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1 Summary 

1.1 Introduction 

Intentional behavior in higher animals differs from mere habitual behavior in terms of 

goal-directedness (Goschke, 2004). Behavior is considered goal-directed when the actor 

integrates information about the subsequent outcome of an action (Balleine & O'Doherty, 2010; 

Dickinson & Balleine, 1994; Kiesel & Koch, 2012), potentially enabling the anticipation of 

consequences of an action. Thus, goal-directed behavior requires knowledge about which 

behavior shown in the past led to the expected goal state. Technically speaking, it requires 

prior acquisition of knowledge about the current contingencies between behavioral responses 

and their outcomes under certain stimulus conditions (J. Hoffmann & Engelkamp, 2013). This 

association chain enables events lying in the future to be mentally represented and assessed 

in terms of value and achievability. Furthermore, goal-directed behavior is independent from 

stimulus conditions. Preceding stimuli and consecutive actions are not linked to each other like 

automatized behavior or reflexes but instead are mentally represented in an arbitrary manner. 

This way the anticipative stimulus and its consecutive reaction can be decoupled leading to an 

enormous increase in the degrees of freedom of an individual. Thus, higher animals are 

capable of reacting differently to the same stimulus, depending on its predominant present 

goal. This allows agents to react differently to varying environmental conditions or changed 

goal states, while habits are continuously performed in the same manner without regard to 

stimulus conditions or value of different outcomes. In all higher animals, knowledge about 

contingencies between a stimulus, a response and a specific effect of an action can be 

acquired via trial and error where learning relies on evaluating retrospectively whether a 

behavioral response yielded a desirable outcome. Additionally, only humans are capable of 

accelerating the learning process using explicit instructions, which specify prospectively how 

to yield intended outcomes under the appropriate stimulus conditions (Doll, Jacobs, Sanfey, & 

Frank, 2009a; Ruge & Wolfensteller, 2016; Wolfensteller & Ruge, 2012). This short route has 

an important evolutional advantage by cutting down time demanding trial-and-error sequences 

and thus avoiding potentially harmful behavior. Exploring and trying to understand this learning 

process has a long research tradition.  

Historically, the acquisition of goal-directed behavior was researched in two separate 

schools of thought. The instrumental learning approach follows the paradigm of Behaviorism 

first developed by John B. Watson (Watson, 1913). Based on the principles of instrumental 

conditioning proposed by Thorndike, learning from a behavioristic view is defined as an 

association between a certain stimulus (S) and a behavior (R) that leads to a certain 

(rewarding) outcome (O). According to the so called “law of effect” (E. L. Thorndike, 1905) 
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responses that produce a rewarding effect in a particular situation become more likely to occur 

again under the same stimulus conditions (while likewise responses with a discomforting effect 

will become less likely). The importance of the rewarding effect lies only in its function to 

provide reinforcement to the S-R association without becoming part of the associational chain 

itself. According to the behaviorist dogma, the O is the mere glue that tights S and R together. 

The second research line is deeply bedded into particularly the German research 

tradition of cognitive psychology (Stock & Stock, 2004) in which the acquisition of goal-directed 

behavior is explored mainly based on the so called ideomotor principle (Elsner & Hommel, 

2004; J. Hoffmann, Butz, Herbort, Kiesel, & Lenhard, 2007; B. Hommel, Musseler, 

Aschersleben, & Prinz, 2001; Kunde, 2001a). The foundation of the ideomotor theory has been 

defined already in the late 19th century by William James (1890). The ideomotor hypothesis 

postulates bidirectional associations between an action (R) and its outcome (O) and assumes 

a two-step learning process of goal-directed actions (Elsner & Hommel, 2001, 2004; Kunde, 

2001a). In a first step contingencies between an action and its effect are formed based on trial-

and-error principle (i.e. random actions lead to a desired outcome). In a second step these 

contingencies can then be used in a goal-directed manner (anticipation of the desired outcome 

activates the necessary motor program). 

However, while neural correlates of instructed goal-directed action integration 

processes have already been examined in a functional magnetic resonance imaging (fMRI) 

study using this paradigm (Ruge & Wolfensteller, 2015), there has been no information if those 

processes are also reflected in Electroencephalography (EEG) and if so which specific EEG 

parameters are modulated by them. Gaining insight into EEG related correlates of outcome 

response learning could also help to address a shortcoming of fMRI studies lying in its poor 

temporal resolution. A fMRI map with regional activations alone does not necessarily permit 

inferences about the exact time and order in which these activations have occurred. This 

phenomenon is known as the temporal inverse problem (Logothetis, 2008). The core aim of 

this work was to make use of the temporal highly resolved EEG signal to dissect the sluggish 

fMRI Blood-Oxygen-Level-Dependent (BOLD) signal within a trial in order to extract distinct 

activation connected to different cognitive sub-processes of outcome response learning. 

 

1.2 Study Objectives 

This dissertation set out to investigate neurocognitive mechanisms of instructed 

outcome response learning utilizing two different imaging methods, namely EEG and fMRI. 

Study 1 was an exploratory study to answer the question what kinds of learning-related EEG 

correlates were to expect. The O-R outcome integration specific EEG correlates identified in 
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Study 1 served as regressors in a unified general linear model (EEG-informed fMRI analysis) 

in the co-registered EEG-fMRI study (Study 2). One of the key questions in this study was if 

the EEG signal could help to differentiate between BOLD activation associated with processes 

related to response preparation or initiation and activation associated with post-response 

outcome integration processes. 

 

1.3 Methods 

The foundation to both studies of this work was an experimental paradigm of instructed 

S-R-O learning, which included a learning and a test phase. The experimental design was 

based on a modified version of the differential outcome paradigm (Colwill & Rescorla, 1985; 

Noonan, Mars, & Rushworth, 2011; Shin, Proctor, & Capaldi, 2010; Trapold, 1970; Urcuioli, 

2005) where differential auditory response outcomes were presented during instruction-based 

visuo-motor learning (Ruge & Wolfensteller, 2015; Wolfensteller & Ruge, 2014). Stimuli were 

four abstract visual patterns that differed in each block. Each visual stimulus required a distinct 

manual response and was predictably followed by a distinct auditory outcome. Instructions 

were delivered via a ‘guided implementation’ procedure in which the instruction was embedded 

within the first three successful behavioral implementation trials. In these first three trials the 

visual stimulus was followed by an imperative stimulus highlighting the correct response. The 

guided implementation phase was followed by an unguided implementation phase where the 

correct response now had to be retrieved from memory. Behaviorally, the strength of acquired 

O-R associations can be analyzed via O-R compatibility effects measured in a subsequent 

outcome-priming test phase (Greenwald, 1970). In this test phase a previously learned 

outcome becomes an imperative stimulus that requires either the response, which produced 

that outcome in the preceding learning phase (O-R compatible), or a response, which 

produced a different outcome (O-R incompatible).  

The experimental design was embedded into an EEG recording setup in study 1 while 

study 2 comprised a simultaneous EEG-fMRI recording setup in which EEG scalp potentials 

were continuously recorded during the experimental session inside the MR scanner bore. 

Study 1 comprised an exploratory approach to identify event-related potetials (ERP) engaged 

in S-R-O learning. Study 2 followed up on these results and utilized the spatiotemporal EEG 

parameters in an EEG-informed fMRI analysis approach. 
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1.4 Results 

Study 1 revealed various ERP markers correlated with outcome response learning. An 

ERP post-response anterior negativity following auditory outcomes was increasingly 

attenuated as a function of the acquired association strength. This suggests that previously 

reported action-induced sensory attenuation effects under extensively trained free choice 

conditions can be established within few repetitions of specific R-O pairings under forced 

choice conditions. Furthermore, an even more rapid development of a post-response but pre-

outcome fronto-central positivity, which was reduced for high R-O learners, might indicate the 

rapid deployment of preparatory attention towards predictable outcomes. Finally, the study 

identified a learning-related stimulus-locked activity modulation within the visual P1-N1 latency 

range, which was thought to reflect the multi-sensory integration of the perceived antecedent 

visual stimulus with the anticipated auditory outcome.  

In general, study 2 was only partially able to replicate the EEG activity dynamics related 

to the formation of bidirectional R-O associations that were observed in study 1. Primarily, it 

was able to confirm the modulation in EEG negativity in the visual P1-N1 latency range over 

the learning course. The EEG-informed analysis revealed that learning-related modulations of 

the P1-N1 complex are functionally coupled to activation in the orbitofrontal cortex (OFC). More 

specifically, growing attenuation of the EEG negativity increase from early to late SRO 

repetition levels in high R-O learners was associated with an increase in activation in the OFC. 

An additional exploratory EEG analysis identified a recurring post outcome effect at central 

electrode sites expressed in a stronger negativity in late compared to early learning stages. 

This effect was present in both studies and showed no correlation with any of the behavioral 

markers of learning. The EEG-informed fMRI analysis resulted in a pattern of distinct functional 

couplings of this parameter with different brain regions, each correlated with different 

behavioral markers of S-R-O learning. First of all, increased coupling between the late EEG 

negativity and activation in the supplementary motor area (SMA) was positively correlated with 

the O-R compatibility effect. Thus, high R-O learners exhibited a stronger coupling than low R-

O learners. Secondly, increased couplings between the late EEG negativity and activation in 

the somatosensory cortex as well as the dorsal caudate, on the other hand, were positively 

correlated with individual reaction time differences between early and late stages of learning. 

 

1.5 Discussion 

The EEG-informed analysis succeeded in dissecting the fMRI BOLD signal within a trial 

by correlating specific parameters in the EEG signal with it. This resulted in activation patterns 

linked to ERP parameters prior to the response that are more likely to reflect action selection 
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or response initiation processes. On the other hand, activation patterns functionally coupled to 

EEG activity subsequent to the response and even subsequent to outcome presentation are 

most likely engaged in outcome integration processes.  

Prior to the behavioral response the results indicate that the OFC could serve as a 

(multimodal) hub for integrating stimulus information and information about its associated 

outcome in an early pre-stage of action selection and initiation. Learnt S-O contingencies 

would facilitate initiating the motor program of the action of choice. Hence, the earlier an 

outcome is anticipated (based on stimulus outcome associations), the better it will be 

associated with its response, eventually leading to stronger O-R compatibility effects later on. 

This account is consistent with the general notion that more salient events (here outcomes that 

are pre-activated sooner) will be associated with other events (here the action) more easily 

and more rapidly (Le Pelley & McLaren, 2003; Mackintosh, 1975). Thus, one could speculate 

that increased activation in response to S-R-O mappings possibly embodies a marker for the 

ongoing transition from mere stimulus-based behavior to a goal-directed behavior troughout 

the course of learning. 

Post-response activations coupled with a late centro-parietal EEG negativity increase 

revealed a seemingly two-fold feedback integration stream of O-R contingencies, each 

mediated by different behavioral performance markers. On one hand the SMA seems to be 

engaged in bidirectional encoding processes of O-R associations. The results promote the 

general idea that the SMA is involved in the acquisition of goal-directed behavior (Elsner et al., 

2002; Melcher, Weidema, Eenshuistra, Hommel, & Gruber, 2008; Melcher et al., 2013). 

Together with prior research (Frimmel, Wolfensteller, Mohr, & Ruge, 2016) this notion can be 

generalized not only to extensive learning phases but also to learning tasks in which goal-

directed behavior is acquired in only few practice trials. However, there is an ongoing debate 

on whether SMA activation can be clearly linked to sub-processes prior or subsequent to an 

agent’s action (Nachev, Kennard, & Husain, 2008). With the means of co-registered EEG-fMRI 

acquisition it is possible to gain a deeper insight in answering this question since it is possible 

to attain distinct BOLD activation information within a trial with the help of additional EEG 

information. All in all, the results provide additional evidence favoring an involvement of the 

SMA only following a performed action in response to an imperative stimulus and even more, 

subsequent to the perception of its ensuing effect. This may give rise to the interpretation that 

the SMA is associated with linking the motor program of the performed action to the sensory 

program of the perceived effect, hence establishing and strengthening O-R contingencies. This 

link is basically the core of what defines outcome response learning, i.e. acquiring goal-

directed behavior according to both instrumental learning as well as ideomotor approaches. 
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Furthermore, the analysis identified an increased coupling of a late negativity in the 

EEG signal and activation in the dorsal parts of the caudate as well as the somatosensory 

cortex. The dorsal caudate has not particularly been brought into connection with O-R learning 

so far. I speculate that the coupling effect in this part of the caudate reflects an ongoing process 

of an early automatization of the acquired behavior. It has already be shown in a similar 

paradigm that behavior can be automatized within only few repetitions of novel instructed S-R 

mappings (Mohr et al., 2016). Automatization of behavior in this sense, however, has to be 

distinguished from habitualization of behavior requiring far longer learning periods. Still, the 

dorsal caudate could function as a region in which the acquired behavior might already be 

prepared to work in a more automatized manner relying less and less on the online evaluation 

of the ensuing effect as training continues. 

Overall, co-registered EEG-fMRI recording has been proven beneficial in the context 

of researching underlying mechanisms of goal-directed behavior. The results can provide an 

additional piece in grasping the complex mechanisms involved into outcome response 

learning. However, due to the highly explorative approach of the studies and the nature of the 

EEG-informed analysis method more confirmatory research is strongly recommended to 

eventually attain a comprehensive understanding on the neurocognitive mechanisms of 

outcome response learning.  
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2 Theoretical Background 

2.1 Introduction 

When I was still being a student of psychology I fulfilled one of my dreams of staying in 

Japan for one year attending a Japanese university. While I was in Japan I enjoyed going to 

restaurants for several reasons. First of all, the food offered there is extraordinary. On the other 

hand, due to high prices for groceries, home cooked food isn´t that much cheaper than 

prepared food in a restaurant or at a food stall. I remember one special kind of restaurant, 

which was quite famous because it offered delicious food prepared in a very short amount of 

time, perfectly complementing the short breaks during university lectures. This restaurant 

basically only consisted out of a computer terminal in which one was supposed to place the 

order and an outlay where you could pick up the prepared meal. However, this computer 

terminal had no English translation of the menu, containing meal names and explanations only 

in Kanji (Japanese characters). So for the first few times whenever I went there I was stuck 

picking something completely random from the menu since I could not read nor translate the 

Japanese characters. Doing so a few times, I slowly started to memorize which sequence of 

Japanese characters would result in which meal. After some time, I could start actually picking 

meals on purpose. For example if I wanted to eat some certain type of Ramen I now knew 

which button I had to press. By learning the association between the Kanji sequence and the 

affiliated meal I was able to start ordering the food based on my intentions rather than by 

surprise. Back then, little did I know that my daily struggle with Japanese written language 

would basically define the topic of my dissertation more than a decade later. 

 

No species other than Homo sapiens shows this immense amount of adaptation with 

regards to constantly changing and even extreme living conditions on this planet. The 

evolutionary basis of this enormous adaptation process can be described by four basic neural 

circuits of action control, which differ in complexity (Goschke, 2002). The oldest circuit with 

respect to phylogenesis includes innate reaction programs known as instincts. These 

programs are triggered by certain stimuli and are performed always in the same manner 

making them predestined to operate in a fix non-changing environment. Throughout the 

process of evolution higher animals learned to adapt their behavior based on experience in an 

associative learning process, giving them an advantage in ever evolving eco systems.  

Additional to this long term adaptation processes the development of internal 

motivational states gave rise to even more degrees of freedom. Action selection now could 

also be altered on a shorter time scale based on acute needs or goals. This intentional behavior 

differs from the one described above specifically in terms of goal-directedness (Goschke, 
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2004). Behavior is considered goal-directed when the actor integrates information about the 

consecutive outcome of an action (Balleine & O'Doherty, 2010; Dickinson & Balleine, 1994; 

Kiesel & Koch, 2012). It can be separated from mere habitual or automatized behavior by 

anticipation of consequences of the action in question. Thus, goal-directedness requires 

knowledge about which behavior shown in the past led to the expected goal state. Technically 

speaking, it requires prior acquisition of knowledge about the current contingencies between 

behavioral responses and their outcomes under certain stimulus conditions (J. Hoffmann & 

Engelkamp, 2013). This association chain enables events lying in the future to be mentally 

represented and assessed in terms of value and achievability in the present. Furthermore, 

goal-directed behavior is characterized by independence from stimulus conditions. Preceding 

stimuli and consecutive actions are not linked to each other like automatized behavior or 

reflexes but instead are mentally represented in an arbitrary manner. This way the anticipative 

stimulus and its consecutive reaction can be disentangled leading to an enormous increase in 

the degrees of freedom of an individual. Thus, higher animals are capable of reacting differently 

to the same stimulus depending on its predominant present goals which expresses a huge 

evolutionary step over mere habitual behavior. It allows agents to flexibly react to different 

environmental conditions or changed goal states while habits are continuously performed in 

the same manner without regard to stimulus conditions or value of different outcomes. In all 

higher animals, knowledge about contingencies between a stimulus, a response and a specific 

outcome can be acquired via trial and error where learning relies on evaluating retrospectively 

whether a behavioral response yielded a desirable outcome. Additionally, only humans are 

capable of accelerating the learning process using explicit instructions, which specify 

prospectively how to yield intended outcomes under the appropriate stimulus conditions (Doll 

et al., 2009a; Ruge & Wolfensteller, 2016; Wolfensteller & Ruge, 2012). This short route has 

an important evolutional advantage by cutting down time demanding trial-and-error sequences 

and thus avoiding potentially harmful behavior. Exploring and trying to understand this learning 

process has a long research tradition.  

Historically, the acquisition of goal-directed behavior was researched in two separate 

schools of thought. The instrumental learning approach follows the paradigm of Behaviorism 

first developed by John B. Watson (Watson, 1913). Based on the principles of instrumental 

conditioning proposed by Thorndike, learning from a behavioristic view is defined as an 

association between a certain stimulus (S) and a behavior (R) that leads to a certain 

(rewarding) outcome (O). According to the so called law of effect (E. L. Thorndike, 1905) 

responses that produce a rewarding effect in a particular situation become more likely to occur 

again under the same stimulus conditions (while likewise responses with a discomforting effect 

will become less likely). According to the instrumental learning approach importance of the 
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rewarding effect lies only in its function to provide reinforcement to the S-R association without 

becoming part of the associational chain itself. The O acts as a mere glue that tights S and R 

together. 

The second research line is deeply bedded into particularly the German research 

tradition of cognitive psychology (Stock & Stock, 2004) in which the acquisition of goal-directed 

behavior is explored mainly based on the so called ideomotor principle (i.e. Elsner und 

Hommel, 2004; Hoffmann, 2003; Hommel et al., 2001; Kunde, 2001). The foundation of the 

ideomotor theory has been defined already in the late 19th century by William James (1890). 

The ideomotor hypothesis postulates bidirectional associations between an action (R) and its 

outcome (O) and assumes a two-step learning process of goal-directed actions (Elsner & 

Hommel, 2001, 2004; Kunde, 2001a). In a first step contingencies between an action and its 

effect are formed based on trial-and-error principle (i.e. random actions lead to a desired 

outcome). In a second step these contingencies can then be used in a goal-directed manner 

(anticipation of the desired outcome activates the necessary motor program). 

On the following pages I will describe both research lines in detail, displaying key 

findings with regards to behavioral and neurophysiological correlates. I will conclude the 

chapter with a section giving an introduction into the methods used in the individual studies 

comprising this dissertation. It will feature a description of the method of 

Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), each 

separately. Additionally, it will focus on implications on combining both methods in a co-

registered study and give an overview over several conjoint analysis methods of the two data 

modalities. 

 

2.2 Theories of acquiring goal-directed behavior 

2.2.1 Instrumental learning 

2.2.1.1 Behavioral aspects 

The principle of instrumental learning or instrumental conditioning was established 

based on the school of behaviorism developed by John B. Watson (1913) and further 

elaborated by Edward Lee Thorndike (E. L. Thorndike, 1927, 1933). The behaviorists wanted 

to understand human behavior only by observing its measurable overt aspects without having 

to rely on introspection. This consideration had a deep implication on learning as how they 

defined it. From the behaviorists point of view there is no S-R-O association chain per 

definition. Especially the incentive value of an anticipated outcome (as anticipation is to be 
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considered an introspective aspect of behavior) was denied to be a relevant part of response 

selection. Instead, a (rewarding) outcome following a certain response merely was thought to 

serve as reinforcement of the S-R association (Edward L. Thorndike, 1911). This led Thorndike 

to formulate what he called the law of effect stating that "responses that produce a satisfying 

effect in a particular situation become more likely to occur again in that situation, and 

responses that produce a discomforting effect become less likely to occur again in that 

situation” (Gray, 2011). The incentive value of the outcome influences the learning process 

merely in a sense that greater reward fosters greater learning success. According to his 

reasoning, the outcome is not part of the newly formed S-R association per se.  

There has been a great debate over this critical claim with accumulating evidence 

against it. Hull (1930) and Spence (1950) first combined Thorndike’s paradigm with the 

stimulus substitution theory (Pavlov, 1927). In this account an action can be initiated either by 

a stimulus (S) or through a substitute, i.e. the anticipation of a reward. This anticipation is 

based on an association between the stimulus S and the outcome O following the correct 

response (S-O). This account was later elaborated in the Two-Process-Theory (Rescorla & 

Solomon, 1967). According to this theory principles of classical conditioning come into effect 

during the process of instrumental learning. There are various studies providing evidence that 

the conditioned stimulus (CS) activates an anticipative state (i.e. expectation of a reward), 

which then itself motivates the instrumental behavior (Corbit & Balleine, 2005; Ostlund & 

Balleine, 2007). 

Another important impulse on the question on whether the outcome is or is not part of 

the learned association came from Burrhus F. Skinner (1938) who elaborated on Thorndike’s 

studies, specifically on the “law of effect”. He took a different approach from mere classical 

conditioning in which the response is perfectly determined by the stimulus condition (Pavlov, 

1927). Skinners experimental setup, known as operant conditioning, involved specially 

designed animal cages (“Skinner boxes”) in which small rodents, such as rats, learned to push 

a lever in order to receive a reward (food). He showed that rats increasingly performed the 

behavior that led to a reward. The rats seemed to have made a connection between the 

performed action (R) and its specific outcome (O). In other words, they seemed to have 

acquired a response-outcome association (R-O). 

It was not until forty years later that this key question would finally be solved by Colwill 

and Rescorla (1985) who came up with a paradigm designed to prove the existence of R-O 

associations. The experiment was divided into three separate phases. In the first phase rats 

were trained to push a lever either to the left or to the right. The two behavioral options led to 

differential outcomes. Pushing the lever to the left was rewarded with food pellets, while 
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pushing it to the right resulted in a different reward (sucrose). In the second phase one of the 

rewards was devaluated by administering a substance causing nausea to the rats, right after 

they received the reward. According to the principles of classic conditioning this nausea would 

now be associated with the food leading to a devaluation of the reward. In the third phase of 

the experiment the rats had free choice of pushing the lever either to the left or to the right. 

The rats now avoided the direction of the devalued reward and preferred the opposite, non-

devalued, direction. This important observation could however not be explained with S-R or S-

O learning alone. If the rats had formed an S-R association in which the outcome is not part of 

the learned behavior the devaluation wouldn´t have had any effect on the behavior of the rats 

in the third phase, leading to an approximately equal amount of lever pushes to the left or to 

the right. If the rats had formed only an S-O association on the other hand, the devaluation 

should have restrained both behavioral options (pushing to the left or to the right) in the third 

phase since both responses were associated with the same stimulus condition (the lever). 

These important results, which could be replicated a number of times (Adams & Dickinson, 

1981; Balleine & Dickinson, 1998), strongly suggest that the rats indeed displayed goal-

directed behavior in the sense that they formed specific R-O contingencies based on prior S-

O associations containing knowledge about the causal relationship between their actions and 

its consequences. They were able to anticipate the outcome of the two action modes and 

according to that knowledge they chose the action which led to the non-devaluated outcome 

more often. 

Another important study utilized the so called degraded contingency effect originally 

reported by Rescorla (1966, 1968). This effect is observed when unconditioned rewards (food) 

are administered during training with a conditioned reward following a conditioned response. 

The additional unconditioned reward leads to a diminished response to the conditioned reward 

independent of baseline responding in the context. The critical finding of these experiments 

was that the conditioned response was reduced if the chances of occurrence of unconditioned 

and conditioned reward were exactly the same. The association between response and 

outcome (R-O) degraded due to the additional reward. Dickinson et al. (1998) showed that 

over-trained rats were insensitive to contingence degradation when compared to undertrained 

rats. In contrary to undertrained rats the overtrained group was not able to actually hold back 

an action when it was necessary in order to gain the reward. Reversing the contingency from 

R  O to not R  O affected untrained, non-automatized actions in rats. Although it still lacks 

human studies up to this point there is strong evidence suggesting that the effect of sensitivity 

to R-O contingency degradation found in rats is also present in humans (Balleine & O'Doherty, 

2010) 
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Response-outcome learning of differential outcomes 

Trapold (1970) also utilized distinct outcomes as a consequence of performed actions 

in experiments of response-outcome learning. He showed that learning to react upon two 

different stimulus conditions was faster if the response led to two different rewarding outcomes 

(as opposed to the same reward). Trapold called this the differential outcome effect. In his 

experiment rats learned to discriminate two separate S-R associations. Two different tones 

required two distinct responses (pushing two buttons). In one group the two different responses 

led to two distinct incentive outcomes (sucrose and food pellets). In the control group both 

responses were rewarded with sucrose. The differential outcome group performed better and 

showed less errors compared to the control group. Going even further, it has also been shown 

that differential outcomes also led to a reduction in error rates when compared to randomly 

assigned rewards (Urcuioli, 2005). Those studies finally provided strong evidence that the 

incentive effect of the outcome not only reinforces the S-R connection but instead becomes 

part of a triple S-R-O association itself (Silvetti & Verguts, 2012).  

With regard to differential response-outcome effects it has been shown in an 

abundance of studies that R-O associations can be contextualized on the basis of the incoming 

stimulus information (Colwill & Rescorla, 1985, 1990; Kunde, 2001b; Ruge, Krebs, & 

Wolfensteller, 2012; Wolfensteller & Ruge, 2011; Ziessler, Nattkemper, & Frensch, 2004b). In 

an exemplary study by Colwill and Rescorla (1990) rats were first trained to associate two 

differential outcomes of different responses with a certain stimulus. If a light flash was 

presented, pulling a string led to food pellets while pushing a button resulted in sucrose. On 

the other side if a tone was presented instead, the two response alternatives led to exactly the 

opposite reward. Now, one of the two rewards was devaluated. In the final test phase the rats 

were presented again either the light flash or the tone. Depending on the stimulus, the rats 

chose the non-devaluated response option. Thus, the experiment demonstrated that choosing 

a response alternative in anticipation of a certain goal can change from situation to situation, 

depending on the stimulus condition. 

In human studies, it has been shown that such S-R-O associations can be established 

very rapidly. Ruge and Wolfensteller (Ruge et al., 2012; Wolfensteller & Ruge, 2011, 2014) 

have had subjects establish stimulus based R-O (S-R-O) associations using differential 

outcomes in a first learning phase. Specifically, each distinct link between a visual stimulus 

and a manual response was predictably followed by a distinct auditory outcome. In a second 

short test phase the strength of the established R-O association was probed by demanding 

the subjects to respond correctly to the differential outcomes presented in the learning phase 

(O-R) making use of the so called compatibility effect (Greenwald, 1970). Now the previously 
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learned outcome became an imperative stimulus that required either the response, which 

produced that outcome in the preceding learning phase (O-R compatible), or a response, 

which produced a different outcome (O-R incompatible). Ruge and Wolfensteller observed 

faster response times and higher accuracy if the demanded response in the test phase was 

compatible to the response, which invoked the outcome in the learning phase. The result 

provided strong evidence supporting the hypothesis that R-O associations can be established 

within few repetitions (from eight to twelve, depending on the experimental design) of specific 

S-R-O mappings. 

Recent accounts in investigating goal-directed behavior 

Recent developments in cognitive learning theories now additionally take internal 

motivational states into account. In classic conditioning, it is assumed that the presentation of 

a conditioned stimulus (CS) leads to the anticipation of an unconditioned stimulus (US). In 

instrumental learning, based on a previously established R-O association, an action leads to 

anticipation of the corresponding outcome (J. Hoffmann & Engelkamp, 2013). The fact that 

both, outcome as well as the conditioned stimuli predicting an outcome have a motivational 

influence on the performance of an agent suggests that these processes have a 

complementary influence on action selection (Balleine & O'Doherty, 2010).  

This consideration ultimately led to the use of incentive outcomes as both discriminant 

stimuli (Os) as well as discriminant goals (OG) in a number of studies (de Wit, Kosaki, Balleine, 

& Dickinson, 2006; Dickinson & de Wit, 2003). In these studies, the outcome always preceded 

the response and in doing so, it acted as a discriminant stimulus, thus influencing action 

selection. On the other hand, the outcome always followed a certain response serving as a 

discriminant goal state. It has been shown that devaluation of the outcome influenced the 

response with which it was associated as a discriminant goal but did not influence responses 

if those were associated with the outcome as a discriminant stimulus. Those results strongly 

suggest that both stimuli as well as goals influence action selection and action initiation in a 

complementary manner.  

According to Balleine and O’Doherty (2010) an action is influenced by an outcome on 

two different levels. On one hand, it is influenced through means of an OS-R association in 

which the outcome functions as a stimulus with which the appropriate action can become 

associated. On the other hand, the action is influenced by an R-OG association, basically 

representing a pure R-O association, in which an action produces its outcome in the sense of 

a goal. OS-R associations enable activation of an outcome representation mediated by a 

trigger-stimulus associated with that outcome (S-O). This representation then itself serves as 

a discriminant stimulus, which primes the required action. Action selection and initiation again 
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result in the activation of the outcome representation except this time labeled as a goal (OG). 

Hence, OS
 and OG together enable goal-directed behavior. It has been shown that outcome 

devaluation only has impact on actions if they are associated with the value of the outcome 

while discriminant cues to the outcome are not affected (Colwill & Rescorla, 1990; Holland, 

2004; Rescorla, 1994). On the other hand, action selection after re-establishment of the action 

by outcome delivery subsequent to an experimental extinction phase, is not impacted from 

outcome devaluation, although the response rate is reduced. This suggests that in initial 

learning only OS related action selection processes are involved while in later learning stages 

evaluation-based OG processes primary control behavior (Balleine & Ostlund, 2007). 

Moreover, this motivational account provides an explanation of acquiring habitual behavior and 

specifically long training phases as a prerequisite of habits. Training trials strengthen OS-based 

action selection in order to initiate actions without a need of online outcome evaluation. Even 

more likely, habitual actions tend to be initiated impulsively before the relatively slow outcome 

evaluation is finished. However, how those hypothesized integrative processes are 

implemented on a neural level has yet to be fully researched (Balleine und O’Doherty, 2010). 

 

2.2.1.2 Neurophysiological correlates 

Neurophysiological correlates have been investigated in a number of lesion studies 

with animals. In those studies, various cortical structures could be identified with goal-directed 

behavior. There is some evidence that regions corresponding to medial and orbitofrontal cortex 

as well as the basal ganglia in humans seem to be involved in the formation of R-O or S-R-O 

associations. Activation in these areas were able to be experimentally isolated from activation 

in other areas more related to stimulus driven S-R as well as S-O associations (Ashby, Turner, 

& Horvitz, 2010; Balleine & O'Doherty, 2010; M. Van Der Meer & Redish, 2010; Yin & Knowlton, 

2006). 

In human studies, the research focus depends on the imaging method used. EEG 

studies were mainly centered on the processing of response and outcome especially in error 

trials (Holroyd & Coles, 2002). In a recent study Luque et al. (2015) investigated the temporal 

dynamics of instrumental conditioning systematically manipulating the predictive value of the 

discriminant stimulus as well as the incentive value of the outcome. The main event related 

potential (ERP) analysis, however, only included the very late training phase in which R-O 

associations were already overlearned. The subjects were consecutively presented with two 

visual stimuli with one stimulus being predictive and the other one non-predictive. The 

sequence in which the two stimuli followed each other was balanced. A predictive stimulus 

enabled a reliable prediction of the correct response as well as the value of the outcome 
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whereas a non-predictive stimulus contained no information about the above. A predictive 

stimulus forecasting a small outcome value had a high predictive and a low incentive property 

while a stimulus that forecasted a high value outcome had both a high predictive and incentive 

property. Subjects were now required to choose one of two possible response alternatives with 

one of them being associated with loss or gain in reward depending on the predicted incentive 

value of the outcome. In case of a high predictive value a correct response led to a win of 100 

points and an incorrect response to a loss of 1 point. In trials with low predictive value correct 

responses led to a win of 1 point and incorrect responses to loss of 100 points. The sequence 

of EEG correlates, which were identified in the study, could be matched to specific sub-

processes prominent in outcome response learning, which proclaims that instrumental 

conditioning enables both S-O as well as O-R learning (Balleine & O'Doherty, 2010; de Wit & 

Dickinson, 2009). The authors reported several important findings. First, they found that the 

P2 component in response to a predictive stimulus, regardless of its incentive value, was 

significantly increased compared to a non-predictive stimulus. Subsequent to this effect, an 

increase in the P3b correlated only with the incentive value of a stimulus. Finally, a late 

negative increase over a time range of 350 ms prior to components supposedly integrated 

predictive and incentive dimensions of a stimulus as it was most expressed for predictive 

stimuli with high incentive value. The results gave rise to the interpretation that discriminant 

stimuli activate the representation of an outcome (S-O) which itself then activated the response 

with which it has been associated with (O-R). 

In human fMRI research there are two predominant research paradigms (Wolfensteller 

& Ruge, 2012) utilizing either outcome devaluation to investigate neural correlates of 

differential outcomes (de Wit, Corlett, Aitken, Dickinson, & Fletcher, 2009; Valentin, Dickinson, 

& O'Doherty, 2007) or either investigate how manipulation of R-O contingency modulates 

neural activation (Tanaka, Balleine, & O'Doherty, 2008; Tricomi, Delgado, & Fiez, 2004). 

Tricomi et al. (2004) observed a specific activation in the caudate nucleus if an incentive 

outcome was expected following a response. There was no activation though if the outcome 

followed just a discriminative stimulus which required no response, thus suggesting that the 

activation in the nucleus caudate was modulated by R-O contingencies only, but not by S-O 

contingencies. Furthermore, Tanaka et al. (2008) showed that the activation in this brain region 

was modulated by objective R-O contingency. The activation increased in a high contingency 

condition and decreased for low contingency. In trial and error learning experiments Delgado 

et al. (2005) demonstrated that neural activation in caudate nucleus depended on acquisition 

of operant associations. Subjects were asked to estimate the number value of cards from a 

card game in a gambling task (“is card value > or < 5?”). Correct estimations were rewarded 

and incorrect estimations were punished. Prior to the subjects estimation one of five possible 
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cue stimuli was presented prompting the probability of a high or a low value. The task involved 

learning S-R-O mappings in order to maximize the reward. While there was a high initial 

activation in the nucleus caudate it decreased with the formation of S-R-O associations over 

the course of the experiment. Valentin et al. (2007) investigated neural correlates of goal-

directed behavior in an outcome devaluation paradigm. In human studies, outcome 

devaluation is achieved by continuously administering the outcome to the subject up until the 

point of saturation in which the reward loses its incentive property. In a first training phase 

subjects were asked to randomly choose from one of two possible symbols. One symbol was 

paired with a high probability of a reward (chocolate milk) and the other one with a low 

probability of a reward. In another pair, one symbol was paired with a high probability of tomato 

juice and the other one with a low probability of orange juice. If the point of saturation for either 

chocolate milk or tomato juice was reached, the response, which was associated with the now 

devaluated outcome, was reduced while this was not the case for the response associated 

with the non-devaluated outcome. On the neural level, activation in the orbitofrontal cortex 

(OFC) varied for devaluated responses in contrast to non-devaluated responses and affected 

both lateral as well as central regions. Furthermore, there is some evidence that subregions of 

the OFC differ in function. Lateral regions seem to be associated with the encoding of 

differential S-R-O mappings while medial regions seem to be more sensitive to the incentive 

aspect of the outcome with no regard to differentiation (Noonan, Kolling, Walton, & Rushworth, 

2012; Noonan et al., 2011). In the study of Noonan et al. (2011) subjects learned to memorize 

12 different S-R mappings. In one group correct responses were rewarded. The lateral OFC 

showed stronger activation for consistent S-O and R-O mapping information (differential 

outcomes). On the contrary, activation in the medial OFC seemed to reflect the expected value 

of the outcome, apart from consistency of a certain R-O mapping. 

 

2.2.2 Acquisition of goal-directed behavior according to ideomotor theory 

2.2.2.1 Behavioral aspects 

The basic principle of modern ideomotor theory has already been formulated by William 

James (1890) when he stated that intentional actions are controlled by its ensuing sensory 

effects. He postulated that this requires knowledge about which actions are followed by which 

outcome. The establishment of such response (R) - outcome (O) associations expresses the 

first phase in the Two-Phase-model of voluntary action control later proposed by Elsner and 

Hommel (2001). According to this model movements are represented by specific activation 

patters in an agent’s motor system (see Figure 1 left). In the first phase movements are 

triggered on an arbitrary basis but are followed by distinct observable outcomes. These 



Theoretical Background 
 

17 
 

outcomes are perceived via sensory organs and are as well represented in terms of specific 

activation patterns in the cognitive system. The temporal overlap of motor as well as sensory 

activation patterns now results in a connection of both representations. This connection gets 

strengthened the more often the action is contingently followed by the same outcome. 

The second phase in the model describes the process of action selection in order to 

achieve specific outcomes (see Figure 1 right). R-O associations acquired in phase one are 

bidirectional according to Elsner and Hommel. Hence, the activation of a certain outcome, 

which is represented by a specific combination of sensory codes in the cognitive system 

(outcome code), will result in an activation of all motor representations associated with this 

specific effect. A motor representation reflects the exact motor program of the precise action 

which reliably led to the desired outcome in the past. As activation of the outcome code can 

occur through the means of observation or mere imagination of the outcome, this prompts a 

functional explanation for the fundamental axiom in ideomotor theory proclaiming that goal-

directed actions are triggered solely by anticipation of the desired outcome. 

 

 

Figure 1: The Two-Phase-model of goal-directed action control according to Elsner and Hommel (2001). 

 

Elsner and Hommel validated their assumptions in a series of experiments. In one 

experiment subjects were asked to push either a left or a right button on a keypad in the first 

phase (Elsner & Hommel, 2001, Experiment 1). Pushing the left button was followed by a high 

tone while pushing the right button was followed by a low tone. The subjects were told 

previously that those outcomes were irrelevant for the task. In the second phase of the 

experiment the subjects now had to react to a high or a low tone with either pushing the left or 

the right button. If the mapping of presented tone and consecutive action matched the 

previously established R-O association from the first phase subjects reacted faster compared 

to the incongruent mapping despite the fact that they were told that the outcome was irrelevant 

for the task. In a second experiment they were able to show that a previous presentation of 
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outcomes not only influences response times but also the selection of the following action. If 

the subjects had free choice of pushing either the left or the right button following a tone they 

chose the button which triggered the tone in phase 1 significantly more often. Both results 

strongly support the core assumption of ideomotor theory that actions and their ensuing effects 

are integrated automatically in the cognitive system and that actions are triggered 

automatically by mere presentation of its associated consequences. 

 

 

One way of how perception and action initiation systems interact with each other to 

control human actions has been described in the Theory of event coding (TEC, B. Hommel et 

al., 2001). TEC assumes that all stimuli, which are relevant for action initiation, the action itself, 

as well as all ensuing effects, are stored in shared representations called event files. This 

common coding approach was first developed by Prinz (1990) and is displayed in Figure 2. 

The perception of an event (i.e. a certain consequence of an action) results in a specific neural 

activation pattern in designated areas of the cortex (sensory codes S1-S6). At the same time 

body movements are mapped as well in motor areas of the brain (motor codes m1-m6). Sensory 

codes are now translated into motor codes on a superficial level based on common feature 

codes (f1 & f2). Feature codes represent abstract properties of the perceived event, such as 

color, shape, etc. Thus, the feature codes with the label “right” would be activated by all 

sensory modes, may it be visual, auditory, or tactile, as long as they contain some kind of 

“right” information (an itch at the right hand, visual perception of a printed right arrow, someone 

whispering in ones right ear, etc.). Additionally, activation of feature codes results in priming of 

all actions somehow related with the feature “right” (lifting the right hand, pronouncing the word 

“right”, etc.). In this sense TEC answers the question how mental representations of goals and 

motor representations of actions achieving those goals can be linked to each other in a way 

that processes, which are required for planning and initiating an action are really the same. All 

body movements are exclusively represented based on their observable (and desired) 

Figure 2: Graphic representation of the Common coding model (taken from Hommel et al., 2004). 
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outcomes (Prinz, 1997). These response-outcome associations are the sole basis of voluntary 

actions according to ideomotor theory (Kunde, 2006). 

Response-outcome associations as necessary and sufficient condition of goal-directed 

actions 

The core assumption of ideomotor theory, which proclaims that goal-directed behavior 

is based on bidirectional associations between mental representations of actions and their 

ensuing effects (Greenwald, 1970; B. Hommel et al., 2001; W. James, 1890; Lotze, 1896), has 

been tested in two separate categories of paradigms (Kunde, 2006). 

The first category focuses on research about the influence of perceived action 

consequences on action initiation. If motor actions are represented by means of their sensory 

effects, then perception of such effects should initiate those actions which typically produce 

them. Some research groups succeeded in showing that the presentation of effects, which had 

been triggered by a certain motor program over a period of years resulted in the activation of 

this specific motor program. For example, professional piano players hearing a certain chord 

primed the corresponding hand movements which would produce this chord on the piano 

(Drost, Rieger, Brass, Gunter, & Prinz, 2005). In another experiment similar findings were 

reported with secretaries for the execution of key presses on a keyboard (Rieger, 2007).  

However, contingent R-O associations do not necessarily have to be trained over years 

in order to impact action initiation. There are a number of experiments showing strong evidence 

that outcome effects will trigger action initiation, even if they have not been associated with a 

specific action prior to the experiment (B. Hommel, 1996). These kinds of experiments mostly 

contain two separate phases. In the first acquisition phase actions are followed by a distinct 

outcome (i.e. left button  high frequency tone, right button  low frequency tone) in order to 

allow for the acquisition of R-O associations. In the second induction phase subjects are 

required to react to a stimulus (i.e. a color stimulus) with either a left or a right key press. 

Shortly after the presentation of the target stimulus one of the two outcomes from phase 1 is 

presented. It has been shown that reaction times and error rates are significantly decreased, 

if the outcome which is presented had also been produced in the learning phase by the action 

now required (high frequency tone  left button) (Elsner & Hommel, 2001; B. Hommel, 1996). 

Some studies even suggest that outcomes are represented in an analogous manner. Kunde 

(2003) showed that responses are slower if they produce a longer tone in comparison to 

responses which produce a shorter tone. Furthermore there is evidence that not only external 

stimuli but also internal affective states can be integrated as outcomes into an R-O association 

(Beckers, De Houwer, & Eelen, 2002). Interestingly, outcome induced action initiation is 

triggered, even if the corresponding outcomes are not perceived consciously (Kunde, 2004). 



Theoretical Background 
 

20 
 

These results strongly suggest that actions can be integrated with different kinds of effects on 

a relatively short timescale and that those effect codes are able to activate the associated 

motor programs automatically. 

This first research strand presented above, however, does not prove the central 

assumption of ideomotor theory that outcome anticipation is a necessary condition of goal-

directed action (Pfister et al., 2010a). Since those kinds of studies merely require subjects to 

produce effects which already have been presented as sensory stimuli in advance to action 

initiation, they instead really only prove that outcome perception can influence action initiation. 

But they do not tip the core of goal-directed behavior, i.e. producing effects which are not yet 

present. In order to grasp this fundamental flaw it required a different study design which 

focused on investigating feedback loops between anticipated outcomes and action initiation 

without having presented the outcome already in advance. 

This issue was dealt with in another strand of studies in ideomotor research focusing 

on response-outcome compatibility (Kunde, 2006; Zwosta, Ruge, & Wolfensteller, 2013). 

Kunde (2001b, Experiment 1) showed that a match between an action and its anticipated effect 

facilitated action initiation. In his experiment, subjects were required to react to a colored 

stimulus by either pushing a left or a right button on a keypad. Every key press led to a light 

bulb lighting up either to the left or to the right of the subject. If the action and the ensuing effect 

were compatible (pushing the left button led to lighting up the left light), subjects reacted faster 

in comparison to a non-compatible pairing of action and effect. Similar results of R-O 

compatibility were found with different modes of actions and effects, i.e. for different 

durations/pressure levels of key presses and tones varying in length and loudness (Kunde, 

2001b, 2003; Kunde, Koch, & Hoffmann, 2004). Hence, this second research strand was able 

to prove that anticipated outcomes are able to influence action selection (Pfister, Kiesel, & 

Melcher, 2010). 

Acquiring response-outcome associations as an automatized, associative learning process 

In order for an agent to act according to ideomotor theory, response-outcome 

associations need to be acquired in the first place. According to Elsner and Hommel (2001), 

motor and effect codes are integrated automatically based on a temporal overlap in activation 

of motor as well as sensory systems, thus representing a necessary as well as sufficient 

condition for binding an outcome to its corresponding action. Indeed, it has been shown that 

outcomes can influence their preceding actions even if subjects were told not to pay attention 

to them (Elsner & Hommel, 2001). Additional parameters like contiguity as well as contingency 

of an outcome seem to modulate R-O learning, supporting the hypothesis of an associative 

learning process (Elsner & Hommel, 2004).  
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However, this view has also been challenged by several research groups. Specifically 

intentions of an agent seem to additionally modulate the acquisition of R-O associations, apart 

from R-O contingencies. Ziessler, Nattkemper and Frensch (2004a) showed in an experiment 

that key presses by subjects which are followed by intentional or non-intentional outcomes 

were distinctively associated with those outcomes which were produced intentionally. 

Furthermore, it has been shown that R-O learning only occurs if subjects are able to act 

intentionally in the acquisition phase and had free choice of whether or not they would press a 

key (Herwig, Prinz, & Waszak, 2007). If the key press was based on a forced choice, learning 

effects were significantly weaker. Another study from Haggard and Clark (2003) found 

evidence emphasizing the importance of intentionality on building R-O associations. In their 

experiment a key press was consistently followed by a tone. The key press, however, could 

be triggered either by a voluntary act of the subject or by a magnetic impulse in which no 

conscious intention of the subject was involved. Although in both conditions identical motor 

responses led to identical outcomes, it was only in the intentional condition that subjects 

reported a causal connection between their action and the ensuing effect, suggesting that 

intentionality has indeed great importance for outcome integration. 

All the above studies prompt the conclusion that associative learning processes 

postulated by Hommel et al. (2001) play a role in the acquisition of response-outcome 

associations but are modulated by other variables, specifically volitional processes, as well. 

However, the underlying learning mechanisms of outcome anticipation still remain elusive 

(Hoffman, Butz, Herbort, Kiesel, & Lenhard, 2007). 

Does outcome anticipation effect action selection or action initiation? 

Cognitive approaches assume goal-directed behavior as a sequence of different sub 

processes which start with the mental representation of a stimulus and end with the perception 

of an outcome. The link between stimulus and outcome is mediated based on action selection, 

action initiation and action execution. Ideomotor-driven theories in contrary assume that mental 

activation patterns of outcome representations are not a consequence but instead a necessary 

condition for goal-directed action. The resulting spread in activation leads to selection and 

initiation of the action which in itself produces the outcome. Separate steps of action control 

merely represent different phases of the very same process of bidirectional activation of action 

and effect codes (Bernhard Hommel, 2009). 

Kunde, Koch and Hoffmann (2004) proved the impact of anticipative outcome 

representations on different levels of goal-directed action control. Subjects were required to 

respond to different color stimuli with a gentle or a strong key press. Every key press was 

followed by a tone which could either be compatible with the response (gentle press  quite 
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tone, strong press  loud tone), incompatible (gentle press  loud tone, strong press  quite 

tone) or completely random regarding amplitude. In a first experiment Kunde et al. replicated 

the compatibility effect: subjects reacted faster if action and corresponding effect were 

compatible in comparison to an incompatible or random mapping. 

In a second experiment they examined the impact of sensory outcome anticipation on 

different phases of action control. The experimental design was similar to the one from the first 

experiment but prior to the imperative colored stimuli, subjects now were additionally presented 

various cue stimuli which could either be neutral or correctly predicted the color of the following 

stimulus, hence prompting the correct response. The time range between cue and target 

stimulus varied between 200 and 1500 ms (Stimulus-Onset-Asynchrony, SOA). Using this type 

of design allowed the authors to contrast different phases of action production. Action selection 

starts as soon as the subject gets informed about the action required but still needs to wait for 

the final go-signal (the colored stimulus). Action initiation is characterized by the time range 

between the presentation of the go signal and the actual execution of the motor program. With 

regard to a possible impact of compatible or incompatible response-outcome mappings Kunde 

et al. derived several hypotheses. If R-O compatibility only affects action selection this should 

lead to a decrease of observable response time with increasing preparation time (longer SOA). 

If R-O compatibility only affects action initiation time differences in SOAs should not have any 

effect on response time. The results didn´t match any of the hypotheses above. Instead there 

were also highly significant compatibility effects in the condition with a long SOA of 1500 ms. 

This means even if the subjects had enough time to prepare the response they still reacted 

faster in the compatible compared to the incompatible condition. This suggests an impact of 

R-O associations on action initiation. However, with overall compatibility effects being stronger 

in the neutral cue condition (meaning both groups had to wait for the go signal in order to 

prepare and initiate the response) this suggests that they also impact action selection. 

Additionally, several parameters of action execution systematically varied with R-O 

compatibility, thus prompting the general conclusion that R-O associations impact all phases 

of goal-directed actions. 

 

2.2.2.2 Neurophysiological correlates 

Although there is no absolute separation of habitual and goal-directed action as human 

behavior mostly takes place on a continuum between those two extremes, they still differ with 

regard to stimulus- and outcome-based information that is taken into account in order to 

execute an action. Thus in ideomotor research it has been assumed that there are also two 

separate functional mechanisms for stimulus driven and goal-directed behavior and Waszak 
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and colleagues (Waszak et al., 2005) proposed two distinct neuroanatomical systems. 

According to their model, goal-directed actions are mediated by a network consisting of 

dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC) and the supplementary 

motor areal (SMA). Stimulus driven behavior on the other hand is generated by a different 

network consisting of lateral premotor as well as parietal regions. This assumption has been 

tested by Keller et al. (2006). Subjects were asked to equally separate the time span between 

two consecutive stimuli with a key press. In one condition (intention condition) the subjects had 

free choice of the button they would use while in the other condition the key was predefined 

(stimulus-based condition). Additionally, the key press was followed by a consistent outcome. 

In the stimulus-based condition this outcome determined which button subjects had to press 

in the subsequent trial. The induced intention-based actions (relying on response-outcome 

associations) and stimulus-based actions (relying on stimulus-response associations) could 

be separated in terms of electrical activity in the EEG. In line with their hypothesis, Keller et al. 

observed a stronger negativity in the intention condition compared to the stimulus based 

condition maximizing at frontocentral regions (close to SMA). They interpreted this result as 

evidence for differences in preparatory processes of stimulus-driven and goal-directed actions. 

Additionally, this increase in negativity was not only limited to motor and sensory regions, but 

instead involved the entire cortex prompting the conclusion that activation of the motor program 

corresponding to an action is always followed by the sensory representation of its 

consequence. Keller et al. found no difference in lateral potentials. Lateral potentials are 

thought to reflect the preparation of motor activity on a certain side of the body (in this case 

right hand fingers vs. left hand fingers). They interpreted this result as further evidence for the 

“Two Routes of Action” hypothesis (Waszak et al., 2005) in which stimulus driven and goal-

directed behavior are processed via two separate neural circuits but eventually both terminate 

in the motor region in order to activate the necessary motor program.  

Herwig and Waszak (2007) also focused specifically on outcome integration utilizing 

EEG. They showed that the execution of an action is indeed associated with the expectation 

of a corresponding outcome. In the first phase of their study subjects acquired R-O 

associations between key presses and presented tones. They were free to choose from two 

possible keys with the condition of pressing both keys approximately an equal number of times 

in a random fashion over the course of the learning phase. Every key press triggered either a 

high or a low frequency tone. The second phase of the experiment comprised a three tone 

oddball task in which presentations of sequences of repetitive stimuli were infrequently 

interrupted by a deviant stimulus. The reaction of the participant to this "oddball" stimulus was 

recorded. Every key press triggered one of three possible auditory stimuli with the standard 

tone (high frequency) and the deviant (low frequency) being exactly the same as in the learning 
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phase. The standard tone was presented with a probability of 75%; the deviant tone and the 

target stimulus (which had an even higher frequency than the standard tone) were presented 

with a probability of 12.5% each. Subjects were now asked to count and report the rate with 

which the target cue occurred. Herwig and Waszak found that deviant tones evoked a stronger 

positivity in the P3a component if the preceding response was associated with the standard 

tone. This effect most likely represents a stronger orientation reaction after a deviant outcome 

suggesting that sensory outcome processing is context-sensitive to outcomes which are 

associated with a certain response. 

In fMRI research the overarching goal is to identify neural correlates of R-O learning in 

paradigms with non-incentive outcomes. Ruge and Wolfensteller (Ruge & Wolfensteller, 2013, 

2015) used a paradigm in which R-O associations are formed in very few repetitions of distinct 

S-R-O mappings. In one study (Ruge & Wolfensteller, 2013) subjects were instructed a novel 

visuo-motor S-R mapping consisting of four distinct stimuli which were matched with two 

different responses (4:2 mapping) with the beginning of each block. The instruction was 

followed by an implementation phase in which the four different S-R mappings were repeated 

8 times each. The experimental group was presented with distinct visual outcomes whereas in 

the control group correct responses were followed by non-contingent stimuli. Hence, for the 

experimental group it was possible to build up S-R-O associations. The functional connectivity 

analysis showed that contingent outcomes evoked an increase in functional coupling between 

the nucleus caudate and the lateral prefrontal cortex (LPFC) over the course of learning. 

However, this particular experimental design did not allow for a clear answer to the question 

on whether this effect was prompted by O-R associations themselves or rather by the active 

usage of these associations. In order to answer this question, in a follow up study (Ruge & 

Wolfensteller, 2015), the acquisition phase in which subjects learned 4:4:4 S-R-O mappings 

was followed by a test phase in which previous outcomes now served as imperative stimuli 

that required responses that could be either compatible or incompatible with the O-R 

associations acquired in the learning phase, yielding in a pure measure of O-R association 

strength. The results showed an increase in coupling between LPFC and putamen which was 

correlated with the response time compatibility measure prompting the interpretation that the 

putamen is relevant for stimulus driven S-R associations as well as highly automatized O-R 

associations. LPFC-caudate couplings on the other hand were correlated with response 

slowing between early and late learning stages (which was assumed to be a measure of active 

R-O usage) suggesting that the caudate is responsible for the online control of goal-directed 

action, even in instruction-based learning conditions. In a study of Melcher et al. (2013) one 

experimental group was presented with a contingent mapping between two responses and two 

non-incentive outcomes (tones) while the control group was presented with a non-contingent, 
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random R-O mapping. Subjects now performed a free choice response task over the course 

of 160 trials. This resulted in a stronger decrease in activation in the caudate in the contingent 

group compared to the random outcome group which has been interpreted as evidence for an 

increasing role of the caudate in early learning stages in the contingent group.  

Additional to the networks mentioned above motor and sensory representations of 

outcomes seem to play a role in action selection and initiation as well (B. Hommel, 2013). 

Elsner et al. (2002) used Positron-Emission-Tomography (PET) to demonstrate that the 

perception of outcomes, triggered by a motor response, lead to reactivation of motor areas. If 

subjects were presented with a tone they learned to produce with a key press in a previous 

phase, it led to an increase in activation of the SMA and the Hippocampus. Similar results were 

found in an fMRI study by Melcher et al. (2008). Kühn, Seurinck, Fias and Waszak (2010) 

utilized fMRI to even demonstrate the reverse effect of increased activation in sensory areas 

after subjects executed a response associated with a consistent outcome.  

 

2.3 Summary 

Goal-directed behavior differs from mere habitual behavior by incorporating possible 

consequences of an action whereas habits are exclusively stimulus-driven. Anticipation of 

action consequences functions based on previously established response-outcome 

associations which can be even specific to distinct stimulus conditions. This has been proven 

in an abundance of studies, both, within the instrumental learning as well as the ideomotor 

research strand (Colwill & Rescorla, 1988, 1990; J. Hoffmann et al., 2007; Kunde, 2001b; 

Trapold, 1970; Ziessler et al., 2004a). Additionally, these kind of associations can be 

established in just a short amount of time (Ruge et al., 2012; Ruge & Wolfensteller, 2015; 

Wolfensteller & Ruge, 2011, 2014). According to both instrumental learning theory and 

ideomotor theory it is generally thought that goal-directed action is enabled on the basis of 

(differential) outcome integration via an S-O  O-R activation chain (Balleine & O'Doherty, 

2010; Balleine & Ostlund, 2007; de Wit & Dickinson, 2009; Urcuioli, 2005).  

However, both research fields differ substantially in the way of investigating outcome 

integration. In instrumental learning research most of the paradigms used involve trial-and-

error learning utilizing incentive outcomes as feedback (de Wit et al., 2009; Delgado et al., 

2005; Noonan et al., 2011; J. P. O'Doherty, 2011; Tanaka et al., 2008; Tricomi et al., 2004; 

Valentin et al., 2007). Those studies especially delivered evidence for the anterior caudate (J. 

P. O'Doherty, 2011; Tanaka et al., 2008; Tricomi et al., 2004) as well as the OFC (de Wit et 
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al., 2009; Noonan et al., 2011; J. P. O'Doherty, 2011) to play a key role in the acquisition of 

goal-directed behavior. 

Ideomotor theory on the other hand assumes bidirectional associations between an 

action and its consequence. Ideomotor paradigms are characterized by non-incentive 

outcomes. Nevertheless neurophysiological studies in this field also showed evidence that the 

caudate and the OFC both seem to be involved in the formation of outcome integration 

processes (Melcher et al., 2013; Ruge & Wolfensteller, 2013). Furthermore, there are studies 

that suggest that additionally the SMA seems to be associated with goal-directed action 

selection (Elsner et al., 2002; Frimmel et al., 2016; Melcher et al., 2008; Melcher et al., 2013).  

 

2.4 Methodological background 

The two studies presented in this work were conducted utilizing both 

Electroencephalography (EEG) only as well as EEG and functional magnet resonance imaging 

(fMRI) in a combined study. In the following section both methods will be described briefly and 

contrasted against each other with respect to their features. Afterwards the method of co-

registered EEG-fMRI will be introduced with a strong focus on how short comings of each 

individual method can be canceled out in a combination of both practices. 

 

2.4.1 Electroencephalography (EEG) 

The method of Electroencephalography (EEG) allows for the recording of modulations 

in electrical current directly on the skull surface of a test subject. These modulations in 

electrical activity originate in excitatory or inhibitory postsynaptic action potentials produced by 

cortical pyramid cells (Zschocke, 2002). The basic assumption is that active cognitive 

processes, related to a certain experimentally manipulated task, are represented by the firing 

of neurons or neuron clusters. The neural current is picked up by a network of EEG electrodes 

which are equally distributed in a cap and mostly laid out according to the so called 10-20 

system (Jasper, 1958). The naming convention of electrodes is based on their position (frontal, 

central, parietal, occipital, temporal) and hemi sphericity (right hemisphere = even numbers, 

left hemisphere = odd numbers).  

The method of Event Related Potentials (ERP) represents a frequently used approach 

of analyzing EEG data with respect to experimentally induced events. ERPs are changes in 

electrical activity which can occur prior, during, or after a sensory, motor, or even cognitive 
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incident (Rugg & Coles, 1995). However, event-related electrical currents are significantly 

weaker in terms of voltage compared to the noise in the raw EEG. Therefore segments 

belonging to the same kind of event are now averaged over a defined number of trials. The 

basic rationale is that event related ERP processes are identical over all trials while EEG noise 

is highly random and non-systematic. Averaging will cause reduction of noise while amplifying 

the true ERP signal correlated to the event in question (Jäncke, 2005). The extracted 

components can be measured in terms of amplitude or latency shift with regard to the triggering 

event. One of the major advantages of using ERPs is that they have a long history of research 

behind them and many components have been associated with distinct cognitive processes 

and even possible brain locations in terms of generation (Luck, 2005). The common view that 

ERPs are correlated on specific neural processes is based on two core assumptions: a) 

information processing in the brain is strictly serial with every component reflecting a certain 

sub process and b) these sub processes are mirrored in the peak amplitude of the component 

in question. These two assumptions, however, have more of a heuristic character as it has 

already been shown that human information processing is highly non-linear resulting in 

possible overlap of ERP components (Rüsseler & Münte, 2005). ERPs can be categorized into 

endogenous or exogenous components. Exogenous components are triggered by physical 

properties of an external stimulus (modality, intensity, duration, etc.). Endogenous components 

on the other hand are independent of physical stimulus properties but instead reflect higher 

cognitive brain processes (Jäncke, 2005). They usually occur after exogenous processes, 

usually in a range of 100 ms to 2000 ms with regard to event onset and are modulated by top-

down processes like attention or memory retrieval.  

One of the major advantages of EEG is its temporal resolution being in the range of 

milliseconds (ms). This feature allows EEG studies to even identify temporally fine grained 

processes which could not be revealed otherwise with a potential “online recording” capability 

of cognitive processes (Luck, 2005). However, this superb temporal resolution goes along with 

poor spatial resolution capability. It is not possible to locate the exact origin of a given ERP 

component, even if it is occurring only at specific electrodes. The number of electrodes (usually 

ranging between 32 and 128 electrode setups) simply does not allow for an even anywhere 

near satisfying localization procedure. This is not only due to the lack in sheer number of 

electrodes. Given the firing of a neuron cluster at a certain origin in the brain, it is highly 

possible for the nearest electrode to pick up most amount of the electrical current but in theory 

this current can be picked up by just any electrode on the scalp. Eventually, related to the prior 

point made, there is a substantial loss in information due to the fact that topological information 

from a three-dimensional object like the brain is trying to be mapped on a two-dimensional grid 
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of electrodes making an unambiguous inverse mathematical solution to this problem 

impossible (Luck, 2005). 

 

2.4.2 Functional magnetic resonance imaging (fMRI) 

FMRI has become one of the dominant methods in brain research (Huettel, Song, & 

McCarthy, 2009). Contrary to EEG, it uses an indirect measure of brain activity picking up 

changes of blood flow in brain tissue which is assumed to be a marker of neural activity. To 

this end fMRI scanners are equipped with various types of magnets. These include a 

superconducting multi tesla magnet (usually 1,5 up to 7 tesla) to generate the static field (b0), 

smaller radiofrequency coils collecting the MR signal, as well as gradient coils to provide spatial 

information in the MR signal.  

The fundamental parameter measured in fMRI studies is the so called Blood-Oxygen-

Level-Dependent (BOLD, Menon et al., 1992; Ogawa, Lee, Kay, & Tank, 1990; Ogawa, Lee, 

Nayak, & Glynn, 1990; Ogawa et al., 1993; Ogawa et al., 1992). It is used based on the 

underlying assumption that cognitive load is correlated with increased blood flow as a result of 

providing nutrients such as oxygen and glucose to stressed brain tissues and allow them to 

function (hemodynamic response). As magnetic properties of oxygenated hemoglobin differ 

from deoxygenated hemoglobin this can be picked up by the fMRI radiofrequency coils. 

Oxygenated hemoglobin lacks unpaired electron pairs leaving it free of any magnetic 

momentum (diamagnetic). Deoxygenated hemoglobin on the other hand has unpaired electron 

pairs making it paramagnetic with a significant amount of magnetic momentum. This magnetic 

force induces an inhomogeneity in the scanners b0 field which can be located by the head coil 

using specific magnet resonance (MR) pulse sequences. There are a number of sequences 

with a different tradeoff between contrast strength and acquisition speed. As it is impossible to 

simultaneously maximize both of these parameters, functional imaging techniques typically 

rely on sequences which emphasize speed of acquisition with the so called Echo planar 

imaging sequence (EPI, Mansfield & Maudsley, 1976) being used most frequently (Huettel et 

al., 2009). Increase in neural activity leads to an initial increase in oxygen consumption 

resulting in an increased cerebral blood flow after a delay of approximately two seconds. This 

causes an overcompensation of local oxygen consumption changing the balance of 

desoxyhemoglobin and oxyhemoglobin in favor of the later. These fundamental processes 

solely cause a change in the BOLD parameter which, due to the nature of its origin, is highly 

correlated with neural activity (Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001). 

Specific experimental designs involving only particular cognitive processes are designed to 

yield in increased blood flow only in brain regions specifically associated with the processing 
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of the experimental task. Hence, the BOLD signal is expected to be increased only in these 

regions. The signal itself has a very characteristic shape (Bandettini & Ungerleider, 2001; 

Boynton, Engel, Glover, & Heeger, 1996). The BOLD level increases approximately two 

seconds after increase in neural activity (i.e. triggered by the presentation of a stimulus). Prior 

to this main positive response there may be a short term decrease in signal strength below 

baseline (initial dip) most likely resulting from initial oxygen extraction before the later over-

compensatory response. The BOLD level reaches its maximum after four to six seconds. Due 

to the combination of reduced blood flow and increased blood volume the BOLD amplitude 

then decreases below baseline over the course of seconds eight to eleven and takes another 

twenty to thirty seconds to recover from this undershoot. 

Regarding advantages and disadvantages of fMRI it can be stated that it represents 

the exact complement to EEG in terms of its properties. FMRI is characterized by an immense 

spatial resolution capability in the range of mm. The exact resolution is defined by the 

predefined size of MR sampling units known as volume elements or voxels. Technically, it is 

even possible to decrease voxels even below 1 mm. However, there is always a trade-off as 

decreasing volume unit size goes along with a decreasing absolute amount of signal that can 

be detected within it. In contrast, the temporal resolution really is the limiting factor in fMRI 

research as it is naturally constrained by the inertia of the physiological changes that it seeks 

to measure. As described above the average BOLD signal phase prolongs over a time frame 

of over ten seconds. 

 

2.4.3 Co-registered EEG-fMRI 

EEG suffers from the so-called spatial inverse problem, whereby one cannot infer the 

spatial location of sources in the brain from electrical potentials on the scalp alone (Grech et 

al., 2008; Michel et al., 2004). Accordingly in fMRI, a map with regional activations does not 

necessarily permit inferences about the exact time and order in which these activations have 

occurred. This phenomenon is known as the temporal inverse problem (Logothetis, 2008). The 

main purpose and promise of combining EEG and fMRI lies in overcoming their individual 

disadvantages concerning temporal and spatial resolution. This however, is based on the 

underlying assumption that despite the differences in domain and signal content in both 

methods, that there exists a common neural basis that is described by both EEG activation 

patterns and fMRI BOLD response. 
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Data acquisition 

In the early days of simultaneous EEG-fMRI, data acquisition was mostly performed 

via parallel recording where one subject was measured with the same experimental paradigm 

connected to the EEG and in the MR scanner on separate occasions. However, apart from 

introducing two completely different measurement environments, this kind of setup had to 

exclude situations where conducting the same experiment in succession led to memory or to 

learning effects or where some kind of unwanted habituation or sensitization was expected to 

occur. In recent years, concurrent sessions of simultaneous EEG-fMRI recording has become 

gold standard (Ullsperger & Debener, 2010). Nevertheless, this procedure casts several 

technical and safety related challenges which need to be accounted for.  

In a concurrent EEG-fMRI scanning session EEG cap, electrodes, electrode leads, and 

even EEG signal amplifier (if placed inside the scanner room or even inside the scanner bore) 

are constantly exposed to the strong homogeneous static magnetic field of the scanner and, 

even more importantly, to the rapidly changing magnetic fields produced by gradient switching. 

Due to the nature of EEG signals, the electrodes used in EEG systems are made of electrically 

conducting materials, usually a Silver (Ag) or a Silver Chloride compound (AgCl). According to 

Faraday’s law, changes in the magnetic field (induced by changes in the magnetic gradient, 

by head motion, by motion of electrode wires, or even by the heartbeat of the subject inside 

the scanner bore) induce electrical currents in the electrodes and electrode leads (Hill, 

Chiappa, Huang-Hellinger, & Jenkins, 1995; Lemieux, Allen, Franconi, Symms, & Fish, 1997). 

These electrical currents are picked up by the electrodes and result in artifacts that 

superimpose the spontaneous EEG with amplitudes of up to two orders of the underlying EEG 

signal and equally fast rates of change that are often three times faster than those of the EEG 

acquired (Allen, Josephs, & Turner, 2000; Krakow et al., 2000). Dealing with these technical 

changes will be discussed in more detail later in chapter 5.2. 

Regarding safety, the most imminent risk for the subject is caused by radio frequency 

(RF) energy being deposited onto the electrodes during slice excitation. This RF energy could 

become a danger to the subject if coupled onto closed electrode cable loops. Those would 

dissipate the energy through heat emitted, eventually resulting in potential burning of subject 

body tissue. It is therefore of most importance when placing the subject inside the scanner 

bore to avoid creating closed cable loops at all cost (Dempsey & Condon, 2001; Dempsey, 

Condon, & Hadley, 2001). This effect is not limited only to cable loops. In fact, any cable can 

act as an RF antenna and therefore potentially cause severe burning. This effect is dependent 

on a variety of parameters, such as scanner field strength and frequency, cable length, cable 

shape, and orientation (Konings, Bartels, Smits, & Bakker, 2000; Nitz et al., 2001; Pictet, Meuli, 
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Wicky, & van der Klink, 2002). It is therefore important to verify that the setup used does not 

induce any heating. If these critical points are taken into consideration and are dealt with in a 

proper manner, then concurrent EEG-fMRI recording will not pose any risk to subjects. 

Data analysis 

Generally, data analysis methods for simultaneously acquired EEG-fMRI can be 

categorized into asymmetric and symmetric data integration methods (Huster et al., 2011). As 

the name implies, in asymmetric approaches information from both modalities are not used in 

an equally weighted manner. Instead, information of one modality is used to guide the analysis 

of the other. The most prominent of these approaches are fMRI-informed EEG and EEG-

informed fMRI analysis. The method of fMRI-informed EEG is specifically designed to provide 

a solution to the spatial EEG inverse problem by guiding EEG source imaging using information 

obtained from fMRI (Babiloni et al., 2002; Babiloni et al., 2000; Heinze et al., 1994). To this 

end, the subjects head geometry and other important features of the brain are first estimated 

to build a forward model from which the path of currents from a prior simulated neural event to 

the scalp can be calculated. In order to derive spatiotemporal information from the EEG data 

using additional information from the fMRI, one possible method relies on inferring the number 

of potential EEG current dipoles from the pattern of activations in fMRI BOLD maps. These 

dipoles can then be seeded to specific brain locations correlating with local fMRI maxima. In a 

final step the time course of neural activity in each of these locations can be estimated 

(Hamalainen & Ilmoniemi, 1994). Recently there have also been alternative approaches in 

which so called distributed source models reconstruct neuro-electric activity at each point in a 

3D grid of possible current sources. These statistical maps are further used to compute the 

source space by providing the probability of a particular region as a possible origin of the signal 

(Dale et al., 2000; Ou et al., 2010).  

Being another prominent approach of asymmetric data integration, EEG-informed fMRI 

analysis considers associations of changes over time at a within-subject level. This however, 

is based on a strong assumption of a direct coupling between EEG and fMRI features 

(Ullsperger & Debener, 2010). For this method a distinct EEG parameter of interest is extracted 

over the time course of the experimental session. Potential features include ERP amplitudes 

(Debener, Ullsperger, Siegel, et al., 2005), ERP latencies (C. G. Benar et al., 2007), EEG 

synchronization and phase coherence (Jann et al., 2009; Mizuhara, Wang, Kobayashi, & 

Yamaguchi, 2005) or the power within specific EEG frequency bands (Scheeringa et al., 2009). 

Whatever parameters are used, the core assumption in any case is that feature fluctuations 

over time co-vary with fluctuations in the fMRI signal over the course of the experimental 

session. FMRI processing follows standard procedures up to first-level analysis. When setting 
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up the regressors for single subject statistics, however, these regressors are not derived from 

the timing of stimulus onsets convolved with a modeled hemodynamic response function 

(HRF) alone. Rather, these HRFs are additionally parameterized using the trial-wise extracted 

EEG parameter in a way that an increased potential amplitude in the single-trial EEG causes 

an up-scaling of the HRF for a given event and vice versa. Likewise to conventional fMRI 

analysis, the resulting level one beta estimates are then tested at the group level either against 

other conditions or against zero to reveal areas in the brain involved with putative significant 

co-variations between electrophysiological and hemodynamic responses. EEG-informed fMRI 

analysis relies on the assumption that underlying neural processes recorded by both modalities 

are at least partially correlated in a linear manner. No specific assumption is made about the 

spatial organization of activation patterns. This on the other hand implies that this method 

technically could yield activation in brain regions that are not necessarily the generators of the 

complementary EEG feature recorded at the scalp (Debener, Ullsperger, Siegel, et al., 2005; 

Minati et al., 2008). Eventually, one has to keep in mind that single trial EEG data can contain 

extremely high levels of noise which is increased by potential residual MR artifacts. Hence, 

one might have to rely on techniques that increase the signal-to-noise ratio of individual trials 

(C. J. James & Hesse, 2005; Onton, Westerfield, Townsend, & Makeig, 2006). 

Symmetric data fusion methods of co-registered EEG-fMRI data avoid an a priori bias 

of either modality (Riera & Sumiyoshi, 2010; Rosa, Daunizeau, & Friston, 2010; Valdes-Sosa 

et al., 2009). Relevant methods all differ in assumptions as well as requirement of prior 

information. One exemplary method presented here relies on Independent component analysis 

(ICA) in which it is assumed that the observed data originate from a linear mixture of the 

underlying independent components identified. In this joint ICA approach (Calhoun, Adali, 

Pearlson, & Kiehl, 2006; Calhoun, Liu, & Adali, 2009) EEG and fMRI signal modalities are first 

processed separately. In the following, fMRI analysis statistical maps and EEG data of all 

subjects are merged into one single matrix which is then processed by a joint ICA. The ICA 

analysis results in a joint spatiotemporal decomposition with joint independent components 

corresponding to measured responses together with correlated clusters of active brain regions. 

Contrary to the unimodal approach in which only either temporally or spatially independent 

components can be identified, the multimodal approach delivers joint spatiotemporal 

independent components associated with electrophysiological responses, correlated with 

clusters of active regions (Eichele, Calhoun, et al., 2008; Eichele, Rachakonda, Brakedal, 

Eikeland, & Calhoun, 2011; Eichele, Rachakonda, & Calhoun, 2008; Moosmann, Eichele, 

Nordby, Hugdahl, & Calhoun, 2008). Multimodal approaches, although long established in 

computer science, are fairly new in its application to neuroscientific problems. Due to the 
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heterogeneity of these algorithms it might still be difficult to derive a tailored solution to a 

specific research question (Huster, Debener, Eichele, & Herrmann, 2012). 
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3 General objectives and research questions 

Study 1 mainly served two distinct purposes. For one, the EEG data was generated to 

provide a blue print in terms of quality to be compared with the EEG data acquired in the latter 

co-registered EEG-fMRI study. The idea was to have a baseline of clean MR-artifact free EEG 

data which later could be utilized for comparison with the MR-artifact polluted EEG data. 

Comparing both data sets would allow to derive information about how much loss in terms of 

data quality and signal to noise ratio (SNR) to expect on both the averaged as well as on the 

single trial level. Second and more importantly the study was an exploratory study to answer 

the question on what kinds of EEG effects to expect in the first place. While fMRI correlates of 

both S-R learning as well as O-R outcome integration processes have already been examined 

using this paradigm (Ruge & Wolfensteller, 2015), there has been no information if those two 

processes are reflected in the EEG and if so which specific EEG parameters are modulated 

by them. This reasoning led to the formulation of the first central research question. 

Research question 1: Can ERP patterns associated with the initial learning of bi-directional 

R-O associations under forced choice conditions be identified? 

O-R outcome integration specific EEG correlates further served as regressors in a 

unified GLM (EEG-informed fMRI analysis) in the later co-registered EEG-fMRI study. This 

study as well utilized the exact same paradigm as study 1. By doing so it was secured that the 

data generated could be aligned to the data that was produced previously. Hence, epoched 

and single trial EEG data could be directly compared to the EEG data produced in study 1, 

both in terms of data quality as well as possible ERP correlates of S-R learning or O-R outcome 

integration. The overarching goal of study 2 was to assess various methods of EEG and fMRI 

data fusion and the results that could be produced by them with regards to outcome-response 

learning. The main focus lied in an asymmetric data fusion approach, namely EEG-informed 

fMRI analysis. The main reason for using this method was to make optimal use of the 

previously generated knowledge about learning-related ERP markers from study 1. If putative 

markers could be replicated in study 2 in terms of latency and amplitude one would have a 

stable and valid ERP foundation for disentangling within trial information of the fMRI BOLD 

signal.  

By adding a specific ERP parameter (i.e. a marker of O-R outcome integration) as 

additional regressor into the fMRI analysis it is possible to extract a BOLD signal specifically 

correlated with that parameter cleansing it from variance related to other sub processes. One 

of the key questions in this study was if the EEG signal could help to differentiate between 

BOLD activation associated with processes related to response preparation or initiation and 

activation associated with post-response outcome integration processes. 
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Research question 2a: Can a putative pre-response ERP marker of O-R learning predict 

distinct activation in the brain? 

Research question 2b: Can a brain region be identified that is distinctly correlated with an 

ERP marker of post-response O-R outcome integration? 

One major advantage of the EEG-informed analysis is that it does not necessarily rely 

on single trial data since EEG information can be concatenated into event related epochs first 

before sent to the fMRI analysis. Hence, this method is likely to deliver interpretable results 

also in the case of not perfectly clean single trial EEG data. Further, in order to assess to which 

extent fMRI-EEG data could be used in a symmetric analysis approach, it was tested to 

generate independent components (IC) from single trial EEG data. If proven feasible, both 

EEG and fMRI data could be used in an exemplary Joint Independent Component Analysis 

(JICA).  
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4 Study 1 – Learning-related brain-electrical activity dynamics 

associated with the subsequent impact of learnt action-outcome 

associations 

4.1 Introduction 

Behavior is considered goal-directed when the actor integrates information about the 

anticipated outcome (Dickinson & Balleine, 1994). This requires the prior acquisition of 

knowledge about the current contingencies between behavioral responses (R) and their 

outcomes (O) under certain stimulus conditions (S). Knowledge about S-R-O contingencies 

can be acquired via trial and error where learning relies on evaluating retrospectively whether 

a behavioral response yielded a desirable outcome. However, acquisition can be accelerated 

by using explicit instructions which specify prospectively how to yield intended outcomes under 

the appropriate stimulus conditions (Doll, Jacobs, Sanfey, & Frank, 2009b; Ruge & 

Wolfensteller, 2016; Wolfensteller & Ruge, 2012). In two earlier functional MRI studies, Ruge 

and Wolfensteller have examined the neural activation dynamics associated with the rapid 

acquisition of novel S-R-O contingencies via explicit instruction procedures (Ruge & 

Wolfensteller, 2013, 2015). The present EEG study aimed to examine the neural activation 

dynamics with higher temporal precision not only across learning trials but also within learning 

trials. Within a trial, stimulus-locked and response-locked event-related potential (ERP) 

dynamics were inspected in order to identify both pre-response and post-response outcome 

integration processes. Importantly, while previous EEG studies have identified neural markers 

of outcome integration (Hughes, Desantis, & Waszak, 2013a, 2013b; Hughes & Waszak, 2011; 

Mifsud et al., 2016; Roussel, Hughes, & Waszak, 2013, 2014; Sanmiguel, Todd, & Schroger, 

2013; Waszak, Cardoso-Leite, & Hughes, 2012; Waszak et al., 2005), there are virtually no 

data on the initial acquisition processes that enable outcome integration in the first place.  

The experimental design was based on a modified version of the differential outcome 

paradigm (Colwill & Rescorla, 1985; Noonan et al., 2011; Shin et al., 2010; Trapold, 1970; 

Urcuioli, 2005) where differential auditory response outcomes were presented during 

instruction-based visuo-motor learning (Ruge & Wolfensteller, 2015; Wolfensteller & Ruge, 

2014). Specifically, each distinct link between a visual stimulus and a manual response was 

predictably followed by a distinct auditory outcome. To obtain sufficient data for initial learning 

trials, each subject worked through ten different learning episodes each comprising a novel 

and unique set of visual stimuli and auditory outcomes. Successful acquisition of novel S-R-O 

contingencies enables goal-directed action selection through an S-O  O-R activation chain 

(Balleine & Ostlund, 2007; de Wit & Dickinson, 2009; Trapold, 1970; Urcuioli, 2005). According 
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to ideomotor theory, O-R associations in this chain are conceptualized as bidirectional 

associations between an action´s motor code and the ensuing sensory effects (Elsner & 

Hommel, 2001; Greenwald, 1970; Herwig et al., 2007; Prinz, 1997; Shin et al., 2010; Urcuioli, 

2005; Waszak et al., 2012).  

Behaviorally, the strength of acquired O-R associations can be analyzed via O-R 

compatibility effects measured in a subsequent outcome-priming test phase (Greenwald, 

1970). In this test phase a previously learned outcome becomes an imperative stimulus that 

requires either the response which produced that outcome in the preceding learning phase (O-

R compatible) or a response which produced a different outcome (O-R incompatible). Such 

compatibility effects, expressed in shortened response times and decreased error rates in 

compatible trials compared to incompatible trials, are commonly observed and indicate that 

the perception and even the anticipation of a previous outcome automatically activates the 

action it was previously produced by (Elsner & Hommel, 2001; Janczyk, Skirde, Weigelt, & 

Kunde, 2009; Keller & Koch, 2006; Kunde, 2001b; Pfister et al., 2010; Pfister & Kunde, 2013; 

Rieger, 2007) even after very short acquisition periods (Ruge et al., 2012; Wolfensteller & 

Ruge, 2011, 2014). 

Besides such O-R compatibility effects another marker of outcome integration is the 

action-induced sensory attenuation effect which refers to the observation that stimuli that are 

predicted and triggered by human actions (i.e. action outcomes) are perceived to be attenuated 

compared to stimuli that are unpredicted or predicted by another stimulus, which might in fact 

be the reason why it is hard to tickle oneself (Blakemore, Wolpert, & Frith, 2000; Blakemore, 

Wolpert, & Frith, 1998). Action-induced sensory attenuation is a widespread phenomenon that 

has been assessed behaviorally (Bays & Wolpert, 2007a, 2007b; Miall & Wolpert, 1996) and 

neuro-physiologically using EEG or fMRI (Aliu, Houde, & Nagarajan, 2009; Martikainen, 

Kaneko, & Hari, 2005; McCarthy & Donchin, 1976; Schafer & Marcus, 1973). 

Previous EEG studies have shown that action-triggered sounds as compared to 

externally triggered sounds elicited a reduced anterior negativity within and subsequent to the 

auditory N1 latency range, suggesting that cortical activity was attenuated for the action-

triggered sounds due to anticipation of the forthcoming effect (Baess, Jacobsen, & Schroger, 

2008; Hughes & Waszak, 2011; Mifsud et al., 2016). The present study examined whether 

such findings are reproducible in the instructed rapid learning paradigm employed in this study 

when action selection depends on antecedent stimuli. In particular, it aimed to examine how 

sensory attenuation ERP effects might evolve across the first few learning trials. More 

specifically, if the attenuation of the anterior negativity is indeed due to outcome anticipation 

based on acquired O-R associations, this attenuation effect should be increasing from early to 



Study 1 – Learning-related brain-electrical activity dynamics associated with the 
subsequent impact of learnt action-outcome associations 

 

38 
 

late in learning. Furthermore, the experimental design allowed for an additional exploration of 

possible learning-related ERP modulations associated with pre-response outcome integration 

processes triggered by the antecedent stimulus. 

Importantly, however, a learning-related increase in outcome integration processes 

might potentially be confounded with a different process of perceptual learning due to the mere 

repetition of the O (auditory stimuli) alone which is known to be associated with an increased 

anterior negativity within a similar time-window as the sensory attenuation effect (Alain, 

Snyder, He, & Reinke, 2007; Atienza, Cantero, & Dominguez-Marin, 2002; Mishra, Rolle, & 

Gazzaley, 2015). Hence, due to their similar spatio-temporal distribution, a learning-related 

decrease of the anterior negativity associated with outcome integration processes might be 

over-shadowed by an increase of the anterior negativity associated with perceptual learning 

processes. The same possible confound applies to learning-related stimulus-locked ERP 

modulations. Perceptual learning processes due to repeated exposure to the S (visual stimuli) 

are known to be associated with an increase of the visual N1 component (Clark, Appelbaum, 

van den Berg, Mitroff, & Woldorff, 2015; Mishra et al., 2015), especially with non-familiar (Brem 

et al., 2005) and complex (Song et al., 2005) stimuli as used in this study. Again, these 

perceptual learning processes might overshadow ERP correlates of stimulus-triggered 

outcome anticipation processes or S-R learning processes which are of primary interest in this 

study. Note that learning-related ERP modulations due to repetition priming should be 

negligible in the present paradigm as the re-occurrence of a specific sound outcome or a 

specific visual stimulus is on average several seconds apart, which is too long for the typical 

ERP suppression effects to be observed (Budd, Barry, Gordon, Rennie, & Michie, 1998; 

Henson, Rylands, Ross, Vuilleumeir, & Rugg, 2004; Naatanen & Picton, 1987).   

Fortunately, there is a way to disentangle these inherently confounded processes by 

using behavioral markers. Specifically, outcome priming tests after each S-R-O learning 

episode were implemented in order to determine O-R association strength via the O-R 

compatibility effect as described above. Learning-related ERP modulations that are related to 

outcome integration processes rather than perceptual learning should be correlated with 

independently measured behavioral markers of O-R association strength. Similarly, learning-

related ERP modulations related to the early instruction-based formation of novel S-R links 

should be correlated with performance accuracy following explicit S-R instruction. 
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4.2 Methods 

Subjects 

Thirty-five subjects participated in this study. Six of them were excluded due to error 

rates greater than 25% in the first unguided implementation trial (SRO repetition 4). High error 

rates in this particular trial suggest that those subjects proceeded not according to instructions 

resulting in an undesired trial-and-error effect. The mean age of the resulting 29 subjects was 

24.1 years, ranging from 18 to 33 years with 18 being female and eleven male. All subjects 

were treated in accordance with the Declaration of Helsinki and gave written informed consent 

in advance of taking part in the experiment and were paid €8 per hour or received course 

credit.  

 

Experimental procedure 

S-R-O acquisition phase 

Instructions were delivered via a ‘guided implementation’ procedure in which the 

instruction is embedded within the first three behavioral implementation trials that also 

comprised the presentation of differential outcomes following correct responses (see Figure 

3).  

The guided implementation phase comprised twelve correct trials (three repetitions of 

four different stimuli, responses and outcomes). Stimuli were four abstract visual patterns that 

differed for each block. In the acquisition phase each trial started with the presentation of a 

visual stimulus S in the center of the screen for 500ms. Following 250 ms after S onset an 

additional instruction stimulus (IS) was displayed which remained on screen until a response 

was made or until timeout after 1750 ms. The IS was a yellow square highlighting one of four 

constantly displayed empty boxes. Manual responses (left middle finger, left index finger, right 

index finger, and right middle finger) were mapped in a spatially compatible manner to the IS 

position. After a 150 ms gap, correct responses were followed by a naturalistic sound effect 

which lasted for 500 ms, differing for each S (differential outcome). This guided implementation 

phase was followed by an unguided implementation phase where the IS was omitted and 

comprised another 20 correct trials (i.e., five repetitions of the four distinct S-R-O triples). Thus, 

starting from the fourth S-R-O repetition (SRO-rep), the correct response had to be retrieved 

from memory as it was not indicated by the IS anymore. In case of erroneous responses, error 

feedback was displayed and the trial was immediately repeated. The experiment comprised 

ten different S-R-O learning blocks each with novel visual stimuli and novel outcome sounds. 
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The inter-trial interval (ITI) was randomly selected from a geometric distribution including 

interval durations of 800 ms (24 trials per block), 2350 ms (five trials per block), and 4700 ms 

(3 trials per block). Analyses of learning-related changes in behavior and brain activation were 

based on correct trials ranging from SRO-rep 1 to SRO-rep 8. 

 

Figure 3: Schematic representation of the S-R-O acquisition phase for an exemplary set of visual 

antecedent stimuli and auditory differential outcomes. Over the course of the experiment subjects had 

to learn ten such S-R-O mappings each comprising a novel and distinct set of four visual stimuli and 

four auditory outcomes. (A) Exemplary mapping between visual stimuli, instruction cues, responses and 

auditory outcomes. (B) Novel S-R-O mappings were learned in the ‘guided implementation phase’ via 

explicit instruction cues presented for the first three repetitions of each distinct S-R-O triple (SRO-rep 1 

– 3). Afterwards, in the ‘unguided implementation phase’ (SRO-rep 4 – 8) instruction cues were omitted 

and the correct response had to be retrieved from memory. 

 

O-R test phase 

Each of the ten S-R-O learning blocks was followed by a test phase probing the strength 

of the previously acquired O-R associations. Subjects were now required to react to the 

previous effect sounds of the acquisition phase with one out of the four responses (see Figure 

4). The response keys were the same as during the preceding S-R-O learning phase. Two 
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outcome sounds were mapped to the response that produced that sound in the preceding 

phase (compatible trials) whereas the two remaining outcome sounds were mapped to 

responses that had produced another sound before (incompatible trials). According to 

ideomotor theory, previously learnt O-R associations should prime the correct response in 

compatible trials but the incorrect response in incompatible trials. As in the preceding S-R-O 

acquisition phase, also the test phase was divided into twelve guided and 20 unguided trials. 

The instruction stimuli (IS) were now the letters ‘D’, ‘F’, ‘J’, ‘K’ presented centrally on the screen 

and mapped onto left middle finger, left index finger, right index finger, and right middle finger, 

respectively. A trial started with a fixation cross displayed for 500 ms followed by the sound 

lasting 500 ms. In the guided phase the IS was presented 150 ms after sound onset and lasted 

until the response or timeout after 1500 ms. Accuracy feedback was displayed for 650 ms 

indicating correct, wrong, or too slow responses. The ITI distribution was the same as in the 

S-R-O learning phase. 

 

 

Figure 4: Schematic representation of the O-R test phase. The four sound stimuli that had been 

produced by correct responses to the antecedent visual stimulus in the learning phase serve as 

antecedent stimuli in the test phase. The required response to these stimuli could be the same 

(compatible) or different (incompatible) regarding the response that produced the sound before. The 

correct response was indicated by instruction cues (letter D, F, J, K) in the “guided implementation 

phase” (SRO repetitions 1 – 3). As in the learning phase, starting from SRO repetition 4 up to 8 the 

correct response had to be retrieved from memory. Test phase data were exclusively used to compute 

the size of the behavioral O-R compatibility effect, which was later correlated with EEG activity during 

the preceding S-R-O learning phase in a linear regression.   
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EEG recording 

EEG was recorded using 64 sintered AG/AgCl electrodes which were distributed on the 

electrode cap according to the 10-20 System (Klem, Luders, Jasper, & Elger, 1999), using the 

AFz electrode as reference. Impedance at each electrode was kept below 5kΩ. Two additional 

electrodes were used to identify eye blinks and saccades. One was placed under the lower 

eye lid and the other 1 cm lateral to the right eye. EEG data were digitized using a 64-channel 

amplifier (www.brainproducts.com) with a sampling rate of 1000 Hz.  

 

EEG Preprocessing 

All EEG data was imported and preprocessed using Brain Vision Analyzer 2.0 

(www.brainproducts.com). Continuous EEG data were down-sampled to 250 Hz and band 

pass filtered from 0.2 – 30 Hz. All EEG Channels except horizontal and vertical EOG channel 

contributed to an average-based new reference. Ocular correction was performed using the 

regression based implementation by Gratton and Coles (Gratton, Coles, & Donchin, 1983). 

Electrode-specific artifact rejection sorted out segments exhibiting a gradient in electrical 

activity greater than 50 µV/ms as well as segments exhibiting absolute differences of more 

than 200 µV within a 200 ms interval. EEG data were segmented time-locked to both the 

response and the stimulus, respectively. Response-locked epochs contained the manual 

response ranging from 750 ms pre-response to 700 ms post-response. Stimulus-locked 

epochs contained the stimulus S ranging from 250 ms pre-stimulus to 1500 ms post-stimulus.  

Note that a baseline-correction for the segmented EEG data was not applied. 

 

Analysis of performance data 

For statistical evaluation of the behavioral performance data the R environment (R Core 

Team, 2012) and lme4 (Bates, 2012) were used to compute two separate linear mixed-effect 

models for mean response times (RTs) as well as mean error rates with the factor SRO 

repetition (SRO-rep 1 to SRO-rep 8) being fixed effect and the factor subject being random 

effect. Linear mixed-effects models were chosen since they provide post-hoc tests regarding 

individual SRO repetitions which are, in contrast to those of the general linear model, corrected 

for dependencies within the data points of the response variable (Bretz, Hothorn, & Westfall, 

2011). Additional post-hoc significance tests were realized and Bonferroni-corrected for 

multiple comparisons with the Multcomp package (Hothorn, Bretz, & Westfall, 2008). This 

package provides p values for post-hoc comparisons between factor levels tested on a z 
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distribution. Deviance of the model was tested for significance against the deviance of the so 

called null model. This hypothetical model only contains the intercept and therefore has no 

explanatory power whatsoever. This procedure is equivalent to an omnibus test of significance 

in a conventional GLM. 

 

ERP main analysis 

Response-locked and stimulus-locked epochs of EEG activity were averaged for each 

SRO repetition containing 40 correct trials per SRO repetition excluding trials rejected by 

artifact rejection. The analysis of rapid learning dynamics associated with initial instruction 

encoding processes compared ERPs between SRO-rep 1 and SRO-rep 3. The analysis of 

slower learning dynamics associated with more gradual changes in association strength 

compared ERPs between early SRO repetitions (collapsed across SRO-rep 2 and 3, further 

called SRO-rep 23) and late SRO repetitions (collapsed across SRO-rep 7 and 8, further called 

SRO-rep 78). For this latter analysis SRO-rep 1 was excluded to avoid a dominant contribution 

of initial instruction encoding.  

To deal with the expected spatiotemporal overlap of ERP modulations due to the 

learning processes of interest (R-O and S-R) with purely perceptual learning processes of no 

interest I assessed correlations between learning-related ERP modulations and specific 

behavioral markers. Thereby, I aimed to disentangle three distinct sub-processes. First, 

learning-related changes of post-response O-R integration can be revealed by correlating the 

behavioral index of O-R strength (O-R compatibility effect) with response-locked ERP 

amplitude changes from SRO-rep 23 to SRO-rep 78 and with ERP amplitude changes from 

SRO-rep 1 to SRO-rep 3. Second, learning-related changes of pre-response stimulus-based 

outcome integration processes can be revealed by correlating the behavioral index of O-R 

strength (O-R compatibility effect) with stimulus-locked ERP amplitude changes from SRO-rep 

23 to SRO-rep 78 and with changes from SRO-rep 1 to SRO-rep 3. Third, I aimed to identify 

ERP correlates of initial instructed S-R learning by correlating amplitude differences in 

stimulus-locked and response-locked ERPs between SRO-rep 1 and SRO-rep 3 with the 

subsequent error rate at SRO-rep 4 (assuming that good S-R learners should achieve low 

error rates). 

Correlational relationships between ERPs and behavioral indices of interest (O-R 

compatibility effect and error rate at SRO-rep 4) were determined based on multiple linear 

regression models. These multiple regressions included additional nuisance regressors to 

control for possible confounds assessed by additional behavioral markers, as detailed next. 
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Importantly, inter-individual differences in the size of the O-R compatibility effect might in part 

not only reflect differences in acquired O-R association strength but additionally also 

differences in dealing with response competition in incompatible trials as a result of previously 

acquired O-R associations. Similarly, inter-individual differences in learning-related changes 

from SRO-rep 23 to SRO-rep 78 might in part also reflect inter-individual differences in dealing 

with increasing response competition between multiple response options from the guided 

learning phase (competition low) to the unguided phase (competition high) as might be 

indicated by increased error rates and relatively increased response times. In order to control 

for this, differences in error rates and response times were included as two additional learning-

related predictors in the linear regression. Thereby, possible covariance components, 

associated with response competition during the learning phase, that might drive the 

correlation with the O-R compatibility effect rather than inter-individual differences in O-R 

association strength, could be regressed out.  

  

The experimental approach was different from the typical sensory attenuation 

procedure which compares ERPs elicited by internally vs. externally triggered sounds and 

does not focus on learning-related dynamics of the identified attenuation effects. Hence, the 

analysis of ERPs was divided into a hypothesis-driven part focusing on known effects reported 

in earlier sensory attenuation studies and an exploratory part to identify additional effects that 

might be specific for the present paradigm.  

 

Literature-based hypothesis-driven ERP analysis  

The hypothesis-driven analysis was performed for the expected post-response 

attenuation of the anterior negativity. The previous literature assessing auditory sensory 

attenuation effects suggests maximal effects at FCz or Cz electrodes (Baess et al., 2008; 

Baess, Widmann, Roye, Schroger, & Jacobsen, 2009; Hughes & Waszak, 2011; Lange, 2011; 

Sanmiguel et al., 2013). The reported time when sensory attenuation reached its maximum 

was somewhat variable across studies but most studies suggest that the effect reaches its 

maximum clearly after the N1 peak. This study employed more complex sounds than previous 

studies with longer duration (500ms) which implies prolonged sensory analysis of these 

sounds. Hence, ERP effects associated with sensory attenuation (and perceptual learning for 

that matter) might be prolonged and/or delayed compared to previous studies. Due to this 

temporal fuzziness I searched for significant effects in a time window between the mean post-

response auditory N1 peak (260 ms, i.e., 110 ms after sound onset) and the offset of the 

auditory outcome (650 ms). Note, that I explicitly searched for maximal ERP differences 
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pointing in both directions due to the already mentioned possible overlap of the sensory 

attenuation effect and the antagonistic perceptual learning effect. Statistical significance was 

determined via paired t-tests for the averaged signal within a +/- 24 ms time window around 

the time point in which the learning-related modulation of electrical activity was maximal. I then 

determined the correlation between this amplitude difference and the behavioral O-R 

compatibility effect regardless of the direction of the difference identified (e.g., either in the 

direction of sensory attenuation or opposite to it) in order to clearly relate the observed ERP 

difference to O-R integration processes. Additionally, I performed an analysis covering the 

whole post-response time range (260 ms to 650 ms) to determine the maximal correlation 

between learning-related modulations of electrical activity and the behavioral O-R compatibility 

effect not biased by pre-selecting time windows exhibiting maximal ERP differences.  

 

Exploratory ERP analysis 

As just described, for the analysis of post-response auditory sensory attenuation effects 

I could exploit prior knowledge about the likely spatio-temporal profile of the expected learning-

related ERP modulations. To reveal possible additional ERP modulations specific to the 

present paradigm I pursued a more exploratory analysis style not relying on prior knowledge 

about the specific spatiotemporal nature of ERP effects. To protect against false positive 

results I exploited the relatively large sample size and implemented a multi-step analysis 

procedure with a split-half replication approach at its core based on two subsamples of 14 

(Sample 1) and 15 subjects (Sample 2). Subjects were randomly assigned to either sample 1 

or sample 2. Thereby I avoided circular analysis problems that arise when using the same data 

set for selection and selective analysis, potentially yielding distorted descriptive statistics and 

invalid statistical interference (Kriegeskorte, Simmons, Bellgowan, & Baker, 2009). 

Furthermore this allowed us to test the reliability of the identified activation effects. I first used 

sample 1 to determine spatiotemporal maxima regarding the difference between SRO-rep 23 

and 78 and between SRO-rep 1 and 3, respectively. In order to reduce data complexity I 

created averaged topographical maps for a series of 48 ms time windows covering the entire 

ERP segment and identified spatiotemporal local maxima regarding the absolute value of the 

amplitude differences of interest (either SRO-rep 23-78 or SRO-rep 1-3). Note, that within a 

time window several electrodes could be identified. In order to define the time window of 

maximal amplitude differences at each of the identified electrodes more precisely, I determined 

the maximum amplitude difference within the identified 48 ms time window and defined a final 

time window of interest within a +/- 24 ms range around this peak. Note that this procedure 

could result in exactly the same time window for different electrodes (e.g., as depicted in Figure 
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4). Both stimulus-locked and response-locked ERPs were measured as the mean voltage 

amplitude within each time window and electrode, which were selected as described above.  

Following this initial step of selecting the spatiotemporal regions of interest (ROIs) 

based on sample 1 alone, I then proceeded with the statistical evaluation of these regions of 

interest. Specifically, I performed paired t-tests of amplitude differences between SRO 

repetitions separately for both sample 1 (two-tailed) and sample 2 (one-tailed). Importantly, a 

certain amplitude difference was only accepted as statistically significant if it passed 

significance tests in both sub-samples. In this case I applied simple t-tests (as opposed to 

linear mixed-effect models applied in other place in this study) as I performed only one test per 

dependent variable.  

 

In a final step I used the complete dataset to perform correlation analyses between 

amplitude differences that passed the split-half significance test and the behavioral indices of 

interest (O-R compatibility effect or error rate at SRO-rep 4). Pre-selecting spatiotemporal 

regions of interest based on amplitude differences alone would not bias correlations with 

entirely independently determined behavioral indices.  

 

Supplementary ERP control analyses 

To further exclude the possibility that ERP amplitude differences may reflect confounds 

related to the presence vs. absence of visual instruction cues rather than early vs. late learning 

processes I performed an additional control analysis where I separately assessed the abrupt 

transition from guided to unguided learning trials (SRO-rep 23 vs. SRO-rep 45) and learning 

dynamics across unguided learning trials only (SRO-rep 45 vs. SRO-rep 78). I used the exact 

same time windows and electrodes as in the main analysis which yielded significant 

correlations between the ERP difference between SRO-rep 23 vs. SRO-rep 78 and the 

behavioral marker of O-R association strength. If I could replicate overall learning effects 

(SRO-rep 23 vs. SRO-rep 78) also for unguided learning trials (SRO-rep 45 vs. SRO-rep 78) 

this would clearly rule out any possible confound introduced by contrasting guided and 

unguided learning conditions. By contrast, if the overall learning effects (SRO-rep 23 vs. SRO-

rep 78) were primarily replicated for the transition from guided to unguided trials (SRO-rep 23 

vs. SRO-rep 45) this would imply a more cautious interpretation of the original results. 

Specifically, such a pattern of results would either indicate faster R-O learning dynamics 

primarily reflected by ERP modulations between SRO-rep 23 vs. SRO-rep 45 or it might reflect 

a confound related to the transition from guided to unguided learning trials. 
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To conduct proper post-hoc tests in the context of repeated measurements, I set up a 

linear mixed-effect model using R (R Core Team, 2012) and lme4 (Bates, 2012) for mean 

electrical activity with the factor SRO repetition (SRO-reps 23, 45, 78) being fixed effect and 

the factor subject being random effect. Differences in mean ERP amplitudes were assessed 

based on this linear mixed-effect model. Additional post-hoc significance tests were realized 

and Bonferroni-corrected for multiple comparisons with the Multcomp package (Hothorn et al., 

2008). I then again correlated ERP differences with the O-R compatibility effect in a linear 

regression. Since the correlation effects were expected to be in the same direction as the 

original correlations, significance tests were one-tailed. As for the main analysis I also included 

differences in response time and accuracy as additional regressors to control for nuisance 

variance components.  

 

4.3 Results 

Behavioral results  

S-R-O learning phase 

 

Figure 5Figure 5A displays the learning curve over all SRO repetitions. On the 

descriptive level, increasing SRO repetitions were associated with a drop of response times 

(RT) paralleled by an increase in error rates. The guided learning phase was characterized by 

a rapid gain in performance speed from SRO-rep 1 to SRO-rep 3. At SRO-rep 4 RT briefly 

increased due to the transition to the unguided phase before RT continued to decrease 

gradually. Unsurprisingly, error rates were low during the guided phase, jumped up at SRO-

rep 4 (i.e. the first unguided trials) before gradually decreasing again across the unguided 

phase (see Figure 5B). The analysis resulted in highly significant effects in the factor SRO 

repetition within the saturated model compared to the null model for both error rates [F(7,196) 

= 15.35, p < .001] as well as RTs [F(7,196) = 90.94, p < .001]. The response time drop of 125 

ms within the guided implementation phase (from 759 ms in SRO-rep 1 down to 633 ms in 

SRO-rep 3) exceeded significance threshold applying post-hoc Tukey-test corrected for 

multiple comparisons [p < .001]. The RT decrease from SRO-rep 1 to SRO-rep 3 predicted 

smaller error rates in SRO-rep 4 [r(27) = -0.38, p < .04] suggesting that the RT decrease during 

the guided instruction phase is an index of S-R associations formation and usage (see Figure 

5C). In order to statistically assess RT differences on the slower timescale I collapsed SRO 

repetitions 2 and 3 (SRO-rep 23) as well as 7 and 8 (SRO-rep 78) to compute another post-
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hoc Tukey-test corrected for multiple comparisons which yielded a significant result [p < .001]. 

Regarding error rates, a post-hoc Tukey-test revealed a highly significant increase in error 

rates from 2% at SRO-rep 1 to 13% at SRO-rep 4 [p < .001, Bonferroni-corrected for multiple 

comparisons]. This indicates the transition from the guided to the unguided implementation 

phase in which responses now had to be selected according to memorized S-R associations 

from the preceding three guided trials. However, given a chance error rate level of 75%, a 

mean error rate of 13% at SRO-rep 4 suggests that the newly instructed S-R mappings were 

well memorized. Following this initial error rate increase it than decreased again down to 6% 

at SRO-rep 8 [p < .001].  

 

 

 

 

 

 

Figure 5: Behavioral data from the S-R-O acquisition phase with mean (A) response times (RT) and (B) 

mean error rates (%) throughout the course of all eight SRO repetitions. (C) Correlation between the 

difference in response times between SRO-rep 1 and SRO-rep 3 and error rates in SRO-rep 4.  

O-R test phase 

I computed two separate linear mixed-effect models for accuracy und response time 

with factors compatibility and SRO repetition as fixed effect and variance over all trials within 

each subject being random effect. The analysis resulted in highly significant O-R compatibility 

effects for both error rates [F(1,224) = 34.03, p < .001] with an average of 11% error trials in 

the compatible condition and 16% error trials in the incompatible condition as well as response 

times [F(1,224) = 18.33, p < .001] with an average of 553 ms in the compatible condition and 

574 ms in the incompatible condition. Additionally, there was a significant interaction effect 

between SRO repetition and compatibility in error rates [F(1,224) = 3.19, p = .003, see Figure 

6A]. Regarding response times no such interaction effect between these two factors was found 

[F(1,224) = .66, p = .704, see Figure 6B]. The subject-wise behavioral index of O-R encoding 

strength which was later used for correlation with ERP difference measures was defined as 

the individual O-R compatibility effect in RT, providing a more consistent measure over all SRO 

repetitions compared to the compatibility effect in error rates.  

A B C 
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Figure 6: Behavioral data from the S-R-O test phase  (A) mean response times (RT) and (B) mean error 

rates (%) throughout the course of all eight SRO repetitions. 

 

EEG results  

 
Response-locked ERPs 
 
Literature-based spatio-temporal ROIs: Learning-related amplitude modulations on the slower 

timescale  

I expected effects of sensory attenuation in a time window following the auditory N1 

peak at anterior electrodes. Typically, attenuation effects are evaluated for the electrode 

exhibiting the largest overall N1 amplitude (typically Cz or FCz). I focused on the analysis on 

FCz which exhibited the maximal overall N1 amplitude (see Figre 7 and  

Table 1). While the N1 component itself peaked at 260 ms (110 ms past onset of 

auditory outcome) the maximum amplitude difference between SRO-rep 23 and 78 was found 

at 328 ms (178 ms past onset of auditory outcome). Note that this effect was due to an 

increased learning-related negativity which suggests a dominant contribution of perceptual 

learning. However, in a slightly later, yet overlapping time window between 336 ms to 384 ms 

(186 ms to 234 ms past onset of auditory outcome) I observed a significant negative correlation 

between amplitude difference and the O-R compatibility effect (i.e., the smaller the increase in 

negativity the bigger the compatibility effect). This strongly suggests that a relative attenuation 

of the anterior negativity associated with increasing outcome integration is embedded within 

an overall mean increase in negativity associated with perceptual learning.  

A B 
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Table 1: Statistical analysis of the response-locked ERP difference SRO-rep 23-78 at electrode FCz. 

Time window 

Electrode FCz 

Paired t-test for ERP 

difference 

Correlation with O-R compatibility effect in Linear 

Regression 

Overall regression model predictor O-R compatibility 

SRO-rep 23 – 78 maximal  

(304 – 352 ms) 

t(28) = 3.38, p = .002 R2
adj. = .07, F(3, 25) = 1.73,  

p = .185, n.s. 

b = -.012, t(25) = -2.12,  

p = .044 

Correlation with O-R 

compatibility maximal  

(336 – 384 ms) 

t(28) = 2.4, p = .023 R2
adj. = .24, F(3, 25) = 3.89,  

p = .021 

b = -.016, t(25) = -3.11,  

p = .005 

 

Since at SRO-rep 23 response selection was guided by an instruction stimulus, 

whereas at SRO-rep 78 it was not, I conducted an additional control analysis which included 

collapsed unguided SRO repetitions 4 and 5 (SRO-rep 45). Thereby I could quantify the extent 

to which the original finding was due to the transition from the guided into the unguided 

implementation phase. I found a significant main effect for the factor SRO repetition including 

the three levels SRO-rep23, SRO-rep 45, and SRO-rep 78 for both time windows identified 

before at electrode FCz ([F(4,112) = 15.62, p(F) < .001] for the early time window, 

[F(4,112) = 12.3, p(F) < .001] for the later time window). Post-hoc test for the relevant ERP 

differences (SRO-rep 23 vs. SRO-rep 45 and SRO-rep 45 vs. SRO-rep 78) and the 

corresponding correlation with the O-R compatibility effect are listed in Table 2. Most 

importantly, the results of this analysis suggest that correlations with the O-R compatibility 

effect were primarily driven by the transition from SRO-rep 23 to SRO-rep 45. This indicates 

either faster R-O learning dynamics primarily reflected by ERP modulations between SRO-rep 

23 vs. SRO-rep 45. Alternatively, it might reflect possible confounds related to the transition 

from guided to unguided learning trials.  
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Table 2: Statistical analysis at electrode FCz for the response-locked ERP differences SRO-rep 23-45 

and SRO-rep 45-78. 

Electrode 

and time 

window 

SRO-rep 23 vs. SRO-rep 45 SRO-rep 45 vs. SRO-rep 78 

Post Hoc 

test for 

ERP 

difference 

Correlation with O-R compatibility 

effect in Linear Regression 

Post Hoc 

test for 

ERP 

difference 

Correlation with O-R compatibility 

effect in Linear Regression 

Overall 

regression model 

predictor O-R 

compatibility 

Overall regression 

model 

predictor O-R 

compatibility 

304 – 352 ms 

(from main 

analysis) 

z = -2.04,  

p = .075, 

R2
adj = .33,  

F(3, 25) = 5.54,  

p = .005 

b = -.014,  

t(25) = -3.17,  

p = .002 

z = -5.53, 

p < .001 

R2
adj. = .05,  

F(3, 25) = 1.54,  

p = .228, n.s. 

b = .001,  

t(25) = .15,  

p = .558, n.s. 

336 – 384 ms 

(from main 

analysis) 

z = -2.46,  

p < .027 

R2
adj

 = .32,  

F(3, 25) = 5.31,  

p = .006 

b = -.013,  

t(25) = -2.93,  

p = .004 

z = 4.96,  

p < .001 

R2
adj. = .02,  

F(3, 25) = 1.17,  

p = .34, n.s. 

b = -.002,  

t(25) = -.5,  

p = .312, n.s. 

 

 

Literature-based spatio-temporal ROIs: Learning-related amplitude modulations on the rapid 

timescale 

To assess whether sensory attenuation ERP effects would already be expressed by 

learning-related changes on the rapid timescale I compared ERPs for SRO-rep 1 and SRO-

rep 3. I identified a time window in which the difference between SRO-rep 1 and 3 was 

significant for the FCz electrode. However, this difference was not associated with a significant 

correlation with the O-R compatibility effect (see Table 3). I also failed to identify any other time 

window were the correlation effect reached significance. 

 

Table 3: Statistical analysis of the response-locked ERP difference SRO-rep 1-3 at electrode FCz.  

Time window 

Electrode FCz 

Paired  

t-test for ERP 

difference 

Correlation with O-R compatibility effect in Linear 

Regression 

Overall regression model predictor O-R compatibility 

SRO-rep 1 – 3 maximal  

(554 – 602 ms) 

t(28) = 5.99,  

p < .001 

R2
adj. =.05, F(3, 25) = .24,  

p = .745, n.s. 

b = -.011, t(25) = -.01,  

p = .945, n.s. 
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Spatio-temporal ROIs determined via exploratory split-half analysis procedure: Learning-

related amplitude modulations on the slower timescale 

Regarding amplitude modulations in response-locked potentials associated with 

learning across SRO-rep 23 and SRO-rep 78, I identified three spatiotemporal ROIs that 

survived the statistical evaluation. The complete statistical evaluation is summarized in Table 

4. Specifically, I observed an increased negativity from SRO-rep 23 to SRO-rep 78 at electrode 

F1 in a time window (192 ms – 240 ms) slightly prior to the auditory N1 peak, and another 

increased negativity at FCz in a later time window (628 ms – 676 ms). Additionally, I found a 

decreased negativity at Oz in a time window between 284 ms and 332 ms. One time window 

identified in sample 1 was omitted from further analysis since significance could not be 

replicated in sample 2. Only the early ERP amplitude difference at F1 correlated significantly 

with the O-R compatibility effect, as depicted in Figure 7. Additionally, I took the time window 

identified in the literature-based ROI analysis at electrode FCz (304 ms – 352 ms) and re-

applied it also to F1 in order to assess whether the effects observed at FCz would spread to 

the nearby F1 electrode. This resulted in both a significant effect for the amplitude difference 

between SRO-rep 23 and 78 as well as a significant correlation with the RT compatibility effect 

(but clearly weaker than the one originally found for FCz).  

 

Table 4: Statistical analysis of spatiotemporal ROIs identified for the response-locked ERP difference 

SRO-rep 23-78.  

Time window, 

electrode 

SRO-rep 23 – 78 

Sample 1 

SRO-rep 23 – 78 

Sample 2 

Prediction of amplitude difference by O-R compatibility 

effect (complete dataset) 

Overall regression model Predictor O-R compatibility 

192 – 240 ms, 

F1 

t(13) = 2.94,  

p = .014 

t(14) = 5.66,  

p < .001 

R2
adj.

 = .28, F(3, 25) = 4.69,  

p = .018 

b = -.012, t(25) = -3.24,  

p = .003 

304 – 352 ms, 

F1 

t(13) = 3.2,  

p = .007 

t(14) = 4.62,  

p < .001 

R2
adj.

 = .21, F(3, 25) = 3.54,  

p = .03 

b = -.011, t(25) = -2.37,  

p = .026 

284 – 332 ms, 

Oz 

t(13) = -2.4,  

p = .003 

t(14) = -5.81,  

p < .001 

R2
adj. = .01, F(3, 25) = 0.15, 

p = .931, n.s. 

b = .001, t(25) = 0.18,  

p = .858, n.s 

628 – 676 ms, 

FCz 

t(13) = 3.31,  

p = .006 

t(14) = 3.53,  

p = .001 

R2
adj. = .1, F(3, 25) = 0.15,  

p = .929, n.s. 

b = .002, t(25) = 0.32,  

p = .749, n.s 
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Figure 7: (A) Response-locked grand average waveforms exhibiting significant learning-related effects 

across SRO-rep 23 and SRO-rep 78. The interval highlighted in light blue represents the time interval 

which was used for statistical analysis following a split-half approach. The upper border of the plot 

displays time points at which the difference in electrical activity between SRO-rep 23 and 78 showed a 

significant correlation with the compatibility effect (gray: p <. 1, green: p < .05, red: p <.01). Time point 

zero indicates the time of responding. The onset of the auditory outcome was at 150 ms. (B) Averaged 

topographical map of the difference in electrical activity between SRO-rep 23 and 78 within the specified 

time windows. Bar graphs for average electrical activity within the extracted time window are plotted for 

all factor levels that were used in both main and control analysis with the two levels depicted in ERP 

plots highlighted in black and red. (C) Scatter plots of electrical activity difference (for the time window 

in which the ERP difference was maximal) in relation to the O-R compatibility effect. 

 

In order to test whether the findings at F1 regarding the difference between SRO-rep 

23 and SRO-rep 78 were merely due to the transition from the guided to the unguided learning 

phase I conducted a control analysis additionally considering SRO-rep 45 as an intermediate 
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level for the originally identified time window (192 – 240 ms) as well as for the time window re-

applied from the literature-based FCz analysis (304 – 352 ms). I found a significant main effect 

for the factor SRO repetition including the three levels SRO-rep 23, SRO-rep 45, and SRO-rep 

78 ([F(4,112) = 17.93, p(F) < .001] for the early time window, [F(4,112) = 17.30, p(F) < .001] 

for the latter time window). Post-hoc tests for the relevant ERP differences (SRO-rep 23 vs. 

SRO-rep 45 and SRO-rep 45 vs. SRO-rep 78) and the corresponding correlations with the O-

R compatibility effect are listed in Table 5. Most importantly, the results of this analysis suggest 

that correlations with the O-R compatibility effect were driven by different sources for the early 

vs. late time window. In the early time window the correlation was strongest for the SRO-rep 

45 vs. SRO-rep 78 comparison suggesting that the original results were not driven by possible 

confounds associated with the transition from the guided to the unguided phase (i.e., SRO-rep 

23 vs. SRO-rep 45). By contrast, in the later time window the correlation was indeed primarily 

driven by the transition from SRO-rep 23 to SRO-rep 45 confirming the FCz results in the same 

time window reported earlier in Table 2. This latter finding either indicates faster R-O learning 

dynamics reflected by ERP modulations between SRO-rep 23 vs. SRO-rep 45 or it might be 

due to possible confounds related to the transition from guided to unguided learning trials. 

 

Table 5: Statistical analysis at electrode F1 for the response-locked ERP differences SRO-rep 23-45 

and SRO-rep 45-78.  

Electrode 

and time 

window 

SRO-rep 23 vs. SRO-rep 45 SRO-rep 45 vs. SRO-rep 78 

Post Hoc 

test for 

ERP 

difference 

Correlation with compatibility effect 

in Linear Regression Post Hoc 

test for 

ERP 

difference 

Correlation with compatibility 

effect in Linear Regression 

Overall regression 

model 

predictor O-R 

compatibility 

Overall 

regression 

model 

predictor O-R 

compatibility 

F1, 192 – 240 

ms 

 

z = -1.22,  

p = .442, 

n.s. 

R2
adj. = .15,  

F(3, 25) = 2.71, 

p = .062, n.s. 

b = -.006,  

t(25) = -1.5,  

p = .072, n.s. 

z =  7.26,  

p < .001 

R2
adj. = .21,  

F(3, 25) = 3.56, 

p = .003 

b = -.007, 

t(25) = -1.9,  

p = .031 

F1, 304 – 352 

ms  

z = .98,  

p = .518, 

n.s. 

R2
adj. = .34,  

F(3, 25) = 5.84, 

p = .004 

b = -.01,  

t(25) = -2.24,  

p = .017 

z =  4.54,  

p < .001 

R2
adj. = .05,  

F(3, 25) = 1.48, 

p = .245, n.s. 

b = -.002,  

t(25) = -.4,  

p = .346 
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Spatio-temporal ROIs determined via exploratory split-half analysis procedure: Learning-

related amplitude modulations on the rapid timescale 

Concerning initial rapid learning processes occurring between SRO-rep 1 and SRO-

rep 3 I identified three spatiotemporal ROIs in the response-locked ERPs that survived the 

statistical evaluation. The complete statistical evaluation is summarized in Table 6. However, 

these amplitude modulations were neither significantly correlated with the O-R compatibility 

effect nor with error rates at SRO-rep 4.  

 

Table 6: Statistical analysis of spatiotemporal ROIs identified for the response-locked ERP difference 

SRO-rep 1-3. 

Time window, 

electrode 

SRO-rep  

1 – 3 

Sample 1 

SRO-rep  

1 – 3 

Sample 2 

Prediction of amplitude difference by [1] O-R compatibility effect 

and [2] error rates in SRO Rep-4 (complete dataset) 

Overall regression model  Specific predictors 

90 – 138 ms,  

FCz 

t(13) = -3.41, 

p < .005 

t(14) = -5.03, 

p < .001 

[1] R2
adj. = .01, F(3, 25) = .47,  

p = .706, n.s. 

[2] R2
adj. = .01, F(2, 26) = .85,  

p = .439, n.s. 

[1] b = -.006, t(25) = -0.86,  

p = .398, n.s. 

[2] b = .029, t(26) = -0.01,  

p = .993, n.s. 

482 – 530 ms, 

FCz 

t(13) = 4.84, 

p < .001 

t(14) = 3.81, 

p < .001 

[1] R2
adj. = .02, F(3, 25) = 0.825, 

 p = .493 n.s. 

[2] R2
adj. = .05, F(2, 26) = 0.38,  

p = .69, n.s. 

[1] b = -.005, t(25) = -1.3,  

p = .207, n.s. 

[2] b = 4.122, t(26) = 0.87,  

p = .393, n.s. 

482 – 530 ms,  

Oz 

t(13) = -3.16, 

p = .008 

t(14) = -3.6, 

p = .002 

[1] R2
adj. = -.07, F(3, 25) = 0.43,  

p = .734 n.s. 

[2] R2
adj. = .03, F(2, 26) = .63,  

p = .539, n.s. 

[1] b = .006, t(25) = 0.98,  

p = .335, n.s. 

[2] b = -1.61, t(26) = -0.28,  

p = .785, n.s. 

 

Stimulus-locked ERPs 

Spatio-temporal ROIs determined via exploratory split-half analysis procedure: Learning-

related amplitude modulations on the slower timescale 

I identified three spatiotemporal ROIs with significant amplitude differences between 

SRO-rep 23 and SRO-rep 78. The complete statistical evaluation is summarized in Table 7. 

Spatiotemporal ROIs which additionally showed a significant correlation with the O-R 

compatibility effect are depicted in Figure 8. Two ROIs were identified within the N1-range. I 

found an increased positivity from SRO-rep 23 to SRO-rep 78 at Fz (128 – 176 ms) which was 

paralleled by an increased negativity at Oz (128 – 176 ms). A third ROI was identified in a later 

time window (580 to 628 ms) at Oz reflecting an increased learning-related negativity. Only the 

two earlier amplitude differences were significantly associated with the O-R compatibility effect. 
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Notably, I found for both correlation effects that smaller absolute amplitude differences were 

associated with bigger O-R compatibility effects. This strongly suggests that stimulus-based 

outcome integration processes associated with the O-R compatibility effect are reflected by 

ERP amplitude modulations that are pointing in exactly the opposite direction as the mean 

amplitude difference itself. Hence, learning-related increased stimulus-based outcome 

integration is in fact reflected by a reduced positivity at frontal electrodes accompanied by a 

reduced negativity at occipital electrodes in the N1 latency range. This pattern is consistent 

with the superposition of two antagonistic ERP modulations as outlined in the Introduction. 

One (on average weaker) process is associated with stimulus-based outcome integration 

(indicated by correlations with the O-R compatibility effect) and the other (on average stronger) 

process is associated with the perceptual learning induced by the mere repetition of the visual 

stimulus itself (indicated by the overall mean amplitude difference).  

 

Table 7: Statistical analysis of spatiotemporal ROIs identified for the stimulus-locked ERP difference 

SRO-rep 23-78. 

Time window, 

electrode 

SRO-rep 23-78 

Sample 1 

SRO-rep 23-78 

Sample 2 

Prediction of amplitude difference by O-R 

compatibility effect (complete dataset) 

Overall regression 

model  

predictor O-R 

compatibility 

128 – 176 ms, FZ t(13) = -5.19, p < .001 t(14) = -5.19, p < .001 R2
adj. = .34,  

F(3, 25) = 5.85, p < .005 

b = .013, t(25) = 4.03,  

p < .001 

128 – 176 ms, Oz t(13) = 4.99, p < .001 t(14) = 4.29, p < .001 R2
adj. = .31,  

F(3, 25) = 5.15, p = .007 

b = -.016, t(25) = -3.9,  

p < .001 

580 – 628 ms, Oz t(13) = -5.65, p < .001 t(14) = 4.76, p < .001 R2
adj. = .01,  

F(3, 25) = .60, p = .662, 

n.s. 

b = .004, t(25) = 0.86,  

p = .446, n.s. 
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Figure 8: (A) Stimulus-locked grand average waveforms exhibiting significant learning-related effects 

across SRO-rep 23 and 78 at frontal electrode FZ and occipital electrode Oz. The intervals highlighted 

in light blue represent the time intervals which were used for statistical analysis following a split-half 

approach. The upper border of the plot displays time points at which the difference in electrical activity 

between SRO-rep 23 and 78 showed a significant correlation with the compatibility effect (gray: p <. 1, 

green: p < .05, red: p <.01). Time point zero indicates the time of visual stimulus onset. (B) Averaged 

topographical map of the difference in electrical activity between SRO-rep 23 and 78 within the specified 

time window (128 ms – 176 ms). Bar graphs for average electrical activity within the extracted time 

window are plotted for all factor levels that were used in both main and control analysis with the two 

levels depicted in ERP plots highlighted in black and red. (C) Scatter plots of electrical activity difference 

in relation to the O-R compatibility effect (for the time window in which the ERP difference was maximal). 

Again, as for the analysis of response-locked ERPs, I quantified the extent to which the 

original finding was due to the transition from the guided into the unguided implementation 

phase. Therefore, I conducted a control analysis additionally considering ERP activity at SRO-

rep 45. For both spatiotemporal ROIs in which amplitude modulations between SRO-rep 23 

and SRO-rep 78 were correlated with the RT compatibility effect (Fz, 128 – 176 ms; Oz, 128 

– 176 ms) there was a highly significant main effect for amplitude differences between all three 

SRO repetition levels SRO-rep 23, SRO-rep 45, and SRO-rep 78 ([F(4,112) = 10.2, 

p(F) < .0001] for FZ, [F(4,112) = 14.83, p(F) < .001] for Oz). Post-hoc tests for the relevant 

ERP differences (SRO-rep 23 vs. SRO-rep 45 and SRO-rep 45 vs. SRO-rep 78) and the 

corresponding correlation with the O-R compatibility effect are listed in Table 8. At both 

B C A 

*** 

*** Fz Fz 

Oz Oz 

O-R compatibility effect (ms) 

O-R compatibility effect (ms) 
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electrodes I found that the correlation effect was strongest for the SRO-rep 45 vs. SRO-rep 78 

comparison suggesting that the original results were not primarily driven by the transition from 

the guided to the unguided phase (i.e., SRO-rep 23 vs. SRO-rep 45).   

 

Table 8: Statistical analysis at electrode Fz and Oz for the stimulus-locked ERP difference SRO-rep 23-

45 and SRO-rep 45-78. 

Time 

window and 

electrode 

SRO-rep 23 vs. SRO-rep 45 SRO-rep 45 vs. SRO-rep 78 

Post Hoc 

test for 

ERP 

difference 

Correlation with compatibility effect 

in Linear Regression 

Post Hoc 

test for 

ERP 

difference 

Correlation with compatibility effect 

in Linear Regression 

Overall regression 

model 

predictor O-R 

compatibility 

Overall regression 

model 

predictor O-R 

compatibility 

128 – 176 

ms, Fz 

 

z = -0.88, 

p = .832, 

n.s. 

R2
adj. = .08,  

F(3, 25) = 0.3, 

 p = .821, n.s. 

b = -.003,  

t(25) = 0.57,  

p = .29, n.s. 

z = -4.62, 

p < .001 

R2
adj. = .11,  

F(3, 25) = 2.1,  

p = .134, n.s. 

b = .008,  

t(25) = 1.48,  

p = .071, n.s. 

128 – 176 

ms, Oz 

 

z = 3.8,  

p < .001 

R2
adj.

 = .05,  

F(3, 25) = 1.53,  

p < .234, n.s. 

b = -.004,  

t(25) = -0.98,  

p = .171, n.s. 

z = 3.16,  

p < .005 

R2
adj. = .23,  

F(3, 25) = 3.76,  

p = .002 

b = -.012,  

t(25) = -1.98,  

p = .023 

 

 

Spatio-temporal ROIs determined via exploratory split-half analysis procedure: Learning-

related amplitude modulations on the rapid timescale 

Concerning initial learning processes occurring between SRO-rep 1 and SRO-rep 3, I 

identified three spatiotemporal ROIs: F3 (416 to 464 ms), Oz (596 to 644 ms) and FCz (632 to 

680 ms). Table 9 summarizes the complete statistical evaluation. While there were no 

significant correlations with the O-R compatibility effect, the F3 amplitude difference was 

significantly associated with error rates at SRO-rep 4 (see Figure 9). More specifically, smaller 

absolute amplitude differences between SRO-rep 1 and 3 were associated with fewer errors 

at SRO repetition 4.  
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Table 9: Statistical analysis of spatiotemporal ROIs identified for the stimulus-locked ERP difference 

SRO-rep 1-3. 

Time window, 

electrode 

SRO-rep 1-3 

Sample 1 

SRO-rep 1-3 

Sample 2 

Prediction of amplitude difference by O-R compatibility effect [1] and 

error rates in SRO-rep 4 [2] (complete dataset) 

Overall regression model  specific predictors 

416 – 464 ms, 

F3 

t(13) = -3.82,  

p = .002 

t(14) = -3.37,  

p = .002 

[1] R2
adj. =. 21, F(3, 25) = 3.49,  

p = .03, n.s 

[2] R2
adj. = .17, F(2, 26) = 3.91,  

p < .05 

[1] b = .005, t(25) = 1.59,  

p = .125, n.s. 

[2] b = -8.084, t(26) = -2.8, 

p < .001 

596 – 644 ms, 

Oz 

t(13) = 4.99,  

p < .001 

t(14) = 4.29,  

p < .001 

[1] R2
adj. = .05, F(3, 25) = 0.59,  

p = .631, n.s 

[2] R2
adj. = .02, F(2, 26) = 1.21,  

p = .316, n.s   

[1] b = .004, t(25) = -0.51,  

p = .614, n.s. 

[2] b = 5.153, t(26) = 1.2, 

 p = .258, n.s. 

632 – 680 ms, 

FCz 

t(13) = -8.80,  

p < .001 

t(14) = 5.57,  

p < .001 

[1] R2
adj. = .04, F(3, 25) = 1.42,  

p = .261, n.s 

 [2] R2
adj. = .01, F(2, 26) = .23, 

 p = .796, n.s 

[1] b = .001, t(25) = 0.08,  

p = .941, n.s. 

[2] b = -2.338, t(26) = -0.54,  

p = .595, n.s. 

 

 

 

 

 

 

Figure 9: (A) Stimulus-locked grand average waveforms exhibiting significant learning-related effects 

across SRO-rep 1 and 3. The interval highlighted in blue represents the time interval which was used 

for statistical analysis following a split-half approach. The upper border of the plot displays time points 

at which the difference in electrical activity between SRO-rep 23 and 78 showed a significant correlation 

with the compatibility effect (gray: p <. 1, green: p < .05, red: p <.01). Time point zero indicates the time 

of visual stimulus onset. (B) Averaged topographical map of the difference in electrical activity between 

SRO-rep 1 and 3 within the specified time window (416 ms – 464 ms). Bar graphs of average electrical 

activity in all three guided SRO repetitions. (C) Scatter plots of electrical activity difference in relation to 

error rates at SRO-rep 4 (for the time window in which the ERP difference was maximal). 

  

A B C 
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4.4 Discussion 

This study was designed to investigate the rapidly evolving dynamics of instruction-

based learning of novel goal-directed actions with high temporal precision by using EEG 

recording. I primarily focused on identifying EEG correlates of both pre-response stimulus-

based outcome integration and post-response outcome integration as they unfold across 

learning. I assessed ERPs with regard to possible effects of outcome integration on a rapid 

timescale during the initial instruction phase (SRO repetition 1 to 3) as well as on a slower 

timescale across the entire learning episode (SRO repetitions 23 to 78). Learning-related 

changes in ERPs were considered to be associated with outcome integration processes if they 

exhibited a significant correlation with the behavioural O-R compatibility effect as an index of 

the acquired strength of O-R associations. Generally, I observed both pre-response as well as 

post-response ERP effects of outcome integration, but on the slower timescale only. In 

contrast, learning-related ERP changes on the rapid timescale were unrelated to outcome 

integration processes, but were instead associated with instructed S-R learning.  

Post-response outcome integration processes  

Previous EEG studies have demonstrated a post-response reduction of an anterior 

negativity within the auditory N1 range as a likely marker of action-induced sensory attenuation 

effects due to previously acquired action-outcome associations in the context of voluntarily 

chosen actions (Baess et al., 2008; Baess et al., 2009; Hughes et al., 2013a, 2013b; Hughes 

& Waszak, 2011; Lange, 2011; Martikainen et al., 2005; Sanmiguel et al., 2013; Waszak et al., 

2012). However, so far no data existed regarding the acquisition processes that enable 

outcome integration in the first place. The results suggest that previously reported effects of 

sensory attenuation can be established within very few repetitions of specific S-R-O pairings. 

Furthermore, the results highlight that such attenuation effects generalize to situations in which 

stimulus-based actions are learned rapidly by explicit instruction. Indeed, I found such a 

sensory attenuation effect at anterior electrodes with a maximum at the FCz electrode. This 

attenuation effect was revealed by correlation with the behavioral O-R compatibility effect and 

was embedded within an overall mean increase of the anterior negativity. Specifically, a 

smaller learning-related increase of the anterior negativity was associated with a larger 

compatibility effect. Hence, strong O-R integration shown in behavior was associated with a 

relative attenuation of the negative ERP amplitude across learning. The overall learning-

related increase of the anterior negativity, however, was likely due to a superimposed ERP 

modulation associated with perceptual learning based on mere repetition of auditory outcomes 

(Alain et al., 2007; Atienza et al., 2002; Mishra et al., 2015), completely unrelated to O-R 

learning.   
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Notably, the attenuation effect I observed was maximal clearly after the auditory N1 

peak. Even though a number of previous studies observed maximal effects of action-induced 

sensory attenuation after the auditory N1 peak (Baess et al., 2008; Sanmiguel et al., 2013), 

the maximum of the attenuation effect was shifted even further in this study. This is most likely 

due to the different nature of the presented auditory stimuli. Previous studies typically used 

pure sine tones with short durations (50 – 140 ms) whereas this study employed relatively 

complex natural sounds with a rather long duration of 500 ms. This might imply longer 

perceptual analysis times which might translate into rather late attenuation effects. By contrast, 

it seems rather unlikely that this temporal shift was due to the relatively long 150 ms interval 

between response execution and outcome onset as a few earlier studies suggested that the 

attenuation effect was unaffected by response-outcome delays up to 1000 ms, regardless of 

whether the onset of outcome presentation was predictable or not (Baess et al., 2008; 

Sanmiguel et al., 2013).  

I was able to rule out that the correlation effect between the post-N1 anterior negativity 

and the behavioural O-R compatibility was contaminated by learning-related changes in error 

rates and RTs as possible indicators of changing levels of response competition during the 

learning phase. However, the correlational effect was primarily driven by the transition from 

the guided instruction phase (SRO-rep 23) to the unguided implementation phase (SRO-rep 

45) as revealed by post-hoc tests separately assessing learning-related changes from SRO-

rep 23 to SRO-rep 45 and from SRO-rep 45 to SRO-rep 78. This finding indicates that the 

post-N1 attenuation reflects either fast R-O learning dynamics or alternatively it might reflect 

possible confounds related to the transition from guided to unguided learning trials.  

This latter caveat does not hold for an additional pre-N1 (but still post-response) 

attenuation effect that I observed maximally at the F1 electrode. This effect likely reflects an 

anticipatory component of the action-induced sensory attenuation effect. Different from the 

post-N1 attenuation effect at FCz, this pre-N1 effect was primarily reflected by ERP 

modulations between SRO-rep 45 vs. SRO-rep 78. Hence, I can exclude possible confounds 

related to the transition from guided to unguided learning trials and it is safe to interpret this 

effect as a relatively slowly evolving anticipatory attenuation component as R-O learning 

proceeds.   
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Pre-response stimulus-based outcome integration processes  

With respect to pre-response learning processes I found an ERP modulation within the 

N1 range in response to the antecedent stimulus which was again inversely correlated with the 

O-R compatibility effect. I found this effect at fronto-central electrode sites with a maximum at 

Fz as well as at occipital sites with a maximum at Oz. Having the exact same temporal time 

course it seems likely that those effects were generated by the same dipole, hence reflecting 

the same brain process. Analogously to the post-response effects, a relative learning-related 

attenuation of the ERP amplitude difference was associated with stronger O-R association 

strength shown in behavior. Again, this suggests that this outcome integration effect was 

superimposed onto a larger general increase of the visual N1 which is likely reflecting 

perceptual learning as a result of repeated presentation of the visual stimulus alone (Clark et 

al., 2015; Mishra et al., 2015), especially with the visual material being rather complex (Song 

et al., 2005) and non-familiar (Brem et al., 2005). Next, I am discussing possible explanations 

of this ERP marker of stimulus-based outcome integration which occurred surprisingly early 

within a trial during an early stimulus processing stage. 

Employing different modalities as imperative stimulus (visual) and outcome (auditory) 

in this study pre-response stimulus-based outcome integration processes might be revealed 

by neural markers typically associated with multi-sensory (here, visuo-auditory) integration 

processes (Murray et al., 2015). Multi-sensory integration processes, that is, interaction 

between different sensory modalities have been identified even in very early stages of stimulus 

processing (Talsma, Doty, & Woldorff, 2007). Giard and colleagues found that the processing 

of a stimulus containing redundant bimodal information (e.g. seeing and hearing a barking dog) 

is more rapid than that of either unimodal stimulus alone (Giard & Peronnet, 1999). This finding 

was complemented by EEG studies which reported modulations of the visual N1 in response 

to the bimodal stimulus in comparison to visual modality only (Fort, Delpuech, Pemier, & Giard, 

2002; Molholm, Ritter, Javitt, & Foxe, 2004). 

Importantly, in the present study the putative multi-sensory integration effect revealed 

by N1 attenuation can only be due to S-O integration, i.e. associating the visual stimulus with 

the auditory outcome. However, the N1 attenuation effect was revealed by a significant 

correlation with a behavioral marker of O-R integration processes. This suggests that S-O 

processes (measured by visual N1 attenuation) and O-R processes (measured in behavior) 

are closely related to each other at least in the present context. But how is this relationship 

mediated? My working hypothesis is that outcome anticipation triggered by visual stimulus 

onset (based on learned S-O associations) will amplify the strengthening of O-R associations 

after response execution. In other words, the earlier an outcome is anticipated (based on S-O) 
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the better it will be associated with R (leading to stronger O-R compatibility effects later on). 

This account is consistent with the general notion that more salient events (here outcomes that 

are pre-activated sooner) will be associated more easily and more rapidly (Le Pelley & 

McLaren, 2003; Mackintosh, 1975). 

Pre-response instruction-based S-R learning processes 

In addition to outcome integration processes discussed above the study also made an 

effort in characterizing potential ERP markers associated with the initial learning of instructed 

S-R associations. The analysis identified such markers by correlating ERP amplitude changes 

across the instruction phase (SRO-rep 1 to SRO-rep 3) with error rates at SRO-rep 4 (as a 

behavioral marker of S-R encoding quality during the preceding instruction phase). I found that 

an increased learning-related frontal positivity in the mid-latency range between 416 and 464 

ms post-stimulus was associated with higher error rates later on. That is, weak S-R learners 

exhibited a stronger frontal positivity increase whereas good S-R learners exhibited a weaker 

increase in frontal positivity. Assuming that better performance is due to better S-R encoding 

beforehand, this observation implies that good S-R learners engage in learning processes at 

a relatively steady level during the instruction phase. By contrast, weak learners who are 

characterized by a stronger learning-related ERP modulation are less steadily engaged in 

learning across the instruction phase. There are two possible scenarios explaining this 

relationship. According to the first scenario, weak learners start out with a strong engagement 

at SRO-rep 1 (similar to good learners) and just fail to keeping up this high level of learning 

engagement (unlike good learners). According to the alternative scenario, weak learners fail 

to properly engage in S-R learning at SRO-rep 1 (maybe because they are more strongly 

distracted by stimulus novelty) and simply do not have sufficient opportunity to compensate 

this initial failure even though they try hard in the remaining two SRO repetitions of the guided 

instruction phase. Notably, a recent study by Luque et al. (2015) also investigated ERP 

modulations related to S-R learning, yet after a period of extensive practice had been 

completed. In contrast to the results present in this study they found an ERP modulation in a 

much earlier time window suggesting, maybe not surprisingly, that S-R-related processes are 

reflected differently depending on the stage of automatization and that more automatized S-R 

translation is taking place earlier in the processing stream. 
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5 Study 2 - Within trial distinction of O-R learning-related BOLD 

activity with the means of co-registered EEG information 

5.1 Introduction 

This study built up on the results produced in study 1 (see chapter 4.3). It utilized the 

exact same paradigm except for the fact that it was set up as a simultaneous EEG-fMRI 

experiment this time. Again participants had to learn novel 4:4:4 stimulus-response-outcome 

(SRO) mappings by instruction in 10 different learning blocks. These SRO repetitions were 

unique for each block and were each repeated eight times (8 SRO repetitions). Acquired O-R 

association strength was probed in a test phase following each learning block. Subjects had 

to respond to the previous outcomes with the same set of 4 responses used during the 

acquisition phase, which could either be compatible or incompatible to the response that 

produced that outcome during acquisition (O-R compatibility). 

Using the same paradigm in this study gave us the advantage of having strong 

hypotheses on the expected EEG activation patterns. Study 1 identified two main findings of 

EEG modulations which can be summarized as follows: 

1. A post-response reduction of fronto-central response-locked ERP amplitudes in the 

auditory N1 range following the onset of the outcome which was significantly 

associated with stronger O-R compatibility effects. 

2.  A reduced stimulus-locked negativity within the visual N1 range in response to the 

visual antecedent stimulus across learning which also was positively correlated with O-

R compatibility effect strength. 

If reproduced, those parameters were to be utilized in the latter joint EEG-fMRI analysis. 

Following the ‘EEG-informed fMRI analysis’ approach (Debener, Ullsperger, Fiehler, von 

Cramon, & Engel, 2005; Debener, Ullsperger, Siegel, & Engel, 2006) the temporally highly 

resolved ERP activation maps are taken and utilized as an additional parameter in the analysis 

of simultaneously recorded fMRI data. By doing so, it technically enables an analysis approach 

in which it is possible to disentangle distinct sub processes within the fMRI signal. Due to the 

sluggish nature of the BOLD response this was rather difficult to assess in fMRI only studies 

dealing with the evolution of R-O integration processes across learning trials on multiple time 

scales of learning that have been conducted so far (Melcher et al., 2013; Mohr, Wolfensteller, 

Frimmel, & Ruge, 2015; Ruge & Wolfensteller, 2013, 2015). 

By entering the response-locked post-response N1 modulation as an additional 

regressor into the fMRI brain regions that are especially associated with post-response O-R 
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outcome integration can be identified. Several brain regions have been associated with 

outcome integration processes in both instrumental learning and ideomotor contexts. A 

number of studies have reported relevant SMA activation when perceiving outcome stimuli 

following extensive phases of R-O learning (Bonini et al., 2014; Elsner et al., 2002; Melcher et 

al., 2008; Melcher et al., 2013). Frimmel et al. (2016) were able to demonstrate that these 

findings could be replicated in the context of only few presentations of S-R-O mappings 

(likewise to this study). In this study the SMA was specifically associated with the acquisition 

of contingencies regarding the entire association chain. It is reasonable to expect activation in 

this region in this study as well. Even more, SMA activation should be predicted by a potential 

EEG marker of O-R outcome integration. In contrary to the experimental design of Frimmel 

and colleagues, this setup includes an O-R test phase which makes it possible to even relate 

potential functional brain activation directly to O-R encoding processes.  

Correspondingly, by using the stimulus-locked pre-response visual N1 ERP 

modulations in the EEG-informed analysis brain regions related to the multi-sensory integration 

processes already discussed in section 4.4 could be revealed. Numerous neuro-imaging 

studies have documented auditory-visual convergence within primary sensory cortices (Haxby 

et al., 1994; Kawashima, O'Sullivan, & Roland, 1995; Laurienti et al., 2002; Mozolic, 

Hugenschmidt, Peiffer, & Laurienti, 2008), even in the absence of external stimuli or tasks 

(Eckert et al., 2008). It has also been shown repeatedly that sounds are able to activate visual 

cortices as a function of prior multisensory experiences (Matusz et al., 2015; Meylan & Murray, 

2007; Murray, Foxe, & Wylie, 2005; Murray et al., 2004; Thelen, Cappe, & Murray, 2012; 

Thelen, Matusz, & Murray, 2014; Zangenehpour & Zatorre, 2010). However, there is still an 

ongoing debate if early multisensory audio-visual effects emanate from nominally visual (Fort, 

Delpuech, Pemier, et al., 2002; Molholm et al., 2002) or nominally auditory cortices (Vidal, 

Giard, Roux, Barthelemy, & Bruneau, 2008) or both (Raij et al., 2010; Senkowski, Saint-Amour, 

Hofle, & Foxe, 2011; Teder-Salejarvi, McDonald, Di Russo, & Hillyard, 2002). Hence, if early 

N1 multisensory attenuation effects are replicated in this study, one might expect to see a 

coupling with increased activation in either the primary auditory or visual cortex, or both. To 

summarize, the great advantage of this study lies in its ability to temporarily discriminate brain 

responses within a trial, i.e. to assign functional activation in specific brain regions to events 

prior or subsequent to the response. This would have not been possible in isolated EEG or 

fMRI setups alone. 

Study 1 analyses primarily paid attention to EEG correlates associated with the 

behavioral marker of O-R encoding strength, namely the O-R compatibility effect. In this study, 

potential coupling effects between ERP parameters and fMRI BOLD activation will additionally 

focus on its correlation with response time differences between late and early learning stages. 
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I am assuming that these markers, possibly denoting a putative marker of O-R usage, could 

predict activity in brain regions that are involved into monitoring processes in goal-directed 

action. For example, Ruge and Wolfensteller (2015) found that the active usage of O-R 

associations correlated with LPFC-caudate coupling. They concluded that the caudate 

therefore seemed to act as a control instance for goal-directed actions, especially in an 

instruction-based learning environment.  

On a more minor note this study would also serve as a duplicate of the study mentioned 

above (Ruge & Wolfensteller, 2015) to answer the question if the prior findings regarding 

response-outcome relations could be replicated. Additionally to the identified LPFC-caudate 

couplings the study revealed that O-R encoding strength is associated with LPFC-putamen 

coupling prompting that this particular brain region is involved into the formation O-R 

associations.  

 

5.2 Methods 

Experimental procedure 

This study utilized the exact same experimental paradigm as study 1 (see chapter 

4.2). 

 

Subjects 

This study comprised 30 subjects. I excluded four subjects due to error rates greater 

than 25% in the first unguided implementation trial (SRO Repetition level 4). Again, this was 

done because high error rates in this particular trial suggest that those subjects proceeded not 

according to instructions resulting in an undesired trial-and-error effect. Three subjects with 

insufficient EEG had to be excluded in EEG-informed fMRI analyses involving response-locked 

ERPs (resulting in a total of 23 subjects). Only two subjects had to be excluded for this reason 

in the stimulus-locked EEG-informed fMRI analyses (resulting in a total of 25 subjects for these 

analyses).  The mean age of the resulting subjects was 27.9 years, ranging from 21 to 36 

years. All subjects were treated in accordance with the Declaration of Helsinki and gave written 

informed consent in advance of taking part in the experiment and were paid €8 per hour or 

received course credit.  
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EEG-fMRI Recording 

Whole-brain images were acquired on a Siemens 3-T whole-body Trio System 

(Erlangen, Germany) with a 16-channel circularly polarized head coil. MR-Confon headphones 

were used for sound presentation and additionally reduced scanner noise. For each subject 

structural and functional images were acquired. High-resolution structural images (1.0 x 1.0 x 

1.0 mm) were acquired using a MP-RAGE T1-weighted imaging sequence (TR = 1900 ms, 

TE = 2.26 ms, TI = 900 ms, flip = 9◦). Functional images were acquired utilizing a gradient echo 

planar imaging sequence (EPI, TR = 2000 ms, TE = 30 ms, flip = 80◦). Each volume contained 

32 4.0 mm-thick slices (in-plane resolution 4.0 x 4.0 mm) plus 0.8 mm gap which were oriented 

parallel to the AC-PC plane. The paradigm itself was programmed in E-Prime 2.0 software 

running on a Windows XP computer. Visual stimuli were displayed by an LCD projector on a 

back-projection screen mounted behind the magnet, which was viewed at by subjects through 

mirror glasses. Behavioral responses were locked via a fiber-optic, light-sensitive keypress 

device. Continuous EEG data were collected from 64 standard scalp sites using the 64Ch 

BrainAmp MR+ system, a high-input impedance amplifier specifically designed for recordings 

in high magnetic fields (Brain Products, Munich, Germany, www.brainproducts.com). The 

system used sintered AG/AgCl ring electrodes with built-in 5 kΩ resistors. The electrodes were 

mounted into an electrode cap according to the 10-20 system (Klem et al., 1999) with electrode 

Cz used as reference. Additional two electrodes were used to identify eye blinks and to record 

electrocardiographic activity. The ocular electrode was placed under the lower eye lid. The 

ECG electrode was attached medially on the back of the subject along the paravertebral line. 

Electrode impedances were kept below 10 kΩ before recordings. The nonmagnetic EEG 

amplifier was fixed just behind the scanner bore and powered by a rechargeable power pack. 

The subject´s head was fixed using vacuum cushions and sponge pads. The amplified EEG 

signal was transmitted to a recording computer outside the scanner room via fiber optic cable. 

A SyncBox (Brain Products, Munich, Germany) was used in order to synchronize the sampling 

rate of the amplifier with the internal scanner clock system. The aim was to achieve phase 

synchronicity between the two clock systems, subsequently ensuring optimum correction of 

scanner-induced EEG artifacts. EEG data was recorded with a passband filter of 0.01 – 250 Hz 

and digitized with 5000 samples per second at 16 bit with 0.5 µV resolution. 

 

FMRI Preprocessing 

The fMRI data was analyzed with SPM8 running under MATLAB 8.1.0.604. 

Preprocessing steps included slice-time correction, rigid body movement correction (three 
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translation, three rotation parameters), and normalization of the functional images by directly 

registering the mean functional image to the standard Montreal Neurological Institute (MNI) 

echo-planar-imaging template image provided by SPM8, with a resulting interpolated spatial 

resolution of 3 x 3 x 3 mm. in a final step, images were spatially smoothed (Gaussian kernel, 

full width at half maximum = 8 mm). A temporal high-pass filter with a cutoff of 1/256 Hz was 

applied during model estimation. 

 

Analysis of behavioral data 

Likewise to study 1 the behavioral performance data were analyzed using R (R Core 

Team, 2012) and lme4 (Bates, 2012) to compute two separate linear mixed-effect models for 

mean response times (RTs) as well as mean error rates with the factor SRO repetition (SRO-

rep 1 to SRO-rep 8) being fixed effect and the factor subject being random effect. Omnibus 

tests of significance for main effects again were calculated by comparing the deviance of the 

tested model to the deviance of the null model. Post-hoc significance tests were employed and 

Bonferroni-corrected for multiple comparisons using the Multcomp package (Hothorn et al., 

2008).  

 

FMRI only replication analysis 

The sole purpose of analyzing the fMRI only data was to replicate fMRI findings by 

Ruge and Wolfensteller (2015) using the same paradigm as implemented in this study. To this 

end, the analysis approach presented there will be completely followed here. 

 

First level analysis  

The psychophysiological interaction (PPI) framework implemented in SPM8 (Friston et 

al., 1997; Gitelman, Penny, Ashburner, & Friston, 2003) was used in its generalized form 

proposed by McLaren et al. (McLaren, Ries, Xu, & Johnson, 2012) in order to analyze 

functional coupling between LPFC and any other voxel in the brain. PPI is a method of 

assessing functional neuro-connectivity by predicting the blood-oxygenation-level-dependent 

(BOLD) signal time course in target voxels anywhere in the brain, on the basis of the BOLD 

signal time course in a predefined seed voxel. Mathematically this is not simply done by 

correlating these two signal time courses, but instead it is implemented as the difference in the 

slopes of the regression function of varying paradigm-specific psychophysiological states 
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associated with two different experimental conditions. The generalized form of the PPI used in 

this study accommodates situations in which the two contrasted conditions are occurring in the 

context of additional experimental conditions intermixed with the conditions of interest. For 

each experimental condition two regressors were defined for the generalized linear model 

(GLM), first regressor being a standard event-related regressor obtained by convolving a 

canonical BOLD response model with a stick function representing repeated occurrences of 

that condition. This so called task regressor picks up average event-related BOLD action 

associated with that condition. The second regressor is built by multiplying the task regressor 

with the seed voxel activation time course in a threefold process. First, the seed voxel 

activation time course is de-convolved, then multiplied with the task-related stick function, and 

then re-convolved with the canonical BOLD response (Gitelman et al., 2003). Being combined 

with the task regressor in a linear fashion, this PPI regressor accumulates any inter-trial 

deviation from the mean task-related activation that is common between seed voxel and target 

voxel. Thus, the PPI regressor measures task-related synchrony between the seed-voxel and 

target-voxel activation time courses. This process defines the term “functional coupling” as it 

will be used in this study, following the nomenclature of Ruge and Wolfensteller (Ruge & 

Wolfensteller, 2015). The GLM comprises the seed voxel time course as an additional predictor 

to catch up unspecific sources of covariance between seed voxel and target voxel. PPI 

repressor estimates are assessed for early learning trials (SRO-rep 2 and 3) as well as late 

learning trials (SRO-rep 7 and 8). Again, as in study 1 as well as also done in the previous 

fMRI study (Ruge & Wolfensteller, 2015), SRO-rep 1 was not included as a potential instance 

of early learning as it was considered a special condition comprising strong perceptual novelty 

components as visual stimuli and sounds were perceived for the very first time. Thus, SRO-

rep 2 and 3 were considered to be more neutral instances of early learning. 

 

Second level analysis 

In a first step, general couplings between the LPFC seed to other brain regions were 

assessed from early (SRO-rep 23) to late learning stages (SRO-rep 78). Furthermore, this 

analysis intended to replicate correlations between predefined behavioral covariates and the 

functional coupling between lateral PFC as well as other brain regions as first reported by Ruge 

and Wolfensteller (2015). The behavioral markers used were namely the response time O-R 

compatibility effect (named “O-R encoding strength” in the original paper) and the difference 

in response time between SRO-rep 23 and SRO-rep 78 (“O-R usage”). Both behavioral 

markers were therefore included as covariates in the second level analysis of PPI effects. They 

were included simultaneously in order to ensure that a possible correlation between PPI effect 
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and a covariate was exclusively driven by a covariance component that was orthogonal to the 

other covariate. By doing so, the potential influence of the other covariate was being regressed 

out. Additionally, group-level analysis were also performed only comprising one of the two 

covariates in order to not miss any significant correlation which might be due to covariance 

components shared by both covariates. When only including one of the two markers into the 

model differences in error rates between SRO-rep 23 and SRO-rep 78 were also added as 

covariate to control for potential confounds between the two behavioral markers of interest (O-

R compatibility and RT difference) and error rate differences across the S-R-O learning period. 

According to the first step (where no behavioral covariates were added) this time the intention 

was to identify significant correlations between each of the covariates with the PPI effect 

defined by the difference in functional couplings in late learning relative to early learning. 

Significant correlations were only taken into account if they exceeded a family-wise-error 

(FWE) threshold of p < .05, adjusted for the volume of each selected region of interest (ROI) 

either on the voxel level or on the cluster level at a cluster-forming threshold of p < .001. Finally, 

the PPI was additionally computed FWE-corrected on the whole-brain level to search for global 

effects outside of the predefined ROIs. 

 

Seed region and regions of interest 

Analogously to prior studies of Ruge and Wolfensteller (2013, 2015) as well as other 

studies on instruction-based learning (Dumontheil, Thompson, & Duncan, 2011; Hartstra, 

Kuhn, Verguts, & Brass, 2011), the left posterior LPFC was selected as a seed region. Being 

a literal replication with regard to the paradigm and methodology this study utilized the same 

seed voxel as Ruge and Wolfensteller (2015, MNI coordinates: - 42 8 32). Likewise, this study 

utilized the same three ROIs that were used previously to look for significant PPI effects. The 

left and right basal ganglia were chosen to be of primary theoretical interest. Ruge and 

Wolfensteller additionally included the left and right hippocampus as it has been reported in 

previous studies on instruction-based control (Li, Delgado, & Phelps, 2011; Ruge & 

Wolfensteller, 2013) and suggested to play a crucial role regarding these processes in a formal 

neurocomputational model (Huang, Hazy, Herd, & O'Reilly, 2013). Finally, the orbitofrontal 

cortex (OFC), more precisely Brodmann areas BA 11 and BA 47, was chosen as a third ROI 

since its importance in goal-directed action had been stressed by a number of studies (Noonan 

et al., 2012; Ruge & Wolfensteller, 2013; Valentin et al., 2007). Anatomical information was 

taken from the automatic anatomic labeling atlas (AAL) for the basal ganglia as well as the 

hippocampus (Tzourio-Mazoyer et al., 2002). The OFC ROI was defined using the Brodmann 

parcellation as implemented in the MRICRON software (Rorden, Karnath, & Bonilha, 2007). 
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FMRI induced EEG artifacts and EEG preprocessing 

EEG data derived from combined EEG-fMRI acquisition sessions are contaminated by 

additional artifacts of various sources, adding a huge amount of noise to the recorded data. 

This makes additional preprocessing steps necessary dealing with these kinds of disturbances. 

These artifacts can be categorized as motion-related, MR imaging-related (Allen et al., 2000; 

Felblinger, Slotboom, Kreis, Jung, & Boesch, 1999) and cardiac related (Allen, Polizzi, Krakow, 

Fish, & Lemieux, 1998; Bonmassar et al., 2002). From these three categories, the following 

three artifacts are the most severe and must be removed or ruled out from recordings before 

further analysis: the gradient artifact, the cardioballistic artifact as well as the Helium pump 

artifact. In the following I will explain the source and the nature of each of these artifacts and 

additionally describe various ways how to deal with them and how they were dealt with in this 

study. 

Gradient artifact 

The Gradient artifact (GA) is an exogenous technical artifact reflecting the imaging slice 

acquisition (see Figure 10). It is produced by the switching of magnetic gradients which are 

necessary for MRI image acquisition. Hence, the subsequent distortions in the EEG signal 

cannot be avoided. In an echo planar imaging sequence (EPI) which was used in this study, 

gradient switching is resumed every time a new slice is acquired, leading to artifacts that 

repeatedly occur with the collection of each new fMRI slice. Its intensity can be 10 to 100 times 

larger than the actual EEG signal with very steep peaks in the order of millivolts per millisecond 

(Allen et al., 2000; Felblinger et al., 1999). Artifact strength can vary from one EEG channel to 

another depending on the location of the electrode and wire connections (Anami et al., 2003; 

Garreffa et al., 2003; A. Hoffmann et al., 2000). Additionally, its frequency range is most likely 

to overlap that of the EEG, thus it cannot simply be filtered out. Although having extremely 

large amplitudes of up to more than 25000 µV/s with low pass filters preventing the signal from 

drifting into saturation, the recorded distorted EEG signal will contain the normal EEG signal 

lying on top of the GA making statistical removal of the GA possible. 
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Figure 10: (Left) Raw EEG data recorded inside an MR scanner containing MR induced EEG artifacts. 

(Right) Characteristic shape of the MR induced gradient artifact with peaks of 2000 µV amplitude. 

 

There are various methods of separating the gradient artifact from signals produced by 

the subject inside the scanner during an fMRI session including procedures like adaptive 

filtering (Sijbers et al., 1999) or frequency domain techniques (A. Hoffmann et al., 2000). The 

most prominent one is the method of average artifact subtraction (AAS, Allen et al., 2000; C. 

Benar et al., 2003) which takes advantage of the assumption that the artifact is invariant over 

all slices, given the circumstance that gradient fields and radio frequency (RF) pulses are put 

out with extreme temporal accuracy regarding magnitude. Thus, it can be expected that the 

GA will lead to similar distortions in the EEG signal every time it occurs. This invariability is 

used to form a template of the average gradient artifact which is then subtracted from the EEG 

data. Doing so requires that the consecutive onsets of RF pulses are recorded with the same 

precision and temporal invariance by the EEG amplifier with which they are delivered with. The 

artifact template will differ systematically for each channel due to different positions and 

orientations of the EEG electrodes with respect to the gradient. For this to happen in the first 

place requires a signal sent by the MR scanner whenever changes in the gradient f ield occur. 

This is done via output of a Transistor-transistor logic (TTL) signal at the exact onset time of a 

new slice or volume acquisition. I will call this signal the volume trigger from now on. This 

volume trigger is then sent to the EEG recording device and will appear together with the 

recorded EEG data in the recording software. Together with the pre-set MR sampling rate (TR) 

of 2000 ms technically all information necessary to model and eventually withdraw the GA are 

provided. 
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However, there are two major challenges which have to be met concerning removal of 

the GA artifact. First, it is possible and quite common and actually also occurred in this EEG-

fMRI setup that the volume trigger is actually not set correctly at the very same time point 

across the entire time course of the volume. Even more, the trigger signal was not only delayed 

in relation to the actual onset but the delay itself was jittered in the range of ms over all volume 

onsets. Hence, the volume trigger was not a valid indicator regarding the onset of the GA and 

was not further used for artifact correction. Instead, the gradient onset and frequency were 

estimated using a solution implemented in Brain Vision Analyzer. Secondly, the GA is not 

exactly invariant over the entire course of the session. Instead, it fluctuates over time which is 

mostly due to head movement of the subject changing the position and orientation of the 

electrodes on the electrode cap. There can be two types of head movements: slow, involuntary 

movement happening over a longer course of time or fast, voluntary and temporally restricted 

movement. To compensate for the former Allen et al. (2000) proposed to only use events which 

are correlated with an initial GA template with over r = 0.975, effectively rejecting outliers. 

Additionally, the GA template will be calculated based on a moving average of adjacent 

volumes. Doing so accounts for involuntary head movements over time. However, this 

procedure will not work for abrupt head movements, dramatically altering the geometry of 

electrodes and cables in the magnetic field and consequently the induced GA properties. In 

this case, having only one GA mean template may not be sufficient. This problem can be 

solved by not defining only one but several GA templates over time. One template is then used 

only for the consecutive GA events until a severe head movement occurs, while those events 

followed by the head movement will be cleansed by a new defined GA template based on the 

new parameters of the gradient field. In the present study one fMRI session comprised three 

separate runs. Thus, three different templates had to be computed per subject and session. 

More recent approaches take the head movement parameters from the fMRI preprocessing 

into account to estimate improved artifact templates (Moosmann et al., 2009; Sun & Hinrichs, 

2009). 

The GA artifact in this study was removed using the implemented AAS algorithm in 

Brain Vision Analyzer (Brain Products, Munich, Germany, www.brainproducts.com). Instead 

of using the volume trigger it utilized an implemented function which estimated the gradient 

threshold and frequency. Figure 11 shows a snippet of continuous EEG data cleansed of the 

GA artifact. As clearly visible, the EEG data now looks more like the typical data (acquired 

outside the MR scanner). It is now possible to identify some other characteristic patterns which 

are part of another motion-related MR artifact: the cardiobalistic artifact. 
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Figure 11: Gradient artifact-free EEG data. 

 

Cardiobalistic artifact 

Other than the GA, which occurs only in and as a result of slice and volume acquisition 

periods, the cardiobalistic artifact (BCG, see Figure 12) is always present in the magnetic field 

of the scanner, contributing substantially to the lower frequency spectrum smaller than 15 Hz 

(Srivastava, Crottaz-Herbette, Lau, Glover, & Menon, 2005). Although its exact origin still 

remains unclear, there are several possible explanations. Some of them include EEG 

electrodes or cables over, or adjacent to, pulsatile blood vessels which are in constant motion, 

or the acceleration of the electrically conductive blood to be the source of current induction 

that is registered in the EEG. But most likely above all is that the pulsatile flow of blood 

associated with the cardiac cycle induces a head motion which than itself is picked up by the 

electrodes, thus constituting the BCG artifact (Anami, Saitoh, & Yamoto, 2002). It can be called 

a mesogenous artifact (Eichele, Moosmann, Wu, Gutberlet, & Debener, 2010) comprising 

contributions from the subject´s cardiovascular system (endogenous component) which 

interacts with the scanner´s b0 field (exogenous component). This has to be kept in mind as 

potential variability within the BCG may have its source in the MRI environment (e.g. variability 

in scanner field strength) or in cardiovascular parameters, such as heart rate variability. As 

with the GA, the BCG also is present in all EEG channels with the degree of artifact varying 

between the channels. Generally spoken, the sereneness of the BCG artifact is reduced with 

increasing distance of the EEG channel from the EEG reference electrode. Additionally, a high 

field MRI scanner causes larger BCG amplitudes than a lower field scanner (Debener, 
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Mullinger, Mazy, & Bowtell, 2008) with the BCG amplitude being proportional to the scanners 

b0 field (Tenforde, Gaffey, Moyer, & Budinger, 1983). The timeline of the artifact itself is coupled 

to the cardiac cycle of the subject with a delay of approximately 200 ms between the ECG R 

peak and the corresponding BCG artifact peak in the EEG channels (Allen et al., 1998). This 

strong relationship to the cardiac cycle makes correcting the artifact quite challenging as 

fluctuations in the subject´s heart rate or any other cardiovascular parameter are directly 

reflected in the BCG and, in case of a higher heart rate, having the possibility of two cardiac 

adjacent cardiac cycles overlapping to some extent (Vincent, Larson-Prior, Zempel, & Snyder, 

2007). As discussed above, the BCG represents a rather complex and dynamic contribution 

to the EEG and needs to be addressed (Nakamura et al., 2006).   

 

 

 

Figure 12: (Left) Characteristic shape of the pure MR induced cardiobalistic artifact recorded in the ECG 

channel. (Right) Sample of an EEG time series cleansed from the cardiobalistic artifact. 

 

Again there is a variety of different correction methods with the AAS (Allen et al., 1998) 

being the most frequently used and influential. Similar as in the AAS approach with the GA, 

the basic principle is that a template of a prototypical BCG artifact is computed and then 

withdrawn from the recorded EEG signal leaving only true EEG contributions. Due to the 

temporal as well as topographical variability of the artifact, some additional parameters need 

to be taken into account in order to properly construct a template. First, estimates of the onset 

of each cardiac-cycle from the concurrently recorded ECG are required. The artifact template 



Study 2 - Within trial distinction of O-R learning-related BOLD activity with the means 
of co-registered EEG information 

 

77 
 

itself is then calculated based on a moving average for each EEG channel separately through 

averaging the EEG time-locked to each cardiac cycle onset and then withdrawn from each 

EEG epoch. The AAS method has been found to generally deliver satisfying results (Hamandi 

et al., 2008; Sammer et al., 2005). However, two major pitfalls have to be kept in mind when 

dealing with the AAS method. First of all, the ECG channel itself also contains the GA and 

BCG artifact and therefore detecting the R peak might not always be so easy using 

automatized algorithms. This can lead to inaccurate positioning of R peak event markers, 

eventually resulting in a bad BCG template (Debener et al., 2008). This problem is already 

addressed in some software solutions such as the Brain Vision Analyzer where jitter 

information are already taken into account in a way that markers are aligned statistically such 

that the overall jitter is minimalized before the AAS algorithm is applied. The second major 

issue is the problematic assumption of similarity between adjacent BCG occurrences. In the 

chosen moving average window approach, it is assumed that the BCG artifact contribution to 

each EEG channel is very similar between adjacent cardiac cycles with changes occurring only 

slowly over time. This assumption may not always be met. Although there are some solutions 

with alternative template constructions based on weighted averages (Goldman, Stern, Engel, 

& Cohen, 2000) or median values (Sijbers, Van Audekerke, Verhoye, Van der Linden, & Van 

Dyck, 2000), they still rely on the problematic assumption of local BCG similarity and assume 

that the template is fully sufficient for each BCG epoch. A different approach that takes these 

latter problems into account comes from Niazy and colleagues (Niazy, Beckmann, Iannetti, 

Brady, & Smith, 2005), as well as by Negishi et al. (Negishi, Abildgaard, Nixon, & Constable, 

2004). These two groups suggested constructing the BCG artifact template based on a 

channel-wise temporal principal component analysis (PCA), thereby avoiding the assumption 

of any local BCG similarity. Niazy named his method the optimal basis set (OBS) method, 

referring to the view that the first few principal components represent several distinct BCG 

templates and explain most of the BCG variance in any EEG channel. These templates are in 

the following jointly regressed out of the polluted EEG data, leaving only the true EEG signal. 

This procedure has received wide acclaim in the EEG-fMRI community since it does not 

assume that adjacent BCGs are more similar to each other than distant ones. Further, it 

additionally accounts for the possibility of different artifact shapes. Apart from template-based 

correction methods there are also spatial pattern removal approaches in which the BCG is 

characterized by a number of prototypical topographies. Among these, principal components 

(PCA) or independent component (ICA) algorithms are the most common (C. Benar et al., 

2003). For these methods exact knowledge about the onset of each cardiac cycle is not 

necessarily required, which is a major advantage over template based approaches. However, 

current evidence shows that spatial filtering is not as efficient as template methods, especially 

in scanners with higher field strength (Debener et al., 2007). The optimal strategy possibly lies 
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in the combination of ICA or PCA based algorithms with a template-based method such as 

AAS or OBS, combining the best of two worlds and even yielding good results even at higher 

field strengths (Debener et al., 2006). 

 

Helium pump artifact 

As the name already suggests the Helium pump (He) artifact results from kinetic activity 

of the scanner Helium pump. The pump causes vibrations that are transmitted from the 

compressor unit of the pump to the scanner bore. These vibrations generate large artifacts on 

the EEG signal, which can occur almost in the entire frequency range varying across different 

scanner types (Nierhaus et al., 2013). Specifically for the scanner used in this study (Siemens 

Trio) the He-pump induces additional broadband frequency power starting at 20 Hz (see Figure 

13). This type of artifact was completely avoided in the study by switching the Helium pump off 

during scanning sessions.  

 

 

Figure 13: Impact of the Helium pump artifact to the EEG spectrum during co-registered EEG-fMRI in a 

SIEMENS Trio scanner in comparison to EEG data in which the artifact is avoided by switching off the 

Helium pump. Taken from: Nierhaus, T., Gundlach, C., Goltz, D., Thiel, S.D., Pleger, B., Villringer, Arno, 2013. Internal 

ventilation system of MR scanners induces specific EEG artifact during simultaneous EEG–fMRI. NeuroImage 74, 70–76. 
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Further EEG preprocessing 

The session-wise segmented EEG data were down-sampled to 250 Hz and band pass 

filtered from 0.2 – 30 Hz. All EEG channels except the EOG and the ECG channel contributed 

to an average-based new reference. Ocular correction was performed using the regression-

based implementation by Gratton and Coles (Gratton, Coles, & Donchin, 1983). Electrode-

specific artifact rejection sorted out segments exhibiting a gradient in electrical activity greater 

than 50 µV/ms as well as segments exhibiting absolute differences of more than 200 µV within 

a 200 ms interval. EEG data were segmented time-locked to both the response and the 

stimulus, respectively. Response-locked epochs contained the manual response ranging from 

750 ms pre-response to 700 ms post-response. Stimulus-locked epochs contained the 

stimulus S ranging from 250 ms pre-stimulus to 1500 ms post-stimulus. I did not apply a 

baseline-correction for the segmented EEG data.  

In the following, response-locked and stimulus-locked epochs of EEG activity were 

averaged for each SRO repetition containing 40 correct trials per SRO repetition excluding 

trials rejected by artifact rejection. Likewise to study 1, for this latter analysis SRO-rep 1 was 

excluded to avoid a dominant contribution of initial instruction encoding. The segmented 

condition-wise (SRO-rep 1 to 8) single trial EEG data were then exported to Matlab for further 

statistical analysis. 

 

Derivation of EEG parameters  

Since study 1 already provided information about potential EEG correlates on both the 

rapid as well as the slower timescale with respect to S-R learning and O-R outcome related 

processes there was no need to rely on a purely exploratory analysis approach in this study. 

Instead, I assessed if the spatiotemporal ROIs identified in study 1 could be replicated on the 

EEG level. In case of a successful replication those ROIs were then used later as potential 

regressor in the EEG-informed analysis. 

I specifically tried to replicate the three main findings of study 1. On the slower timescale 

(SRO-rep 23 – SRO-rep 78) these included the modulation of the post-response anterior 

negativity within the visual N1 latency range. Response locked effects were found prior to the 

any across the slower time scale as well as an ERP marker of stimulus-triggered pre-response 

outcome integration negativity maximizing at F1 (192 – 240 ms) and after the anterior negativity 

maximizing at FCz (304 – 352 ms). Modulations of the visual N1 were observed in both frontal 

sites maximizing at Fz as well as posterior sites with a maximum at Oz in a time range of 
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128 – 176 ms. On the rapid timescale (SRO-rep 1 – SRO-rep 3) I found an ERP marker 

associated with the initial encoding of newly instructed S-R associations at electrode F3 (416 

– 464 ms) in study 1, which I also now looked for in study 2. To this end I again compared 

ERPs between SRO-rep 1 and SRO-rep 3. For the analysis of slower learning dynamics 

associated with more gradual changes in association strength I compared ERPs between early 

SRO repetitions (collapsed across SRO-rep 2 and 3, further called SRO-rep 23) and late SRO 

repetitions (collapsed across SRO-rep 7 and 8, further called SRO-rep 78). Likewise to the 

analysis procedure implemented in the pilot study, statistical significance was determined via 

paired t-tests for the averaged signal within a +/- 24 ms time window around the time point in 

which the learning-related modulation of electrical activity was maximized. Further, correlation 

analyses between amplitude differences confirmed in the replication statistics and the 

behavioral indices of interest (O-R compatibility, RT difference between SRO-rep 23 and 78, 

or error rates at SRO-rep 4) were performed.  

Additionally to these predefined EEG markers I also did an explorative analysis with 

different EEG regressors varying in terms of combining electrodes to clusters or using a 

different time window. When varying time windows I only used other local maxima that were 

already present in study 1 regarding the difference in EEG activation between the two SRO-

rep conditions of interest.  

When replicating the previously found effects I was faced with two major issues, one 

regarding temporal and one regarding spatial concerns. For one, I experienced a time delay 

of about 40 ms when comparing the averaged ERP data of study 1 with the data of study 2, 

regardless of the fact that in both cases exactly the same design (including the exact same 

presentation durations and interval) was used (see example Figure 14). This temporal delay 

occurred in both, stimulus-locked and response-locked components and is most likely due to 

different hardware setups used in both studies.  
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Figure 14: Averaged stimulus-locked N1 peaks at electrode OZ in (A) study 1 and (B) study 2 displaying 

the time delay of around 40 ms in study 2 with regard to study 1. 

 

The second issue in comparing both datasets resulted from the fact that the actual 

electrode setup on the EEG caps was different in both studies. Although both caps were 

arranged based on the 10-20 System (Klem et al., 1999) there are slight differences in the 

electrode layout which lead to the fact that corresponding electrodes are not exactly 

superimposed to each other (see Figure 15). 

 

A B 
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Figure 15: Different electrode cap layouts used in (A) study 1 and (B) study 2. 

 

Those two circumstances had to be accounted for in the replication of the EEG effects 

identified in study 1. Specifically two measures were taken to avoid null findings that purely 

resulted from one of the two issues discussed above. First, since there is no exact electrode 

correspondence in both EEG cap setups, for the replication analysis I took the electrode 

identified in study 1, assigned the nearest electrode in the cap layout used in study 2 and 

allowed for a deviance of one neighboring electrode position. Secondly, due to the 40 ms time 

delay introduced in study 2 I also allowed for a 40 ms shift of time windows between study 1 

and study 2.  

 

EEG informed fMRI analysis 

First level analysis 

The main analysis in this study focused on the fusion of both EEG data as well as fMRI 

data in a combined GLM in which a predefined EEG parameter serves as additional regressor 

in order to modulate BOLD activation. To this extend the extracted EEG Parameters (stimulus-

locked and response-locked instances of SRO repetition 1 to 8) were imported into Matlab and 

fused with the fMRI onsets with a module called parametric modulation implemented in SPM 

A B 
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8. Via parametric modulation, it is possible to alter the stick function representing the fMRI 

onsets. In the SPM design matrix these stick functions are used to model the occurrence or 

absence of a specific event indicated in a specific (task) regressor. There are only two values 

possible, 0 (for absence of the event) and 1 (for presence of the event). The parametric 

modulation adds a new regressor for every event type. Regressors have indicator functions 

for events or epochs that are modulated in amplitude by some variable, in this case the 

preselected EEG parameter. Convolution with the hemodynamic response function (HRF) 

results in an EEG-weighted BOLD regressor that contains information on the strength of the 

correlation between the EEG parameter and the observed BOLD activation in each single trial 

(see Figure 16 left). Depending on the nature of the correlation, the additional information of 

the EEG parameter will lead to either an increase or a decrease of the predicted BOLD 

response in a specific voxel (see Figure 16 right). Eventually, the EEG-informed analysis is 

predestined to reveal only activation in those brain regions that highly correlate with activation 

in the predefined EEG parameter of interest used in the joint analysis.  

 

  

Figure 16: (Left) Convolution of fMRI onsets with the additional EEG regressor. Stick functions are 

modulated individually varying from trial to trial. (Right) Negative correlation of the ERP regressor with 

the BOLD response may lead to attenuation of the fMRI signal. 

 

The additional EEG regressor was added to the GLM condition-wise (SRO-rep 1 to 8) 

and contained the average value of electrical activity per SRO repetition over the entire time 

window (48 ms), resulting in eight additional EEG regressors convoluted with the HRF. I then 

used two separate one-sample t-tests to assess the correlation of the EEG parameters with 
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the BOLD signal. First for both rapid time scale as well as slower timescale, I contrasted all 

conditions of interest (either SRO-rep 1 to 3 or SRO-rep 1 to 8) against baseline to get a 

general idea of the strength of the effects. Furthermore, I then calculated one-sample t-tests 

between either SRO-rep 1 and 3 to access specific neural changes on the rapid timescale. 

Analogously, one-sample t-tests to compare the concatenated conditions SRO-rep 23 and 

SRO-rep 78 to access changes on the slower time scale. 

 

Second Level analysis 

The second level GLM utilized the EEG-modulated fMRI regressors to calculate t-

statistics on the group level. The model also contained behavioral markers O-R outcome 

integration (RT compatibility, RT difference between SRO-rep 23 and 78) in the analysis of the 

slower time scale. O-R learning markers were included simultaneously in order to ensure that 

a possible correlation between EEG-informed fMRI effect and a covariate was exclusively 

determined by a covariance component that was orthogonal to the other covariate. Thus, the 

potential influence of the other covariate was being regressed out. On the rapid time scale, 

contrasts were defined using the EEG-modulated fMRI regressors between SRO-rep 1 and 

SRO-rep 3. This model additionally contained error rates at SRO-rep 4 as behavioral covariate. 

Significant correlations were only taken into account if they exceeded a family-wise-error 

(FWE) threshold p < .05, either on the voxel level or on the cluster level at a cluster-forming 

threshold of p < .001. T-values reported in the results section (see 5.3) represent the behavioral 

marker-adjusted BOLD activation. 

 Figure 17 depicts the entire preprocessing pipeline of both the EEG as well as the fMRI 

data down to their final shape in which they are unified in an EEG-informed fMRI GLM. 
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Figure 17: Preprocessing stream for EEG-fMRI analysis. 

 

Feasibility analysis 

In a first step, I wanted to asses if the fundamental process of extracting and correlating 

EEG parameters with the BOLD response would produce plausible results. Therefore, I utilized 

three distinct and to my reasoning isolated mean EEG parameters averaged over all SRO 

repetition levels to predict the mean BOLD signal against baseline accumulated over all SRO 

repetition levels. Namely, I used the EEG motor signal at the time of the response (+/- 25 ms), 

derived from a cluster of centro-parietal electrodes (CP1, CPz, CP2, P1, P2). I hypothesized 

that the EEG motor response signal would be highly associated with corresponding activation 

in motor areas of the brain. Accordingly, I used the stimulus-locked visual N1 peak amplitude 

(192 ms +/- 25 ms) at posterior sites (O1, OZ, O2, POz) to check if it would predict activation 

in visual areas of the brain. Finally, I assumed that the response-locked auditory N1 peak 

amplitude (268 ms +/- 25 ms) at central sites (Cz, C1, C2, CPz) would predict activation in 

auditory areas of the brain. 
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5.3 Results 

Behavioral results 

S-R-O learning phase 

The general pattern regarding response times and error rates that was already present 

in study 1 was confirmed in study 2. Increasing SRO repetitions were associated with a drop 

of response times (RT) paralleled by an increase in error rates also in this study. The guided 

learning phase was characterized by a rapid gain in performance speed from SRO-rep 1 to 

SRO-rep 3. At SRO-rep 4 RT briefly increased due to the transition from the guided to the 

unguided phase before it continued to decrease gradually (see Figure 18a). The error rate 

curve was shaped similar to the one in study 1 with the typical peak at SRO-rep 4 (again due 

to the transition from unguided to guided learning phase) before gradually decreasing again 

across the unguided phase (see Figure 18b). The analysis resulted in highly significant effects 

in the factor SRO repetition within the saturated model compared to the null model for both 

error rates [F(7,175) = 12.59, p < .001] as well as RTs [F(7,175) = 47.63, p < .001]. The 

response time drop of 82 ms within the guided implementation phase (from 848 ms in SRO-

rep 1 down to 766 ms in SRO-rep 3) exceeded significance threshold applying post-hoc Tukey-

test corrected for multiple comparisons [p < .001]. The RT decrease from SRO-rep 1 to SRO-

rep 3 predicted smaller error rates in SRO-rep 4 [r(24) = -0.31, p < .03], being a marker of early 

formation of S-R associations formation and usage during the guided instruction phase (see 

Figure 18c). Again for the purpose of assessing RT differences on the slower timescale 

accordingly to the later EEG analysis I collapsed SRO repetitions 2 and 3 (SRO-rep 23) as 

well as 7 and 8 (SRO-rep 78) to compute another post-hoc Tukey-test corrected for multiple 

comparisons which yielded a significant result [p < .001]. Regarding error rates, a post-hoc 

Tukey-test revealed a highly significant increase in error rates from 3% at SRO-rep 1 to 14% 

at SRO-rep 4 [p < .001, Bonferroni-corrected for multiple comparisons], again indicating the 

transition from the guided to the unguided implementation phase in which responses now had 

to be selected according to memorized S-R associations from the preceding three guided trials. 

Following this initial error rate increase it than decreased again down to 6% at SRO-rep 8 

[p < .001].  
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Figure 18: Behavioral data from the S-R-O acquisition phase with (A) mean response times (RT) and 

(B) mean error rates (%) throughout the course of all eight SRO repetitions. (C) Correlation between the 

difference in response times between SRO-rep 1 and SRO-rep 3 and error rates in SRO-rep 4. A sharper 

response time decrease from SRO-rep 1 to SRO-rep 3 predicted lower error rates in SRO-rep 4. 

O-R test phase 

I again computed two separate linear mixed-effect models for accuracy und response 

time with factors compatibility and SRO repetition as fixed effect and variance over all trials 

within each subject being random effect. The analysis resulted in highly significant O-R 

compatibility effects for both, error rate [F(1,200) = 9.96, p = .002] with an average of 12% 

error trials in the compatible condition and 14% error trials in the incompatible condition as well 

as response times [F(1,200) = 8.61, p = .004] with an average of 592 ms in the compatible 

condition and 609 ms in the incompatible condition. There was no significant interaction effect 

between SRO repetition and compatibility in both error rates as well as response times. The 

subject-wise behavioral index of O-R encoding strength which was later used for correlation 

with ERP difference measures was defined as the individual O-R compatibility effect in RT, 

following the rationale of study 1. Additionally, I verified if subjects exhibited an effect of 

response slowing as reported already in previous studies. To this end I correlated response 

time differences between SRO-rep 23 and 78 with the O-R compatibility effect from the test 

phase. The analysis resulted in an inverse correlation [r(24) = -0.48, p = .014]. Thus, high R-

O learners were characterized by smaller absolute differences in response times between 

early and late stages of learning (see Figure 19). 

 

 

 

 

A B C 
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Figure 19: Behavioral data from the S-R-O test phase with (A) mean response times (RT) and (B) mean 

error rates (%) throughout the course of all eight SRO repetitions. (C) Correlation between O-R 

compatibility effect from the test phase and response time differences between SRO-rep 23 and SRO-

rep 78 in the learning phase.  

 

FMRI PPI analysis 

As far as step 1 of the analysis procedure (as described above) is concerned general 

changes in functional coupling with the LPFC seed from early to late learning were observed. 

In accordance with previous findings (Ruge & Wolfensteller, 2013, 2015) I observed increasing 

functional couplings between LPFC and anterior caudate, as well as between LPFC and OFC 

(see Table 10). 

However, I could not replicate significant correlations between each of the two 

behavioral covariates (O-R compatibility and R-O usage) and changes in fronto-striatal 

couplings as reported in earlier studies. More specifically, I did neither observe a correlation 

between O-R compatibility and LPFC-Putamen coupling strength nor a correlation between 

active R-O usage and LPFC-Caudate coupling. Regarding the control analysis there was also 

no significant correlation when entering the difference in error rates into the model. 
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Table 10: Functional coupling with LPFC during S-R-O learning (late-early, based on predefined ROIs). 

Region of Interest MNI coordinates coupling at late - early 

 Sub-region x y z t z 

p 

Voxel 
(FWE-
corr.) 

Cluster 
Size 

p 

Cluster 
(FWE-
corr.) 

Left basal ganglia anterior Caudate -9 23 -5 5.73 4.43 .00 12 .02 

21 5 22 3.69 3.22 .07 3 .05 

 
Right basal ganglia anterior Caudate 8 17 13 4.88 3.98 .01 24 .01 

 
Left orbitofrontal 

cortex 

anterior lat. OFC 

 
 

-39 29 1 4.71 3.88 .016 106 .039 

-9 23 -8 4.73 3.89 .03 210 .01 

-15 35 -11 4.42 3.70 .05 210 .01 

 

Additionally, there was an increased functional coupling between LPFC and the 

Supplementary Motor Area (SMA) which was significant on the whole brain level (see Table 

11). 

 

Table 11: Functional coupling with LPFC during S-R-O learning (late-early, whole brain). 

Brain region MNI coordinates coupling late - early 
  x y z t z p Voxel 

(FWE-corr.) 
Cluster Size p  

(FWE-corr.) 

SMA -3 14 67 5.75 4.45 0.11 121 0.01 

 

 

ERP parameters 

EEG data quality 

When comparing EEG data quality between EEG recorded outside the scanner (study 1) and 

EEG data acquired in a co-registered EEG-fMRI session it is important to differentiate between 

two levels of data inspection: The averaged event-related response (ERP) data level and the 

single trial EEG data level. 
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ERP data level  

On the averaged ERP level there is already a visible difference in data quality between the 

data of study 1 (EEG only) and study 2 (co-registered EEG-fMRI). Both ERP plots show 

strongly expressed stimulus-locked ERP components (see Figure 20). However, especially the 

first 125 time points (representing the first 500 ms), including the baseline period and the visual 

P1-N1 complex, are considerably noisier in the EEG data of study 2. Additionally, from time 

point 200 to 250 there seems to be also a greater variance in the EEG data of study 2, 

presumably as a result of a lower Signal-to-Noise ratio. This holds true for both of the collapsed 

conditions, SRO-rep 23 as well as SRO-rep 78, overall resulting in higher confidence intervals 

of the Grand averaged ERP in study 2. Note, that there is a time shift of about 40 ms between 

the two data sets due to different hardware in both recording setups. 

 

Grand mean EEG data from Study 1 Grand mean EEG data from Study 2 

  

  

Figure 20: Stimulus-locked EEG activation at electrode OZ in study 1 and its corresponding electrode 

of study 2. The bold line represents the grand average ERP over all subjects, the dashed line represents 

the corresponding confidence interval. The transparent curves are the subject-wise ERP curves. 
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Single trial data level  

On the level of segmented single trials even greater differences between the two data 

sets can be observed. The plots in Figure 21 depict segmented ERP data on a single trial level. 

The segments are locked to the visual stimulus. On the y-axis all trials across the entire 

learning phase are plotted on top of each other. This kind of plot can be used to inspect how 

stable ERP components are on the single trial level or to observe temporal shifts in ERP 

onsets. Ideally, one would observe slim vertical columns of positivity or negativity as seen in 

both EEG only single trial plots. 

 

 

Figure 21: Single trial stimulus-locked EEG data at electrode OZ in study 1 and its corresponding 

electrode in study 2. 

The averaged P1 and N1 are strongly expressed in almost every single trial across the 

entire session with no temporal deviation. On the right side of the figure two exemplary cases 

of single trial plots are depicted for EEG data from study 2. The upper one represents a subject 

in which ERP component resolution is close to the EEG only data. In this case again the P1 
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and N1 are also expressed well in almost each single trial. However, this fact does not hold for 

every subject and there is a tremendous amount of variation within the dataset. The lower plot 

depicts a case in which ERP components are virtually not identifiable on single trial level. This 

great variation among trials also contributes to the fact that the averaged plot for that subject 

lacks prominent shaped ERP components. While a loss in data quality of EEG data acquired 

from co-registered EEG-fMRI can be compensated for by the averaging procedure of the ERP 

method this does not apply when trying to analyze the data on a single trial level and a higher 

noise ratio in this case may cause problems concerning effect strength or power.  

 

O-R outcome related response-locked anterior/central negativity 

The analysis identified a maximum difference in electrical activity between SRO-rep 23 

and SRO-rep 78 at the electrode equivalent to FC3 in a time range 268 to 316 ms [t(25) = 2.69, 

p = .012]. This negativity increase was significantly correlated with the response time O-R 

compatibility effect [R2
adj.

 = .21, F(3, 25) = 4.32, p = .026]. However, this correlation pointed 

towards the opposite direction compared to the correlation observed in study 1 with greater 

differences being associated with greater compatibility effects [b = .019, t(25) = 2.13, p = .044]. 

Likewise to study 1, I also observed a significant increase in negativity prior to the peak of the 

post-response anterior negativity as well as another massive negativity increase at a central 

cluster of electrodes over the learning course ranging from 400 to 626 ms post-response and 

maximizing at 484 ms at electrode CPz (see Figure 22). These differences, however, were not 

correlated with the behavioral marker of O-R compatibility or any other behavioral marker. 

  



Study 2 - Within trial distinction of O-R learning-related BOLD activity with the means 
of co-registered EEG information 

 

93 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Response-locked grand average waveforms exhibiting significant learning-related effects 

across SRO-rep 23 and SRO-rep 78. The interval highlighted in light blue represents the time interval 

which was used for statistical analysis. The upper border of the plot displays time points at which the 

difference in electrical activity between SRO-rep 23 and 78 showed a significant correlation with the 

compatibility effect (gray: p < .1, green: p < .05, red: p < .01). Time point zero indicates the time of 

responding. The onset of the auditory outcome was at 150 ms. (B) Averaged topographical map of the 

difference in electrical activity between SRO-rep 23 and 78 within the specified time windows. Bar 

graphs for average electrical activity within the extracted time window are plotted for all factor levels that 

were used in both main and control analysis with the two levels depicted in ERP plots highlighted in 

black and red. (C) Scatter plots of electrical activity difference (for the time window in which the ERP 

difference was maximal) in relation to the O-R compatibility effect.  

O-R outcome related stimulus-locked modulation of the visual P1-N1 complex 

The analysis replicated previous findings of an increase in negativity in visual P1-N1 

range at posterior sites, maximazing at O2 [t(25) = 3.86, p < .001, see Figure 23]. Just as in 

study 1, this modulation was correlated inversely with the O-R compatibility effect [R2
adj.

 = .2, 

F(3, 25) = 4.12, p = .026]. Hence, smaller differences in EEG activity were associated with 

stronger compatibility effects [b = -.032, t(25) = -2.67, p = .014]. Likewise to study 1, I also 

observed this effect at frontal electrode sites as well as another maximum difference between 

early and late learning conditions peaking at around 600 ms at posterior sites. However, these 

differences were not correlated with the compatibility effect or any other behavioral marker.  

 

A B C 
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FC3 FC3 
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O-R compatibility effect (ms) 
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Figure 23: (A) Stimulus-locked grand average waveforms exhibiting significant learning-related effects 

across SRO-rep 23 and 78 at occipital electrode Oz.  The intervals highlighted in light blue represent 

the time intervals which were used for statistical analysis. The upper border of the plot displays time 

points at which the difference in electrical activity between SRO-rep 23 and 78 showed a significant 

correlation with the compatibility effect (gray: p < .1, green: p < .05, red: p < .01). Time point zero 

indicates the time of visual stimulus onset. (B) Averaged topographical map of the difference in electrical 

activity between SRO-rep 23 and 78 within the specified time window (124 ms - 172 ms). Bar graphs 

for average electrical activity within the extracted time window are plotted for all factor levels that were 

used in both main and control analysis with the two levels depicted in ERP plots highlighted in black and 

red. (C) Scatter plots of electrical activity difference in relation to the O-R compatibility effect (for the 

time window in which the ERP difference was maximal). 

 

S-R learning-related stimulus locked frontal positivity 

The change in positivity about 488 ms after presentation of the imperative stimulus was 

also prominent in this study at similar electrode sites [t(25) = -2.87, p = .008]. In this study, the 

correlation of this EEG effect with error rates at SRO-rep 4 was not replicated (see Figure 24). 

  

B C A 
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Figure 24: (A) Stimulus-locked grand average waveforms exhibiting significant learning-related effects 

across SRO-rep 1 and 3.  The interval highlighted in blue represents the time interval which was used 

for statistical analysis. The upper border of the plot displays time points at which the difference in 

electrical activity between SRO-rep 23 and 78 showed a significant correlation with the compatibility 

effect (gray: p < .1, green: p < .05, red: p < .01). Time point zero indicates the time of visual stimulus 

onset. (B) Averaged topographical map of the difference in electrical activity between SRO-rep 1 and 3 

within the specified time window (464 ms – 512 ms). Bar graphs of average electrical activity in all three 

guided SRO repetitions. (C) Scatter plots of electrical activity difference in relation to error rates at SRO-

rep 4 (for the time window in which the ERP difference was maximal). Note that the depicted error rate 

values are rescaled as an impact of regressing out the RT speed-up from SRO-rep 1 to SRO-rep 3 and 

only correct trials were included in the ERP analysis and contributed to the plotted results. 

 

EEG-informed fMRI analysis 

Feasibility analysis 

Table 12 shows the results of the analysis. Correlating the EEG motor signal at the time 

of the response with the fMRI signal resulted in significant bilateral activation of the postcentral 

gyrus as well as the right insula. The activation clusters of the postcentral gyrus also extended 

into the parietal operculum which is a functional equivalent to the secondary motor cortex 

(Beudel, Zijlstra, Mulder, Zijdewind, & de Jong, 2011; Eickhoff, Grefkes, Zilles, & Fink, 2007). 

The activation in those regions was positively correlated with response time differences 

between SRO-rep 23 and 78. The stimulus-locked visual N1 peak amplitude or the response-

locked auditory N1 peak amplitude were not associated with any significant activation in the 

brain. 
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Table 12: Predicted brain activation by response-locked EEG motor response signal (centro-parietal 

electrode cluster). 

 

FMRI activation associated with post-response EEG activation 

In the EEG analysis I identified a post outcome increase in negativity from early to late 

learning stages at the electrode equivalent to FC3 in a time range from 268 to 316 ms. Contrary 

to study 1, this increase was even greater for high R-O learners (i.e. subjects that exhibited a 

particularly strong O-R compatibility effect). This EEG parameter was used to modulate the 

standard fMRI task regressor (SRO-rep level) in the EEG informed analysis. This procedure 

resulted in an increased coupling between the EEG negativity and activation in the right pre-

motor cortex from early to late stages of learning (PMC, see Table 13). The analysis exhibited 

no significant correlation with any behavioral marker of R-O learning. 

  

 

Brain region MNI coordinates 
Activation SRO-rep 1 to 8 

associated with RT difference SRO-rep 23-78 

  x y z t z 
p Voxel 

(FWE-
corr.) 

Cluster 
Size 

p  

(FWE-corr.) 

Right postcentral gyrus 60 -19 40 4.50 3.75 .60 127 .02 

Left postcentral gyrus -51 -10 22 4.49 3.74 .6 219 .002 

Right insula 36 17 -8 4.42 3.7 .655 102 .009 
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Table 13: Functional coupling with post-response EEG negativity (268 - 316ms) during S-R-O learning. 

 

In the exploratory analysis, I used the late increase in negativity ranging from 400 to 

626 ms subsequent to the response. The effect had a central local maximum peaking at 484 

ms after the response and was not correlated with any behavioral marker of O-R learning. I 

clustered four central electrodes (equivalents to Cz, C1, C2, CPz) and used the averaged 

potential to modulate the standard fMRI regressors per SRO-rep level. This analysis resulted 

in a differential pattern with different coupling effects correlating with different behavioral 

markers of O-R outcome integration. An increased coupling between the late EEG negativity 

and activation in the SMA was positively correlated with the O-R compatibility effect (see Table 

14).  

  

 

Brain region MNI coordinates Activation SRO-rep 23-78 

 x y z t z p Voxel (FWE-corr.) Cluster Size p (FWE-corr.) 

Right Premotor cortex 42 -7 52 5.97 4.47 .111 174 .001 

Correlation at peak Voxel [42 -7 52] 
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Table 14: Correlation between functional coupling with post-response EEG negativity (460 - 508 ms) 

and RT compatibility effect during S-R-O learning. 

 

Increased couplings between the late EEG negativity and activation in the somatosensory 

cortex as well as the dorsal lateral caudate, on the other hand, were positively correlated with 

reaction time differences between SRO-rep 23 and SRO-rep 78 during S-R-O learning (see 

Table 15). Note, that the coupling effect in the cluster of the dorsal caudate also extended into 

the white matter as well as some parts of the medial prefrontal cortex (mPFC). 

  

          

Brain region MNI coordinates 
Activation SRO-rep 23-78 

associated with RT compatibility effect 

 x y z t z 
p Voxel 

(FWE-corr.) 
Cluster 

Size 

p  

(FWE-corr.) 

Supplementary motor area (SMA) 6 -22 64 5.16 4.07 .315 98 .024 

Correlation at peak Voxel [6 -22 64] 
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Table 15: Correlation between functional coupling with post-response EEG negativity (460 - 508 ms) 

and RT difference SRO-rep 23 - 78 of during S–R–O learning. 

     

Brain region MNI coordinates 
Activation SRO-rep 23-78 

associated with RT difference SRO-rep 23-78 

 x y z t z 
p Voxel 

(FWE-corr.) 
Cluster Size 

p  

(FWE-corr.) 

Somatosensory cortex (r) 21 -46 67 7.66 5.18 .006 
745 .000 

Somatosensory cortex (l) -15 -34 61 7.37 5.07 .011 

Left caudate -15 2 25 6.91 4.89 .023 229 .000 

Correlation at peak Voxel [21 -46 67] 

  

Correlation at peak Voxel [-15 2 25] 
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FMRI activation associated with pre-response EEG activation 

In the EEG analysis, I identified an increase in negativity in the visual P1-N1 (124 – 172 

ms) range at posterior sites, maximizing at electrode O2. This increasing negativity, however, 

was attenuated for high R-O learners resulting in an inverse correlation with the behavioral RT 

compatibility effect. I used the visual P1-N1 component in the fMRI analysis to allow for a 

gradual change of the standard fMRI task regressors (SRO-rep level). The analysis revealed 

an increasing coupling between the P1-N1 modulation and activation in the orbital frontal 

cortex (OFC), more specifically the right orbital inferior frontal gyrus (OIFG, see Table 16). 

Furthermore, this coupling effect was positively correlated with the RT difference between 

SRO-rep 23 and 78. 

 

Table 16: Correlation between O-R usage and functional coupling with pre-response EEG negativity 

(124 - 172 ms) during S-R-O learning 

 

There was no significant BOLD activation associated with the pre-selected S-R 

learning-related pre-response EEG signal (see Figure 24). Additional explorative analysis with 

 

Brain region MNI coordinates 
Activation SRO-rep 23-78 

associated with RT difference SRO-rep 23-78 

  x y z t z 
p Voxel 

(FWE-corr.) 
Cluster 

Size 

p  

(FWE-corr.) 

Right orbital inferior 

frontal gyrus 
39 44 -8 6.89 4.98 .01 75 .06 

Correlation at peak Voxel [39 44 -8] 
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stimulus-locked local maxima (e.g. using the late posterior peak around 600 ms at O2) also 

did not yield any significant results. 

 

5.4 Discussion 

This study followed up on the results of study 1 using the same paradigm. Its 

overarching goals were to reproduce the learning-related EEG parameters observed in study 

1 and to utilize them in a joint EEG-fMRI analysis. With this type of analysis I strived to make 

use of specific EEG parameter information in order to disentangle temporarily overlaying 

information in the fMRI BOLD signal. Specifically, I tried to separate learning-related pre-

response brain activation, associated with action selection and initiation, from post-response 

activation potentially reflecting outcome integration processes.  

Additionally, this study served to replicate earlier findings of Ruge and Wolfensteller 

(2015). They found that O-R encoding strength is associated with LPFC-putamen coupling, 

prompting that this particular brain region is involved into the formation O-R associations. The 

active usage of O-R associations on the other hand correlated with LPFC-caudate coupling. 

They concluded that the caudate therefore seems to act as a control instance for goal-directed 

actions, especially in an instruction-based learning environment. 

 

FMRI PPI replication 

I again observed previously reported general patterns of increasing functional coupling 

from early to late S-R-O learning trials between LPFC and anterior caudate as well as LPFC 

and OFC (Ruge & Wolfensteller, 2013, 2015). However, I did not replicate earlier findings of a 

distinction of functional fronto-striatal couplings related to distinct behavioral markers of either 

O-R encoding strength or active O-R usage. Additionally, there was an increased coupling 

between LPFC and SMA as S-R-O learning progressed. Functional connections between SMA 

and PFC have been reported before (Rowe, Robinson, & Gordon, 2005). Although this 

coupling was not correlated with markers related to response-outcome learning later results of 

the EEG-informed analysis might point towards the nature of these effects. The reason why I 

could not identify or replicate correlations with these behavioral markers remains unknown. 

One reason might lie in in a lack of power of these markers in this study itself. Although present 

and significant, the O-R compatibility effect was not as pronounced as expected from previous 

studies, potentially resulting in a non-significant correlation in the PPI analysis. 
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EEG analysis 

Regarding EEG data quality, there already was a greater amount of noise visible in the 

extracted EEG signal from the simultaneous EEG-fMRI session when compared to the data 

from the EEG only set up. Thus, the Grand Average ERP from this study exhibited broader 

confidence intervals in comparison to EEG data acquired outside the scanner. This could 

already have had an effect on the power of individual EEG effects and also its potential 

correlations with behavioral indices. 

In the confirmatory analysis, the primary goal was to elaborate on those spatiotemporal 

ROIs that showed a clear correlation with one of the behavioral markers of either R-O outcome 

integration or S-R learning. Exploratory analysis included a shift in time windows or clustering 

of multiple electrodes. Furthermore, I performed an additional exploratory analysis regarding 

a strongly pronounced late response-locked EEG effect that was present in both studies, 

although it was not correlated with any behavioral marker. In general, study 2 was only partially 

able to replicate the EEG activity dynamics related to the formation of bidirectional R-O 

associations that were observed in study 1. 

 

EEG-informed fMRI analysis 

Feasibility analysis 

The goal of this procedure was to check if the chosen means of fusing two different data 

modalities in a joint analysis would produce plausible results. Eventually, only one of the three 

chosen EEG parameters could be associated with brain activity. The ERP motor signal 

predicted significant activation in a cluster including the postcentral gyrus as well as the parietal 

operculum. The latter region has been marked as functionally corresponding to the secondary 

motor cortex (SII, Beudel et al., 2011; Eickhoff et al., 2007). There was no coupling between 

the stimulus-locked visual N1 nor the response-locked auditory N1 and activation in respective 

sensory areas of the brain. The coupling between the EEG motor signal and activation in the 

postcentral gyrus and SII was also positively correlated with a general decrease in response 

times between early and late stages of learning. Hence, it was stronger for subjects exhibiting 

greater reaction response time decreases. This could be due to the fact that those subjects 

are better learners, thus exhibiting stronger neural activity. Overall, with only one of the three 

analyses being significant (and only in combination with a behavioral marker), this sheds only 

a dim light on answering the question if EEG parameters and fMRI BOLD activation can be 

reliably fused with the means of EEG-informed analyses. 
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FMRI activation associated with post-response EEG activation 

In this study, I observed an increased coupling between electrical activity in the post-

response post N1 signal and activation in the premotor cortex (PMC) between early and late 

stages of learning. The coupling increase was not correlated with any behavioral marker of 

outcome-response learning. Regarding the EEG negativity effect found in this study, it is most 

likely not related to the sensory attenuation effects already observed in study 1 as several 

considerations indicate. First of all, the correlation points in the exact opposite direction 

compared to study 1, meaning that greater O-R compatibility effects were associated with 

greater increases in negativity. Secondly, the effect in this study is located subsequent to the 

peak amplitude while in in study 1 the corresponding effect was observed prior to the peak 

amplitude. Finally, the effect itself was not as pronounced and as prolonged as it was in study 

1. Together with the fact that the time window and the electrode used in the analysis were 

slightly shifted (see chapter 5.2) it is reasonable to assume that the effect of sensory 

attenuation observed in study 1 was not replicated in this study. So how can the increased 

coupling between post response EEG negativity and activation in the PMC be interpreted? The 

PMC has been suggested to play a role in action-related processes (Picard & Strick, 1996, 

2001). It has been found that in outcome-response learning there seems to be an engagement 

of this region in preparatory processes if the action is associated with a distinct effect which is 

also pre-activated via action codes (Ruge, Muller, & Braver, 2010). The results of this study 

prompt the interpretation that this mechanism could also be at play here. Moreover, the 

coupling increase between post-response negativity in the EEG signal (which in itself was 

positively associated with O-R encoding) and activation in the PMC further strengthens the 

point that PMC involvement in motor processes of an action is directly linked to the processing 

of its ensuing effect. 

 

Additional exploratory analysis 

The EEG analysis also identified a recurring post-outcome effect at central electrode 

sites which expressed a stronger negativity in late compared to early learning stages. This 

effect showed no correlation with any of the behavioral markers of learning in both studies. 

However, since this effect was very pronounced and was reliably observed in both studies I 

also performed an additional explorative EEG-informed fMRI analysis using this parameter. 

The analysis resulted in a pattern of distinct couplings with different brain regions, each 

correlated with different behavioral markers of S-R-O learning. 
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First of all, the analysis identified an increased coupling between the late EEG 

negativity and activation in the SMA that was positively correlated with the O-R compatibility 

effect. Thus, high R-O learners exhibited stronger coupling than low R-O learners. This 

correlation, together with the fact that SMA activation is correlated with a post-response EEG 

marker of O-R encoding, gives way to the interpretation that the SMA is involved in 

synchronizing the motor program of the just performed action to the sensory processing of the 

ensuing effect. Previous works have already suggested that this region plays a crucial part in 

post-response processes related to outcome integration. A number of studies have reported 

relevant SMA activation when perceiving outcome stimuli following extensive phases of R-O 

learning (Elsner et al., 2002; Melcher et al., 2008; Melcher et al., 2013). Bonini et al. (2014) 

suggested that early evaluation of the outcomes of actions is performed by the SMA. In 

accordance with Frimmel et al. (2016), the results of this study promote outcome-related SMA 

activation in extremely early stages of S-R-O learning. Moreover, they could shed light on the 

controversy if the SMA is involved rather in pre or post-response processes related with 

outcome response learning (Nachev et al., 2008). The correlation of SMA activation with a 

post-response post outcome EEG signal is a strong indicator favoring the later assumption. As 

the PPI analysis of the fMRI only data revealed, activation in the SMA was equally functionally 

connected to activation in the LPFC (see paragraph fMRI PPI replication above). Overall, this 

might suggest that additionally to monitoring of actions in relation to its outcomes, the motor 

program of the performed action is linked to the internal representation of R-O contingencies 

cached in the LPFC “procedural working memory” (Oberauer, 2009). If so, this established link 

might enable a later pro-active activation of the motor program in anticipation of the desired 

outcome which would work independent of a stimulus triggering the response. Hence, post-

response activation of the SMA and its functional coupling with the LPFC might enable actions 

to become anticipatory, i.e. goal-directed, in the absence of an imperative stimulus in the first 

place. This mechanism would be equivalent to the second phase in the two-phase model of 

goal-directed action according to ideomotor theory (Shin et al., 2010). 

Secondly, the analysis revealed an increased coupling between the late EEG negativity 

and activation in the somatosensory cortex as well as the dorsal caudate that were positively 

correlated with reaction time differences between SRO-rep 23 and SRO-rep 78 over the S-R-

O learning course. Activation in the anterior caudate is generally believed to be involved in the 

establishment of goal-directed action (J. O'Doherty et al., 2004; Tanaka et al., 2008; Tricomi 

et al., 2004) and has already been demonstrated in various studies (Ruge & Wolfensteller, 

2010; Stocco, Lebiere, O'Reilly, & Anderson, 2012). Ruge and Wolfensteller (2015) reported 

an increased coupling of activation between LPFC and anterior caudate in a PPI analysis that 

was associated with the behavioral marker of response slowing. The coupling effect in this 
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study with the late negativity in the EEG signal, however, showed activation in the dorsal parts 

of the caudate which has not been brought primarily into connection with the effects described 

above. The results of this study could prompt the conclusion that caudate involvement into 

processes of O-R learning, more specifically active monitoring of the learning process, can 

also be generalized to more dorsal parts of this region. This hypothesis, however, must remain 

speculative based on the exploratory results of the analysis approach and the fact that it is not 

supported by other research so far. But there is existing evidence that the dorsal striatum, and 

the dorsal part of the caudate in particular, are critical in the formation and control of habitual 

action (Burton, Nakamura, & Roesch, 2015; Haber & Knutson, 2010). Thus, another 

hypothesis regarding the coupling effect in the dorsal caudate could be that it might be 

connected to an early automatization of the acquired behavior. Automatization in this case 

would refer to the ongoing consolidation of the learned S-R-O contingency in a sense that the 

agent has to rely less and less on an explicit evaluation of the outcome. This, however, has to 

be distinguished from an automatization in a sense of a habitualization of behavior as a result 

of long term learning. In summary, no final answer regarding the true nature of the coupling 

effect in the dorsal caudate can be given up to this point. However, it seems reasonable that 

the dorsal caudate functions as a region in which the acquired behavior might already be 

prepared to work in a more automatized manner without relying on the online evaluation of the 

ensuing effect. On a concluding note, it has to be kept in mind that activation in the basal 

ganglia is prone to artifacts due to its proximity to the cerebrospinal fluid in the ventricles. The 

cluster identified in this study also extended from the caudate over the white matter into the 

medial PFC. However, peak activation of this cluster was located in the dorsal caudate. 

The coupling effect in the somatosensory cortex is likely related to R-O learning and a 

post-response consolidation of the just performed motor program. The superior postcentral 

gyrus has been described as being part of the cortical network that generates the readiness 

potential (Arezzo, Vaughan, & Koss, 1977; Ikeda & Shibasaki, 1992; Urbano, Babiloni, Onorati, 

& Babiloni, 1996). Furthermore, the somatosensory cortex projects to primary motor areas and 

in this way may essentially contribute to the preparation and execution of movements (Pleger 

et al., 2006; Porter, 1991, 1997). In this sense, increased activation in this area might also 

relate to the coupling effect seen in the SMA and could support the establishment of a more 

stimulus-independent use of the acquired R-O associations as the motor program could be 

activated by anticipation of the effect alone, as postulated by ideomotor theory. 

Both, the coupling effect in the caudate as well as activation in the somatosensory 

cortex were correlated with response time differences between early and late stages of 

learning. Correlating reaction time differences between early and late stages of learning with 

the compatibility effect from the test phase revealed a significant response slowing for those 
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subjects that exhibited a particularly high compatibility effect in terms of reaction times. The 

original interpretation of this phenomenon was that it represents some kind of “monitoring cost” 

in the acquisition process that naturally is higher for better R-O learners. That is why this 

marker has been branded as a marker of O-R usage in previous studies (Ruge & Wolfensteller, 

2015) as well as in the present one. Thus, if the neuronal coupling effect is connected to O-R 

usage, one would expect a negative correlation between coupling and reaction time 

differences between early and late learning stages. However, the analysis identified a positive 

correlation as a greater decrease in response times yielded a greater coupling between the 

EEG negativity increase and activation in these brain areas. This, however, seems to be 

contrary to the interpretation of this behavioral marker as a correlate of O-R usage. This issue 

suggests that the behavioral correlation with the coupling effect is not triggered by the response 

slowing rather than by the decrease in response times from early to late stages of learning 

itself. Another consideration could support this hypothesis. The response slowing effect in high 

R-O learners was initially interpreted as an “active usage of increasingly learned O–R 

associations through the S-O → O-R chain” (Ruge & Wolfensteller, 2015). Thus, it would make 

much more sense to see a correlation of this marker with neuronal activity in connection with 

response preparation or initiation, i.e. functional couplings with ERP parameters prior to the 

response. 

But why does the late post-response post-outcome negativity difference in EEG signal 

was coupled with such seemingly distinct processes as O-R encoding in the SMA as well as 

response time decreases in the caudate and in the parietal lobe? The most reasonable answer 

might be that this late EEG signal is not a correlate of one process but a mixture between two 

different superimposed ERP components that are distinctly associated with either one of the 

activation patterns. This also might explain the missing correlation to a behavioral marker of 

R-O learning on the EEG data level in both studies as correlations of these distinct sub-

processes to two different markers might have canceled each other out.  

 

FMRI activation associated with pre-response EEG activation 

I observed that learning-related modulations of the P1-N1 complex were increasingly 

associated with activation in the orbital Frontal cortex (OFC), specifically the orbital inferior 

frontal gyrus (OIFG) over the course of learning. Furthermore, that coupling was positively 

correlated with the RT difference between SRO-rep 23 and 78.  

First of all, as this EEG attenuation effect could be perfectly replicated in this study it 

proves itself as a pronounced and reliable effect. Secondly, results from the EEG-informed 
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analysis do not seem to support my previously formed hypothesis that this effect mirrors early 

multisensory outcome integration processes (Murray et al., 2015). Multisensory integration 

describes the interaction between stimulus processing in different sensory modalities. In this 

case it refers to the visual imperative stimulus and the auditory outcome. Moreover, in this 

study multisensory effects would be based solely on the prior presentation of the bimodal 

information, i.e. the visuo-auditory stimulus outcome mapping. I speculated that visual 

outcome anticipation is triggered by the presentation of the visual stimulus, thus resulting in an 

attenuation of the P1-N1 ERP complex. Furthermore, I hypothesized that this attenuation effect 

could supposedly be coupled to increased activation in either primary visual or auditory cortex, 

or both. However, there was no activation in either of the primary sensory cortices that was 

associated with the attenuation effect in the P1-N1. Although the ventro-lateral prefrontal 

cortex has also been associated as a brain region involved in multisensory integration 

(Sugihara, Diltz, Averbeck, & Romanski, 2006) the question must be raised if the observed P1-

N1 attenuation effect really reflects a pure correlate of multisensory integration (at least to a 

major part, see 6.2.1 for a discussion of this matter). 

Then, how does the coupling increase between the P1-N1 complex in the EEG signal 

and activation in the OIFG fit into the picture? I speculate that the OIFG is a brain region that 

is highly associated with the representation of S-O information. The OIFG has been reported 

as part of the so called ventral visual stream which mainly has been associated with handling 

purely perceptual or working memory processes (Goldman-Rakic, 1987). However, Toni, 

Ramnani, Josephs, Ashburner, and Passingham (2001) found increasing activation in the 

OIFG in a supervised learning task of arbitrary sensorimotor associations. Subjects had to 

acquire knowledge about which key to press based on the visual presentation of an abstract 

symbol. The authors attributed increasing activation in the OIFG to the increased identification 

of the visual stimuli and their growing associative meaning to the correct response as learning 

progressed. Their results suggested that non-spatial visual information affects motor 

responses through a cortico-cortical route from the inferior temporal cortex to the ventral 

prefrontal convexity and the orbital surface. A review of the connectivity of these regions 

seemed to support their argument (Passingham, Toni, & Rushworth, 2000). Moreover, in this 

work they reviewed evidence that the prefrontal cortex, and even more specifically the inferior 

frontal gyrus is able to represent cues, responses, and outcomes. They concluded that the 

inferior temporal and the ventral prefrontal cortex are critical in integrating perceptual 

information with executive processes and their outcomes. Together with the results presented 

in this study, this suggests that the OIFG might serve as an interface of early outcome 

integration utilizing forward associations between the imperative stimulus and the anticipated 

outcome. These S-O couplings, are further used to form contingencies between the actual 
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required response and its consecutive (desired) outcome. The earlier an outcome is 

anticipated (based on stimulus outcome associations), the better it will be associated with its 

response, hence leading to stronger O-R compatibility effects later on seen on the EEG level. 

This account is consistent with the general notion that more salient events (here outcomes that 

are pre-activated sooner) will be associated with other events (here the action) more easily 

and more rapidly (Mackintosh, 1975; Le Pelley and McLaren, 2003). This could also explain 

the positive correlation with response time differences between early and late stages of 

learning seen on the fMRI level. As already discussed above, this fact also rules out an 

interpretation of the association as an instance of O-R usage as it would require a negative 

association between neural activity and RT differences. 

Absence of FMRI activation associated with pre-response EEG activation connected to S-R 

learning 

In both studies, I observed an increased learning-related frontal positivity in the mid-

latency range between 464 and 512 ms post-stimulus. However, opposed to study 1, this 

change in activation was not correlated with any behavioral marker. Since in this case trial 

aggregation was done containing only one SRO repetition level (SRO-rep 1 or 3, as opposed 

to SRO-rep 2 and 3 or 7 and 8 in the slower time interval) it might be the case that this contrast 

lacked the statistical power to compensate the additional noise in the EEG data introduced by 

the MR environment. This might also the reason I did not observe any effects in the EEG-

informed analysis using this EEG parameter. 
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6 Concluding general discussion 

6.1 Brief assessment of study objectives 

This dissertation set out to investigate neurocognitive mechanisms of instructed 

outcome-response learning. This was done employing two different imaging methods, namely 

EEG and fMRI. The first study aimed to identify potential EEG markers of rapid instructed 

learning. EEG and fMRI were then used in a consecutive combined study. The central goal 

was to use the additional EEG information to allow for a better within trial resolution of the 

otherwise temporarily coarse fMRI BOLD signal. This work could partially prove that learning-

related EEG parameters can be reliably identified in repeated studies. Furthermore, pre- and 

post-response EEG markers could be associated with distinct brain activation and related to 

distinct sub-process of goal-directed action. In this concluding discussion results of both 

studies and its implications will be debated in an overarching context. Hereafter, the focus will 

lie on addressing several points regarding limitations of this work in terms of interpretations 

and conclusions that can be drawn from it. This will particularly include still existing data quality 

issues and resulting limitations on potentially more elaborate analysis methods of combined 

EEG-fMRI data. Eventually, strategies on how to possibly build upon the presented work will 

be debated. 

 

6.2 Novel insights into rapid instruction based S-R-O learning? 

The experimental paradigm used in both studies was specifically designed to 

investigate neurophysiological dynamics associated with the initial learning of bi-directional R-

O associations under forced choice conditions by assessing correlations with the post-learning 

behavioral O-R compatibility effect as an index of the previously acquired association strength. 

This goes beyond earlier EEG (Waszak et al., 2012) and fMRI studies (Kuhn et al., 2010; 

Pfister, Melcher, Kiesel, Dechent, & Gruber, 2014; Ruge & Wolfensteller, 2010; Zwosta, Ruge, 

& Wolfensteller, 2015) which have revealed neurophysiological markers related to the impact 

of learnt R-O associations but which have not yet investigated the initial learning of such 

associations.  

Study 1 prepared the combined main analysis by providing a blue print both in terms of 

EEG data quality as well as expected ERP parameters. Assessing ERPs provides the 

advantage to disentangle potential pre-response and post-response activation of goal-directed 

behavior as it was being learned. Study 2 comprised the simultaneous EEG-fMRI study. In the 

joint EEG-fMRI analysis the EEG signal served as additional information by correlating a 

specific ERP component that has been associated with distinct learning-related sub processes 



Concluding general discussion 
 

110 
 

in advance with the fMRI signal. In other words, the ERP signal served as a tool to dissect 

specific event-related BOLD information. Due to the sluggish nature of the BOLD response 

this was difficult to assess in previous sole fMRI studies which have begun to characterize the 

evolution of R-O integration processes across learning trials on multiple time scales of learning 

(Frimmel et al., 2016; Melcher et al., 2013; Mohr et al., 2015; Ruge & Wolfensteller, 2013, 

2015). 

 

6.2.1 Early stimulus outcome information retrieval indicates the transition 

from stimulus based behavior to goal-directed action 

Study 1 identified stimulus-triggered pre-response outcome integration processes 

within the visual N1 latency range. In the later co-registered EEG-fMRI study this effect was 

replicated. Furthermore, EEG-informed fMRI analysis revealed that learning-related 

modulations of the P1-N1 are functionally coupled to increased activation in the orbitofrontal 

cortex (OFC), specifically the orbital inferior frontal gyruy (OIFG). 

The OFC has been thoroughly brought in connection with associative learning, 

especially in connection with the anticipation with expected outcomes (Noonan et al., 2012; 

Roesch, Taylor, & Schoenbaum, 2006; Schoenbaum, Chiba, & Gallagher, 1998; Schoenbaum 

& Roesch, 2005; Schoenbaum, Saddoris, & Stalnaker, 2007). It has been proposed to act as 

an associative look-up table for the flexible representation of stimulus-outcome associations 

(Rolls, 1996). Analogously, the significance particularly of the OIFG has also been pointed out 

in a study employing a trial and error S-R learning paradigm (Toni et al., 2001). Activation in 

this region was attributed to increased identification of the visual imperative stimuli and their 

growing associative meaning to the demanded response as learning progressed. Furthermore, 

in a review from the same research group they presented evidence that the prefrontal cortex, 

and even more specifically the inferior frontal gyrus is able to represent cues, responses, and 

outcomes (Passingham et al., 2000). Albeit profound differences there is a general 

understanding that there seems to be an overlap in neural processing in instructed vs. trial and 

error learning (Frimmel et al., 2016; Melcher et al., 2013; Ruge & Wolfensteller, 2010). 

However, to my knowledge no study has linked activation in the OFC or OIFG to markers in 

the EEG signal, particularly at such an early stage within a trial. So how can the effect of the 

increased coupling between visual P1-N1 and activation in the OFC be interpreted? 

The results indicate that the OFC could serve as a (multimodal) hub for integrating 

stimulus information and information about its associated outcome in an early pre-stage of 

action selection and initiation. This prompts the conclusion that this region is already engaged 
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in the learning process of S-O contingencies. This assumed generalization of the OFC to 

engagement already in the S-O acquisition process is in line with other studies (Ostlund & 

Balleine, 2007; Schoenbaum, Roesch, & Stalnaker, 2006; Stalnaker, Cooch, & Schoenbaum, 

2015). Learnt S-O contingencies would facilitate initiating the motor program of the action of 

choice. The earlier an outcome is anticipated (based on stimulus-outcome associations), the 

better it will be associated with its response, hence leading to stronger O-R compatibility effects 

later on. This account is consistent with the general notion that more salient events (here 

outcomes that are pre-activated sooner) will be associated with other events (here the action) 

more easily and more rapidly (Mackintosh, 1975; Le Pelley and McLaren, 2003). Thus, one 

could speculate that increased activation in the OFC in response to S-R-O mappings possibly 

embodies a marker for the ongoing transition from mere stimulus-based behavior to a goal-

directed behavior in successful learners. 

 

Does the P1-N1 modulation and its association to increased activation in the OFC reflect a 

correlate of multisensory integration? 

Employing different modalities of stimuli (imperative visual stimulus and auditory 

outcome) in the learning phase of the experimental paradigm, I initially hypothesized that pre-

response stimulus-based outcome integration processes could be related to neural markers 

typically associated with multi-sensory (here, visuo-auditory) integration processes (Murray et 

al., 2015). Multi-sensory integration, that is interaction between different sensory modalities, 

have been identified even in very early stages of stimulus processing (Talsma, Doty, & 

Woldorff, 2007). Giard and colleagues found that the processing of a stimulus containing 

redundant bimodal information (e.g. seeing and hearing a barking dog) is more rapid than that 

of either unimodal stimulus alone (Giard & Peronnet, 1999). This finding was complemented 

by EEG studies which reported modulations of the visual N1 in response to the bimodal 

stimulus in comparison to visual modality only (Fort, Delpuech, Pernier, & Giard, 2002; 

Molholm, Ritter, Javitt, & Foxe, 2004). The question arises if the P1-N1 negativity increase 

observed in the two studies of this work can really be attributed to multisensory integration to 

a full extent? 

In both studies, I identified an attenuated ERP modulation within the P1-N1 complex in 

response to the visual stimulus. There is still ongoing controversy about the nature of 

multisensory integration EEG effects in response to visual stimuli. ERP modulations were 

repeatedly observed in terms of a positivity as well as a negativity increase of electrical 

potential (Altieri, Stevenson, Wallace, & Wenger, 2015; Cappe, Thut, Romei, & Murray, 2010; 

Fort, Delpuech, Pernier, & Giard, 2002; Giard & Peronnet, 1999; Molholm et al., 2002; 
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Senkowski et al., 2011; Stekelenburg & Vroomen, 2012; Vidal et al., 2008). A similar issue 

arises when looking at the results of the EEG-informed analysis in which the P1-N1 modulation 

predicted increasing activation in the OFC over the learning course. The inferior frontal gyrus 

(IFG) has been brought in connection to multisensory integration processes (Renier et al., 

2009), especially in the audio-visual domain (Callan, Jones, & Callan, 2014; Sugihara et al., 

2006), though. The majority of the studies, however, demonstrated activation in the primary 

visual or the primary auditory cortex, or both (Matusz et al., 2015; Meylan & Murray, 2007; 

Murray et al., 2005; Murray et al., 2004; Thelen et al., 2012; Thelen et al., 2014; Zangenehpour 

& Zatorre, 2010). 

In conclusion, the effects that are present in this study might be influenced by the nature 

of the bimodality of the stimulus and its corresponding outcome. However, it is safe to assume 

that they do not represent multisensory integration effects in a classical sense (Murray et al., 

2016). Although there have been exceptions to the rule, most of the multisensory integration 

paradigms work with a) omnipresence of bimodal information and b) are mainly task- and 

response irrelevant (Gondan & Roder, 2006; Teder-Salejarvi et al., 2002). Presumably, the 

bimodality of S and O is more or less insignificant in the context of S-R-O learning. What seems 

to be more important and salient is the S-O contingency itself that can be learned from the 

mappings. This association is in fact independent from the modality of the presented material. 

This contingency alone gives an advantage in selecting the corresponding response and it just 

happens to be bimodal in the experimental design used. However, a final answer to the 

question raised above cannot be given up to this point. 

 

6.2.2 Post-response encoding and consolidation of O-R contingencies 

enables goal-directedness of behavior 

An increase in late post-response, post-outcome EEG negativity over the course of 

learning revealed a seemingly two way processing stream of O-R contingencies. First of all, 

the ERP negativity was functionally coupled to increased activation in the Supplementary 

Motor Area (SMA) in late learning stages. This activation increase was correlated with the O-

R compatibility effect. Thus, high R-O learners exhibited a stronger activation than low 

learners. Furthermore, the fMRI only PPI-analysis revealed that activation in the SMA was 

equally functionally connected to activation in the lateral prefrontal cortex (LPFC).  

Secondly, the increasing late post-outcome negativity in the EEG signal was also 

functionally coupled to increasing activation in the dorsal caudate as well as the 

somatosensory cortex over the learning course. This increased activation in these areas was 
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positively correlated to a general response time decrease over the S-R-O learning course. 

Increased coupling between the LPFC and the anterior caudate over the course of learning, 

although not correlated with any behavioral marker, was as well observed in the fMRI only PPI 

analysis. With such a differential activation pattern at this late stage within a trial the question 

arises: What happens in the aftermath of a response and its ensuing effect? Furthermore, 

which processes are represented by the late EEG negativity increase that is correlated with 

two separate brain regions (each connected to a different behavioral marker of O-R learning)?  

 

Consolidation of response-outcome contingencies through post-response motor-sensory 

feedback loops? 

The results promote the general idea that the SMA is involved in the acquisition of goal-

directed behavior (Elsner et al., 2002; Melcher et al., 2008; Melcher et al., 2013). Together 

with prior research (Frimmel et al., 2016) this notion can be generalized not only to extensive 

learning phases but also to learning tasks in which goal-directed behavior is acquired in only 

few practice trials. However, there is an ongoing debate on whether SMA activation can be 

clearly linked to sub-processes prior or subsequent to an agent’s action (Nachev et al., 2008). 

With the means of co-registered EEG-fMRI acquisition it is possible to gain a deeper insight in 

answering this question since it is possible to attain distinct BOLD activation information within 

a trial with the help of additional EEG information. All in all, study 2 provides additional evidence 

favoring an involvement of the SMA only following a performed action in response to an 

imperative stimulus and even more, subsequent to the perception of its ensuing effect. This 

may give rise to the interpretation that the SMA is associated with linking the motor program 

of the performed action to the sensory program of the perceived effect, hence establishing and 

further strengthening O-R contingencies. This link is basically the core of what defines outcome 

response learning, i.e. acquiring goal-directed behavior according to both instrumental learning 

as well as ideomotor approaches. 

The question arises on where these contingencies are stored. There is a distinction to 

be made between long term memory areas in the brain (O'Reilly & Rudy, 2001; Rolls, 2010; 

Rolls & Kesner, 2006; Tulving & Markowitsch, 1998) and areas that provide more of a buffer 

or cache structure in ongoing tasks or processes (Oberauer, 2009). Concerning long term 

memory and retrieval processes the hippocampus has been suggested to play a key role in 

the goal-directed control of action (Fouquet et al., 2013; Johnson, van der Meer, & Redish, 

2007; Kennedy & Shapiro, 2009; Zilli & Hasselmo, 2008). In an ongoing task, however, the 

LPFC has been repeatedly reported to function as a cache memory storage of O-R 
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contingencies (Dolan & Dayan, 2013; Doll et al., 2009b; Doll, Simon, & Daw, 2012; Glascher, 

Daw, Dayan, & O'Doherty, 2010; Ramamoorthy & Verguts, 2012).  

Unique to the ideomotor approach is the assumption that learnt O-R associations are 

bidirectional in a sense that they work both ways in terms of directedness. According to phase 

2 of the two stage model proposed by Elsner and Hommel (2001), decoupling learnt R-O 

contingencies from external triggers is an essential step necessary to increase one agent´s 

degrees of freedom beyond the realm of instrumental behavior, i.e. acting solely based on the 

presence of an physical stimulus. Study 2 gave indications that the neural representation of 

the motor program stored in the SMA is linked to the internal representation of response and 

outcome stored in the LPFC. This link could enable actions to become anticipatory, i.e. goal-

directed. Activation of the internal representation of the desired outcome and its required action 

would activate the neural representation of the corresponding motor program via previously 

established LPFC-SMA couplings. Hence, coupling between the LPFC and the SMA in the 

acquisition phase of R-O contingencies might be a key to a postulated fundamental 

mechanism according to ideomotor theory (Shin et al., 2010) as it would allow for a pro-active 

activation of the motor program based on an agent´s current goal (O-R). 

 

Consolidation through early automatization of goal-directed behavior in the dorsal caudate? 

Activation in anterior parts of the caudate is generally believed to be involved in the 

establishment of goal-directed actions (J. O'Doherty et al., 2004; Ruge & Wolfensteller, 2010; 

Tanaka et al., 2008; Tricomi et al., 2004). This has already been demonstrated in various 

studies (Ruge & Wolfensteller, 2010; Stocco et al., 2012). Based on the results of a PPI 

analysis Ruge and Wolfensteller (2015) assumed that this region was not engaged in encoding 

processes of O-R contingencies per se but rather is activated in the active utilization process 

of O-R contingencies (i.e. in an ongoing S-R-O learning task). The results of the PPI replication 

analyses (with the one caveat that the correlation with the behavioral marker did not exceed 

significance level) seem to support this hypothesis. The results of the EEG-informed analysis, 

however, do not quite fit into the picture. The analysis identified an increased coupling of a late 

negativity in the EEG signal and activation in dorsal parts of the caudate. The dorsal caudate 

has not particularly been brought into connection with O-R learning so far. The results of this 

study could prompt the hypothesis that caudate involvement into processes of O-R learning 

can also be generalized to more dorsal parts of this region. However, this consideration is 

highly speculative given the fact that is not backed so far by other research.  
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Based on the results of this work, what seems to be more likely is that the coupling 

effect in this part of the caudate reflects an ongoing process of an early automatization of the 

acquired behavior. It is commonly believed that the dorsal striatum, and the dorsal caudate in 

particular, are critical in the formation and control of habitual action in long time learning (Burton 

et al., 2015; Haber & Knutson, 2010). However, the automatization process potentially at work 

here has to be distinguished from habitual behavior as a result of such long time learning 

processes. But it has already be shown in a similar paradigm that behavior can show signs of 

automatization within only few repetitions of novel instructed S-R mappings (Mohr et al., 2016). 

This automatization process would save potential cognitive resources as it would decouple 

often performed behavior from anticipation/processing of the outcome. Thus, it might possible 

that the dorsal caudate functions as a region in which the acquired behavior might already be 

prepared to work in a more automatized manner without relying on the online evaluation of the 

ensuing effect. 

In conclusion I want to refer to the two opening questions raised at the beginning of this 

section: What happens in the aftermath of a performed action and its ensuing effect and what 

does the late post-response EEG negativity really represent? It might be a neurophysiological 

marker of an overall updating and synchronization process happening at the end of each trial. 

Thus, it is correlated with several areas in the brain, each involved with distinct feedback 

mechanisms. On one hand, the SMA seems to be engaged in bidirectional encoding processes 

of R-O associations, mediated by increased coupling with the LPFC. This association could 

already set up to be activated independent of the presence of a physical stimulus. On the other 

hand, there might be an early automatization of the performed behavior, potentially 

disentangling itself more and more from evaluation of the ensuing effect, reflected by 

increasing activation in dorsal parts of the caudate as learning progresses. 

 

Is the attenuation of the perceived outcome in response to a performed action part of the learnt 

O-R contingency? 

Regarding post-response effects of O-R learning, in study 1 I observed a learning-

related attenuation effect in the auditory N1 range following in response to the presentation of 

the auditory outcome. This suggested that the phenomenon of neurophysiological sensory 

attenuation as a direct result of outcome integration processes can be generalized to a context 

of rapid instruction-based S-R-O learning and can be established within few initial learning 

trials. This effect however has not been replicated in the confirmatory analysis of study 2. EEG 

data in this case pointed towards the reverse effect of an increase in negativity in subjects 

exhibiting stronger O-R compatibility effects. The reason why this effect could not be observed 
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in study 2 remains elusive. However, with the effect being very prominent in study 1 it might 

be worthwhile investigating this phenomenon in a further isolated study. Sensory attenuation 

of self-generated stimuli is commonly accounted for by forward models of motor control (Miall 

& Wolpert, 1996). According to such models, information about the motor command, the so 

called corollary discharge (Sperry, 1950), or efference copy (Von Holst & Mittelstaedt, 1950), 

is used to make predictions about the sensory outcomes of the initiated action. The actual 

outcome of the action is then compared to this predicted outcome. If both match, the response 

is attenuated (Curio, Neuloh, Numminen, Jousmaki, & Hari, 2000; Ford, Mathalon, Heinks, et 

al., 2001; Ford, Mathalon, Kalba, et al., 2001; Heinks-Maldonado, Mathalon, Gray, & Ford, 

2005; Houde, Nagarajan, Sekihara, & Merzenich, 2002; Martikainen et al., 2005; McCarthy & 

Donchin, 1976; Schafer & Marcus, 1973). Consistent with the forward model, less attenuation 

is found when the actual effect does not match the expected effect (Bays, Wolpert, & Flanagan, 

2005; Blakemore, Frith, & Wolpert, 1999; Heinks-Maldonado et al., 2005; Heinks-Maldonado, 

Nagarajan, & Houde, 2006; Houde et al., 2002). This could in fact be used in a proceeding 

EEG experiment, which could test specifically on the presence of sensory attenuation effects. 

One would only have to introduce an additional manipulation in the learning phase of the 

paradigm in which half of the S-R mappings are followed by arbitrary outcomes so that no R-

O contingencies could be acquired. Hence, one would expect an attenuated EEG response to 

the outcome in the contingency condition and less to no attenuation in the random outcome 

manipulation. 

 

6.3 Critical reflection of the methodology and outlook 

6.3.1 Strengths and limitations of this work 

This work set out to disentangle neurophysiological correlates of instructed outcome 

response learning using the means of co-registered EEG-fMRI. There are an abundance of 

either EEG or fMRI studies in the field approaching neural mechanisms on the acquisition of 

goal-directed behavior in humans. However, to be able to split the fMRI BOLD signal with 

additional information that relied on information of both modalities posed a novelty. The studies 

presented here were particularly designed to contribute distinct activation in the brain to either 

response preparation/initiation or to post-response outcome integration processes.  

A great strength of this work lies in the fact that the same exact paradigm has been 

used in all of its parts. Together with previously reported work (Ruge & Wolfensteller, 2015) a 

total of three separate studies, each with a distinct research focus, can be integrated. Even 

more, each consecutive study was able to serve as a replication study to probe previously 
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found effects. The value in this test of reliability of results cannot be stressed enough in the 

course of the strongly debated “replication crisis” in the science community (Maxwell, Lau, & 

Howard, 2015; Open Science, 2015; Stroebe & Strack, 2014). In this sense, the PPI analysis 

performed in the very first attempt to this experimental design (Ruge & Wolfensteller, 2015) 

could be probed with this work. Moreover, EEG ROIs that were explored in study 1 of this 

dissertation could be either rejected or confirmed in study 2 and further be utilized in the EEG-

informed analyses. In this regard, it has to be highlighted that due to the partially explorative 

nature of the EEG-informed analysis, the interpretations drawn are still to be viewed 

speculative. Every slight change concerning the EEG regressor in the joint fMRI analysis, may 

it be a shift of the time window, using a different electrode, or clustering more than one 

electrodes, requires setting up a new GLM 1 in the EEG-informed analysis. This could 

ultimately result in an inflation of estimated GLMs, potentially cumulating the Type I statistical 

error. This issue is currently not accounted for in the present work. Therefore, it would be 

strongly suggested to verify the results of the EEG-informed analysis in an additional 

confirmative study. 

 

6.3.2 Data quality assessment 

I observed a considerable amount of noise already in the Grand Average ERP signal 

in the co-registered EEG data of study 2 when compared to the data from the EEG only set up 

of study 1. Additionally, there was an even greater amount of noise on the single trial level in 

the EEG-fMRI data set. This loss in data quality could already have had an effect on the power 

of individual EEG effects and also its potential correlations with behavioral indices. In fact, it 

might have been one of the reasons why key effects observed in study 1 could not be replicated 

in study 2. While a loss in data quality can be compensated for by the averaging procedure of 

the ERP method, this does not apply to the single trial level. Eventually, this lack in data quality 

made more sophisticated methods based on single trials hard, if not impossible, to realize. For 

this reason the employment of an exemplary symmetric data fusion method was dropped. As 

already laid out in the general objectives section (see chapter 3) the initial plan was to also 

apply a joint ICA approach to the data. Ideally, this could have led to a comparison of both 

methods concerning feasibility, assumptions, practicability, and interpretations that could be 

drawn from either method. Ultimately, guidelines on if, when and how to apply either method 

could have been formulated. However, single trial ICAs of the EEG data absolutely lacked any 

usefulness. ICs where highly polluted with noise that could not be compensated for in any way. 

Hence, the joint ICA idea was abandoned to fully concentrate on the EEG-informed analysis 

approach. It cannot be stressed enough that on the single trial level there remains massive 



Concluding general discussion 
 

118 
 

room for data quality improvement. For future projects, there are several options that could 

help to improve EEG data quality even on the level of individual trials. 

First of all, in the present study the Helium pump artifact was avoided by switching the 

Helium pump off during simultaneous EEG-fMRI scanning sessions. However, there are many 

scanning setups in which switching off the Helium pump is not allowed or feasible resulting in 

the inevitable HE artifact to be present in the EEG data. If this is the case, one can utilize a 

recent trend in EEG-fMRI. This novel method relies on reference signals in the artifact 

correction preprocessing pipeline to be used in the correction of the HE and BCG artifact 

(Chowdhury, Mullinger, Glover, & Bowtell, 2014; Luo, Huang, & Glover, 2014). One way of 

obtaining these kind of signals is by using “carbon-wire loops” (Abbott et al., 2015; Masterton, 

Abbott, Fleming, & Jackson, 2007; Negishi, Abildgaard, Laufer, Nixon, & Constable, 2008; J. 

N. van der Meer et al., 2016). Carbon wire loops (CWLs) are added to the existing EEG cap 

and measure movement-induced signals based on Faraday´s magnetic induction law. This 

motion information then assists in the removal of movement-induced artifacts in the EEG in a 

linear regression, based on a sliding window approach. It has been shown that the CWL 

correction method not only corrects for the helium pump artifact but also seems to be superior 

to conventional BCG correction methods, such as AAS or OBS (J. N. van der Meer et al., 

2016). 

Secondly, on the software side, the method of wavelet denoising (Quiroga, 2000) has 

been proven to be a powerful tool in smoothing single trial EEG data, thus cleansing it from 

confounding noise. The wavelet transformation provides a time-frequency representation of 

the ERP signal with an optimal resolution, both in the time and in the frequency domain. 

Additionally, this method does not rely on the requirement of stationarity of the signal (Quiroga 

& Garcia, 2003). In the denoising process the averaged ERP is decomposed into different 

frequency bands and times using the wavelet multi-resolution decomposition. Wavelet 

coefficients, correlated with the ERPs are identified, while the remaining are set to zero. The 

coefficients of interest thereby are supposed to cover a time range in which the single-trial 

ERPs are expected to occur. Afterwards, the inverse transformation is applied, thus providing 

the denoised averaged ERP. Ultimately, this scheme is also applied on the single trial data 

level. The strength of this method lies in its ability to provide almost as equally clean individual 

trial data as averaged ERPs. However, this method has so far been tested by the authors 

mentioned above only in cases in which almost pure and prominent ERPs, namely the P1-N1 

complex and the P300 component, were present. Data on how the wavelet denoising method 

would perform in cases in which multiple event related potentials simultaneously present, 

resulting in a temporal overlap, or when dealing with components that are not characterized 

by high amplitudes, have not been published so far. The main reason I restrained from using 
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this method concerns the ambiguous issue if such a profound data transformation technique 

can still be considered data cleaning rather than data manipulation. Especially in the case of 

single trial data it may be the case that the wavelet denoising method eradicates trial-to-trial 

individuality and variance information in the smoothing process that is so desired to be 

accounted for in the first place. 

In conclusion, there are methods to even further improve EEG data quality in co-

registration settings. In my point of view it is preferable to prioritized optimization of the 

acquisition environment over any other means. Getting as clean as possible data will save a 

lot of preprocessing and correction steps in the later course. Perfect synchronization between 

EEG amplifier and the fMRI sequence seem to play a key part in controlling the Gradient 

artifact. To further optimize correction of the Cardioballistic artifact and Helium pump artifact, 

J. N. van der Meer et al. (2016) promote a fundamental benefit of including additional carbon 

wires in the set up. 

 

6.3.3 A common neural foundation for EEG and fMRI? 

One of the main motivations on going to the lengths of co-registered EEG-fMRI data 

acquisition is based on the fundamental assumption that both imaging methods produce 

markers that basically share a common neural basis. In alignment with this common 

understanding I also performed additional simple EEG-fMRI-coupled analyses independent of 

the primary research questions. The focus lied on prominent and well-established ERP 

components that usually exhibit huge amplitudes in the EEG spectrum and supposedly can 

unambiguously be assigned to specific areas in the brain. Namely, I used the visual N1 in 

response to the visual imperative stimulus, the EEG correlate of the motor response, as well 

as the auditory N1 in response to the auditory outcome subsequent to the response. I assumed 

that these components would be tightly coupled to activation in the primary visual cortex (visual 

N1), premotor or motor areas (ERP motor signal) and the primary auditory cortex (auditory 

N1). However, performing an EEG-informed fMRI analysis concatenated over the entire 

learning course (SRO-rep 1 to SRO-rep 8), yielded mixed results. Only the ERP motor signal 

predicted significant activation in parts of the postcentral gyrus as well as the parietal 

operculum. This coupling was only visible if response time differences between early and late 

stages of learning were entered as an additional covariate into the model. Including either the 

visual N1 or the auditory N1 did not lead to any significant activation in the brain. On first sight, 

these results do not seem to shed a good light on the question, if EEG and fMRI data fusion 

using the means of EEG-informed analysis is able to produce stable and sound results. Thus, 
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the question on empirical evidence from other studies supporting the axiom of converging 

imaging methods based on a universal neurological measure arises.  

The electrophysiological basis of neurophysiological markers has been investigated 

thoroughly in the past years (Logothetis & Pfeuffer, 2004). One common presumption is that 

the BOLD signal itself is tightly coupled to local field potentials (LFPs) in the brain reflecting 

dendritic activity (Logothetis et al., 2001). Thus, increasing and decreasing brain activity should 

be able to be picked up by the fMRI BOLD signal (Shmuel, Augath, Oeltermann, & Logothetis, 

2006) as well as by electroencephalography as LFP power signal. Based on this understanding 

many studies trying to gain an understanding on the common nature of fMRI and EEG 

correlates focused around comparing the BOLD estimate to EEG-LFP power measures 

(Buzsaki & Draguhn, 2004; Engel & Singer, 2001; Fries, 2005; Goense & Logothetis, 2008; 

Knight, 2007; Linkenkaer-Hansen, Nikulin, Palva, Ilmoniemi, & Palva, 2004; Ohara et al., 

2001). However, much fewer is known on the link of EEG scalp potentials to the BOLD signal. 

Some research was done revolving around cortical surface negativities (Brunia & van Boxtel, 

2001; Rosler, Heil, & Roder, 1997) such as the readiness potential (RP, Kornhuber & Deecke, 

1990)), a slow negative shift mainly picked up by electrodes at motor cortex sites, or the 

contingent negative variation (CNV, (Birbaumer, Elbert, Canavan, & Rockstroh, 1990). It has 

been shown that cortical surface negativity is reflected by depolarization of the apical dendrites 

of large pyramidal cells (Mitzdorf, 1989). Regarding visual and auditory perception Lakatos, 

Karmos, Mehta, Ulbert, and Schroeder (2008) were able to demonstrate that increased 

attention to an auditory or visual stimulus is associated to depolarization within upper layers of 

either the primary visual or auditory cortex. Thus, at least for slow cortical potentials (SCPs), 

this suggests a link to neuroimaging in terms of a measurable “activation level” imaged by 

BOLD fMRI. There seems to be a rule of an inverse proportionality regarding the temporal 

frequency and the spatial scale of synchronous activity (Bullock et al., 1995; Leopold, 

Murayama, & Logothetis, 2003; Varela, Lachaux, Rodriguez, & Martinerie, 2001). This means 

that phase coherence in higher frequencies is often observed on a scale of mm while SCPs 

(usually in the range of 1 Hz and less) are synchronized over many centimeters. Potential 

changes in behavior, i.e. in response to stimuli, increase the spatial range of phase coherent 

activity. This effect is most prominent at lower frequencies (Gross et al., 2004; Kahana, 2006; 

Saalmann, Pigarev, & Vidyasagar, 2007). This has generally led to the conclusion that event-

related changes in neuronal synchronization are at least to a certain degree responsible for 

changes in the fMRI BOLD signal during task performance. 

Is there a definitive explanation on why couplings of ERP components and BOLD signal 

on such a fundamental level could only be observed in partial in the present EEG-fMRI study? 

A final answer to this question cannot be given. To my knowledge there has not been 
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systematic research on the convergence of ERPs other than the RP and the CNV. It might be 

that a common neural foundation between short lived ERPs (compared to the temporarily 

elongated RP/CNV) is much harder to grasp with the method of EEG-informed analysis. 

Additionally, it has been proposed that EEG and fMRI are symmetrically complementary with 

regards to function localization. Research shows that certain neuronal processes may be 

detected by EEG recording but not by fMRI and vice versa (Herrmann & Debener, 2008; Nunez 

& Silberstein, 2000). This has led to the conclusion that respective weaknesses of each method 

seem to be symmetrical arrayed. However, this view also has been challenged by various 

authors (Logothetis, 2002; Ojemann et al., 1997; Shmuel et al., 2006). It could be shown that 

there seem to be “blind spots” which can pose a problem for both EEG and fMRI, such as the 

medial temporal lobe (Brazdil et al., 2005; Cohen et al., 1999; Halgren et al., 1995) or the 

hippocampal system (Fell et al., 2001; Fernandez, Fell, & Fries, 2002). However, these 

examples only seem to represent more exceptional cases rather than a general rule. Another 

reason for the missing correlation between sensory ERP potentials and activation in the 

respective sensory cortices may be found in the design of the paradigm itself. It might be that 

although the stimulus-locked visual N1 as well as the response-locked auditory N1 were well 

pronounced, they were not isolated in terms of other temporarily overlapping components. As 

seen above, both components were already involved in learning-related processes, i.e. 

response selection/initiation or outcome processing. Hence, there might already be a 

superimposition of EEG components representing multiple distinct neural processes. 

 

6.3.4 How can co-registered EEG-fMRI contribute to a better understanding of 

the human brain? 

The answer to this question highly depends on the way both data modalities are fused. 

Data fusion and analysis again should be led primary by the overarching research question 

that is aimed to be answered. The broad variety of reasons for combining electrophysiology 

and functional neuroimaging has been reviewed by Ullsperger and Debener (2010). They also 

introduced a taxonomy for categorizing various types of EEG-fMRI data fusion methods.  

One strand of methods revolves around source localization methods of 

electrophysiological parameters (i.e. EEG or MEG). These methods differ in terms of a priori 

defined information that are additionally fed into the model. The simplest methods involve no 

generator or conductivity modeling of the EEG source leaving proximity as only measure for 

correlating electrophysiological results with brain structure (Nunez & Pilgreen, 1991). The so 

called inverse current source localization constitutes a more sophisticated approach which 

requires computation of a head conductivity model (Darvas, Ermer, Mosher, & Leahy, 2006; 
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Rush & Driscoll, 1968). According to this method, the location of generators of electrical current 

within the brain are deduced by identifying a best fitting model either by brain electrical source 

analysis (BESA, Scherg & Picton, 1991) or by means of low resolution brain electromagnetic 

tomography (LOERETA, Pascual-Marqui et al., 1999). Inverse source localization can be 

unconstrained or constrained with respect to potential regions of interest. In its most elaborated 

form location and orientation of all current dipoles can be determined by a mixture of 

anatomical and functional neuroimaging (Dale, Fischl, & Sereno, 1999; Dale & Sereno, 1993; 

Nunez & Silberstein, 2000). Together with the generator strengths, this head conductivity 

model fully specifies the electrical state of the system. Thus, generator time courses can by 

directly drawn from the recorded data by application of the pre-computed forward model. 

Other research is more concerned with assigning correspondences between distinct 

electrophysiological components and functional neuroanatomy. These components can be 

defined either as event-related potentials (Strobel et al., 2008) or independent components 

(ICA, Makeig et al., 2004). In general, ICA is more data driven whereas ERP-based analysis 

strategies tend to be more top-down methods (Ullsperger & Debener, 2010). However, it has 

to be stressed that even in the ICA method feature components further used in a unified EEG-

fMRI model usually represent distinct ERP components. Thus, I will further only relate to ERPs, 

even if the component in question was produced by the ICA method. The extracted 

components of interest are correlated with the fMRI BOLD signal, usually on a trial-to-trial 

basis. Hence, combined ERP-fMRI designs are supposed to capture correlations between 

EEG electrophysiological and hemodynamic responses in relation to behavioral events 

(Debener et al., 2006). Several separate studies were able to link specific ERP components to 

activation in distinct regions in the brain (Calhoun et al., 2006; Eichele et al., 2005; Raichle et 

al., 2001; Vincent, Kahn, Snyder, Raichle, & Buckner, 2008). For most of the studies 

simultaneous EEG-fMRI acquisition is mandatory in order to avoid potential training effects by 

sequential recording. Another advantage in using ERPs in a combined analysis lies in their 

long research tradition. For prominent ERPs there is already a lot of knowledge about 

functionality and even possible generator location. Thus, these information could also be used 

in the combined analysis to help exploring functionality of activated brain areas. Further, in 

trial-by-trial analyses two distinct variance sources are separable: (1) a deterministic variance 

component related to the event itself, and (2) a stochastic variance component reflecting trial-

by-trial variability within a single subject. With the BOLD signal alone, one is only able to extract 

the deterministic variance component (by conventional event-related fMRI analysis). Its 

stochastic component is only accessible by the means of EEG-fMRI acquisition (Ullsperger & 

Debener, 2010).   
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6.4 General Conclusion 

Combining electroencephalography with functional magnetic resonance tomography in 

a manner that optimally exploits the respective strengths of each method can provide huge 

benefits in neuroscientific research. In this dissertation the method was used to investigate 

neurocognitive mechanisms on the acquisition of goal-directed behavior in an instructed 

learning paradigm. Temporal highly resolved EEG information was used to break down the 

fMRI BOLD signal within a trial. EEG-informed analyses brought to light distinct brain activation 

associated with response selection and initiation as well as brain activation associated with 

post-response outcome integration, respectively. This would have not been possible applying 

each of the methods alone.  

Prior to the behavioral response, the results point towards the orbital frontal cortex as 

a region of integrating S-O information enabling an agent to increasingly shift from mere 

stimulus based behavior towards acting upon achieving a desired goal state. Post-response 

activations revealed a seemingly two-fold feedback stream of integration of O-R contingencies, 

each mediated by a late post-outcome negativity in EEG activity. On one hand the SMA was 

engaged in bidirectional encoding processes of O-R associations, additionally correlated with 

increased coupling with the LPFC. Hence, the SMA seems to be a key region not only when it 

comes to establishing goal-directed actions. It might play a central part of making an agents 

behavior independent from external triggering stimuli, hence enabling anticipatory and pro-

active behavior. On the other hand the results probed the hypothesis that the dorsal caudate 

functions as a region in which the acquired behavior might already be prepared to work in a 

more automatized manner without relying on the online evaluation of the ensuing effect. 

Overall, co-registered EEG-fMRI recording has been proven beneficial in the context 

of researching underlying mechanisms of goal-directed behavior. The results can provide an 

additional piece in grasping the complex mechanisms involved into outcome response 

learning. Due to the highly explorative approach of the studies more confirmatory research is 

strongly recommended to eventually attain a comprehensive understanding on the 

neurocognitive mechanisms of outcome response learning. A final assessment regarding the 

reliable conjunction of these two different data modalities cannot be given based on this work 

alone. 
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