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Abstract: Two-dimensional (2D) molybdenum disulfide (MoS2) gives a new 

inspiration for the field of nanoelectronics, photovoltaics, and sensorics. However, the 

most common processing technology, e.g. liquid-phase based scalable exfoliation used 

for device fabrication, leads to the number of shortcomings that impede their large area 

production and integration. Major challenges are associated with the small size and low 

concentration of MoS2 flakes, as well as insufficient control over their physical 

properties, e.g. internal heterogeneity of the metallic and semiconducting phases. Here 

we demonstrate that large semiconducting MoS2 sheets (with dimensions up to 50 μm) 
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can be obtained by a facile cathodic exfoliation approach in non-aqueous electrolyte. 

The synthetic process avoids surface oxidation thus preserving the MoS2 sheets with 

intact crystalline structure. We further demonstrate at the proof-of-concept level a 

solution-processed large area (60 × 60 µm) flexible Ebola biosensor, based on a MoS2 

thin film (6 µm thickness) fabricated via restacking of the multiple flakes on the 

polyimide substrate. The experimental results reveal a low detection limit (in fM-pM 

range) of the fabricated sensor devices. We are confident that the presented exfoliation 

method opens up new opportunities for fabrication of large arrays of multifunctional 

biomedical devices based on novel 2D materials. 

1. Introduction

The great success of graphene research has motivated widespread interests in 

semiconducting 2D materials such as transition metal dichalcogenides (TMDs), which 

present indirect bandgaps in the range of 1.0-2.0 eV and are suitable for electronic 

devices.[1] Molybdenum disulfide (MoS2) is the one of the most explored TMDs, ideal 

for new generation electronics,[2] optoelectronics,[3] and topological insulators.[4] 

Several examples of applications can be found where MoS2 thin films are used, such as 

sensors,[5] energy storage[6] or flexible electronics.[7] Thus, a method to prepare highly 

concentrated and stable dispersions of excellent quality semiconducting TMDs 

materials is essential in order to achieve solution-processed, inexpensive, large area 

high performance devices. 

However, exfoliated MoS2 flakes exhibit heterogeneous properties, depending on 
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their thickness, lattice structures as well as chemical composition. The synthetic 

methods are thus critically important, in order to access their intact properties. 

Considerable progress have been achieved to overcome the weak interlayer interactions 

to produce mono- or few-layer MoS2 using micromechanical cleavage,[2, 8] chemical 

intercalation,[9] and ultrasound-promoted shear exfoliation.[10] While micromechanical 

cleavage is able to obtain pristine MoS2 flakes with very limited yield, the chemical 

routes using harsh tert-butylithium-mediated intercalation are able to produce single-

layer MoS2 flakes with large quantity. However, the lithium intercalation converts 

MoS2 from pristine semiconducting 2H phase to metallic 1T phase. Beyond that, liquid-

phase exfoliation with suitable solvents (e.g. N-methyl-2-pyrrolidone (NMP)) offers 

macroscopic quantity of 2H-MoS2 flakes.[11] Nonetheless, it requires long-last agitation 

(e.g. 23 h) and delivers low exfoliation yields (~40%) as well as small sheet sizes (less 

than 1 μm).[12] By now, it remains a great challenge to prepare large sheet size, high-

quality 2H-MoS2 flakes with high yield. 

Herein, we demonstrated a novel scalable method to prepare high-quality 2H-MoS2 

flakes by cathodic exfoliation in organic electrolyte. Especially, the intercalation of 

tetra-n-butyl-ammonium cations in bulk MoS2 benefits to fast exfoliation within 1 hour, 

high yield of 70% and large-sized flakes up to 50 μm. The method is appealing to obtain 

high quality multiflake films with no throughput limitations for the variety of electronic 

applications abovementioned. As a first application, we fabricated the large-area 

biosensor, developed by a restacking the 2H-MoS2 flakes into thin film on the flexible 

polyimide support. Developed sensor array revealed low detection limit of VP40 matrix 
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protein from Ebola virus down to picomolar levels as well as excellent flexibility even 

after bending down to 1 mm radius. The results showed that this exfoliation approach 

could be appropriate in the future for rapid fabrication of 2D materials based arrays of 

electronic devices, e.g. for light weight biosensors to be used in remote areas or in case 

of emergency of fatal disease spread. 

2. Results and Discussion

2.1. Electrochemical Exfoliation of MoS2 Crystal 

In this study, electric current is used as a main driving force to push ions or charged 

molecules into the interlayers of natural MoS2 crystal. Figure 1a schematically 

illustrates the experimental setup for the electrochemical exfoliation, where a piece of 

MoS2 crystal, a Pt foil, and 0.1 M tetra-n-butylammonium bisulfate (TBA▪HSO4) in 

propylene carbonate were used as a working electrode, a counter electrode, and an 

electrolyte, respectively. TBA▪HSO4 is highly soluble in a wide cast of organic solvents, 

providing great freedom for the electrolyte design. Because the size of TBA+ cation 

(0.85 nm) is generally greater than the interlayer spacing of MoS2 layers (0.615 nm),[13] 

the expansion at the boundaries of MoS2 crystal is necessary to allow the intercalation 

of large TBA+ cations. A low positive bias of +5 V was applied on the MoS2 foils for 5 

min, to intercalate small anions (SO4
2-), for the subsequent intercalation by cationic 

TBA+. Once switching to -5 V, massive gas bubbles were observed, owing to the 

reduction of the intercalated SO4
2- through chemical reactions: SO4

2- + 4H+ + 2e- → 

2H2O+ SO2↑. The MoS2 crystal began to swell, dissociated into small pieces and 
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suspend in the electrolyte, as shown in Figure S1 and Movie S1, Supporting Information. 

The efficient expansion and exfoliation were further confirmed by optical images 

(Figure 1b). In order to access the optimal experimental conditions, working bias was 

carefully manipulated (Figure S2-4, Supporting Information). A moderate potential of 

-5 V was applied for 1 h to achieve efficient exfoliation.

The mechanism of electrochemical exfoliation of natural MoS2 crystal is proposed

in Figure 1d. Thanks to the variable diameters of TBA+ cations (0.47 nm for flattened

configuration and 0.89 nm for tetrahedral configuration),[14] the insertion of TBA+

cations enables the expansion of the interlayer spacing of MoS2 foil to a maximum

gallery of 0.89 nm. Afterwards, the migration and reduction of H+ produce hydrogen

bubbles, further enlarging the gaps between adjacent layers, which is essential to

overcome the van der Waals interactions.

TBA·HSO4 ↔TBA+ + HSO4
- (1) 

HSO4
- ↔ SO4

2- + H+ (2) 

2H+ + 2 e → H2↑ (3) 

The cathodic reduction can possibly transform TBA+ into other species.[15] The large 

volume expansion combined with gas release overcome the weak interactions between 

MoS2 layers. 

(nButyl)4N+ + e → (nButyl)4N·       (4) 

(nButyl)4N·→ nButyl· + (nButyl)3N   (5) 

nButyl· + e → nButyl- (6) 

To validate it, the morphologies of a MoS2 electrode at different time periods (0-10 
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min) were monitored by scanning electron microscopy (SEM) (Figure 1e-g, Figure S5, 

Supporting Information). The well-defined edges were evolved into disordered porous 

structure, which strongly supports our hypothesis that during the electrochemical 

process, grain boundaries of the MoS2 electrode open up to promote cationic 

intercalation, leading to the exfoliation of MoS2 flakes. Based on the mass ratio between 

dispersed sheets to the starting precursor, the total exfoliation yield is about 70 %, 

surpassing that of liquid exfoliation methods (~40 %). The exfoliated MoS2 flakes were 

collected using vacuum filtration and washed repeatedly with water/ethanol, then 

redispersed in propylene carbonate to obtain a homogeneous dispersion (Figure 1c). 

The concentration of obtained MoS2 dispersions was in a range of 0.1-0.5 mg mL-1. In 

addition, by tailoring the sizes of electrochemical cell and MoS2 foils, this method is 

ready for scaled-up production, which is one of the major advantages in comparison to 

micromechanical cleavage,[2, 8] chemical intercalation,[9] and ultrasound-promoted 

shear exfoliation,[10-12] that generally lead to limited yield (<3 %), poor structural 

integrity and/or small sheet sizes (sub 1 μm) (Table S1, Supporting Information). 

2.2. Characterization of High-Quality MoS2 

Additional centrifuge process was used to selectively separate the flakes and remove 

the unexfoliated thick materials (Figure S6, Supporting Information). The small flakes 

(sub 1 μm) were commonly observed in the supernatant, whereas large flakes (more 

than 5 μm) showed up frequently in the middle of the dispersion. The mixed dispersion 

was subsequently transferred onto Si/SiO2 substrates by spray coating. Figure 2a shows 
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the SEM images of exfoliated MoS2 flakes with a lateral dimension between 10 and 50 

μm. In addition, transmission electron microscopy (TEM, Figure 2b) of few-layered 

exfoliated MoS2 flakes exhibit the transparent morphology and the folded edge. High-

resolution TEM (HR-TEM, Figure 2c) images confirm the distinct crystal lattice and 

hexagonal lattice structure of MoS2 flakes, suggesting the undamaged process of 

electrochemical exfoliation. The well-defined lattice space of 0.17 and 0.28 nm were 

observed, corresponding to (110) and (100) plane. The selected area electron diffraction 

(SAED) patterns (insets of Figure 2b,c) indicate hexagonal symmetry of the atomic 

arrangement in 2H-MoS2 and that individual sheets consist of a single crystal domain, 

implying that the as-exfoliated MoS2 flakes inherited the nature of high-quality.[16] 

X-ray photoelectron spectroscopy (XPS) spectra of the exfoliated sample display the

bands of Mo 3d and S 2p, as the main characteristic of MoS2 (Figure S7, Supporting 

Information). In detail, the Mo 3d shows two peaks at 232.5 (Mo 3d3/2) and 229.5 eV 

(Mo 3d5/2), while the S 2p is located at 163.5 (S 2p1/2) and 162.0 eV (S 2p3/2), as the key 

feature of 2H-MoS2. Atomic force microscopy (AFM, Figure 2d,e) measurements from 

small flakes show that the thicknesses are 3.9−6.7 nm, corresponding to 6−10 layers. 

As an additional benefit, such high-quality MoS2 sheets are highly solution-processable 

for various applications. Subsequently, a MoS2 thin film (ca. 1 µm thick) was fabricated 

with the stable dispersion by applying vacuum filtration through a 

polytetrafluoroethylene (PTFE) membrane (inset of Figure 2f). Top-view SEM and 

corresponding energy-dispersive spectroscopy (EDS) elemental mapping show large-
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area uniformity and continuity of the MoS2 thin film (Figure 2f, Figure S8, Supporting 

Information). 

2.3. Fabrication of Ebola Biosensors 

We further demonstrated the excellent performance of the exfoliated MoS2 flakes as 

electronic biosensors fabricated using multiple interconnecting flakes contacted 

between gold electrodes, and incorporating specific antibodies as receptors for VP40 

protein from Ebola (see concept Figure 3a). The electrical response of the device has 

been tested at the flexible polyimide support and used as a light-weight biosensor. For 

the fabrication, MoS2 flakes were deposited from an ethanol dispersion onto a flexible 

polyimide support following a simple transfer procedure[17], shown in Figure S9 

(Supporting Information). The hydrophobic properties of MoS2 and the surface tension 

of water allows the floatability of MoS2 flakes inside the area defined by 

polydimethylsiloxane (PDMS) window,[18] forming a compact thin film (Figure 3b-i) 

and then assembled into the device. The square shape area (60 × 60 µm) between the 

electrodes was used for antibody immobilization and antigen sensing. The chip, 

containing up to 12 working sensors, is shown in Figure 3b-ii, with a magnified image 

in Figure 3b-iii. An AFM measurement indicated a film thickness of up to 5-6 µm 

(Figure 3b-iv). The resultant devices were used for a bending test under several bending 

radii between 14 mm and 1 mm (see bended chip in Figure 3c). The as-prepared devices 

displayed Schottky junction characteristics with an ON current (ION) of ~5×10-5 A and 

an OFF current (IOFF) of ~1×10-11 A (Figure 3d, red line). 
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Bending analysis was performed by attaching the carrier foil to cylindrical objects in 

range of 14 mm down to 1 mm radius, far below the curvature required in external 

biomonitoring applications.[19] As depicted in Figure 3d, ION was maintained at the 

initial level, with only minor decrease with bending radii at 14 mm (20 µA) and 8 mm 

(5 µA). An observed gradual degradation with further increasing bending radii from 6, 

4.5 to 2 mm, the device still worked with ca. 0.1 µA current retention. SEM images 

showed how deterioration was caused by detachment and loss of flakes from the 

intercalating conducting path (blue and green colored marks in Figure 3e). As indicated 

in the highlighted area, a conductive pathway between the four electrodes still existed 

after 8 mm bending radius, and remained even after 1mm bending. 

Apart from the static mechanical characterization, we perform dynamic bending tests 

of the flexible devices in order to observe the degradation of their performance after 

100 consecutive bending cycles (see Figure 3f,g). In order to realize these 

measurements, the polyimide foils with the fabricated devices were repeatedly bent at 

the cylinder with the diameter of 8 mm (Figure 3f). We do not observe visible 

degradation of the device performance even after 100 bending-unbending cycles, which 

is reflected in the practically unchanged I-V characteristics (Figure 3g). 

Remarkably, the results obtained using this relatively cheap and simple fabrication 

method, are comparable or even outperform some of the recent reported flexible 

electrical devices based either on single MoS2 flakes (2.2 - 10 mm)[20] or chemical vapor 

deposition (CVD) grown (9 - 14 mm)[21], and others fabricated in polyimide supports 
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using various materials such as organic films (28 mm)[19], silicon nanowires (7.5 mm)[22] 

graphene (4 mm)[23], or ZnO nanostructures (9 mm)[24]. 

Antibodies against VP40 were immobilized on MoS2 to confer the sensor with the 

required specificity (Figure 4a). The immobilization was realized using thiol-

containing 11-mercaptoundecanoic acid (11-MUA) as cross-linker, anchored to the 

boundaries or sulphur vacancies,[25] and connected with antibody through carbodiimide 

chemistry. A colorimetric confirmation using toluidine blue O (TBO) is provided in the 

Supporting Information.[26] Any remaining available binding point at the surface after 

antibody immobilization was blocked by a further incubation in 0.5 mg mL-1 bovine 

serum albumin (BSA). 

The biosensing performance of the device was evaluated by comparing the output 

characteristics in dry state before and after the incubation of solutions upon increasing 

VP40 concentrations (fM-pM range for sample #1). 20 µL PBS with target protein were 

deposited on the sensing area and incubated for 30 min. Then, PBS was used for rinsing, 

followed by a rinse using 10-fold diluted PBS to remove excess of salts. The results 

were compared with those obtained using Staphylococcal enterotoxin B (SEB) as 

analyte, which shows initial symptoms similar to Ebola disease if ingested. 

Additionally, a control experiment was done detecting VP40 with a sensor lacking 

antibodies. The current at 2 V increased after exposure to increasing VP40 

concentration in the femtomolar range with saturation at picomolar levels (Figure 4b,c). 

When using sensors with lower current due to a lower amount of flakes at the sensing 

area (sample #2) the detection range shifted to pico- and nanomolar range (Figure 4d), 
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which we attribute to the presence of a lower amount of MoS2 flakes occupying the 

same area, as reflected by a lower current level (10-8 A), and therefore less anchoring 

points for antibodies, resulting in a low probability of interaction with target protein. 

After dissociation of the antibody-antigen complex by incubation in a 10 mM glycine-

based regeneration buffer (pH = 2) the signal was recovered, allowing to repeat the 

VP40 detection again (Figure 4e). After the regeneration, the same tendency in the 

signal change in the pico- and nanomolar analyte concentration range could be 

repeated.[27] 

Since MoS2 is a semiconductor material, the sensing mechanism in the absence of a 

gate electrode can be explained as molecular gating caused by the attached VP40 

proteins, which modulate the carrier density. The biosensors recognize binding events 

of charged or polar biological species, because the electrostatic interaction between 

biomolecules and gate dielectric or channel gives rise to conductance modulation.[28] 

Under such conditions, tiny variation of current can be detected when using 

semiconducting MoS2 as active layers, rather than metallic MoS2. Finally, fetal bovine 

serum with spiked VP40 was employed as a more relevant medium for Ebola testing. 

A signal change was observed in the same concentration range, although the tendency 

was opposite to the buffer system. Incubations in serum without spiked analyte protein, 

both before and after the experiment, did not show any tendency, indicating that it must 

be related to the presence of VP40. This phenomenon, which could be related to 

interaction of the VP40 with other molecules leading to a change on the net charge of 

the analyte needs further studies. 
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The biosensing response fits the picomolar antigen sensitivity levels expected for 

rapid Ebola diagnosis in point-of-care situations.[29] The results also improve by several 

orders of magnitude those obtained by traditional methods such as the enzyme-linked 

immunosorbent assay and are similar to recent nanosensors with a more complicated 

fabrication process,[30] offering a promising alternative for fast and low-cost delivery 

and use in emergency situations or in remote areas. Comparable detection levels as well 

as sensing areas (Table 1) were obtained by other recent electrical biosensors based on 

MoS2 with more complex fabrication methodology, not flexible, or not tested down to 

such low bending radius (1 mm). The biosensor also shows remarkable performance 

with similar or better limit of detection compared to other Ebola detection techniques, 

showing no particular drawbacks such as necessity of special safety facilities, labeling, 

or difficulties for miniaturization (see Table S2, Supporting Information). Certain 

nonspecific adsorption was observed when no antibodies were present (Figure 4c), as 

well as a slight signal decrease when a non-specific antigen (SEB) was incubated. The 

latter could be attributed to a small deterioration of the performance of the device but 

with no protein attachment. 

One of the main advantages of MoS2 in terms of biosensing applications is that, in 

contrast to other 2D materials such as graphene, strong covalent bonds can be directly 

created on its sulphur vacancies using thiolated molecules,[25] without needing to follow 

preliminary oxidation steps to create functional groups[31] or relying on non-covalent 

interactions[32] for the incorporation of bioreceptors. Despite most of the sulphur 

vacancies theoretically exist at the edges of the MoS2 flakes, the multiflake structure of 
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the sensing area allows to present a density of binding sites high enough to generate 

current changes in the observed response range in femto- and picomolar concentrations. 

Additional antibody presence by strong adsorption on areas without imperfections due 

to the hydrophobic nature of MoS2 cannot also be discarded.[28b] An estimated 

maximum amount of 2 × 108 antibodies in the total MoS2 sensing area of 1 × 1010 nm2 

would allow detecting the 2.1 × 107 antigen molecules settled above the same area when 

the lowest tested concentration (2 fM) was incubated, and still leave free binding sites 

to reach a saturation at 2 pM concentration (2.4 × 1010 antigens settled). 

3. Conclusions

In summary, we have demonstrated the efficient exfoliation of natural MoS2 crystal 

based on an electrochemical strategy, producing MoS2 flakes with a high yield (ca. 70%) 

and large flakes up to 50 μm, thanks to the intercalation of tetra-n-butyl-ammonium 

cations in bulk MoS2. The exfoliated flakes exhibit intact crystallinity and high 

structural integrity. Further, the resultant MoS2 compact films were successfully 

biofunctionalized with antibodies against VP40. The as-prepared biosensor withstands 

severe mechanical deformations. In addition, the device shows remarkable analytic 

performance with the limit of detection of the target VP40 molecules down to 

femtomolar levels and surface regeneration capability. A proper electrode passivation 

and the incorporation of a gate terminal would allow exploiting the semiconducting 

properties of the MoS2 as a field-effect transistor, an electronic format that provides 

further application possibilities like interfacing and measuring directly in liquid 

Final edited form was published in "Small: nano micro". 2019, 15 (23), S. 1-10. ISSN 1613-6829 
https://doi.org/10.1002/smll.201901265 

13 
 
 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden



environments (e.g. analysis of biological dynamics[33] or nanoliter compartments[34]) or 

photodetection[35]. Therefore, this work not only provides a simple, efficient and 

scalable approach to prepare and functionalize high-quality MoS2 flakes for high-

performance biomedical devices, but also contributes to the widespread potential in 

other multifunctional applications. 

4. Experimental Section

Synthesis of Electrochemically Exfoliated MoS2 Flakes: The electrochemically

exfoliated MoS2 flakes were produced as follows. Typically, the natural MoS2 crystal, 

a Pt foil, and 0.1 M tetra-n-butylammonium bisulfate (TBA▪HSO4) in propylene 

carbonate (PC) were acted as working electrode, counter electrode, and electrolyte, 

respectively. The distance between the natural MoS2 crystal and the Pt electrode was 

~2 cm and was kept constant during the electrochemical process. The electrochemical 

exfoliation of MoS2 crystal was conducted at different conditions for a certain time. 

After that, the exfoliated MoS2 flakes were collected on a polytetrafluoroethylene 

(PTFE) membrane filter with 0.2-μm pore size by vacuum filtration, and washed 

several times with ethanol and deionized water. The resultant sample was dispersed in 

PC by sonication for 1 h. The dispersion was kept for 24 h, and the supernatant 

dispersion of MoS2 flakes was directly used for further functionalization. 

Device Fabrication: The fabrication process (depicted in Figure S8) starts with the 

substrate material polyimide (DuPont™ Kapton® HN500, 127 µm thickness). 

Polyimide is a lightweight, flexible material that is resistant to relative high 
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temperatures (0.10% shrinkage at 200°C according to provider) and chemically inert.[36] 

Therefore, it is broadly employed in electronics for producing flexible cables, as an 

insulator film on magnet wire and for medical tubing[37] and as a support for nanoscale 

sensors.[22, 38] 

Polyimide film is cut in a square of 35 × 35 mm2. After, the substrate was cleaned 

with acetone, ethanol, and deionized water using ultrasonic bath during 2 minutes each 

to get rid of some particles at its surface. Gold electrodes were defined following a 

standard photolithography process (Figure S8-i). A layer of positive photoresist 

(MICROPOSIT™ S1828™ G2, Dow® Electronic materials) was placed using spin 

coating. The setup used for the spin coating process was 4000 rpm with an acceleration 

of 4000 rpm/s during 1 minute. The mask with the desired electrode layout was aligned 

with the substrate and a first UV-lithography took place, for 10 seconds. After that, the 

exposed structures were developed (Developer bath AZ 726 MIF, AZ Electronic 

Materials) for one minute and rinsed in deionized water getting rid of residues. The 

fabrication process continued with the deposition of gold for the electrodes. A pre-

adhesive layer of 3 nm of chromium was thermally evaporated on top of the polyimide 

substrate. The metal film thickness was approximated measuring the deposition rate 

with quartz crystal deposition control. A layer of 50 nm of gold was deposited on top 

of the chromium layer by implementing the same thermal evaporation method. 

Following lift off was carried out immersing the sample for 5 minutes in acetone 

followed by ultrasonication for 1 minute and a second bath of acetone, getting rid of 

the all the photoresist. 
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Subsequently a second step of lithography was used to define the channel area 

(Figure S8-ii). The MoS2 solution was deposited using a polydimethyl siloxane (PDMS) 

window which was tightly bound to the polyimide substrate (Figure S8-iii,iv). This 

material restricted the area of the deposited MoS2 enhancing the usage of it. Big multi-

layered MoS2 nanosheets (size: 5-30 μm, thickness: few tens of nanometers) were 

deposited using water as an agent to distribute the material in a uniform way. The 

surface tension of the water allowed to form a large uniform MoS2 layer on top of it, 

without sinking or dispersing. The materials were placed on top of a heating plate and 

a temperature of 70 ºC was used to evaporate the water. The MoS2 subsequently was 

deposited over the underlying materials (Figure S8-v), finishing the fabrication process 

by removing the PDMS and photoresist (Figure S8-vi). 

The method here presented, does not require of special conditions such as vacuum, a 

temperature more than 70ºC, or an indirect transfer; hence it avoids the use of additional 

elements and fabrication steps decreasing contaminants and helping to keep its original 

properties thus enhancing its viability for scalable production. The hydrophobic 

properties of MoS2 and the surface tension of water allows the floatability of MoS2 

flakes on water,[18] forming a compact thin film, which will be softly precipitated onto 

the surface through evaporation of the water underneath. The capability to perform as 

a flexible device allows its handling under conditions were a manipulation and handling 

might impede a possible test under physically demanding circumstances. 

Bending Test: Mechanical performance of the sensor was tested in the initial 

conditions, as fabricated (red color curve in Figure 3d) as well as under bending 

Final edited form was published in "Small: nano micro". 2019, 15 (23), S. 1-10. ISSN 1613-6829 
https://doi.org/10.1002/smll.201901265 

16 
 
 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden



conditions at different radii, from 14 mm down to 1 mm (light to dark green curves, 

Figure 3d). The device was placed in the corresponding curved surface according to the 

desired radius (bottom panels in Figure 3c), and the electrodes were contacted with the 

help of micropositioners. Source-to-drain voltage (VSD) was swept and the resulting 

current was measured with a 2604B Keithley source meter (Keithley Instruments), 

obtaining the output characteristics of the device. In the case of 1 mm radius, it was no 

more possible to directly contact the electrodes with the positioners, therefore the 

device was measured after the bending. 

Further, we performed dynamic bending tests of the flexible devices in order to 

observe the degradation of their performance after 10 bending cycles consisting on 10 

bending each (total of 100 bending events) (see Figure 3f,g). In order to realize these 

measurements, the polyimide foils with the fabricated devices were consecutively 

bended at a cylindrical tool of 8 mm radius and the foil was repeatedly bent. 

MoS2 Biofunctionalization and Biosensing: Antibodies against VP40 were 

immobilized on MoS2 to confer the sensor with the required specificity. The followed 

steps are depicted in Figure 4a. The immobilization was done using thiol containing 11-

mercaptoundecanoic acid (11-MUA) as cross-linker. First, the sensor was immersed 

overnight in an absolute ethanol solution containing 10 mM 11-MUA. The thiol group 

of this molecule bonded on the sulphur vacancies at the MoS2 imperfections,[25] leaving 

exposed its carboxyl end. This group was activated by 15 min. incubation in a 

phosphate buffered saline (PBS) solution containing 5 mM N-Hydroxysuccinimid and 

10 mM N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride. After 

Final edited form was published in "Small: nano micro". 2019, 15 (23), S. 1-10. ISSN 1613-6829 
https://doi.org/10.1002/smll.201901265 

17 
 
 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden



rinsing with PBS, the antibody was incubated on the MoS2 surface for 1 h (0.01 mg 

mL-1 in PBS). Any remaining available binding point at the surface was blocked by a 

further incubation in 0.5 mg mL-1 bovine serum albumin (BSA). After a final thorough 

rinse with PBS, the biosensor was ready to use. 

The 11-MUA immobilization was confirmed by colorimetric analysis using toluidine 

blue O (TBO) as indicator.[26a] Briefly, 2 cm2 samples completely covered by MoS2 and 

modified with 11-MUA were immersed overnight in deionized water with 0.15 mg mL-

1 TBO and adjusted to pH = 10 using hydrochloric acid. In alkaline pH the positively 

charged TBO binds electrostatically the negatively charged carboxyl groups from the 

11-MUA in a 1:1 ratio. After rinsing with deionized water at the same pH to remove

the loosely attached TBO, 1 mL acetic acid 50% was deposited on top of the samples 

for 15 min in order to extract the bonded dye. The light absorbance of the extraction 

solution was recorded by spectrophotometry and the absorbance peak of the TBO was 

measured at 633 nm. The absorbance spectra can be seen in Figure S10. The surface 

density could be calculated by comparing the results with a calibration curve obtained 

with liquid TBO samples of known concentration. A final density of 0.51 ± 0.24 nmol 

carboxyl groups per cm2 was obtained, or 3 crosslinker molecules per nm2, a very 

similar amount compared to the packing density measured in gold nanoparticles 

surfaces with the same molecule as measured by X-ray photoelectron spectroscopy.[26b] 

Considering the antibody as a smooth unhydrated sphere of mass M = 40,000 Da, its 

minimum radius (Rmin) is calculated to be 2.25 nm following the equation (7),[39] 

𝑅𝑚𝑖𝑛 = 0.066𝑀
1
3⁄                                                  (7)

Final edited form was published in "Small: nano micro". 2019, 15 (23), S. 1-10. ISSN 1613-6829 
https://doi.org/10.1002/smll.201901265 

18 
 
 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden



This allows the presence of maximum four antibodies per 100 nm2 (two antibodies 

every 10 nm distance in both X and Y directions of the surface), meaning that the 

probability for them to find a surface carboxyl group is high (75 possible binding sites 

per antibody), leading to a surface fully covered by antibodies to ensure enough 

presence of functional biorecognition elements (maximum 2 × 108 antibodies in the 

total MoS2 sensing area of 1 × 1010 nm2). 

The performance of the device as a biosensor was tested by comparing the output 

characteristics in dry state before and after the incubation of solutions with increasing 

VP40 concentrations (range: fM-nM). A drop of 20 µL PBS with target protein was 

deposited on top of the sensing area and incubated for 30 min. Then, PBS was used for 

rinsing, followed by a further rinse using 10 fold diluted PBS to remove excess of salts 

from the surface. The chip was dried using N2 and the output characteristics were 

obtained. The results were compared with those obtained using staphylococcal 

enterotoxin B (SEB) as analyte, which shows initial symptoms similar to Ebola disease 

if ingested. Additionally, a control experiment was done detecting VP40 with a sensor 

lacking antibodies. 

In the smallest tested concentration (2 fM), 2.4 × 104 molecules are present in the 20 

µL droplet. Out of this number, only the ones at the MoS2 deposited area will cause a 

signal change on the sensor. This amount can be estimated considering the ratio 

between the MoS2 area and the area occupied by the sample droplet (1 × 104 µm2/9 × 

106 µm2 = 1.1 × 10-3), which multiplying to the total number of molecules results in the 

maximum number of antigens settled on the sensing area (2.1 × 107). This number is 
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one order of magnitude below the amount of antibodies previously calculated, allowing 

to perform the detection without reaching a saturation. Furthermore, each antibody 

could be recognizing more than one antigen, allowing to detect also higher 

concentrations. However, for a sample with 2 pM concentration, there will be a 

maximum of 2.4 × 1010 antigens to be detected on the sensing area, explaining the 

saturation of the signal at this point (Figure 3f). 

A regeneration experiment was also carried out by repeating the same biosensing 

procedure on a biofunctionalized chip, followed by an incubation in regeneration buffer 

(10 mM glycine pH = 2 and 10% v/v glycerol) to separate the antigen from the antibody, 

and repeating the detection again. 

Real samples were finally analyzed, consisting in fetal bovine serum samples with 

spiked VP40 protein. 

Materials Characterization: X-ray diffraction (XRD) patterns were recorded on an 

X-ray diffractometer (D/max-2200/PC, Rigaku) using Cu-Kα radiation (λ = 0.15418

nm) at 40 kV. The scanning electron microscopy (SEM) and the transmission electron 

microscopy (TEM) images were recorded on a field emission scanning electron 

microscope (FESEM, Zeiss Gemini 500) and a high-resolution transmission electron 

microscope (HRTEM, JEM-2100, JEOL, Japan), respectively. Atomic force 

microscopy (AFM) characterization was carried out with Bruker Multimode 8 system 

for Figure 2d,e and Digital Instruments MMAFM-2 for Figure 3b-iv. Raman analysis 

was performed by using a Raman spectrometer (Renishaw inVia, 532 nm) at room 

temperature. UV-vis absorption spectra were measured in absorbance mode in a Jasco 
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V-570 spectrophotometer. The X-ray photoelectron spectroscopy (XPS) spectra were

acquired using a Kratos Axis UltraDLD spectrometer (Kratos Analytical-A Shimadzu 

Group Company) with a monochromatic Al-Kα source (1486.6 eV). 

Supporting Information 

Supporting Information is available from the Wiley Online Library or from the author. 
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Figure 1. Electrochemical exfoliation of MoS2 flakes: a) schematic illustration of an 

electrochemical exfoliation cell, b) photographs of bulk MoS2 crystal (left) and expand 

MoS2 crystal after exfoliation (right), c) MoS2 flakes dispersed in propylene carbonate, 

d) schematic illustration for mechanism of electrochemical exfoliation, and e-g) SEM

images of MoS2 crystal at the edges after applying a bias of -5 V for 0, 1 and 10 min in

organic TBA▪HSO4 electrolyte, respectively.
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Figure 2. Morphological characterizations of exfoliated MoS2 flakes and thin film. a) 

SEM image of exfoliated MoS2 flakes on Si/SiO2 wafer, b, c) HR-TEM images and 

corresponding diffraction patterns (inset) of a few-layered MoS2 flake, d) AFM images 

and e) height profiles of exfoliated MoS2 flakes taken from the supernatant, and f) top-

view SEM image of MoS2 thin film and corresponding EDS elemental mapping 

analysis. Inset: Photograph of MoS2 thin film on a PTFE membrane (50 mm in 

diameter). 
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Figure 3. a) Conceptual illustration of the biosensing. b) Images of fabrication process. 

i: photography of the floating MoS2 layer; ii: fabricated device containing several 

sensors; iii: magnification of one single sensor with deposited MoS2 layer (60 × 60 µm) 

contacting four electrodes; iv: AFM image of the MoS2 layer. c) Fabricated flexible 

device bended at various radius, including the 14 mm, 8 mm and 1 mm from the bending 

test. d) Bending test, including initial output characteristics before bending (red curve). 

The lateral panel shows the ION at VSD = -5 V upon various bending radii. e) SEM 

images before (top panels) and after (bottom panels) bending at 8 mm (left panels) and 

1 mm radius (right panels). The possible conductive paths connecting electrodes are 

shown in color. f) Setup for the cyclic test with the flexible chip bent at the 8 mm radius 

cylinder. g) Results of the cyclic bending test, with no visible change after 100 bending 

cycles. 
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Figure 4. a) Biofunctionalization steps: i) 11-MUA incorporation on sulfur vacancies; 

ii) Antibody immobilization through carbodiimide chemistry; iii) Surface blocking with

BSA; iv) Biorecognition of VP40 antigen. b) Current measurements after the incubation

of various antigen concentrations on a sensor with a high amount of flakes, and c)

calibration of the response and comparison with control sensors (no antibody and non-

specific antigen). d) Repetition of the biosensing experiment on a sensor with a lower

amount of flakes and e) results of the regeneration experiment with the same device,

showing signal recovery after antibody-antigen dissociation and repetition of the

tendency after further analyte incubation.
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Table 1. Comparative table for various MoS2-based biosensors. 

MoS2 material Deposition Sensing area 
Lowest 

detection 
Flexibility Ref. 

Prebent MoS2 

(undefined obtention 

method) 

Transfer-printing 5×10 µm 

10 fM 

interleukin 

1-beta

0.1/mm [20d]

Mechanically exfoliated 

MoS2 
Transfer (undescribed) Variable 

33 fM 

prostate 

specific 

antigen 

3 mm [40]

Chemically exfoliated 

MoS2 

Vacuum assisted 

dispersion through 

membrane 

Undefined, 

multiple flakes 

embedded on 

110 µm thick 

membrane 

2.76 nM 

cortisol 
5 mm [41]

Mechanically exfoliated 

MoS2 

Electrode deposition on 

exfoliated flakes 
Variable 

100 fM 

streptavidin 
Not tested [28a]

Direct sulfurization of 

Mo surface 

Evaporated Mo metal 

through shadow mask 
300×6,000 µm 

10 fM 

ssDNA (18-

mer) 

Not 

flexible 

[42]

Electrochemically 

exfoliated MoS2 

Restacking of the flakes 

at the PI substrate 
80×80 µm 2 fM 1 mm This work 
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