9 Supporting information 

9.1 Supporting information 1 for chapter 3 (S9.1) 

Phylogenetic inference of quantitative traits of freshwater phytoplankton 

A phylogenetic method (Bruggeman, 2011; Bruggeman et al., 2009) was used to infer quantitative 

traits characterizing the competitive ability of all sampled species. This analysis was based on the 

Phyto-PhyloPars dataset of phytoplankton traits (Bruggeman, 2011), which includes cell volume, 

surface area, length and diameter, maximum growth rate, phosphate affinity and susceptibility to 

predation by Daphnids.  To also capture the role of light in controlling seasonal succession, the 

dataset was complemented with values of light affinity (the initial slope of the growth-irradiance 

curve, α) taken from a recent reanalysis of light utilisation traits across freshwater phytoplankton 

species (Schwaderer et al., 2011). Maximum growth rates collected by this study were also used. 

Further, a new datasets with cell volume measurements from phytoplankton in the Rappbode 

Reservoir were included. 

From the Schwaderer et al. (2011) compilation, all entries in appendix B were used except those 

marked with “Error in alpha too high”, those that could not be fit by either of the proposed models 

(“Too few data, linear fit”), and all values that were originally taken from Tuji et al. (2000), as that 

study focused on benthic rather than pelagic species. This left 67 values for maximum growth rate 

and 74 values for light affinity from a total of 29 studies. Each of these original studies was 

revisited to determine the temperature and light : day period under which experiments were 

conducted; trait values were subsequently adjusted for a standardized environment as described 

below. 

As in Bruggeman (2011), maximum growth rate and phosphate affinity were standardized for a 

temperature of 20°C. Values from experiments conducted at different temperatures were corrected 

using a Q10 relationship with factor 1.88. Only results from experiments conducted at a temperature 

between 10 and 20 °C were used to ensure the positive relationship between rates and temperature 

implied by the Q10 relation is valid for most species. No temperature correction was applied to the 

initial slope of the growth-irradiance curve, as growth at low light is controlled by arrival of 

photons, which is independent of temperature. 
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Maximum growth rate and phosphate affinity were not corrected for light period. This differs from 

the approach adopted by Bruggeman (2011), who assumed growth rate was proportional to light 

period. Review of the light utilisation studies referenced by Schwaderer et al. (e.g., Foy and 

Gibson, 1993) suggested that this proportionality is not universally found: while there is a clear 

positive relation between light period and growth for shorter light periods (< 12 hours of light), 

growth saturates at longer light periods for nearly all (temperate) species surveyed. Most 

experiments are conducted under light periods of 12-24 h, likely because such conditions were 

found to be optimal for growth. To account for this, we include only observations from 

experiments with at least 12 h of light per 24 h. Maximum growth rates at these light periods are 

assumed to have saturated (i.e., longer light periods would not increase the population growth 

rate); thus, neither the maximum growth rate nor the phosphate affinity (the ratio of maximum 

growth rate to half saturation phosphate concentration) require correction. The consequence of this 

is that our values for maximum growth rate and phosphate affinity differ from Bruggeman (2011) 

– typically they are 42-50 % lower, as most experiments were conducted under 12 : 12 or 14 : 10 

h L : D periods. We believe these new values better reflect the true daily mean maximum growth 

rate achievable. 

Light affinities were corrected for light period. Daily mean growth at low light is determined by 

the daily integrated photon flux, which is the product of the light period and the instantaneous 

photon flux. Thus, the initial slopes of the growth-irradiance curves estimated by Schwaderer et 

al. reflect both true differences between species and differences in the light period they were 

subjected to. Light affinities were therefore multiplied by 24/(number of light hours) in order to 

make them representative for growth under continuous light exposure.  

Trait values for all sampled phytoplankton species were derived following the methodology 

described by Bruggeman (2011), using the expanded trait compilation described above, and an 

updated phytoplankton taxonomy based on the World Register of Marine Species 

(http://marinespecies.org). 

 

http://marinespecies.org/
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9.2 Supporting information 2 for chapter 3 (S9.2) 

Table S9.2.1: Five most abundant genera or species in spring (March, April, May), 

clearwater (June), summer (July, August, September, October) and winter (November, 

December, January, February) season during the eutrophic (1970-1990) and oligotrophic 

(1996-2006) period.  

Season Eutrophic period (1970-1990)

  

Oligotrophic period (1996-2016) 

Spring Asterionella formosa 

Aulacoseira sp. 

(italica/granulata) 

Stephanodiscus hantzschii 

Fragillaria sp. 

Diatoma sp. 

Cyclotella sp. 

Asterionella formosa 

Tabellaria fenestrata 

Gymnodinium sp. 

Aulacoseira sp. (italica/granulata) 

Dinobryon sp. 

Cryptomonas sp.  

Clearwater Asterionella formosa 

Fragillaria sp. 

Aulacoseira sp. 

(italica/granulata) 

Nitzschia sp. 

Ceratium hirundinella 

Cryptomonas sp.  

Asterionella formosa 

Dinobryon sp. 

Tabellaria fenestrata 

Cryptomonas sp. 

Rhizosolena longiseta 

Peridinium sp. 

Summer Fragilaria sp. 

Asterionella formosa 

Aulacoseira sp. 

(italica/granulata) 

Stephanoon wallichii 

Ceratium hirundinella 

Staurastrum sp.  

Fragillaria sp. 

Asterionella formosa 

Tabellaria fenestrata 

Cryptomonas sp. 

Peridinium sp. 

Dinobryon sp. 

Winter Asterionella formosa Asterionella formosa 

Tabellaria fenestrata 
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Aulacoseira sp. 

(italica/granulata) 

Mallomonas sp. 

Fragillaria sp. 

Staurastrum sp. 

Melosira varians 

Aulacoseira sp. (italica/granulata) 

Cryptomonas sp. 

Fragilaria sp. 

Planktothrix sp. 

 

Table S9.2.2: Means (± standard deviation) of the variables (environmental parameters, 

biomass and functional traits) over all dates and results of the generalized additive models 

(GAM) giving the deviance explained (Dev. exp.) in per cent and the statistical significance 

judged by F tests (p-value), for the eutrophic and oligotrophic period separately. The p-

value was <0.001 for all variables. 

 Eutrophic period (1970-1990)

  

Oligotrophic period (1996-

2016) 

Variables Overall mean 

(±SD) 

Dev. 

exp. (%) 

Overall mean 

(±SD) 

Dev. 

exp. (%) 

Phytoplankton biovolume 

(mg L-1) 

1.280 (2.812) 
 

43.2 
 

0.680 (1.473) 
 

4.58 
 

Water temperature (°C) 10.97 (5.068) 
 

94.6 
 

12.33 (6.151) 90.9 
 

SRP (mg L-1) 0.015 (0.009) 
 

42.7 0.004 (0.004) 7.03 

NO3 (mg L-1) 6.669 (1.274) 31.3 
 

4.987 (0.829) 57.4 
 

Silica (mg L-1) 1.725 (1.046) 
 

76.4 
 

2.120 (0.795) 50.4 
 

Oxygen (mg L-1) 10.60 (1.556) 82.2 
 

9.755 (1.327) 79.3 
 

pH 7.612 (0.628) 42.1 
 

7.422 (0.440) 11.9 
 

Secchi depth (m) 3.669 (1.467) 
 

3.6 3.490 (0.838) 14.0 

Size of individual cells 

(µm3) 

3148.7 (6932.5) 15.4 
 

4494.9 (7435.8) 15.4 
 

Phosphate affinity (L · 

µmol-1 · d-1) 

130.89 (119.81) 32.6 
 

241.11 (233.17) 13.9 
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Light affinity (µmol quanta-

1 m2 s day-1) 

0.031 (0.006) 29.3 
 

0.02 (0.005) 15.7 
 

Maximum growth rate (d-1) 0.827  (0.114) 
 

33.4 
 

0.764 (0.152) 12.5 
 

Silica use (fraction) 0.808 (0.297) 46.4 
 

0.626 (0.301) 
 

13.9 
 

Motility (fraction) 0.113 (0.220) 
 

25.2 
 

0.288 (0.268) 15.6 
 

Mixotrophy (fraction) 0.027 (0.108) 5 
 

0.194 (0.209) 9.57 

Buoyancy (fraction) 0.051 (0.173) 
 

17.2 
 

0.0711 (0.184) 3.13 
 

Nitrogen fixation (fraction) 0.047 (0.168) 
 

15.4 
 

0.022 (0.087) 12.6 
 

Chain and colony (fraction) 0.744 (0.306) 48.9 
 

0.67 (0.251) 
 

22.8 
 

Edibility for Daphnia 0.394 (0.179) 18.9 0.316 (0.078) 11.5 
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9.3 Supporting information for chapter 4 (S9.3) 
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Figure S9.3.1: Long-term development of light conditions, water temperature, stratification 

onset and phytoplankton in the Rappbode Reservoir. The solid, colored lines are the 

smoothers from the generalized additive models fitted to the data and the shades are the 

confidence intervals of these fits. (a) Annual mean Secchi depth. (b) Annual mean surface 

temperatures.  (c) Mean surface temperatures during spring. (d) Mean surface temperatures 
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during summer. (e) Mean surface temperatures during summer in the hypolimnion. (f) Onset 

of stratification (Day of Year).(g) Mean phytoplankton biomass in spring (red) and in 

summer (blue). (h) Annual mean yield of phytoplankton biomass per unit of phosphorus, 

excluding mixotrophic species. (i) Annual mean biomass of motile species, excluding 

mixotrophic species. (j) Mean concentrations of total phosphorus during mixing (red) and 

during summer (blue). (k) Mean concentrations of soluble reactive phosphorus during 

mixing (red) and during summer (blue). (l) Difference in soluble reactive phosphorus 

concentrations between the mixing and the summer period. (m) Mean total phosphorus 

concentrations in summer in the hypolimnion (60 m, 70 m and 80 m depth). (n) Mean soluble 

reactive phosphorus concentrations in summer in the hypolimnion (60 m, 70 m and 80 m 

depth). (o)  Mean oxygen concentrations in summer in the hypolimnion (60 m, 70 m and 80 

m depth). (p) Maximum phytoplankton biomass.  

 

    

  

Figure S9.3.2: Examples for the surface temperature development over the season. The red 

line indicates the calculated day of stratification onset. 
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Table S9.3.1: Five most abundant genera or species of diatoms in spring, mixotrophic 

species and motile species excluding mixotrophs during different decades.  

Years Diatomsspring Mixotrophs Motile species excluding 
mixotrophs 

1961-1970 Asterionella formosa 
Melosira sp. 
Fragilaria sp. 
Diatoma sp. 
Tabellaria fenestrata 

Peridinium sp. 
Dinobryon sp. 
Gymnodinium sp. 
Uroglena americana 
 

Ceratium hirundinella 
Mallomonas sp. 
Microcystis sp. 
Aphanizomenon fl.a. 
Stephanoon wallichii 

1971-1980 Asterionella formosa 
Stephanodiscus hantzschii 
Fragilaria sp. 
Cyclotella sp.  
Nitzschia sp. 

Dinobryon sp. 
Peridinium sp. 
Cryptomonas sp. 
Gymnodinium sp. 
 

Stephanoon wallichii 
Ceratium hirundinella 
Mallomonas sp. 
Aphanizomenon.fl.a. 
Microcystis sp. 

1981-1990 Asterionella formosa 
Stephanodiscus hantzschii 
Diatoma sp. 
Fragilaria sp. 
Melosira sp. 

Peridinium sp. 
Cryptomonas sp. 
Dinobryon sp. 
 

Mallomonas sp. 
Stephanoon wallichii 
Aphanizomenon fl.a. 
Ceratium hirundinella 
Microcystis sp. 

1991-2000 Asterionella formosa 
Stephanodiscus hantzschii 
Fragilaria sp. 
Diatoma sp. 
Melosira sp. 

Cryptomonas sp. 
Gymnodinium sp. 
Dinobryon sp. 
Peridinium sp. 
 

Planktothrix sp. 
Rhodomonas sp. 
Chloromonas sp. 
Ceratium hirundinella 
Stephanoon wallichii 

2001-2010 Asterionella formosa 
Tabellaria fenestrata 
Fragilaria sp. 
Diatoma sp. 
Cyclotella sp. 

Cryptomonas sp. 
Peridinium sp. 
Dinobryon sp. 
Gymnodinium sp. 
Pseudopedinella sp. 

Synura sp. 
Ceratium hirundinella 
Rhodomonas sp. 
Mallomonas sp. 
Planktothrix sp. 

2011-2016 Tabellaria fenestrata 
Asterionella formosa 
Urosolenia longiseta 
Diatoma sp. 
Fragilaria sp. 

Dinobryon sp. 
Gymnodinium sp. 
Peridinium sp. 
Cryptomonas sp. 
Pseudopedinella sp. 

Synura sp. 
Planktothrix sp. 
Rhodomonas sp. 
Ceratium hirundinella 
Aphanizomenon fl.a. 
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9.4 Supporting information for chapter 5 (S9.4) 

 

Figure S9.4.1: Seasonal and vertical development (depth vs. time) during the year 2016 of 

dissolved oxygen (%). Contour lines indicate the biovolume of P. rubescens, obtained by 

microscopic cell counts (mg L-1). 

  

Figure S9.4.2: Example of an oxygen profile (23th August 2016), where a local oxygen 

maximum was observed, directly above the metalimnetic oxygen minimum.  
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Table S.9.4.1: Probes and sensors used in this study, including information about their characteristics as given by the 

manufacturer.  

Probe Sensors for 
/Discrimination 
into 

Sensor 
names 

Excitati
on 
wavele
ngth 
(for 
chl-a 
sensor
s) 

Detect
ed 
wavele
ngth 
(for 
chl-a 
sensor
s) 

Concentrat
ion range 

Resolution Uncertainty/ 
Accuracy 

Detectio
n limit 

Can P. 
rubescens be 
detected? 

Data used in  Source 

Multiparameter 
probe:  
CTD90M, Sea and 
Sun Technology, 
Trappenkamp, 
Germany, serial 
number: 644 

Chlorophyll a 
fluorescence 

Cyclops 7, 
model 
number: 
2100-000 

460 nm 620-
715nm 

0 – 500 
µg/L Chl a 

  0.03 µg/L 
Chl a 

No Fig. 2g, Fig. 4a http://www.turne
rdesigns.com/t2/
media/cyclopsds_
3.pdf 

Temperature PT100 4 pol   -2 - 36°C 0.0001 °C ± 0.002 °C   Fig. 2a and as 
contours in 
Fig. 4a-c 

http://www.sea-
sun-
tech.com/fileadmi
n/img/pdf_sea/CT
D90.pdf 

Electrical 
conductivity 

7-pole 
platinum 
cell 

  0–7 mS/cm 0.0001 
mS/cm 

± 0.003 mS/cm   Fig. 2b 

Pressure piezo-
resistive 

  0-10 bar 0.002 % full 
scale 

± 0.1 % full scale   Fig. 2c 

pH single rod 
electr. 

  2–10 pH 0.0002 pH ± 0.02 pH   Fig. 2f 

Dissolved 
oxygen 

Rinko III   0 to 200% 
 

0.01 to 
0.04% 

±2% of full scale 
(at 1 atm, 25 °C) 

  Fig. 2e, Fig. 3, 
Fig. 4d, Fig. 
8b 

https://www.jfe-
advantech.co.jp/e
ng/ocean/pdf/RIN
KO%20Series(E)_2
01608.pdf 

Multi-channel 
fluorescence 
probe: 
FluoroProbe, bbe 
moldaenke 
GmbH, Germany, 
serial number: 
2101 

Four algal 
groups: (1) 
Green algae 
(rich in 
chlorophyll 
a/b), (2) 
Diatoms/Dinofl
agellates 
(containing 
xanthophyll and 
chlorophyll c), 
(3) 
phycocyanin-
rich 
Cyanobacteria 

 370, 
470, 
525, 
570, 
590 
and 
610 nm 

680nm 
 

0 - 200 µg 
chl-a/l 

0,01 µg chl-
a/l 

  Yes, it is 
visible in the 
signal of the 
red (3) and 
the blue 
group (4) 

Fig. 4b, 4c, 
Fig. 8a and as 
contours in 
Fig. 4d 

https://www.bbe-
moldaenke.de/de/
produkte/chlorop
hyll/details/fluoro
probe.html 
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and (4) 
phycoerythrin-
rich 
Cyanobacteria 
and 
Cryptophytes 

Automatic 
vertical profiler 
with 
multiparameter 
probe:  
YSI 6820 V2-2-O 

Dissolved 
oxygen 

YSI 6150   0 to 500% 
0 to 50 
mg/L 

0.1% 
0.01 mg/L 

0 to 200%: ±1% of 
reading or 1% air 
saturation, 
whichever is greater 
 
0 to 20 mg/L: ± 0.1 
mg/L or 1% of 
reading, whichever 
is greater 

  Fig. 5d https://www.ysi.c
om/File%20Library
/Documents/Speci
fication%20Sheets
/E36-6820-6920-
V2.pdf 

Temperature YSI 6560   -5 to +50°C 0.01°C ±0.15°C   Fig. 5a 
Chlorophyll a 
fluorescence 

YSI 6025 470 nm 670-
700 nm 

~0 to 400 
µg/L, 0 to 
100 RFU 

0.1 µg/L Chl 
0.1% RFU 
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