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1
Introduction

Head and neck squamous cell carcinoma (HNSCC) encompasses malignancies localized

in the head and neck region, e.g. oral cavity, parasanal sinuses, salivary glands, pharynx

and larynx, being the ninth most common malignancy worldwide (Bray et al., 2018). Main

risk factors for the development of HNSCC include tobacco consumption, alcohol abuse, as

well as chronic infection with human papilloma virus (Gupta et al., 2016). A multidisciplinary

approach is required for the treatment of HNSCC, with surgery as an option in early stages

of the disease, whereas a tri-modality treatment consisting of surgery and/or radiotherapy

and chemotherapy is used in advanced stages (Sanderson, 2002).

There are several challenges for radiotherapy in the head and neck region such as the

large extension of the treatment area, including as target volumes the primary tumor and

affected lymph nodes, the complex anatomy, which starts with a narrow neck region and

ends with the wider area of the shoulders, and different tissue densities such as air, bones

and soft tissue. Furthermore, sensitive organs at risk (OARs) such as spinal cord, salivary

glands, swallowing muscles, oral mucosa and visual system, with low dose tolerances,

must be considered and spared during treatment planning in order to prevent late tissue

complications, which can influence the quality of life of the patient.

Radiotherapy techniques such as photon-based intensity modulated radiation therapy

(IMRT) have shown the potential to deliver high doses to the tumor, while reducing the

doses to the OARs (Bhide et al., 2012; Marta et al., 2014; Hawkins et al., 2018). Pro-

ton therapy (PT) is a promising advanced technique for the treatment of HNSCC, due to

the physical characteristics of protons such as their finite range and Bragg peak, allow-

ing a high-dose conformity and improved dose reduction to the surrounding healthy tissue

compared to photon irradiation. Diverse studies have addressed the advantages of PT

compared to IMRT, demonstrating high conformal dose distributions and improved normal

tissue sparing, while delivering the same dose to the target volume (Cozzi et al., 2001;
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1 Introduction

Steneker et al., 2006; Mendenhall et al., 2011; Simone et al., 2011; van de Water et al.,

2011; van der Laan et al., 2013; Jakobi et al., 2015a). The main advantage of HNSCC

proton over photon therapy is the reduced dose deposited to the OARs, which can be

translated into reduced late radiotherapy-related toxicities (Jakobi et al., 2015b; van Dijk

et al., 2016; McKeever et al., 2016).

Due to the finite range of protons, they are more sensitive to uncertainties that might

occur during the treatment course, as errors in patient setup and proton range calculation,

resulting in a potential degradation of the delivered dose. The International Commission

on Radiation Units and Measurements (ICRU) reports recommend to account for possible

uncertainties during treatment by a margin expansion of the target volume (ICRU, 1993;

ICRU, 1999; ICRU, 2007). This approach, while it is commonly used in photon treatments,

might not be sufficient to account for uncertainties in proton therapy. Robust treatment

planning approaches, which include these potential uncertainties directly into the plan op-

timization process, have shown superior plan robustness over plans with a simple target

volume margin expansion in HNSCC cases (Liu et al., 2012; Liu et al., 2013a; Liu et al.,

2013b; Li et al., 2015b; van Dijk et al., 2016; Stützer et al., 2017b). Besides uncertainties in

patient setup and proton range, anatomical variations during the treatment course, such as

non-rigid variations in patient positioning, patient weight changes, and tumor shrinking, can

cause a degradation from the planned dose, as shown in geometrical margin-based proton

treatments (Kraan et al., 2013; Góra et al., 2015; Müller et al., 2015; Thomson et al., 2015;

Stützer et al., 2017a).

The aim of this thesis is the evaluation of robust treatment planning techniques in a

commercial treatment planning system (TPS) for HNSCC cases, considering uncertainties

in patient setup, proton range and anatomical variations during the treatment course. First,

the principles of proton therapy (Chapter 2) and concepts of robust treatment planning and

evaluation (Chapters 3 and 4) are reviewed. Second, margin-based and robustly optimized

plans are compared in Chapter 5 for a cohort with target volumes of unilateral location.

Differences in dose distributions, doses to target volumes and OARs, and the influence

of anatomical variations during the treatment course are investigated. And last, complex

bilateral target volumes are evaluated in Chapter 6, considering the influence of weekly

anatomy variations, together with setup and range uncertainties. A robust treatment plan

considering additionally potential anatomical variations in the plan optimization is proposed

and compared to a classic robustly optimized approach.
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Radiation therapy (RT) uses ionizing radiation, generally as part of cancer treatment, to

control or eliminate malignant tumors. The final aim of RT is to deliver the prescribed dose

to the tumor, while sparing the surrounding normal tissues. Research in physics has con-

tributed directly and indirectly to radiation therapy over the past century. Only months after

their discovery by Wilhelm Conrad Röntgen in 1895, X-rays were used to treat a patient

with breast cancer (Grubbé, 1933; Lederman, 1981). At present, usually RT employs a

beam of high energetic X-rays (described as photon beam) generated as Bremsstrahlung

with an electron linear accelerator and directed towards the tumor. However, in the recent

years alternatives such as proton therapy (PT) have shown to be promising in RT, offering

several advantages compared to photons. The following chapter gives an overview of PT.

Further details can be found in McDonald and Fitzek (2010), Paganetti (2012), Degiovanni

and Amaldi (2015), and Lee et al. (2018).
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2 Proton Therapy

2.1 Rationale for Proton Therapy

The advantages of PT with respect to conventional photon therapy were first outlined by

Robert R. Wilson (1946). The potential of proton beams for medical purposes was de-

scribed by making use of the finite range and the Bragg peak of proton beams for treating

tumors. Due to the low entrance dose and reduced dose distal to the target, the integral

dose to the normal tissues is reduced compared to photon therapy, as represented in Fig-

ure 2.1.

For treatment purposes, usually multiple proton beams with several energies are com-

bined to generate a spread-out Bragg peak (SOBP), in order to obtain a homogeneous

depth dose plateau over the target. Advanced techniques such as intensity modulated pro-

ton therapy (IMPT) are able to generate high dose gradients, using the whole advantage of

protons for radiation treatment.
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Figure 2.1. (a) Depth dose curves of monoenergetic photons (green) and protons (blue) in water,
simulated with FLUKA 2011.2x.4 (Ferrari et al., 2005; Böhlen et al., 2014), courtesy of M.J. Gon-
zalez Torres. (b) Transversal computed tomography slices of the head (gray level) for a low grade
glioma, overlaid with dose distributions in color wash. The target volume, to which the dose is pre-
scribed, is contoured in cyan. The volume of surrounding normal tissue receiving low doses is much
smaller for the proton plan (bottom) compared to the photon plan (top).
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2.2 Beam Delivery Techniques

Assuming an identical target volume dose, proton therapy reduces the total energy de-

posited in the patient compared to photon therapy, which makes this technique attractive

from a clinical point of view. High conformal doses in the target volume can be achieved

with fewer fields. The superior properties of proton beams over photons can be translated

into clinical benefit, firstly by an improved normal tissue sparing, while maintaining the dose

to the tumor. In this case, the tumor control will be expected to be similar as with photons,

whereas radiation-induced side effects will be reduced. This property is of particular inter-

est for tumors located close to serially organized tissues such as spinal cord, brainstem or

esophagus, where a small local overdose can cause significant complications. Moreover, in

pediatric patients, the impact of the decreased integral dose and increased normal tissue

sparing is even more significant, because of the reduced probability of secondary cancer

induction (Miralbell et al., 2002; Paganetti and van Luijk, 2013). Secondly, protons allow

dose escalation, which improves the local tumor control (Palm et al., 2019).

Although the dose distributions achievable with protons are superior to those achievable

with photons, it is debatable whether the advantages of proton therapy are clinically rele-

vant for all treatment sites (Ramaekers et al., 2011). Clinical evidence shows that protons

(and other particles such as carbon ions) are superior to photon therapy in radioresistant tu-

mors, which are close to organs at risk, such as chordoma, ocular melanoma, and pediatric

tumors (Baumann et al., 2016; Lambrecht et al., 2018).

2.2 Beam Delivery Techniques

To generate a proton beam, the particles need to be accelerated to energies sufficient for

treatment (approximately 220 MeV for 30 cm depth in water). Particle accelerators use an

electric field to accelerate the protons. For PT, cyclical particle accelerators are required,

in order to pass through the electric field several times until they reach sufficient energy for

clinical application. The most common used devices for proton acceleration are cyclotrons

and synchrotrons (Paganetti, 2012; Lee et al., 2018).

Cyclotrons accelerate protons within a fixed constant magnetic field. In a first step, low-

energy protons are injected into the center of a disc-shaped accelerating cavity, gaining

kinetic energy by passing through accelerating cavities within the disc. The constant mag-

netic field binds the protons to a circular path within the disc, but with each rotation they

5



2 Proton Therapy

spiral radially outward increasing their energy. When the protons meet the most outer orbit,

they are peeled off and directed to the beamline for clinical use. All protons leaving the

cyclotron have the maximum available energy. To obtain lower energies, the beam is di-

rected through low atomic number materials of variable thicknesses, which interact with the

protons to lower their energy to the required energy for the patient treatment. The cyclotron

delivers a nearly continuous output of protons.

Synchrotrons accelerate protons in a circular beamline with a fixed radius by boosting

their energy in each revolution. During each rotation the magnetic field, which keep the

protons constrained within the ring, must be synchronously increased to maintain a stable

proton orbit. Once the protons reach the required energy for treatment, they are spilled

into the beamline and directed to the treatment room by a series of focusing and bending

magnets. Synchrotrons produce beams in a pulsed beam structure requiring a period to fill

for acceleration and spill into the treatment room, typically taking 2-5 seconds per energy

layer.

Once the protons have been accelerated, they are guided to the gantry for delivery to the

patient. To shape the treatment field, two dose delivery techniques are currently applied in

PT: passive scattering and pencil beam scanning.

2.2.1 Passive Scattering

Passive scattering uses the focused proton beam transported from the accelerator and

scatters it through single or double scatterers in order to obtain a beam with large field size.

At the same time, the beam energy is modulated to spread out the Bragg peaks location

over the target volume in depth through a range modulator. The system is configured to

produce a homogeneous dose distribution with the same penetration across the field. For

clinical treatment, the beam is shaped by an aperture to match the lateral extension of the

tumor and by a range compensator to conform the distal Bragg peaks to the distal surface

of the target (Figure 2.2a).

A limitation of passive scattering is the fixed width of the SOBP over the lateral field ex-

tension, which can derive in a significant dose outside the target volume, typically proximal

to the target since the range is adjusted through the compensator to match the distal target

geometry.

6



2.2 Beam Delivery Techniques

Proton beam

Orthogonal scanning magnets

Target volume

Weighted spots

Proton beam

First scatterer

Range modulator

Second scatterer

Collimator

Compensator
Target volume

(a)

(b)

Figure 2.2. Scheme of a passive scattering system (a) and a pencil beam scanning system (b). The
yellow and red color represent low dose and high dose regions, respectively. In passive scattering,
the distal field edge is shaped by the range compensator to match the distal target geometry; how-
ever, in the proximal surface high dose regions may be present. Pencil beam scanning avoids this
issue.

2.2.2 Pencil Beam Scanning

Pencil beam scanning (PBS) is gradually replacing passive scattering, and it was used

for the treatment planning calculations in this thesis (Unkelbach and Paganetti, 2018). In

this technique, two pairs of orthogonal dipole magnets are used to steer the unscattered

proton beam to the lateral extent of the target volume, delivering the focused pencil beam

to predetermined positions with a desire number of protons, i.e. spot weights. An energy

selection system adjust the beam energy to achieve the desired range. The delivered dose

is the superposition of each of the small pencil beam doses. No additional scattering or

energy modulation devices are required (Figure 2.2b).

For PBS plan optimization, the TPS considers each pencil beam Bragg peak explicitly,
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2 Proton Therapy

specifying each treatment field as a list of Bragg peaks, each with a certain proton energy,

the number of protons to be delivered and the lateral location of the Bragg peak. Two

main categories of PBS plan optimization for dose delivery can be defined: single-field

optimization (SFO), also known as delivery of a single-field uniform dose (SFUD), and

multi-field optimization (MFO), depending of how the spot weights are optimized to ensure

a homogeneous dose to the target volume.

SFO optimizes the spots weights of each proton treatment field, in such a way that a ho-

mogeneous dose is delivered to the target by each individual field. SFO can be considered

as the equivalent of treating with open fields in photon therapy. This technique creates low

dose gradients, especially inside the target; however, because of its limited modulation, it

might be difficult to achieve sufficient normal tissue sparing (Figure 2.3a).

MFO utilizes the flexibility of the PBS technique to create highly modulated dose distri-

butions. The spot weights from all fields are optimized together. Therefore, the dose from

each individual field can be highly inhomogeneous, with large gradients inside and outside

the target. The inhomogeneous doses from all fields are summed up to achieve a homoge-

neous target coverage (Figure 2.3b).

Field 1 Field 2 Sum Field 1 Field 2 Sum

(a) Single-field optimization (SFO) (b) Multi-field optimization (MFO)

+ += =

+ = + =

30 40 50 60 70 90 11080 100

Dose / %

Field 1 Field 2 Sum Field 1 Field 2 Sum

30 40 50 60 70 90 11080 100

Dose / %

Figure 2.3. Exemplary patient (top) and schematic representation (bottom) of single-field optimiza-
tion (a), where each treatment field delivers an homogeneous dose to the target, and multi-field
optimization (b), where the dose from each field to the target can be highly inhomogeneous due to
its high modulation. In both examples the target volume is delineated in cyan, and the field direction
is indicated by a red arrow.
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2.3 Uncertainties in Proton Therapy

2.3 Uncertainties in Proton Therapy

Due to their physical characteristics, i.e. the finite range in tissue and the sensitivity to differ-

ences in tissue density, proton fields are more sensitive to uncertainties than photon fields

used in conventional X-ray based radiotherapy. The different uncertainties might induce a

shift of the Bragg peak location with respect to the planned location, with the potential con-

sequence of not only degrading the dose to the tumor, but overdosaging the surrounding

normal tissue and critical organs at risk. An overview of different sources of uncertainty in

PT are discussed in the following.

2.3.1 Target Volume Definition

The ICRU provided in its reports 50 and 62 (ICRU, 1993; ICRU, 1999) the framework for

prescribing, recording and reporting doses in RT, specifically in photon therapy, whereas

the report 78 addresses the dose prescription and reporting in proton therapy (ICRU, 2007).

For this effect, different target volumes are defined (Figure 2.4):

• Gross tumor volume (GTV). The GTV corresponds to the gross palpable or visible,

demonstrable extent and location of the malignant growth. It may consist of primary

tumor, metastatic lymphadenopathy, or other metastases. If the tumor has been re-

moved, e.g. by previous surgery, no GTV can be defined.

• Clinical target volume (CTV). The CTV is a tissue volume containing a demonstrable

GTV and/or subclinical malignant disease, that must be treated adequately in order

to achieve the aim of radiotherapy. In cases where the initial GTV was surgically

removed, the tumor bed is typically considered as a CTV.

• Planning target volume (PTV). The PTV is a geometrical concept used for treatment

planning, defined to select an appropriate field configuration to ensure that the pre-

scribed dose is actually delivered to the CTV. The PTV is conventionally used for

dose prescription and dose reporting.

The target volume definition is linked with uncertainty (Unkelbach et al., 2018). The GTV

definition is limited to the image resolution and the visualization of surrogates of the tumor

instead of actual tumor cells. The delineation of the CTV also has uncertainty because

the current medical image modalities cannot visualize microscopical subclinical disease

(Apolle et al., 2017). The PTV concept relies on the static dose cloud approximation, i.e. the
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GTV

CTV

PTV

Figure 2.4. Target volume definition according to ICRU 50 and 62.

assumption that the CTV will receive the prescribed dose as long as it stays within the PTV.

While this assumption works in general for photon therapy, where the PTV concept is widely

used in clinical practice, there are several limitations when it is applied to proton therapy. In

some cases, independent of the CTV-to-PTV margin expansion, the PTV concept does not

guarantee an adequate CTV coverage in proton therapy.

2.3.2 Range Uncertainty

For the generation of treatment plans, a planning computed tomography (CT) of the pa-

tient is used as standard for plan optimization in RT. The information of the linear X-ray

attenuation coefficients is converted into CT numbers, which can be translated with the

electron density of the tissue. In proton therapy, the CT number is converted to stopping

power ratio (SPR) for the calculation of the dose distribution. SPR values depend on the

physical density, elemental composition and mean excitation energy of the material. For

practical purposes, the correlation between CT number and SPR can be established for ex-

ample through a stoichiometric model, which is clinically accepted (Schneider et al., 1996).

New methods such as dual-energy CT-based SPR prediction have been studied in the last

years, and will contribute to more accurate proton range predictions (Möhler et al., 2016;

Wohlfahrt et al., 2017; Möhler et al., 2018).

Tissue density heterogeneities also add uncertainty to the range prediction. The deliv-

ered dose distribution will be sensitive to the exact position of the heterogeneities traversed

by the proton beam. For instance, if the density heterogeneity is shifted in relation to the

field, e.g. due to a misalignment or motion of the patient, the Bragg peaks will be shifted in

depth, as displayed in Figure 2.5, which may lead to dose distortion and degradation in the

target volume with respect to the predicted dose distribution (Lomax, 2008a).
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Figure 2.5. Proton range uncertainty to tissue density heterogeneities. The blue curve represents
a Bragg peak of a 120 MeV proton beam in water, without heterogeneities. Tissue heterogeneities
in the beam path (light red) decrease (e.g. bone, in brown) or increase (e.g. air, in orange) the
proton range, leading to a shift of the Bragg peak. Depth dose curves were simulated with FLUKA
2011.2x.4 (Ferrari et al., 2005; Böhlen et al., 2014), courtesy of M.J. Gonzalez Torres.

2.3.3 Setup Uncertainty

A setup error is usually defined as a rigid shift of the patient with respect to the planned

position relative to the isocenter (Unkelbach et al., 2018). The setup error has two compo-

nents: a systematic component, defined as a mean shift displacement with respect to the

planned position, and a random component, which considers variations between treatment

fractions around the mean shift. It is expected for the systematic setup error to be close or

equal to zero, and the random setup error to be small.

The impact of setup errors on the dose distribution can be more detrimental in proton

therapy than in photon therapy: a patient shift might lead to misalignment of tissue hetero-

geneities in the beam entrance path and thereby causes degradation of the Bragg peak.

Furthermore, the setup error has a different impact on each treatment field, and might lead

to a misalignment of the individual field dose contributions. Therefore, setup errors do not

simply lead to a lateral shift of the dose distribution, but may severely degrade it (Lomax,

2008b; Liebl et al., 2014; Unkelbach et al., 2018). Improved immobilization devices and

image guidance are considered in PT to reduce the setup uncertainty during the treatment.
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2.3.4 Biological Uncertainty

The biological effect of radiotherapy is related to the energy deposition of the beam in a

cellular level. Proton beams have a higher linear energy transfer (LET) in the Bragg peak

region compared to photons, i.e. they transfer more energy to the tissue per unit track

length, causing more cellular damage. To account for the biological effect of the radiation

type, the relative biological effectiveness (RBE) concept was proposed. It is assumed that

the RBE value for protons is a constant, with the value of 1.1 recommended as a clinical

appropriated value, i.e. 10% less of proton physical dose is needed to deliver the same

biological effect compared to photon dose (ICRU, 2007; Paganetti, 2018)

Recent in vitro experiments suggest that the RBE is not a constant value, but it increases

to values over 1.1 at the end of the proton range, being related to the increase of the LET at

the distal edge of the Bragg peak. Further research is focused on the modeling of variable

RBE values in vitro and in vivo, as well as biological plan optimization based on RBE and

LET uncertainties (Paganetti, 2014; Jones, 2017; Lühr et al., 2018; Bai et al., 2019; Eulitz

et al., 2019).

2.3.5 Anatomical Variations

Anatomical uncertainties might have an important impact on the delivered fraction dose,

resulting in insufficient tumor coverage and/or overdosage of critical healthy structures, due

to the tissue changes along the proton beam path. Random anatomical changes, such as

variations in cavity filling, e.g. nasal cavity, bowel and bladder, organ motion and non-rigid

shifts in patient positioning such as changes in the shoulder position, mandible and neck

flexion, might be present between fractions and cause a degradation in the planned dose.

Conversely, systematic gradual anatomical variations can arise during the treatment

course, such as patient weight gain or loss and tumor shrinkage. Dose degradation due to

systematic treatment-induced anatomical variations in proton therapy is well documented

in the literature. For instance, for head and neck cases, Kraan et al. (2013) showed a reduc-

tion of the target coverage and increase in hotspots for oropharyngeal tumors when recal-

culating the planned dose to a control CT acquired during the treatment course, whereas

Stützer et al. (2017a) found in a patient cohort with head and neck cancer similar results

regarding target coverage degradation and hotspots in a CT acquired about 4 weeks after

the treatment beginning. Furthermore, van de Water et al. (2018) reported that variations
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in the nasal cavity filling during the treatment course may also degrade the planned dose

distribution in SFO plans. In other body regions, Szeto et al. (2016) found target coverage

degradation and increase in the dose to organs at risk for lung tumors.

To assure the consistence of a proton plan over the course of the treatment, additional

image guidance plays an important role in order to detect early anatomical variations that

might lead to severe deviations to the planned dose, which might be an indication for plan

adaptation, i.e. the calculation of a new treatment plan considering the new patient anatomy.

Moreover, range verification methods show to be promising in detecting variations of the

proton range during the treatment due to variations in the anatomy (Richter et al., 2016;

Parodi and Polf, 2018).
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Due to the different uncertainties in proton therapy, discussed in the previous chapter, the

delivered dose of a proton plan can vary greatly from the planned dose. The classic PTV

concept, used extensively in photon therapy, may not be sufficient to account for uncertain-

ties in PT plans. An optimal treatment plan needs to be robust, i.e. designed in such a way

that deviations from the planned dose due to uncertainties during treatment delivery will

not affect the quality of the treatment outcome.

Approaches to Achieve Plan Robustness

Uncertainties in proton therapy and their influence in treatment planning are known by

clinical practitioners. To reduce the influence of such uncertainties in the planned dose,

different pragmatic approaches have been employed. For instance, in the passive scattering

technique, the setup uncertainty can be accounted for by the size of the collimator, whereas

the range uncertainty can be accounted for by the compensator (ICRU, 2007; Paganetti,
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2012). In PBS treatment planning, additional approaches may be used to achieve plan

robustness.

Selection of treatment field angle and direction The angle and direction of the treat-

ment fields must be chosen in such a way to avoid areas of large tissue heterogeneities

along the beam path, as well as changes between density interfaces, e.g. air or bone with

soft tissue. Moreover, regions where potential anatomical variations can be present should

also be avoided (Casares-Magaz et al., 2014; Gorgisyan et al., 2017; Gravgaard Andersen

et al., 2017; Unkelbach and Paganetti, 2018).

Treatment field-specific PTV Instead of applying an isotropic PTV to CTV margin ex-

pansion, field-specific margins can be used (Park et al., 2012). For each treatment field, a

specific PTV margin can be created to account for the different uncertainties in setup and

range around the CTV. The generation of treatment field-specific PTV margins is currently

available in the commercial TPS Eclipse (Varian Medical Systems, Palo Alto, CA).

Single-field optimization As described in Section 2.2.2, in SFO uniform dose distribu-

tions in the target volume are generated by optimizing individually the spot weights of each

treatment field, resulting in more robust plans compared to high modulated fields generated

by the MFO approach. However, the SFO technique offers reduced organ at risk (OAR)

sparing, especially for complex shaped target volumes.

3.1 Robust Treatment Planning

Instead of using margins or approaches as SFO, uncertainties can be accounted by robust

treatment planning, also known as robust optimization (RO). In simple words, RO methods

incorporate uncertainties directly into the plan optimization, resulting in treatment plans

with improved plan quality and robustness (Liu et al., 2012; Li et al., 2015b; Unkelbach and

Paganetti, 2018). Usually the uncertainties considered in the optimization are setup and

range errors, although additional uncertainties such as anatomical variations might be also

accounted for.

To understand the concept of RO in the plan optimization process, first the nominal plan

optimization, without including uncertainties, will be defined as a mathematical problem, ac-

cording to Unkelbach et al. (2018). A treatment planning goal, for instance a minimum dose
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to be delivered to the target volume or dose restrictions to the OARs, can be described

by an objective function f , which is a function of the dose distribution d. An optimal treat-

ment plan corresponds to a small value of f ; therefore, in the plan optimization process the

objective function f is minimized:

minimize
x

f(d(x))

subject to x ≥ 0 ,
(3.1)

where x correspond to the spot weights in proton therapy.

3.1.1 Including Uncertainties in the Optimization

The different uncertainties in the dose distribution can be accounted by error scenarios

k, corresponding, for example, to combinations of patient setup errors, proton range er-

rors, and anatomical variations from patient CT datasets. Each error scenario is associ-

ated with a dose distribution dk, which likewise corresponds to an objective function value

fk = f(dk). A treatment plan will be robust if the dose distribution dk is optimal for the

majority of error scenarios k that may occur, i.e. if the value of f remains small. To translate

this concept into mathematical terms, two main RO approaches have been defined:

• Stochastic programming (Unkelbach et al., 2009).

• Minimax optimization (Fredriksson et al., 2011).

Stochastic Programming

In stochastic programming, introduced by Unkelbach et al. (2009), all the possible error

scenarios k are considered in the optimization. For each error scenario, an importance

weight pk is assigned, describing the probability that the determined scenario occurs. High

weight is given to most likely to occur scenarios, whereas small weight is given to unlikely

scenarios. The sum of the objective functions f evaluated for all error scenarios is mini-

mized:

minimize
x

∑
k

pkf(dk(x)) . (3.2)

This approach, also referred to as probabilistic approach, aims to find a treatment plan

that delivers an optimal dose distribution dk for all error scenarios considered.
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Minimax Optimization

In minimax optimization, introduced by Fredriksson et al. (2011), the worst-case scenario

is considered in the plan optimization, defined as the scenario k in which the objective

function f attains its highest value. The goal is to obtain a treatment plan which is optimal

for the worst-case scenario; thus, the maximum value of f is minimized:

minimize
x

max
k

[
f(dk(x))

]
. (3.3)

In contrast to stochastic programming, no importance weights are considered, since the

objective function is minimized with respect to the worst-case scenario. This approach is

also referred to as the worst-case approach.

Some variations of the minimax approach have been additionally studied:

Composite worst-case Equation 3.3 considers one objective function. In reality, one

might have a set of objective functions fs for determined structures s (target volumes and

OARs) with defined weighting factors ws, which describe the relative importance of the

objective. Thus, (3.3) can be rewritten as:

minimize
x

max
k

∑
s
wsfs(dk(x)) . (3.4)

In summary, the weighted sum of the objective functions fs in the worst-case scenario is

minimized. This generalization can be referred to as the composite worst-case.

Objective-wise worst-case A variation of the composite worst-case is the objective-wise

worst-case, introduced by Chen et al. (2012). In this approach, the maximum of each ob-

jective function fs over error scenarios k is considered individually:

minimize
x

∑
s
ws max

k

[
fs(dk

s(x))
]

. (3.5)

Each error scenario k can affect different objectives, i.e. one error scenario which leads

to the worst-case of a objective fs1 might not be the same which leads to the worst case

of the objective fs2. This method was evaluated for multicriteria optimization and additional

details can be found in Chen et al. (2012).
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Voxel-wise worst-case The previously described worst-case approaches minimize only

physically realizable scenarios, i.e. the doses on each voxel i contained in the structure s

come from the same error scenario. A more conservative approach considers the contribu-

tion of each voxel i to the dose distribution d. Thus, the objective function f can then be

defined as a sum of different contributions fi from individual voxels i. The maximum over

the scenarios for each voxel separately is minimized:

minimize
x

∑
s
ws

∑
i

max
k

[
fi(dk

i (x))
]

. (3.6)

This optimization approach is known as voxel-wise worst-case, and it was first introduced

by Pflugfelder et al. (2008).

3.1.2 Differences Between Approaches

The described RO methods applied to IMPT treatment planning result in superior robust-

ness against uncertainties, compared to the use of a simple PTV margin expansion. In gen-

eral, there is no consensus whether one RO approach is superior to the others. However,

depending of certain conditions, as geometry and planning objectives, some differences

between approaches might appear.

If there are severe conflicts between different planning objectives, for instance due to the

proximity of a dose limiting OAR to the CTV (e.g. salivary glands, pharyngeal muscles, vi-

sual system and spinal cord in head and neck cases), the composite worst-case approach

may perform worse than the voxel-vise worst-case; however, both approaches perform bet-

ter than the objective-wise worst-case (Fredriksson and Bokrantz, 2014). Conversely, min-

imax approaches are more robust in target doses compared to stochastic programming.

Therefore, an explicit selection of the objectives f might be needed to preserve the overall

plan robustness, as well as the specification of the relative importance ws of each planning

objective (Unkelbach et al., 2018).

Implementation in commercial TPS

Some of the RO approaches currently described are already implemented in different com-

mercial TPS for clinical use. These algorithms are not only restricted to proton therapy, thus

they might be applied as well for photon therapy planning:
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• Composite worst-case: RayStation (RaySearch Laboratories AG, Stockholm, Swe-

den)

• Voxel-wise worst-case: Eclipse (Varian Medical Systems, Palo Alto, CA)

• Stochastic programming: Pinnacle3 (Philips Radiation Oncology Systems, Fitchburg,

WI)

In this thesis, RayStation was used for treatment planning. Uncertainty parameters that

can be included in the optimization are setup uncertainties, defined as rigid patient isocen-

ter shifts; range uncertainty, defined as an over- and undershoot of the nominal proton

range; and anatomical variations, defined as different patient CT datasets, originally devel-

oped for 4D plan optimization. For the plan optimization, it is possible to combine nominal

objectives (i.e. without considering uncertainties) with robust objectives for different struc-

tures, assigning determined importance weights.

3.2 Robustness Evaluation

More than 30 years ago, Goitein (1985) proposed that together with the evaluation of the

nominal plan doses, an error analysis of the plans should be performed. For plan optimiza-

tion in IMPT, this idea gains relevance due to the potential dose deviation that may occur

due to uncertainties, as described in the previous chapter. Although robust optimized plans

are designed to consider error scenarios into the plan optimization, it should be evaluated

whether the planning goals are still fulfilled in presence of uncertainties.

The main idea consists on the plan recalculation considering different error scenarios, for

example combinations of setup and range errors, defined as shifts of the patient isocenter

and rescaling of the proton range (Langen and Zhu, 2018). These error scenario doses will

be referred to as perturbed dose distributions. After the generation of perturbed dose dis-

tributions, the plan robustness against uncertainties can be evaluated by diverse methods.

3.2.1 Error Scenarios

Fixed Error Scenarios

To account for setup errors, a simple approach is to define rigid shifts in relation to the pa-

tient isocenter. The magnitude of the shift can be the same magnitude as used for the RO

planning, or considering a defined confidence interval (Lomax et al., 2001; Albertini et al.,
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2011; Liu et al., 2012; Trofimov et al., 2012; Liu et al., 2013b; Lowe et al., 2016). Modeling of

range errors considers usually a minimum and maximum value, corresponding to the max-

imal expected under- and overshoot of the proton range, respectively. Further, perturbed

dose distributions are calculated considering error scenarios with different realizations of

setup and range errors.

The fixed perturbed error scenarios do not consider the effect of the fractionation and its

influence on the plan robustness, especially in setup errors. In a typical fractionated treat-

ment, daily random setup errors are present, due to changes in the patient positioning; thus,

considering a setup error to be systematic might be an overconservative approach. How-

ever, such perturbed dose distributions may give a general overview of the plan robustness.

To account for the effects of fractionation, Lowe et al. (2016) considered for the generation

of perturbed dose distributions smaller confidence intervals as the used by Albertini et al.

(2011).

Statistical Assessment

The effects of statistical uncertainties in the plan robustness can be quantified calculating a

large number of perturbed dose distributions, also known as Monte Carlo sampling (Kraan

et al., 2013; Park et al., 2013). Range errors are considered as systematic, whereas setup

errors comprise a systematic and a random component. Systematic setup errors are con-

sidered equal for the whole treatment course, and random setup errors are sampled per

fraction usually from a Gaussian distribution; thus, the influence of fractionated treatment

on the total uncertainty can be assessed.

A Monte Carlo sampling of perturbed dose distributions gives more realistic results, since

the resulting error scenario might be an actual outcome from a fractionated treatment.

However, to achieve a sufficient accuracy, a large number of error scenarios need to be

computed, which might be impractical in clinical practice.

Polynomial Chaos Expansion

The principle of polynomial chaos expansion (PCE) is to approximate the dose distribution

as a polynomial function of the setup and range error. The PCE is constructed calculating

first a limited number of perturbed dose distributions and fitting the results into polynomial

functions. After post-processing, the resulting PCE function defines a model of the dose
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distribution as function of the error, allowing to calculate further perturbed dose distributions

for new error scenarios in almost no time (Perkó et al., 2016).

One limitation is the computational cost required to generate the PCE, being over 60 min-

utes. Moreover, the PCE needs first to be generated for each patient, making this method

difficult to use for the evaluation of plan robustness directly after the nominal plan optimiza-

tion in clinical routine.

3.2.2 Visual Evaluation of Plan Robustness

After the calculation of perturbed dose distributions, the generated data needs to be evalu-

ated. Different visual evaluation methods can be performed, in order to help with the deci-

sion whether a treatment plan is clinically acceptable, and if its robustness is still preserved

in the perturbed scenarios. Different methods to visualize plan robustness are depicted in

Figure 3.1 and discussed in the following.

Dose-Volume Histogram Bands

A visual representation in the patient dose-volume histogram (DVH) was proposed by Trofi-

mov et al. (2012) in the form of DVH bands, which shows the variability of the treatment

plan in presence of uncertainties. The band envelop is defined from the overall minimum

and maximum dose values extracted from the previously calculated perturbed dose distri-

butions in a determined volume structure. In general terms, a wide DVH band indicates a

reduced plan robustness, i.e. the perturbed dose distribution can deviate greatly from the

nominal dose, and vice versa.

Voxel-Wise Worst-Case Dose Distribution

A dose distribution can be generated considering, from the perturbed dose distributions,

the minimum voxel value for voxels inside the target volume, and the maximum value for

voxels outside the target (Lomax et al., 2001). The resulting worst-case dose distributions

allows a direct visualization of regions where the target coverage might decrease, as well

as overdosage of the OARs, when in presence of the considered uncertainties.
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Error Bar Dose Distribution

Another approach to visualize the robustness of a treatment plan is by the generation of

an error bar dose distribution, which represents the spread of dose values within the con-

sidered perturbed dose distributions (Albertini et al., 2011). Each error bar voxel value is

calculated by considering the difference between the maximum and minimum value from

the perturbed dose distributions in each voxel. Values near to zero, i.e. a small spread, in-

dicate a high plan robustness. Furthermore, an error bar-volume histogram (EVH) can be

generated in an analogous way as DVH for each structure, where the plan will be robust if

the histogram line is closer to zero.

(a) Nominal
dose distribution
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dose distribution
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dose distribution
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Figure 3.1. Representation of the diverse tools for visualizing plan robustness. The nominal dose
distribution (a) can be compared with a voxel-wise worst-case dose distribution considering the
overall minimum voxel value inside the CTV (b). An error-bar dose distribution (c) can be generated
considering the difference between the maximum and minimum voxel values from the perturbed
dose distributions. The envelope of perturbed dose distributions can be visualized as dose-volume
histogram bands (d), and from the error-bar dose distribution an error bar-volume histogram can be
generated (e).
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3.2.3 Summary

Diverse methods to evaluate the robustness of a treatment plan are available. All methods

rely on the calculation of perturbed dose distributions considering different error scenar-

ios, evaluating how the calculated treatment plan behaves in the presence of uncertainties.

Although there is no consensus about the selection of error scenarios for evaluation, ro-

bustness analysis provides in general additional information, which can be use for clinical

decision making between two treatment plans. Some of the mentioned methods, such as

the visualization of DVH bands and worst-case dose distributions, have been recently in-

corporated in commercial TPSs.
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In the following chapter, robust treatment planning together with a simplified robustness

evaluation will be illustrated for a simple anatomy geometry in a cohort of low grade glioma

patients. The region surrounding the target volume in brain tumors consists of mostly homo-

geneous brain tissue. Moreover, there are typically no severe anatomical variations during

a fractionated treatment course. Setup errors are small due to the stable location inside the

skull, the use of a thermoplastic mask for fixation, and image-guide positioning.

Robust treatment plans, using the CTV as target volume and defining setup and range

errors for the plan optimization are calculated. Afterward, a simplified robustness evalu-

ation is performed, with the generation of perturbed dose distributions considering fixed

variations in the setup error together with systematic random errors.
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4.1 Plan Design

Patient Data and Dose Prescription

A cohort consisting of ten low grade glioma patients was selected, extracted from a larger

cohort originally recruited for a multicentric in silico study comparing different radiation

treatment modalities for low grade gliomas (Eekers et al., 2018). Each patient dataset con-

sisted of a planning CT, with the GTV delineated by an expert radiation oncologist. The

CTV was defined as the GTV plus 1 cm margin. Several OARs in the brain region were

further contoured.

The prescribed dose to the CTV was 50.4 Gy(RBE) in 28 fractions, with defined clinical

objectives:

• the minimum dose to the 98% fo the target volume should be at least 95% of the

prescribed dose (D98% ≥ 95%, near minimum dose),

• the maximum dose to the 2% of the target volume should be less than or equal to the

107% of the prescribed dose (D2% ≤ 107%, near maximum dose), and

• the volume of the CTV receiving 95% of the prescribed dose should be at least 99%

(V95% ≥ 99%).

OARs with defined dose limits were: brain (D2% < 60 Gy,), brainstem (D2% < 54 Gy)

and optic chiasm (D2% < 55 Gy). Additional organs at risk were optimized to receive doses

as low as possible.

Plan Optimization

The plans were generated and calculated using RayStation, research version 4.99. Defined

TPS calculation parameters were used in this and the next chapters:

• pencil beam algorithm including heterogeneity corrections for plan calculation

• constant RBE of 1.1 for proton beams, as recommended by ICRU 78 (ICRU, 2007),

• dose calculation grid of 3×3×3 mm3,

• IBA universal nozzle, with a pencil beam sigma ranging from 8 mm (100 MeV) to

4 mm (220 MeV), where the spot distance and energy layer distance were calculated

automatically by the TPS,

• for each treatment field, a range shifter of 7.5 cm water equivalent thickness was

considered to allow dose deposition in shallow parts of the tumor, and
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• robust optimization based on composite minimax approach.

Two treatment fields were used in the evaluated cases, with an air gap of 2 cm between

patient surface and range shifter. For the minimax optimization, the robustness parameters

were set to 2 mm for setup error in cardinal directions and 3.5% for range error, considering

in total 21 scenarios for the plan optimization. Only objective functions related to the CTV

were selected as robust.

Plan Robustness Evaluation

The robustness of the plans against setup and range uncertainties was evaluated by gen-

erating perturbed dose distributions with fixed setup and range errors, in a similar way as

proposed by Albertini et al. (2011). First, setup errors were modeled by shifting the patient

isocenter by 2, 3 or 4 mm along each major axes (x, y, z) and diagonal directions, in both

positive and negative directions. Three samples of 14 dose distributions with each setup

shift combination were generated, as depicted in Figure 4.1.
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(-x, y, z)

(-x, -y, z)

(x, -y, z)
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(-X, 0, 0)
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(X, 0, 0)

(0, -Y, 0)

Figure 4.1. Selection of isocenter positions for the calculation of perturbed dose distirbutions. Max-
imum isocenter shifts are applied in the main axes directions X, Y, Z, whereas diagonal shifts corre-
sponds to values of (x, y ,z) which value summed in quadrature corresponds to the maximum shift.
Adapted from Albertini et al. (2011).
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4 Illustration of Robust Treatment Planning in a Simple Geometry

To assess the range error, for each setup shift, 42 perturbed dose distributions were

generated: 14 without range error, 14 with a range error of 3.5% and 14 with a range error

of -3.5%, resulting in overall 126 perturbed dose distributions per patient.

Dose statistics for the CTV coverage and OARs were extracted from each nominal and

perturbed dose distributions. The worst-case value was extracted, defined as the minimum

value for CTV coverage (D98% and V95% parameters), and the maximum value for CTV

D2% and OARs dose parameters. For each setup shift length (2, 3 and 4 mm), the worst-

case values were extracted first from the perturbed dose distributions without range error

(14 perturbed dose distributions), and second with range of ±3.5% (26 perturbed dose

distributions), to evaluate the influence of each error source. In total for each patient, 6 sets

of worst-case doses were extracted and analyzed.

Furthermore, DVH bands as proposed by Trofimov et al. (2012) were generated for one

exemplary patient considering, for each setup error, the band for the perturbed dose distri-

butions without range error and range error of ±3.5% separately.

4.2 Plan Results

4.2.1 Doses on Nominal Plan

Dose statistics for the nominal doses are summarized in Table 4.1. The nominal plan cov-

erage of the CTV was fulfilled in all cases, with median (range) values for the D98% of

99.6% (99.4–99.8%), whereas the volume receiving 95% of the prescribed dose (V95%)

was 100% for all cases. The near maximum doses D2% were below the objective of 107%

of the prescribed dose, with median (range) values of 104.9% (103.7–106.1%). Regarding

the OARs, the doses were below the dose limits in all cases.

4.2.2 Influence of Uncertainties in Plan Robustness

Influence of Setup Error in Plan Robustness

For each set of perturbed doses with defined setup error value (2, 3 and 4 mm), the worst-

case values showed a decrease in the median CTV D98% value of 2 percentage points

from the nominal dose value. However, for all setup errors the CTV coverage fulfilled the

planning objective (D98% ≥ 95%). The V95% parameter was above 99% for setup errors of
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4.2 Plan Results

Table 4.1. Nominal and worst-case dose statistics for each perturbed dose distribution set; median
(range) of the ten patients.

ROI Metric Nominal dose Setup Worst-case dose Worst-case dose
error Range 0% Range ±3.5%

CTV 99.6 (99.4–99.8) 2 mm 99.2 (98.9–99.5) 99.1 (98.4–99.3)
D98% (%) 3 mm 98.8 (98.1–99.2) 98.7 (97.6–99.1)

4 mm 97.4 (96.7–98.5) 97.2 (96.5–97.2)

CTV 100 (100–100) 2 mm 100 (99.9–100) 99.9 (99.9–100)
V95% (%) 3 mm 99.8 (99.6–100) 99.7 (99.5–100)

4 mm 99.2 (98.8–99.8) 99.2 (98.5–99.7)

CTV 104.9 (103.7–106.1) 2 mm 105.0 (103.9–106.3) 105.2 (103.9–106.3)
D2% (%) 3 mm 105.0 (104.0–106.3) 105.2 (104.0–106.3)

4 mm 105.0 (104.0–106.3) 105.2 (104.0–106.4)

Brain 52.2 (51.7–52.7) 2 mm 52.3 (51.8–52.8) 52.3 (51.8–52.8)
D2% (Gy) 3 mm 52.3 (51.8–52.8) 52.3 (51.8–52.8)

4 mm 52.3 (51.8–52.8) 52.4 (51.8–52.8)

Brainstem 50.8 (26.1–52.2) 2 mm 51.6 (29.0–52.4) 51.5 (32.3–52.7)
D2% (Gy) 3 mm 51.7 (30.4–52.9) 51.8 (33.6–52.8)

4 mm 51.9 (31.9–53.2) 52.0 (34.9–52.9)

Optic chiasm 50.0 (0.5–52.2) 2 mm 50.8 (0.9–52.4) 50.9 (1.9–52.8)
D2% (Gy) 3 mm 51.2 (1.0–52.5) 51.2 (2.2–52.9)

4 mm 51.5 (1.2–52.8) 51.5 (2.4–53.1)

Abbreviations: ROI, region of interest; CTV, clinical target volume; D98%, dose to the 98% of the volume, V95%,
volume receiving 95% of the prescribed dose, D2%, dose to the 2% of the volume.

2 and 3 mm, whereas one patient showed a value of 98.8% for setup error of 4 mm. High

doses to the CTV (D2%) did not show major variations from the nominal dose in all cases.

Brain D2% doses did not show variations for different setup errors, but a slight increase

was observed in brainstem and optic chiasm D2% doses with increasing setup error, yet

the doses remained in acceptance levels.

Influence of Combined Setup and Range Error in Plan Robustness

When additionally range errors were considered, the median D98% doses on the CTV

showed a slight decrease up to 0.2 percentage points, but the target coverage fulfilling

the clinical objective. The V95% parameter showed no substantial differences from the per-

29



4 Illustration of Robust Treatment Planning in a Simple Geometry

Location of axial slice

D
os
e
/G
y
WR
B
E
)

10

20

30

40

50

60

D
iff
.D
os
e
/G
y
WR
B
E
)

-15

-10

-5

-1

0

15

10

5

1

2 mm superior shift
-3.5g range

4 mm superior shift
-3.5g range

N
om
in
al
do
se

1

W
or
st
-c
as
e
do
se

2
D
os
e
di
ffe
re
nc
e

2
-
1

Figure 4.2. Dose distributions of nominal and worst-case doses for an exemplary patient, with the
CTV delineated in cyan. The nominal dose (1) is compared with the worst-case dose distributions
(2) for two realizations of setup errors (2 and 4 mm), showing a slight reduction in the CTV coverage,
without compromising the clinical objective.

turbed dose distributions without range error. Regarding OARs, worst-case D2% doses for

brain, brainstem and chiasm showed no large variations from the situation without range

error.

Dose statistics for the sets of perturbed dose distributions are summarized in Table 4.1.

Dose distributions for an exemplary patient are depicted in Figure 4.2, and comparison of

dose statistics and DVH bands for the same patient for CTV and OARs are depicted in

Figures 4.3 and 4.4, respectively.

4.3 Discussion and Conclusion

In the present chapter, the application of minimax robust proton treatment planning has

been illustrated in a simple geometry, by calculating robust plans with target volumes local-

ized in the brain region for 10 cases and performing a simplified robustness analysis. The

CTV coverage was preserved for different instances of setup and range errors, whereas

the doses to the OARs remained below their dose limits.
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tive of 95% of the prescribed dose. (b) DVH bands for an exemplary patient, considering the whole
envelope of perturbed dose distributions for setup error of 2 mm (top) and 4 mm (bottom), for each
range error. The bands for setup of 4 mm are wider, but fulfill the planning objective.

Evaluating both sources of uncertainty, setup errors played the most relevant role in

CTV coverage degradation. Additional range errors did not show a large influence on the

target coverage. The range error considered in the perturbed dose distributions was of the

same magnitude as the range uncertainty considered in the plan optimization, therefore

it is expected that the plans are robust against range errors of the same magnitude. The

same was observed for the OAR doses, which did not show larger differences with and

without range error in the worst-case dose; however, for the patient example in Figure 4.4,

a wider DVH band is shown when the range error is taken into account for brainstem and

optic chiasm. In this study, robust objective functions were considered only for the CTV.

In principle, it is possible to apply robust functions also for the OARs, which might reduce

the variation of the dose in the perturbed dose scenarios. Additional factors such as the

objective function weighting and conflicting objectives between target volume and OARs

must be considered.

Challenges of robust optimization in complex geometries In complex geometries

such as head and neck squamous cell carcinoma (HNSCC), which is the main focus of this
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Figure 4.4. (a) Comparison of nominal and worst-case doses for the OARs D2% parameter of all
ten patients. (b) DVH bands for an exemplary patient, considering the whole envelope of perturbed
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distributions for setup errors of 4 mm.

thesis, usually two dose prescription levels for the CTV are defined. The low level covers the

elective volume, whereas the high dose level considers the primary tumor and metastatic

lymph nodes. Furthermore, several OARs with dose limits below the prescribed doses to

the CTV are present, for instance spinal cord, salivary glands, oral mucosa, larynx and

swallowing muscles. These OARs are relevant for important side effects such as myelitis,

xerostomia, mucositis and dysphagia, which adds additional challenges to the robust plan

optimization

In some HNSCC cases, the parotid glands might have portions bordering or overlapping

with the CTV. For the planning objective definition, an auxiliary OAR planning volume, which

considers only the portion outside the CTV, can be defined. By doing so, the CTV coverage

will not be compromised; however, it might be possible that the desired sparing of the OAR
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cannot be reached, if an important portion of the volume is inside the CTV. In such cases,

clinicians and physicists should discuss the relative importance of the planning objectives

depending on the individual case, if more weight should be given to the CTV coverage or

to the OAR sparing.

Furthermore, additional uncertainties should be considered in HNSCC cases, such as

anatomical variations during the treatment course, as patient weight loss and tumor shrink-

age, which might reduce the plan robustness. Different approaches such as in-treatment

imaging together with plan adaptation are used, to detect deviations that might decrease

the target coverage and/or increase the OAR dose beyond the clinical objectives.

In summary, there are additional challenges in RO for complex geometries related to

the treatment planning and additional uncertainties during the treatment course, such as

anatomical variations. In Chapter 6, the influence of anatomical variations in robustly opti-

mized plans are evaluated, and a new robust treatment planning approach is proposed, to

reduce the need of plan adaptation.
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Unilateral head and neck irradiation is indicated for entities which present a reduced risk for

contralateral spread, e.g. malignancies of major salivary glands, early-stage tonsil cancer,

selected oral cavity cancer and in cases of re-irradiation (Leeman et al., 2017). Therefore,

the target volume for radiation treatment may be confined to one side.

Several investigations have shown the potential of PT when irradiating unilateral HNSCC

target volumes, regarding OAR sparing and reduction of the integral dose to the normal

tissue. Passive scattering PT was compared against IMRT by Romesser et al. (2016), find-

ing a significant normal tissue sparing with protons, which can be translated into reduced

treatment toxicity. Regarding studies with PBS technique, Kandula et al. (2013) investigated

differences between IMPT and IMRT dose distributions in a cohort of five unilateral HNSCC

patients, finding similar results, with a substantial reduction in the integral dose when using

protons. Furthermore, Zhu et al. (2014) investigated for one head and neck case the fea-

sibility to include simultaneous integrated boost (SIB) within IMPT SFO planning, whereas
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5 Robust Treatment Planning in Unilateral HNSCC

Stromberger et al. (2016) included a SIB with IMPT MFO planning for six unilateral HNSCC

cases.

The mentioned studies have calculated the plans using a PTV margin expansion for the

assessment of setup and range uncertainties in PT planning. However, robust optimization

techniques have so far not been studied for unilateral HNSCC proton treatment. Conversely,

no study has compared MFO and SFO in unilateral head and neck irradiation. Quan et al.

(2013) compared both techniques in four bilateral HNSCC patients, finding higher robust-

ness for the SFO plans, but with the price of higher parotid gland dose compared to MFO;

however, this study did not consider robustly optimized plans.

The aims of the following in silico study are:

• to assess the feasibility of PBS proton therapy for unilateral head and neck squamous

cell carcinoma (HNSCC),

• to compare IMPT single-field and multi-field optimization approaches, with either

PTV-based optimization or CTV-based robust optimization and,

• to assess the robustness of the plans to uncertainties in patient setup, proton range

and anatomical variations.

The work presented in this chapter has been published in Radiation Oncology and it was

presented at the ESTRO 36 conference (Cubillos-Mesías et al., 2017a; Cubillos-Mesías

et al., 2017b).

5.1 Study Design

5.1.1 Calculation Parameters

Patient Data

For the design of the planning study, eight patients treated with double scattering PT at the

University Proton Therapy Dresden between March 2015 and June 2016 were selected.

Inclusion criteria were the presence of delineated unilateral HNSCC volumes for treatment

planning and a regular acquisition of control CTs (cCTs) during the treatment course, with

an adequate length of the scanned field of view. The patient characteristics are presented

in Table 5.1.

Each patient dataset consisted of a planning CT (pCT) and several cCTs (median: 6,
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Table 5.1. Patient and tumor characteristics of the unilateral HNSCC cohort.

Patient Primary tumor site Gender TNM-stage

1 Left parotid gland1 F pT1 N0 M0
2 Right parotid gland1 M pT1 N0 M0
3 Right minor salivary glands M pT1 N2b M0
4 Lateral border of tongue F pT1 N2b M0
5 Right tonsil M pT2 N2b M0
6 Maxillary sinus M rcT2 N1 M0
7 Left parotid gland1 M pT4a N0 M0
8 Right submandibular gland M prT2 N0 M0

1 Patients with ipsilateral parotid gland surgically removed due to pathology.

range: 3–13) acquired during the course of the treatment using an in-room dual energy CT

on-rails (Siemens SOMATOM Definition AS, Siemens Healthineers, Forchheim, Germany).

Two CTV levels were considered for the planning study: a high-risk CTV which includes

the primary tumor, surgical cavity and potential metastatic lymph nodes, and a low-risk CTV

which includes the elective unilateral lymph nodes. Delineated OARs were spinal cord,

brainstem, parotid glands, larynx, oral mucosa, pharyngeal constrictor muscles and eso-

phageal inlet muscle, as depicted in Figure 5.1. The volumes were contoured on the pCT

by an experienced radiation oncologist. In three patients the ipsilateral parotid gland was

surgically removed due to pathology.

Each cCT was at first registered to the pCT by rigid image registration with focus on the

bony region. Following manual corrections if necessary, a deformable image registration

(DIR) between both datasets was performed (Weistrand and Svensson, 2014). After the

registrations were available, the contoured volumes on the pCT were transferred to each

cCT, being subsequently reviewed and corrected by the same radiation oncologist.

Treatment Planning

Proton treatment plans were optimized and analyzed in the TPS RayStation, research ver-

sion 4.99. Four PBS proton plans were generated for each patient:

• MFOPTV – Conventional MFO plan, considering the PTV as target volume for treat-

ment planning.

• SFOPTV – Conventional SFO plan, considering the PTV as target volume for treat-
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Figure 5.1. (a) Sagittal CT slice illustrating the delineated OARs. The OARs considered in the plan
optimization are depicted by a red border. White lines represent the transversal slice locations in
(b-d).

ment planning.

• MFORob – Robustly optimized MFO plan, considering the CTV as target volume for

treatment planning.

• SFORob – Robustly optimized SFO plan, considering the CTV as target volume for

treatment planning.

The robustly optimized plans were generated accounting for 3 mm setup errors and

±3.5% range errors. The robust optimization considers in total 21 scenarios combining

setup and range errors. For the plan optimization, only objective functions related to the

target volumes were selected as robust (Li et al., 2015b).

Each of the four plans per patient was generated using two or three treatment fields with

the same gantry and couch angle configuration, as presented in Table 5.2, avoiding enter-

ing through risk structures and regions with high inhomogeneity gradients throughout the

beam path. The dose distributions were calculated considering a constant relative biolog-

ical effectiveness (RBE) of 1.1 for proton beams. Additional calculation parameters were

set as described in Section 4.1, with an air gap between patient surface and range shifter

of 3 cm.

The prescribed doses for the target volumes were 50.3 Gy(RBE) to the low-risk region

and 68 Gy(RBE) to the high-risk region, delivered in 34 fractions. For the optimization of

PTV-based plans, two PTVs were generated by isotropic expansion of each CTV by 5 mm.
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Table 5.2. Treatment field gantry and couch angles used on the unilateral HNSCC plans per each
patient.

Field 1 Field 2 Field 3

Patient Gantry Couch Gantry Couch Gantry Couch

1 30◦ 340◦ 80◦ 340◦ – –
2 320◦ 10◦ 280◦ 10◦ – –
3 340◦ 20◦ 280◦ 20◦ – –
4 345◦ 20◦ 290◦ 20◦ – –
5 340◦ 20◦ 280◦ 20◦ 190◦ 0◦

6 340◦ 20◦ 280◦ 20◦ 200◦ 0◦

7 30◦ 340◦ 80◦ 340◦ – –
8 345◦ 20◦ 290◦ 20◦ – –

The plans were calculated using a SIB. An additional transitional intermediate volume be-

tween low-risk and high-risk region of 10 mm margin was created to assure a steep SIB

dose gradient (van der Voort et al., 2016).

The four plans were optimized to deliver the prescribed dose to the target volumes fol-

lowing the protocol at the University Proton Therapy Dresden, i.e. the minimum dose to the

98% of the target volume (near minimum dose) should be at least 95% of the prescribed

dose (D98% ≥ 95%). Moreover, the dose to the 2% of the target volume (near maximum

dose) should be less than 107% of the prescribed dose (D2% ≤ 107%). For PTV-based

approaches, the PTV was selected as target volume for the optimization, whereas for ro-

bust optimized plan the CTV was selected. For evaluation purposes, the doses in the CTV

in the four plans were considered.

The doses to the OARs were optimized as indicated in Table 5.3, considering the spinal

cord, brainstem and parotid gland in the optimization. The remaining OARs were not con-

sidered in the plan optimization, but for dose reporting1.

5.1.2 Plan Robustness Evaluation

Influence of Anatomical Variations

To evaluate the influence of anatomical variations in the planned dose distributions during

the treatment course, each plan was recalculated on each available cCT, as an approxima-
1The remaining OARs were not available when the plans were optimized, but contoured afterwards.
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Table 5.3. Treatment planning objectives for delineated volumes.

Structure Planning objective

CTV (PTV)1 D98% ≥ 95% of prescribed dose
D2% ≤ 107% of prescribed dose

Spinal cord Dmax < 45 Gy
Brainstem Dmax < 54 Gy
Parotid gland Dmedian ≤ 26 Gy
Larynx Dmean No specified objective
Oral mucosa Dmean No specified objective
Pharyngeal constrictor muscles Dmean No specified objective
Esophageal inlet muscle Dmean No specified objective
1 CTV or PTV as planning target structure depending of the plan approach.

tion of the dose delivered on a specific fraction. To evaluate and compare the approximate

effective delivered dose within the whole treatment course with the nominal planned dose,

total cumulative doses (DCum) were computed for each plan. Each recalculated dose on

the cCT was deformed to the pCT and summed. This procedure, known as dose accumu-

lation, was performed in RayStation using the DIR previously generated between pCT and

cCTs. The workflow to generate total cumulative doses is depicted in Figure 5.2.

Influence of Setup and Range Uncertainties

As mentioned in Section 3.2.1, robustness evaluation considering fixed setup error values

neglects the fractionation effect, i.e. the influence of interfractional random setup errors dur-

ing the treatment course that reduce the total setup uncertainty due to the convergence of

random errors. To evaluate the robustness considering a realistic clinical setting, a method

similar as proposed by Park et al. (2013) was implemented.

The method consists of the calculation of integral-treatment perturbed doses considering

random fraction-wise setup errors and systematic range errors. For each treatment frac-

tion n, three random numbers were drawn from a Gaussian distribution with mean value

µ = 0 and standard deviation σ = 2.5 mm for the isocenter shift in the cardinal directions

(xn, yn, zn). Three fixed range error values of -3.5%, 0% and +3.5% were selected, con-

sidering the range errors as systematic, i.e. being the same for all fractions. For each range

error value, 34 single-fraction doses, each with a different isocenter shift (i.e. random setup
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Figure 5.2. Workflow for the calculation of total cumulative doses DCum, recalculating the plan in
each cCT and accumulating the dose in the planning CT.

error) were calculated, and posteriorly summed up to generate an integral-treatment per-

turbed dose, which considers the variations in the setup error per fraction. This procedure

was repeated 10 times for each range error value, resulting in a set of 30 integral-treatment

perturbed doses (Figure 5.3).

Two sets of integral-treatment perturbed doses were generated. For the first set, it was

assumed that the anatomy of the pCT was maintained during the whole treatment course,

hence the single-fraction doses were calculated considering the anatomy of the pCT. These

integral-treatment perturbed doses are denominated as DPerNom.

For the second set, the same procedure was repeated to evaluate the plan robustness

considering additionally potential anatomical variations during the treatment course. Again,

30 integral-treatment perturbed doses were generated, considering the same random setup

errors and range errors previously determined, but also considering the respective anatomy

of the cCT for fraction dose calculation. These integral-treatment perturbed doses are de-

nominated as DPerCum.
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Figure 5.3. Scheme for the generation of integral-treatment perturbed doses.

To evaluate the robustness of the plans, the worst-case values of each dose parameter

were extracted from the 30 integral-treatment perturbed doses per treatment plan. The

worst-case value corresponds to the minimum value for CTV D98% and maximum value for

CTV D2% and OAR dose parameters. Furthermore, the number of perturbed doses fulfilling

the clinical objective of D98% ≥ 95% for both CTVs was quantified. The total width, defined

as the differences between maximum and minimum CTV D98% value extracted from the

set of 30 perturbed doses, was also calculated and compared between plans.

The calculation of both sets of integral-treatment of perturbed doses was efficiently imple-

mented in RayStation via scripting, calculating in a step-wise basis perturbed fraction doses

with random setup errors and systematic range errors, and dose accumulation considering

the anatomy of either the pCT or cCT for the generation of integral-treatment perturbed

doses. A summary of the abbreviations used for each evaluated set of dose distributions is

described in Table 5.4.

Statistical Analysis

One-way analysis of variance (ANOVA) followed by post-hoc two-sample independent t-

tests were performed in SPSS v.25 (IBM Corporation, Armonk, NY) to test significant dif-

ferences in dose parameters between the four plans, including Bonferroni correction for

multiple testing. Two-sided paired t-tests were used to determine significant differences be-

tween the nominal dose DNom, total cumulative doses DCum, and perturbed doses DPerNom

and DPerCum. A p-value < 0.05 was considered to be significant.
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Table 5.4. Nomenclature for evaluated dose distributions.

Dose name Description

DNom Nominal dose on pCT
DCum Total cumulative dose, considering the anatomy of the cCTs
DPerNom Worst-case of integral-treatment perturbed dose considering anatomy of pCT
DPerCum Worst-case of integral-treatment perturbed dose considering anatomy of cCTs

5.2 Results

5.2.1 Evaluation of Nominal Plan Doses

Dose distributions for an exemplary patient are shown in Figure 5.4. For all patients, the

CTV coverage was similar for the four plans, fulfilling the clinical objectives (median of

D98% values: 97.5–100.0% for the low-risk CTV, 98.5–99.8% for the hight-risk CTV), being

slightly lower for the robust optimized plans, as shown in Figure 5.5. Only MFORob plans

showed a significantly lower D98% dose for both low- and high-risk CTV, compared to the

other plan approaches (p ≤ 0.04). Regarding hot spots, D2% ≤ 107% was met by the four

plans in the high-risk CTV (median of D2% values: 103.6–106.3%), but D2% values higher

than 107% were found in the low-risk CTV due to the dose gradient for the SIB treatment

(median of D2% values: 106.0–118.8%), with highest values for both PTV plan approaches,

due to the margin expansion of the high-risk CTV used for the plan optimization.

The doses to the OARs were similar for all planning strategies. The near maximum doses

to the spinal cord and brainstem D1cc were far below the clinical constraints, with median

D1cc values of 1.8–2.0 Gy and 3.1–3.6 Gy, respectively. For the ipsilateral parotid gland,

only contoured in five of the eight patients due to surgical removal in the others, high

Dmedian values were found for both SFOPTV and SFORob plans (median Dmedian values

of 30.3 and 28.5 Gy, respectively), with a significant increase for the SFOPTV plan com-

pared to the MFOPTV and the MFORob approaches (p ≤ 0.026). The contralateral parotid

gland was completely spared in all cases (Dmedian ≤ 0.1 Gy), due to the target location

and treatment field configuration, whereas the Dmean to larynx, oral mucosa, constrictor

muscles and esophageal inlet muscle were similar for all plans, as shown in Figure 5.6.

Detailed tabulated data can be found in the Appendix, Table A.2.
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Figure 5.4. Dose distributions from MFOPTV, MFORob, SFOPTV and SFORob plans for an exemplary
patient. White lines in the coronal view indicate the transversal slice position. Low-risk CTV and
high-risk CTV are delineated in dark brown and pink, respectively. Both SFO approaches show
higher doses to the ipsilateral parotid gland (delineated in purple), compared to the MFO plans.

5.2.2 Evaluation of Plan Robustness Against Uncertainties

Evaluation of Total Cumulative Doses

The D98% values showed no significant statistical differences for the low- and high-risk

CTV between nominal DNom and total cumulative doses DCum for the four plans. For one

case, the high dose D2% in the high-risk CTV was increased to 5.5% in the MFOPTV plan,

whereas for another patient the D98% on the high-risk CTV decreased to 94.8% in the

MFORob plan, indicating that, even if the plans are robustly optimized, they might not be

account for anatomical variations occurring during the treatment course.

Regarding the dose to the OARs, individual cases presented higher DCum doses com-

pared to DNom, for example one patient showed an increase of 8 Gy in the larynx Dmean on

both MFOPTV and SFOPTV plans. Spinal cord and brainstem D1cc showed a slight median

increase in the DCum, but remaining far below the dose constraints. The Dmedian values
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for ipsilateral parotid gland were slightly higher in the MFOPTV plan (median increase of

2.4 Gy), but remaining higher for both SFO plans compared to both MFO approaches.

However, the differences on the OAR doses between DNom and DCum were not significant

for all four planning approaches.

The results for DCum for CTV D98% and OAR dose statistics are shown in Figures 5.5

and 5.6. Detailed tabulated data can be found in the Appendix, Table A.2.

Evaluation of Robustness Against Uncertainties

Evaluation of DPerNom doses The evaluation of the worst-case values from the set of

integral-treatment perturbed doses considering the anatomy of the planning CT (DPerNom)

showed for the CTV doses no large variations between the four plans. No statistically signif-

icant differences were found in the low-risk CTV D98% between DNom and DPerNom doses

in the four planning approaches, whereas a significant dose decrease in the high-risk CTV

between the DNom and DPerNom in the SFORob approach was observed (p = 0.043). The

other three plans showed no significant differences.

For individual cases, one patient showed a reduced D98% value in low-risk CTV of 90.3%

in the MFOPTV plan, whereas for another patient a high-risk CTV D98% value of 94.2%

was found in the SFORob approach. The other cases fulfilled the objective for both CTVs

(Figure 5.5). Doses to the OARs showed a slight increase between DNom and DPerNom, but

without significant differences for all plans (Figure 5.6).

Evaluating the total set of 30 integral-treatment perturbed dose distributions, in general

the majority fulfilled the clinical objective for both CTVs of D98% > 95%, with a mean of

29.9 scenarios per plan (99.8%). In two cases, namely for MFOPTV and SFORob plans 2

and 4 scenarios were below the objective, respectively. The total width was typically largest

for MFOPTV plans (median (maximum) value of 1.8 (9.3) percentage points on the low-

risk CTV), as shown in Figure 5.7. Detailed tabulated data can be found in the Appendix,

Table A.1.

Evaluation of DPerCum doses The worst-case values for the integral-treatment perturbed

doses when anatomical variations during the treatment course are additionally accounted

(DPerCum) showed a dose reduction of both CTV D98% dose parameters. The DPerCum

dose of the high-risk CTV D98% was significantly reduced when compared to the DCum for

MFORob (p = 0.019) and SFORob (p = 0.041) plans, whereas the PTV approaches showed
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Figure 5.5. Comparison of the CTV D98% between DNom, DCum, DPerNom and DPerCum for the whole
unilateral patient cohort. Significant differences and p-values are indicated (*).

no significant differences (Figure 5.5). As in the previous evaluation, doses to the OARs

showed a slight increase between DCum and DPerCum, but without significant differences

for all plans (Figure 5.6). Detailed tabulated data can be found in the Appendix, Table A.2.

For the set of 30 integral-treatment perturbed doses, the number of dose distributions

fulfilling the clinical objective for both CTVs of D98% > 95% was also reduced compared

to the DPerNom set, with a minimum mean value of 26.8 scenarios (89.3%) in all planning

approaches. The total width remained the largest for the MFOPTV approach (median (max-

imum) value of 1.9 (9.7) percentage points on the low-risk CTV), whereas the SFOPTV

approach showed the smallest values (median (maximum) value of 0.7 (2.4) for the low-

risk CTV). The variation in the total width from the DPerNom doses was in general small, as

shown in Figure 5.7. Detailed tabulated data can be found in the Appendix, Table A.1.

5.3 Discussion

In this study, four different PBS proton therapy approaches for HNSCC with unilateral target

volumes, considering SFO and MFO with and without robust optimization, were compared.

Furthermore, the influence of anatomical variations in the treatment course was evaluated,

together with the robustness of the plans against random setup errors and systematic range

errors.

Both PTV-based plan approaches showed small variations on the CTV coverage when
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Figure 5.6. Comparison of OAR dose parameters between DNom, DCum, DPerNom and DPerCum for the
whole unilateral patient cohort.

anatomical variations during the treatment course were considered (DCum), compared to

the robustly optimized plans. Moreover, the MFOPTV plan showed reduced robustness

against additional setup and range errors, compared to the rest three approaches. Regard-

ing OARs, both SFO plans delivered higher doses to the ipsilateral parotid gland, compared

to the MFO plans.
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Nominal plan doses Both PTV-based and robust optimized approaches fulfilled the tar-

get coverage requirements in the nominal plan. The near maximum doses to spinal cord

and brainstem were far below the clinical constraints due to the unilateral target location,

which allows for additional OAR sparing with proton fields. However, both SFO plans gave

significantly higher Dmedian doses to the ipsilateral parotid gland compared to the MFO ap-

proaches, due to the reduced degrees of freedom in the field modulation and the resulting

higher doses near the target volume (Figure 5.4). However, the chosen treatment configu-

ration, with the proton fields entering through the tumor site, allowed to completely spare

the contralateral parotid gland in all cases, with Dmedian doses near to zero, which helps to

reduce the risk of secondary complications as severe xerostomia (Deasy et al., 2010).

The plan optimization did not have specific dose objectives to larynx, oral mucosa, con-

strictor muscles and esophageal inlet muscle, as these OARs were contoured afterwards,

but the dose values were similar between the plan approaches, being the values close to

or below the recommended Dmean constraints for reducing the risk of larynx edema and

dysphagia (Rancati et al., 2010). Besides, the tumor size, which for unilateral irradiation

is considerable smaller than bilateral targets, allows for an improved normal tissue spar-

ing. It remains the question whether further OAR sparing is achievable if additional plan

objectives for these organs were included.

For the PTV-based plans, a 5 mm margin expansion from the CTV was chosen, us-

ing the same values as used in photon therapy in Dresden. Romesser et al. (2016) and

Stromberger et al. (2016) also used a 5 mm margin expansion in their studies, whereas

Kandula et al. (2013) and Zhu et al. (2014) chose a 3 mm PTV margin. It has been inves-

tigated that PTV margins in photon planning should be calculated considering the system-

atic and random components of the setup errors, with margin recipes published (van Herk,

2004). However, the same principle cannot be easily translated into proton therapy, as the

PTV concept might not account for such uncertainties.

For the robustly optimized plans, 3 mm for setup uncertainty and ±3.5% for range un-

certainty were selected as robustness parameters. Van der Voort et al. (2016) investigated

robustness recipes for IMPT plans for unilateral oropharyngeal cancer cases, determining

a setup error value of 4.3 mm and a range error value of 3% to be used for the plan cre-

ation with their optimization algorithm. The proximity of the high-risk CTV to the edge of

the low-risk CTV might increase the sensitivity to errors, therefore the recipe setup error

value is higher as the one used in this study. However, the uncertainty values chosen are in
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agreement with the values from studies evaluating robust plans for bilateral HNSCC cases

(Liu et al., 2013a; Liu et al., 2013b; Li et al., 2015b; van Dijk et al., 2016; Stützer et al.,

2017b).

Plan robustness Analyzing the robustness of the plans, when first the anatomical vari-

ations during the treatment course were considered, the clinical objectives for CTV cover-

age and OAR sparing were fulfilled in most of the patients. For individual cases, a lower

CTV dose than the planned dose could have been delivered to the CTV, for example one

MFORob case not fulfilling the coverage on the high-risk CTV. Anatomical variations dur-

ing the treatment course can influence the cumulative dose distributions DCum, and even

robustly optimized plans might not be sufficient to account for them.

Conversely, when different setup and range errors with a constant anatomy are consid-

ered, the four plans fulfilled in most of the cases the objective for target coverage, finding

punctual cases when the dose might be reduced (cf. Figure 5.5). Although the majority

of perturbed scenarios fulfilled the coverage of both CTVs, the total width was the largest

for the MFOPTV approach, indicating a reduced plan robustness against setup and range

errors.

When additionally the anatomical variations in the cCTs were considered, the CTV D98%

doses were further reduced, even in robustly optimized approaches, being in line with the

previous findings regarding total cumulative doses. Furthermore, the total width was the

smallest for the SFOPTV approach. Whereas plan robustness against setup and range un-

certainties can be ensured when the anatomy of the planning CT is considered, the same

cannot be affirmed when additionally anatomical variations are taken into account, since

they were not considered as an additional source of uncertainty into the plan optimization.

Thus, image guidance during proton therapy has special relevance in order to detect early

changes in the anatomy that may lead to variations on the planned dose distributions which

may be an indication for replanning. A new approach including information of anatomical

variability in the plan optimization process will be proposed and evaluated on the next chap-

ter.

Limitations of the study This study present some limitations. First, the size of the patient

cohort was limited to the datasets available. At the time, the number of patients with unilat-

eral HNSCC being treated with proton therapy in the institution was limited. Furthermore,
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the frequency of the acquisition of in-treatment cCTs was not consistent between patients,

which may lead to uncertainties in the calculation of total cumulative doses.

Regarding the plan calculation parameters, PTV-based plans were calculated consider-

ing a CTV-to-PTV margin expansion of 5 mm. This value was larger than the setup error

of 3 mm considered in robustly optimized plans, therefore an increased robustness might

be expected for PTV-based plans. However, it was shown that independent of the planning

approach, anatomy uncertainties during the treatment course, combined with setup and

range errors, can decrease the plan robustness. Conversely, the robustness parameters

selected for setup and range errors were chosen according to the literature, which is mostly

published for bilateral targets. As mentioned before, a larger setup uncertainty might be

considered in unilateral cases due to an increased sensitivity to errors, due to the size of

the CTVs and the proximity of the high-risk CTV boundary to the low-risk CTV, which can

influence the robustness of the plans against uncertainties, as well as the dose to the OARs

(van der Voort et al., 2016).

Image artifacts, patient motion and differences in patient positioning between planning

and control CT might derive in uncertainties in the image registration procedure and DIR,

which can influence the contour propagation from planning to control CT, and the calcu-

lation of total cumulative doses (Brock et al., 2017; Paganelli et al., 2018; Ribeiro et al.,

2018). To reduce the uncertainties in contouring, the radiation oncologist reviewed all con-

tours propagated on each cCT. To reduce the uncertainties in image registration, an exact

patient position between fractions is important, e.g. monitor the shoulder and mandible

position for the head and neck region.

On the evaluation of robustness against uncertainties, for the generation of random setup

errors, a sigma value of 2.5 mm was considered. Many studies have calculated the sigma

for head and neck treatments in HNSCC for bilateral targets, with values near to 1.5 mm

(van Kranen et al., 2009; Amelio et al., 2013; Ciardo et al., 2015; Lowe et al., 2016; Stützer

et al., 2017b). The overconservative choice in the sigma value used in this study might

result in fraction isocenter shifts values for x, y, z bigger than the 3 mm considered for the

setup uncertainty in robust optimization, therefore the plan robustness might be decreased.

This effect seems to be of importance when anatomical variations are considered, resulting

in a summation of the error due to the isocenter setup and changes in anatomy. For bilateral

HNSCC patient cases, studied in Chapter 6, a sigma of 1.5 mm for random setup errors is

considered for the robustness evaluation.
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The robustness analysis implemented by scripting in RayStation for the calculation of

integral-treatment perturbed dose was intensively time-consuming within the used version

of the TPS, making this method difficult to integrate in the clinical workflow for a prospec-

tive evaluation of plan robustness. Nowadays, additional tools for evaluation of the plan

robustness are offered by commercial TPSs.

5.4 Conclusions

Four PBS proton therapy strategies were evaluated in a unilateral HNSCC cohort, showing

adequate target coverage on the nominal plan, whereas the OAR dose remained similar

between plans, with the exception of the ipsilateral parotid gland, where both SFO plan

approaches showed higher Dmedian values compared to the MFO plans.

Both, PTV-based and robustly optimized plans, were sensitive to uncertainties in setup,

range and anatomical variations for individual cases, leading to reduced target coverage

and higher OAR doses. Hence, no plan strategy showed a decisive advantage regarding

plan robustness and potential need of replanning.
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6.1 Anatomical Robust Optimization

The dosimetric advantages of proton therapy (PT) against photons for treatment of bilateral

head and neck malignancies have been widely investigated in the last years, together with

robustly optimized treatment approaches to account for uncertainties in patient setup and

proton range, without the use of a PTV margin expansion (Liu et al., 2012; Li et al., 2015b;

van Dijk et al., 2016; Stützer et al., 2017b).
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Additional sources of uncertainty in PT for HNSCC are anatomical variations during the

treatment course, for instance non-rigid variations in patient positioning, tumor shrinkage,

and patient weight changes. Anatomic variations might cause a degradation of the planned

dose, impacting the treatment plan quality, and requiring plan adaptation, as demonstrated

for PTV-based IMPT plans (Kraan et al., 2013; Góra et al., 2015; Müller et al., 2015; Thom-

son et al., 2015; Stützer et al., 2017a). For robustly optimized plans, the impact of such

anatomical variations in the dose distributions has not been investigated

Typically, the treatment plan optimization is based on one CT image dataset. 4D opti-

mization techniques, including different CT phases, have been studied to account for res-

piratory motion in lung tumor cases (Li et al., 2015a; Liu et al., 2016; Engwall et al., 2018).

Moreover, recent studies including additional CT datasets in the optimization have shown

a higher robustness against anatomical variations during the treatment course, as Wang

et al. (2017) for lung cases and van de Water et al. (2018) for sinonasal tumors.

For HNSCC cases, if additional information about potential anatomical variability could be

included in the plan optimization, e.g. by additional CT image datasets, the plan robustness

against anatomic variations might be increased, preserving the dose to the target volume,

and therefore decreasing the need of plan adaptation.

In this study, a new robust treatment planning approach is proposed. The anatomical

robustly optimized approach (aRO) considers additional effects of random non-rigid patient

positioning variations in the plan optimization process, by the inclusion of additional CT

datasets. The influence of diverse sources of uncertainty in the planned dose is further

evaluated and compared with classical approaches.

The aims of the following in silico study are:

• to propose an anatomical robustly optimized plan approach which considers addition-

ally non-rigid patient positioning variations in the plan optimization process,

• to compare the anatomical robustly optimized plan approach with a PTV-based ap-

proach and a classical robustly optimized approach (cRO) in terms of target coverage,

dose to the OARs and integral dose to the healthy tissue,

• to quantify the influence of anatomical variations during the treatment course for

anatomical, classical robustly optimized and PTV-based approaches,

• to quantify the influence of setup and range uncertainties together with anatomical

variability for anatomical and classic robustly optimized plans, and
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• to assess the need of plan adaptation of the proposed approach.

The work presented in this chapter has been published in Radiotherapy and Oncology

and presented at ESTRO 37 and 38 conferences (Cubillos-Mesías et al., 2018; Cubillos-

Mesías et al., 2019a; Cubillos-Mesías et al., 2019b).

6.2 Study Design

6.2.1 Calculation Parameters

Patient Data

The patient cohort for this study consisted of 20 patients with locoregionally advanced

HNSCC treated at the University Hospital Dresden between August 2015 and July 2016.

17 patients were treated with IMRT, 2 with double scattered proton therapy and 1 with a

mixed IMRT-proton treatment. Each patient dataset consisted of a planning CT acquired

prior to treatment, and weekly scheduled control CTs (cCTs) acquired during the course of

the treatment. A median number of 6 cCTs were acquired per patient (range: 4–7). Patient

and tumor characteristics are listed in Table 6.1

Table 6.1. Patient and tumor characteristics of the bilateral HNSCC cohort.

Patient and tumor characteristics Number

Gender Female 2
Male 18

Primary tumor site Hypopharynx 3
Oropharynx 8
Oral cavity 8
Larynx 1

Tumor classification cT1 2
cT2 3
cT3 6
cT4 9

Lymph node classification cN0 2
cN2 15
cN3 3
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The target volume consisted of two CTV levels: a high-risk CTV, including the primary

tumor, surgical cavity and potential metastatic lymph nodes, and a low-risk CTV including

the high-risk CTV and the elective bilateral lymph nodes. Considered critical OAR structures

were spinal cord, brainstem, parotid glands, larynx, oral mucosa, pharyngeal constrictor

muscles and esophageal inlet muscle (cf. Figure 5.1). CTVs and OARs were delineated on

the planning CT by an experienced radiation oncologist. Each planning CT was registered

with the weekly cCTs and the volumes were transferred and further reviewed, following the

same procedure as described in Section 5.1.1.

Treatment Planning

Proton treatment plans were generated and analyzed in RayStation, research version 5.99.

For each patient, three plans were calculated:

• Conventional PTV-based plan (PTVb), considering a CTV-to-PTV isotropic margin

expansion of 5 mm, the PTVs as target volumes and the planning CT in the optimiza-

tion.

• Classical robustly optimized plan (cRO), considering the CTVs as target volumes and

the planning CT in the optimization.

• The proposed anatomical robustly optimized plan (aRO), considering the CTVs as

target volumes and including additionally to the planning CT the first two (weekly)

cCTs in the optimization, representing non-rigid patient positioning variations.

In this work, 3 mm for setup error and ±3.5% for range error were selected as robustness

parameters. For the aRO plans, since two additional CTs are included in the optimization,

the algorithm considers a total of 3×21=63 different scenarios. For both, cRO and aRO

plans, objective functions related to the target volumes, spinal cord, brainstem and parotid

glands were selected as robust.

The prescribed doses to the target volumes were 57 Gy(RBE) to the low-risk CTV and

70 Gy(RBE) to the high-risk CTV, delivered with a SIB in 33 fractions. To assure a steep

SIB dose gradient, an intermediate volume of 10 mm between both CTVs was generated

(van der Voort et al., 2016; Stützer et al., 2017b). The doses to the CTVs were optimized

following the institutional protocol: the minimum dose to the 98% of the CTV should be at

least 95% of the prescribed dose (D98% ≥ 95%), and the dose to the 2% of the CTV should

be less than 107% of the prescribed dose (D2% ≤ 107%). The doses to the OARs were
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Table 6.2. Treatment planning objectives for delineated volumes.

Structure Planning objective

CTV (PTV)1 D98% ≥ 95%
D2% ≤ 107%

Spinal cord Dmax < 45 Gy
Brainstem Dmax < 54 Gy
Parotid gland Dmean ≤ 26 Gy
Larynx Dmean < 40 Gy
Oral mucosa Dmean As low as reasonable achievable
Pharyngeal constrictor muscles Dmean < 42 Gy
Esophageal inlet muscle Dmean As low as reasonable achievable
1 CTV used in robust plans, PTV used in PTV-based plan

optimized following the institutional protocol and international recommendations, as listed

in Table 6.2. The OAR portions outside the CTVs were considered in the optimization, to

avoid conflicting objectives and to ensure an adequate CTV dose.

Each plan per patient was generated using three proton fields with the same configura-

tion, with gantry angles of 180◦, 60◦ and 300◦, i.e. a posterior field and two anterior oblique

fields, respectively. Additional calculation parameters were set as described in Section 4.1,

with an air gap between patient surface and range shifter set to 3 cm.

6.2.2 Assessment of Plan Robustness

Influence of Anatomical Variations During Treatment Course

The influence of anatomical variations during the treatment course on the planned dose

distribution was evaluated with a comprehensive method simulating an actual realistic treat-

ment delivery.

First, weekly dose tracking was performed. This procedure consisted of the recalculation

of the plan in each cCT, followed by the assessment of weekly cumulative doses, i.e. the

dose delivered to the patient until the correspondent week considering the anatomical vari-

ations of each cCT, by non-rigidly deforming the recalculated dose to the planning CT for

dose accumulation by DIR. Second, a total cumulative dose (DCum) was calculated, which

simulates the treatment delivery by assessing the anatomy variations in the weekly cCTs

during the whole treatment course, as depicted in Figure 6.1.
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Weekly control CTs

Total cumulative dose

Planning
CT

Nominal dose

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

Dose recalculation on control CTs

Dose comparison

Fraction doses on control CTs

Weekly cumulative doses

Plan optimization

Dose accumulation on planning CT

Week 1 Week 1-2 Week 1-3 Week 1-4 Week 1-5 Week 1-6

Figure 6.1. Workflow for weekly dose tracking and total dose accumulation. Weekly cumulative
doses are generated from the recalculation of the nominal plan on each weekly cCT, and dose
accumulation on the planning CT. Finally, a total cumulative dose simulates a complete treatment
delivery.

The weekly and total cumulative doses were compared to the nominal plans (DNom) to

evaluate the differences between the planned and the simulated delivered dose due to vari-

ations in the patient anatomy. For the target volume, the D98% parameter was analyzed.

The intervention criterion for plan adaptation was defined as a reduction in the target cov-

erage below 95% of the prescribed dose.

Influence of Additional Setup and Range Uncertainties

The plan robustness, considering additionally uncertainties in setup and range, was eval-

uated for both robustly optimized approaches (cRO and aRO), following the method intro-
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duced in Section 5.1.2, cf. Figure 5.3. In this case the anatomy of the weekly cCTs was

considered for the generation of 30 cumulative perturbed dose distributions per plan ap-

proach. Moreover, a more realistic standard deviation value of σ = 1.5 mm was selected

for the generation of fraction random setup errors.

For evaluation purposes, the calculated set of 30 integral-treatment perturbed dose dis-

tributions were divided into two groups: perturbed doses with range error of 0% (DPer0) and

perturbed doses with range error of ±3.5% (DPerR), corresponding to 10 and 20 cumula-

tive perturbed dose distributions per treatment plan, respectively. Since the calculated per-

turbed dose distributions simulate a realistic fractionated treatment, the worst-case value

of analyzed dose parameters was extracted for each group, corresponding to the minimum

value for the CTV D98% and the maximum value for the CTV D2% and the OAR DVH param-

eters. The worst-case values were compared with the values from the nominal dose DNom

and total cumulative doses DCum, to evaluate the influence on the plan robustness of:

(1) Anatomical variations alone (DCum).

(2) Anatomical variations plus random setup errors (DPer0).

(3) Anatomical variations plus setup and range errors (DPerR).

Moreover, the variation of dose parameters from the set of 30 integral-treatment per-

turbed dose distributions per plan, i.e. the total width defined as the difference between

the maximum and minimum value for the corresponding dose statistic, was calculated and

compared between the plans. A small width indicates a low variation between values, and

therefore a higher robustness.

The calculation of the sets of integral-treatment perturbed doses was performed by script-

ing in RayStation, calculating perturbed doses considering fraction-wise random setup er-

rors and systematic range errors, and accumulating the dose considering the anatomy of

the weekly cCTs.

Statistical Analysis

Wilcoxon signed-rank tests were performed in SPSS (IBM Corporation, Armonk, NY) to

evaluate differences in dose parameters between the plan approaches over the whole pa-

tient cohort, and to test differences between nominal dose DNom, total cumulative doses

DCum and perturbed doses DPer0 and DPerR. The differences were considered to be sta-

tistically significant with a p-value < 0.05.
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6.3 Results

6.3.1 Evaluation of Nominal Plan Doses

For all 20 patients, clinically acceptable treatment plans were generated for the three ap-

proaches (PTVb, cRO and aRO). Dose distributions for one patient example are shown

in Figure 6.2. The nominal plans DNom fulfilled the clinical specification of 95% of the pre-

scribed dose levels delivered to the 98% of both target volumes (D98% ≥ 95%) in all cases.

The D98% doses were smaller for both robustly optimized plans, with a median value over

the whole patient cohort for low- and high-risk CTV of 98.2% and 97.9% for cRO, and 97.5%

and 97.4% for aRO, respectively, compared to the PTVb plan with median D98% values of

PTV-based plan 2PTVb1

2a1

2b1

2c1

2a1

2c12b1

Classical robust optimization 2cRO1

2a1

2b1

2c1

2a1

2c12b1

Anatomical robust optimization 2aRO1

2a1

2b1

2c1

2a1

2c12b1

Dose / Gy 2RBE1

80

70

60

50

40

30

20

10

Figure 6.2. Dose distributions for PTVb, cRO and aRO plans for an exemplary patient. White lines
in the sagittal view indicate the transversal slice position. Low-risk CTV is delineated in dark brown,
whereas high-risk CTV is delineated in pink. The delineated OARs are the same as in Figure 5.1.
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99.3% and 98.7%, respectively. In the high-risk region, no volumes > 2% exceeded 107%

of the prescribed dose for all plans.

The clinical objectives for the OARs spinal cord, brainstem and contralateral parotid gland

were fulfilled in all cases. For the other OARs, in some cases the doses were higher than

the clinical objective, since an important portion of the organ was inside the CTV. Thus, no

additional dose sparing was achievable without compromising the CTV coverage. Signifi-

cant higher Dmean doses to the ipsilateral parotid gland, larynx and pharyngeal constrictor

muscles were delivered by the PTVb approach, compared with both robustly optimized

plans (p < 0.001). Moreover, slight but significant higher Dmean doses to oral mucosa and

esophageal inlet muscle were found for the aRO approach, compared to the cRO plan

(p < 0.028).

Integral doses to the normal tissue were calculated on the planning CT following the

method described by Yang et al. (2009): first, the normal tissue was defined as the entire

volume of all CT slices where the CTVs were contoured, plus additional 2 cm superior

and inferior, minus the CTV contours. The integral dose to the normal tissue is defined

as its volume times its mean dose, measured in Gy·L. The integral dose to the normal

tissue was significantly higher for the PTVb and aRO plans in comparison to the cRO plan

(p < 0.001), with median (range) values over the entire patient cohort of 111.9 Gy·L (70.3–

143.3 Gy), 112.9 Gy·L (69.2–146.9 Gy) and 104.8 Gy·L (66.8–134.1 Gy), respectively.

Detailed tabulated data can be found in the Appendix, Tables B.2 and B.4.

6.3.2 Evaluation of Plan Robustness Against Uncertainties

Evaluation of Weekly and Total Cumulative Doses

The target coverage during the treatment course showed a degradation on the first week

for the PTVb plan in three cases, with minimum D98% values of 88.9% and 89.8% for low-

and high-risk CTV, respectively. Regarding the robust optimized plans, one case showed a

decrease in target coverage in the cRO plan, with D98% values of 93.8% and 94.8% for low-

and high-risk CTV, respectively. The aRO approach was able to keep the target coverage

above 95%.

In the following weeks additional patients showed target coverage degradation in the case

of PTVb plans. Median D98% doses averaged over the whole patient cohort decreased to

values down to 4.4 percentage points during the treatment course, in comparison to the
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Figure 6.3. Graphical representation of CTV target coverage over time for the whole patient cohort
comparing the three plans. Nominal dose (DNom), weekly cumulative doses of week 1–6 (Wn) and
total cumulative doses (DCum) are depicted. The central dot represents the median value over the
patient cohort, the lower and upper error bar represent the minimum and maximum value over the
patient cohort, respectively. The dotted line represents the clinical objective (D98% ≥ 95%).

nominal dose. The same was observed for cRO plans, whereas aRO plans could pre-

serve the target coverage without higher variations, until the sixth week, where one case

showed a degradation of the low-risk CTV D98% dose to 94.3%. A visual representation of

the weekly cumulative D98% values for the whole patient cohort is depicted in Figure 6.3.

Detailed tabulated data can be found in the Appendix, Table B.1.

The total cumulative doses DCum, which represent the simulated dose delivered to the

patient considering variations in the anatomy during the treatment course, revealed a degra-

dation of the target coverage below 95% for the PTVb plan in 10 out of 20 patients. The me-

dian (minimum) D98% values for these 10 cases were 90.3% (80.8%) and 89.9% (84.5%)

for low- and high-risk CTV, respectively. This finding illustrates and confirms that a simple

margin expansion from the CTV to the PTV alone cannot account for anatomical variations
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Figure 6.4. Difference between D98% and objective value (95%) for the total cumulative dose calcu-
lated for each patient: a negative value means target coverage below the clinical objective.

during the treatment course, being in line with previous studies. Although the CTV coverage

maintained clinically acceptable in ten patients, a plan adaptation would be needed in the

remaining 10 patients.

Likewise, the cRO approach was not sufficient to account for positioning and treatment-

induced anatomical variation in some cases. Five out of 20 patients showed target coverage

degradation, with total cumulative median (minimum) D98% values across the 5 cases of

93.4% (88.4%) in low-risk CTV and 94.4% (89.2%) in high-risk CTV. These patients would

undergo plan adaptation following the intervention criterion. Conversely, the aRO approach

was able to preserve the target coverage in acceptable clinical levels in all except for one

patient, where the D98% values were reduced to 92.4% and 94.2% for low- and high-risk

CTV, respectively. Figure 6.4 shows the difference between the total cumulative dose with

the clinical objective of 95% per patient. Slight but significant higher Dmean values com-

pared to the nominal dose were found in spinal cord (cRO: p < 0.001; aRO: p = 0.005),

63



6 Anatomical Robust Optimization in Bilateral HNSCC

ipsilateral parotid gland (cRO: p = 0.008; aRO: p = 0.01) and constrictor muscles (aRO:

p = 0.008). The dose to the remaining OARs did not show significant variations between

DNom and DCum. Detailed tabulated data can be found in the Appendix, Tables B.2 and B.4.

Evaluation of Robustness Against Additional Setup and Range Uncertainties

The plan robustness was evaluated for both, cRO and aRO plans, extracting the worst-case

values from the calculated cumulative perturbed doses considering anatomy variations plus

fraction-wise setup errors (DPer0) and additionally systematic range errors (DPerR).

Considering anatomical and setup uncertainties, the worst-case D98% values calculated

from the 10 cumulative perturbed doses DPer0 were significantly worse for the cRO plans

(p < 0.001), with median (minimum) values of 95.6% (87.2%) and 96.3% (88.7%) for the

low- and high-risk CTV, respectively, in comparison to the aRO plans with D98% values

of 96.6% (91.5%) and 97.5% (93.9%) respectively. This is in agreement with the observed

target coverage reduction in DCum. Moreover, the reduction in target coverage due to the in-

clusion of random setup uncertainties DPer0 compared to the total cumulative doses DCum

was significant for both CTVs and plan approaches (p ≤ 0.001).

Considering additional range uncertainties, the worst-case D98% values from 20 per-

turbed doses DPerR showed the same trend, with median (minimum) values for the cRO

approach of 95.2% (86.1%) and 96% (87.2%) for low- and high-risk CTV, respectively,

DNom DCum DPer0 DPerR
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Figure 6.5. Comparison of target coverage (D98%) with cRO (blue) and aRO (orange) plans in nomi-
nal dose (DNom), total cumulative dose (DCum) and worst-case of the 10 perturbed doses considering
setup errors (DPer0) and of the 20 perturbed doses considering range errors (DPerR) for all patients.
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Table 6.3. Step-wise target coverage degradation due to the influence of anatomy variation (DCum),
setup errors (DPer0) and range errors (DPerR), in percentage points for the whole patient cohort,
median (range).

cRO aRO

Low-risk CTV D98%

DNom–DCum 1.8 (0.1–9.2) -0.2 (-0.7–4.2)
DCum–DPer0 0.5 (0.0–1.9) 0.2 (-0.2–1.0)
DPer0–DPerR 0.6 (0.1–2.8) 0.4 (-0.1–0.9)

DNom–DPerR 2.9 (0.6–11.5) 0.6 (-0.4–6.0)

High-risk CTV D98%

DNom–DCum 1.1 (-0.3–7.9) -0.3 (-1.9–2.1)
DCum–DPer0 0.5 (0.0–2.1) 0.3 (0.0–2.4)
DPer0–DPerR 0.3 (0.0–1.5) 0.2 (-0.1–0.7)

DNom–DPerR 1.7 (-0.1–9.9) 0.1 (-1.6–2.5)

Abbreviations: cRO, classical robustly optimized plan; aRO, anatomical robustly
optimized plan; CTV, clinical target volume; D98%, dose to the 98% of the volume.

compared to 96.4% (90.6%) and 97.2% (93.8%) for the aRO plans, respectively. The dif-

ferences between DPer0 and DPerR were not large but statistically significant (p < 0.001),

with median differences of 0.6 pp and 0.3 pp for low- and high risk CTV in cRO plans, and

0.3 pp and 0.2 pp in aRO plans, respectively (Table 6.3). A general overview of the CTV

coverage for the entire patient cohort considering the different uncertainties is depicted in

Figure 6.5.

The variation of target coverage (D98%) per patient between the overall investigated cu-

mulative perturbed doses, i.e. the total parameter width, was in general larger for cRO

plans, indicating a reduced plan robustness for the cRO cases, with median (maximum)

values from the 20 patients of 1.5 (5.5) and 1.0 (3.9) for low- and high-risk CTV, respec-

tively, in comparison to aRO, with values of 1.0 (2.9) and 0.6 (3.3), respectively, as shown

in Figure 6.6, and tabulated in the Appendix, Table B.3.

The number of cumulative perturbed doses where the coverage of both target volumes

was sufficient was of mean ± standard deviation (percentage) of 20.4 ± 12.4 (68.0%) for

the cRO plan, compared to 28.2 ± 6.8 (93.8%) for the aRO plan. For each CTV, the num-

ber of perturbed scenarios fulfilling the clinical target coverage objective was 22.3 ± 12.0

(74.2%) and 22.5 ± 12.0 (74.8%) for low- and high-risk CTV, respectively, in comparison
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Figure 6.6. CTV D98% statistics for the set of 30 integral-treatment perturbed doses per bilateral
HNSCC plan and patient. The central line in each box represents the median value. The dashed
lines represent the clinical objective (95%). The scenarios fulfilling the clinical objective are written
for each approach (mean ± standard deviation).

to 28.2 ± 6.8 (93.8%) and 28.5 ± 6.7 (95.0%), respectively, for the aRO plan.

The difference in the OAR dose parameters between DCum, DPer0 and DPerR per plan

were small but significant (p ≤ 0.002 for all OARs). The doses to the spinal cord and brain-

stem remained below the objectives in all cases, as well as the dose to the contralateral

parotid gland on the aRO plan. In only one patient the mean dose to the contralateral parotid

gland on the cRO plan was above the objective (DPer0: 26.5 Gy; DPerR: 26.9 Gy). Compar-

ing between both plans, slightly higher but significant Dmean values were found for the aRO
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Figure 6.7. Comparison of OAR dose parameters and integral dose to the healthy tissue for cRO
(blue) and aRO (orange) plans in nominal dose (DNom), total cumulative dose (DCum) and worst-
case of the 10 perturbed doses considering setup errors (DPer0) and of the 20 perturbed doses
considering range errors (DPerR) for all patients.

plans in oral mucosa, constrictor muscles and esophageal inlet muscle in DCum, DPer0 and

DPerR (p ≤ 0.007, respectively). The results for OARs doses for the overall patient cohort

are depicted in Figure 6.7.

The integral dose to the normal tissue was in all cases higher for the aRO plans, being

in agreement with what was observed in the nominal doses. For both plans, DPerR values

for integral dose showed an increase of the median values by about 1.8 Gy·L compared to

the nominal value DNom, whereas anatomical variation DCum and setup errors DPer0 had

no significant differences on the integral dose values compared to DNom. The results for

integral dose for the overall patient cohort are depicted in Figure 6.7. A complete tabulated

summary of the evaluated dose parameters for both CTV and OARs can be found in the

Appendix, Table B.4.
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6.4 Discussion

In the present study, the influence of different sources of uncertainty on the robustness of

HNSCC proton plans was evaluated in a clinically realistic scenario based on in-treatment

control CT datasets. Anatomical variations during the treatment course played the most

important role in target coverage degradation for PTV-based and classical robustly opti-

mized plans, while their influence was clearly reduced by the proposed anatomical robustly

optimized plan. Additional uncertainties in setup and range had minor influence on target

coverage loss in both robust approaches, since they were optimized against them (cf. Table

6.3).

6.4.1 Robustness Against Anatomical Variations

Anatomy variations during the treatment course are of importance in radiotherapy, leading

to important degradation of the planned dose distribution. Image guidance methods are

employed to early detect considerable variations in the patient anatomy from the planning

CT, which can be combined with plan adaptation strategies to mitigate the effects of these

variations in the planned dose distributions.

Patients with bilateral HNSCC irradiation show frequently anatomy variations during the

treatment course, e.g. tumor shrinkage and weight loss, which might lead to a degrada-

tion in the target coverage and/or a higher dose to the OARs, requiring plan adaptation,

especially in proton therapy cases (Barker et al., 2004; Góra et al., 2015; Müller et al.,

2015; Thomson et al., 2015; Stützer et al., 2017a). Plan adaptation strategies are usually

time consuming, requiring many resources from clinicians, medical physicists and radiation

technicians: a new planning CT acquisition, together with volume contouring, treatment re-

planning and patient-specific quality assurance, which must be executed quickly since the

patient is already in treatment and the new adapted plan should be applied as soon as pos-

sible. If a treatment planning approach could somehow reduce the need of plan adaptation,

there will be a direct benefit and efficacy in the clinical workflow.

In this work, it was shown and confirmed that a simple CTV-to-PTV margin expansion is

not sufficient to account for anatomy variations in IMPT HNSCC plans, which is in agree-

ment with previous studies (Barker et al., 2004; Kraan et al., 2013; Brouwer et al., 2015;

Góra et al., 2015; Müller et al., 2015; Thomson et al., 2015; Stützer et al., 2017a). Further-
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more, a classical robustly optimized plan (cRO) considering uncertainties in patient setup

and proton range in the optimization, might also not be sufficient, although it showed a

better performance in comparison to the PTV-based plan.

A new robust planning approach was proposed, anatomical robust optimization (aRO),

which considers not only setup and range uncertainties in the plan optimization, but also

variations in patient positioning, with the inclusion of additional CT datasets in the plan

optimization. The aRO plan was able to compensate for variations in anatomy during treat-

ment, preserving the target coverage above clinically acceptable levels during the whole

treatment course, with small variations on the OAR dose between cRO and aRO plans.

Only integral doses to the healthy tissue were significantly higher for the aRO plans by

about 8 Gy·L compared to the cRO approach, although this increase on the integral dose

was in general not reflected in the OAR dose parameters, showing only for the oral mu-

cosa and esophageal inlet muscle a slight but significant higher mean dose on the nominal

plan. Thus, the price of improved plan robustness against treatment-induced anatomical

variations for the aRO plan can be considered as low.

Since the available patient datasets consisted of only one pretreatment planning CT and

weekly cCTs acquired during the treatment course, the first two cCT, usually obtained in

the first two weeks of treatment, were used for the calculation of aRO plans, with the as-

sumption that the datasets would have been acquired prior treatment as additional planning

CTs. In the studied patient cohort, the changes observed in the first two cCT were random

patient positioning variations, such as shoulder positioning variation or small rotations in

Table 6.4. Difference (∆) of the CTV volumes between planning and first, second and last cCTs;
median (range) for the cohort of 20 patients. A negative number represents a reduction of the CTV
volume on the correspondent cCT and vice-versa. A large median volume reduction can be seen
on the last cCT, compared to the first two cCTs.

Clinical target volume Control CT ∆ Volume (cm3)

Low-risk CTV First cCT 6.2 (-35.6–84.3)
Second cCT -1.1 (-53.2–89.4)
Last cCT -11.8 (-113.5–28.1)

High-risk CTV First cCT 0.5 (-25.0–65.0)
Second cCT -5.0 (-44.7–69.5)
Last cCT -16.0 (-83.3–36.7)

Abbreviations: CTV, clinical target volume; cCT, control CT.
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Figure 6.8. Registration of the planning CT (blue) with the correspondent weekly cCT (orange) of
two exemplary patients. The patient in (a) shows clearly on the last cCT tumor shrinkage on the left
side, whereas the patient in (b) does not show large anatomical variations. Both patients show in
the first and second cCT variations of random nature.

the mandible and neck area, as pictured for two patient examples in Figure 6.8. It has

been shown that treatment-induced anatomical variations are significant in the last weeks

of treatment (Barker et al., 2004; Thomson et al., 2015). Moreover, the variations in the CTV

volume in the first two cCT were higher in the last cCT, compared to the first two weekly

cCTs used on the plan optimization (Table 6.4).

In principle, the aRO approach is feasible to be implemented into the clinical workflow,

by the acquisition of additional pretreatment planing CT datasets. To consider variations

in patient positioning, each additional planning CT should be acquired after a complete

patient repositioning, in order to image realistic differences in patient positioning as varia-

tions of head tilt and rotation, shoulder position, neck flexion, mandible and palate position

in HNSCC patients. Further aspects such as the additional patient CT dose and the in-

creased effort in the clinical workflow, should be considered as well. Current advances
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such as dual-energy CT and iterative reconstruction algorithms, allow for a reduction in the

CT dose. Furthermore, new promising approaches, which are able to simulate patient posi-

tioning variability by means of biomechanical models, are being investigated (Teske et al.,

2017), likewise deep learning methods applied to image datasets (Sahiner et al., 2019).

Further studies have shown that the inclusion of additional anatomy datasets in the plan-

ning process can increase the robustness of the plans against anatomical variations. Wang

et al. (2017) calculated treatment plans for lung cancer patients using multiple CT opti-

mization, including two CTs in the plan optimization, with the second CT acquired during

the treatment course for plan adaptation. The multiple CT plan was compared to a clas-

sical robust plan using the single planning CT, and to an additional adaptive robust plan

using the second CT. The multiple CT plans showed an increased robustness in compari-

son to the classical robust plan and the adaptive plan. However, since additional control CT

datasets were not available, it remained unclear whether the multiple CT plans were robust

against successive anatomical variations.

For sinonasal tumors, van de Water et al. (2018) included synthetic CTs with variable

nasal cavity filling in the plan optimization. These plans provided adequate target coverage

in a repeated CT acquired during the treatment course in comparison to a PTV-based SFO

plan. However, they did not consider additional random anatomical variations outside the

manipulated area, and the plan optimization and further evaluation did not include addi-

tional uncertainties in setup and range.

In summary, neither PTV-based planning nor classical robust optimization were suffi-

cient to account for anatomical variations during the treatment course. Including additional

CT image datasets accounting for variations in patient positioning in the robust plan op-

timization can improve the robustness of the plans against anatomy variability during the

treatment course. In addition, the importance of an early detection of anatomical variations

during the treatment course in proton therapy is underlined, making use of in-room image

guidance systems and potentially in vivo range verification techniques.

6.4.2 Robustness Against Additional Setup and Range Uncertainties

To generate robustly optimized plans, the values for setup and range uncertainty must be

defined and included in the optimizer. Van der Voort et al. (2016) determined recipes for the

assessment of setup and range error parameters to be used in minimax robustly optimized
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plans in oropharyngeal cancer patients. For bilateral cases, they determined a range error

of 3–4% and a setup error of 3.3–3.4 mm. The values used in this study, 3 mm setup error

and 3.5% range error, are smaller for the setup error compared to the recipe. However, they

are in good agreement with previously published studies regarding robust optimization for

HNSCC cases (Liu et al., 2013a; Liu et al., 2013b; Li et al., 2015b; van Dijk et al., 2016;

Stützer et al., 2017b).

The robustness of proton plans against setup and range uncertainties has been evalu-

ated in previous studies to show the advantage of robustly optimized plans against PTV-

based plans. In early studies, the worst-case dose distribution introduced by Lomax et al.

(2001) was generated from a set of fixed error scenarios and compared to the nominal

dose (Liu et al., 2013a; Liu et al., 2013b; Li et al., 2015b). However, one disadvantage

of this method is the neglect of the fractionation effect, i.e. counterbalancing the impact of

random setup errors between fractions, and therefore overestimating the dose perturbation.

Later, methods including the fractionation effect in the robustness analysis have been intro-

duced, considering the convergence of fraction-wise setup errors in the dose distributions

(Park et al., 2013; Lowe et al., 2016; Stützer et al., 2017b).

In this study, the fractionation effect was accounted by the generation of fraction-wise ran-

dom setup errors, simulating a complete fractionated treatment delivery, whereas the range

uncertainty was considered as a systematic error. The analyzed worst-case values from the

cumulative perturbed dose distributions avoid an overconservative evaluation, since these

values might be a real dose delivery after a fractionated treatment. For the evaluation,

this study considered as well the anatomical variations during the treatment course. Thus,

the calculated perturbed doses, considering three sources of uncertainty, i.e. fraction-wise

random setup errors, systematic range errors and weekly anatomy variations, simulate a

realistic treatment course.

Since both cRO and aRO plans were optimized to be robust against setup and range un-

certainties, they had a minor influence on the target coverage degradation. As mentioned

before, anatomical variations played the most critical role regarding CTV coverage degra-

dation (cf. Table 6.3). The plan robustness might be approximated during the treatment

course by assessment of cumulative doses with in-treatment acquired control CTs, provid-

ing an estimate of the dose degradation due to the influence of variations in the anatomy

during the treatment course.
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6.4.3 Study Limitations

Patient dataset The image datasets used in this study, i.e. planning and control CTs,

were taken from patients who received photon therapy. In the clinical proton therapy prac-

tice in Dresden, different immobilization devices, i.e. patient-specific head and neck support

and masks, are used. Moreover, it was implicitly assumed that a patient undergoing proton

therapy would, when receiving the same prescribed fraction dose and schedule, experi-

ence similar anatomical variations during the treatment course as in photon therapy. The

anatomical variations covered in the investigated cohort of 20 patients might be limited and

it should be considered that more severe treatment-induced anatomical variations might

occur in other patients. Prospective studies with HNSCC patients treated with IMPT and

the assessment of the degree of anatomical variations with this treatment modality would

be beneficial.

Treatment planning approach Since additional pre-treatment planning CTs were not

available for the studied patient cohort, the aRO plans were calculated using the planning

CT and the first two cCTs in the plan optimization, corresponding usually to the first two

weeks of treatment. In three patients, cCT of the third week was used, since the first or

second weekly cCT was not available. The cCTs included in the optimization did not present

treatment-induced anatomy variations such as tumor shrinkage, but variations in patient

positioning, especially in the shoulder and mandible region (Figure 6.8). Therefore, it can

be assumed that if additional planning CTs are acquired with complete patient repositioning

between scans, the conclusions drawn from this study will hold true.

The same treatment field configuration for each patient was used for the IMPT plans, us-

ing a 3-field arrangement as proposed in previous publications (Cozzi et al., 2001; Steneker

et al., 2006; Kraan et al., 2013; Quan et al., 2013; Frank et al., 2014; van Dijk et al., 2016).

A study by van der Laan et al. (2013) suggested that the OAR sparing can be improved if

the treatment field number is increased. However, additional studies by Kraan et al. (2013)

and van Dijk et al. (2016) showed no significant changes in the plan robustness with an

increased treatment field number. Moreover, other treatment field configurations might im-

prove the OAR sparing and reduce secondary tissue complications, for example mucositis

by dose sparing of the oral mucosa (Stützer et al., 2017b).
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Image registration uncertainties The deformable image registration (DIR) procedure

can lead to uncertainties in contour propagation and in the calculation of cumulative doses.

Uncertainties in the image datasets, such as image artifacts, motion and large variations

in the anatomy might be a source of error in the registration. Similarly, the rigid registration

between planning and control CTs might be not satisfactory, if for instance significant rota-

tions in shoulders and mandible region are present. Therefore, an exact patient positioning

method between fractions, checking patient rotations and shoulder position is crucial to

ensure an accurate image registration.

Regarding the use of DIR for dose accumulation, regions of higher dose gradients and

deficient image contrast can present uncertainties in dose recalculation on the cCT and

further dose accumulation on the planning CT. These uncertainties in DIR are a general

limitation of planning studies performing dose accumulation (Brock et al., 2017; Paganelli et

al., 2018; Ribeiro et al., 2018). Possible errors in the contours propagated from the planning

CT to the cCTs were reduced in this study by a revision by the radiation oncologist on each

cCT.

Dose statistics evaluation Only CTV coverage degradation was chosen as a trigger for

adaptation. However, also OAR constraint violations might be used as additional trigger for

replanning, without loss of generality in the presented results.

Perturbed dose calculation For the calculation of integral-treatment perturbed doses,

random fraction setup errors were drawn from a Gaussian distribution with mean of 0 mm

and standard deviation of 1.5 mm. Since institutional values for setup error in bilateral

HNSCC patients were not yet determined, the value of 1.5 mm was chosen following pre-

vious studies (van Kranen et al., 2009; Amelio et al., 2013; Ciardo et al., 2015; Lowe et al.,

2016; Stützer et al., 2017b).

The calculation to generate treatment-wise perturbed dose distributions was intensively

time consuming, being up to 9 hours per plan (for a total of 30 cumulated perturbed doses)

per patient within the used version of RayStation. For each cumulative perturbed dose, the

algorithm calculates first the 33 perturbed fraction doses with different setup errors, and

deforms them onto the planning CT for accumulation.
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6.5 Conclusions

Anatomical variations during the treatment course play the most critical role in target cov-

erage degradation of IMPT PTV-based and classical robustly optimized plans for HNSCC.

The proposed anatomical robustly optimized approach preserves the target coverage due

to anatomy variations in most of the cases, maintaining similar robustness against setup

and range uncertainties as the cRO plans, without increasing the dose to the OARs.

The clinical implementation of aRO is in principle feasible, acquiring additional planning

CT datasets for the plan optimization. Additional dosimetric and organizational aspects

must be weighted against the expected benefit in improved plan robustness and in the

clinical wokflow by a reduced need of replanning. In addition, the importance of image

guidance in proton therapy is underlined, to allow for dose recalculation and by that enabling

an early detection of target coverage loss.

75





7
Summary

Intensity modulated proton therapy (IMPT) in head and neck squamous cell carcinoma

(HNSCC) offers superior advantages over conventional photon therapy, by generating high

conformal doses to the target volume and improved sparing of the organ at risks (OARs).

Besides, robust treatment planning approaches, which account for uncertainties directly

into the plan optimization process, are able to generate high quality plans robust against

uncertainties compared to a PTV margin expansion approach.

During radiation treatment, patients are prone to present anatomical variations during

the treatment course, which can be random deviations in patient positioning, as well as

treatment-induced tumor shrinkage and patient weight variations. For IMPT plans using a

PTV margin expansion, these anatomical variations might disturb the calculated nominal

plan, with a decrease to the dose delivered to the target volume and/or increased dose

to the OARs above its tolerance, and a plan adaptation might be needed. However, the

influence of these anatomical variations in robustly optimized plans for HNSCC entities has

not been determined.

The first part of this thesis compared two proton therapy methods, single-field optimiza-

tion (SFO) and multi-field optimization (MFO), applied to the treatment of unilateral HNSCC

target volumes, consisting of a cohort of 8 patients. For each method, a PTV-based and a

robustly optimized plan were generated, resulting in four plans per patient. The four plans

showed adequate target coverage on the nominal plan, with larger doses to the ipsilateral

parotid gland for both SFO approaches. No plan showed a clear advantage when variations

in the anatomy during the treatment course were considered, and the same was observed

considering additional setup and range uncertainties. Hence, no plan showed a decisive

superiority regarding plan robustness and potential need of replanning.

In the second part of this thesis, an anatomical robustly optimized plan approach was

proposed (aRO), which considers additional CT datasets in the plan optimization, repre-
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senting random non-rigid patient positioning variations. The aRO approach was compared

to a classical robustly optimized plan (cRO) and a PTV-based approach for a cohort of 20

bilateral HNSCC patients. PTV-based and cRO approaches were not sufficient to account

for weekly anatomical variations, showing a degradation in the target coverage in 10 and

5 of 20 cases, respectively. Conversely, the proposed aRO approach was able to preserve

the target coverage in 19 of 20 cases, with only one patient requiring plan adaptation. An

extended robustness analysis conducted on both cRO and aRO plan approaches consid-

ering weekly anatomical variations, setup and range errors, showed that the variations in

anatomy were the most critical variable for loss in target coverage, while setup and range

uncertainties played a minor role. The price of the increased plan robustness for the aRO

approach was a significant larger integral dose to the healthy tissue, compared to the cRO

plan. However, the increase in integral dose was not reflected on the planned dose to the

OARs, which were comparable between both plans. Therefore, the price for a superior plan

robustness can be considered as low.

In the current clinical practice, the implementation of the aRO approach would be able to

reduce the need of plan adaptation. For its application, the acquisition of additional planning

CT datasets, considering a complete patient repositioning between scans is required, in

order to simulate random non-rigid position variations as simulated in this study by the

use of the first two weekly cCTs in the plan optimization. Further studies using multiple

planning CT acquisition, including strategies to reduce the patient CT dose such as dual-

energy CT and iterative reconstruction algorithms, are needed to confirm the presented

findings. Additionally, the aRO approach applied to other body sites and entities might also

be investigated. In near future, further in-room imaging methods such as cone-beam CT

and magnetic resonance imaging, optimized for proton therapy, might be used to acquire

additional datasets. Moreover, alternative approaches capable of modeling variations in

patient positioning as biomechanical models and deep learning methods might be able to

generate in silico additional image datasets for use in proton treatment planning.

In summary, this thesis proposes an additional contribution for robust treatment planning

in IMPT, with the generation of treatment plans robust against anatomy variations, together

with setup and range uncertainties, which can benefit the clinical workflow by reducing the

need of plan adaptation.
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Zusammenfassung

Intensitätsmodulierte Protonentherapie (IMPT) beim Plattenepithelkarzinom des Kopf-Hals-

Bereiches ist der konventionellen Photonentherapie weit überlegen, durch eine hohe Kon-

formität der Dosis auf das Zielvolumen und geringe Belastung der Risikoorgane. Darüber

hinaus können robuste Bestrahlungsplanungsansätze, die Unsicherheiten direkt in den

Planoptimierungsprozess einbeziehen, im Vergleich zu einem PTV-basierten Plan hoch-

wertige Pläne generieren.

Während des Behandlungsverlaufs zeigen Patienten anatomische Veränderungen, wie

zufällige Abweichungen bei der Patientenpositionierung sowie behandlungsbedingte Tu-

morschrumpfung und Patientgewichtsabweichungen. Bei PTV-basierten IMPT Plänen kön-

nen diese anatomischen Variationen den berechneten Nominalplan stören, mit in der Folge

einer Verringerung der Dosis im Zielvolumen und/oder einer erhöhten Dosis an den Risi-

koorganen über ihre Toleranz. Dadurch wird eine Anpassung des Bestrahlungsplans erfor-

derlich. Der Einfluss dieser anatomischen Veränderung auf robust optimierte Pläne wurde

jedoch noch nicht untersucht.

Der erste Teil der vorliegenden Arbeit verglich Protonentherapiemethoden, die Single-

Field-Optimierung (SFO) und die Multi-Field-Optimierung (MFO), die auf die Behandlung

8 Kopf-Hals Patienten angewendet wurden, deren Hals einseitig bestrahlt wurde. Für jede

Methode wurden ein PTV-basierter und ein robust optimierter Plan erstellt, insgesamt vier

Pläne pro Patient. Die vier Pläne zeigten eine angemessene Erfassung des Zielvolumens,

mit höherer Dosis der ipsilateralen Parotis in beiden SFO Ansätze. Kein Plan zeigte einen

klaren Vorteil, wenn Variationen in der Anatomie während des Behandlungsverlaufs, und

zusätzliche Setup- und Reichweiteunsicherheiten berücksichtigt wurden. Daher wies kein

Plan eine entscheidende Überlegenheit hinsichtlich der Planrobustheit und des potenziel-

len Nachplanungsbedarfs auf.

Im zweiten Teil der vorliegenden Arbeit wurde ein anatomisch robuster Optimierungsan-
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satz (aRO) vorgeschlagen, der zuzätzliche CT-Datensätze in der Planoptimierung berück-

sichtigt, die zufällige Variationen der Patientenpositionierung darstellen. Der aRO Ansatz

wurde für eine Kohorte von 20 bilateralen Kopf-Hals-Tumoren Patienten mit einem klassi-

schen robusten Optimierungsansatz (cRO) und einem PTV-basierten Ansatz verglichen.

PTV-basierte und cRO Ansätze reichten nicht aus, um wöchentliche anatomische Verän-

derungen zu berücksichtigen. In 10 bzw. 5 von 20 Fälle zeigten sie eine Verschlechterung

der Erfassung des Zielvolumens. Der vorgeschlagene aRO Ansatz behielt die Erfassung

des Zielvolumens in 19 von 20 Fällen bei, wobei nur ein Patient eine Plananpassung be-

nötigte. Eine erweiterte Robustheitsanalyse, die wöchentlichen anatomischen Veränderun-

gen, Setup- und Reichweitefehler berücksichtigt, wurde für cRO und aRO Planungsansätze

durchgeführt. Die Variationen in der Anatomie waren die kritischste Variable für den Verlust

der Zielvolumendosis, während Setup- und Reichweiteunsicherheiten eine untergeordnete

Rolle spielten. Der Preis für die erhöhte Planrobustheit für den aRO Ansatz war eine signi-

fikant größere integrale Dosis für das gesunde Gewebe, im Vergleich zum cRO Plan. Die

Erhöhung der integralen Dosis spiegelte sich jedoch nicht in der geplanten Dosis für die

Risikoorgane wider, die zwischen beiden Plänen vergleichbar war. Daher kann der Preis

für eine überlegene Planrobustheit als niedrig angesehen werden.

In der gegenwärtigen klinischen Praxis könnte durch die Implementierung des aRO An-

satzes die Notwendigkeit einer Plananpassung verringert werden. Für seine Anwendung ist

die Erfassung zusätzlicher CT-Planungsdatensätze erforderlich, bei denen eine vollständi-

ge Neupositionierung des Patienten zwischen den Scans berücksichtigt wird, um zufälli-

ge Positionsschwankungen zu simulieren, wie sie in dieser Studie unter Verwendung der

ersten beiden wöchentlichen Kontroll-CTs in der Planoptimierung simuliert wurden. Weite-

re Studien unter Verwendung mit mehreren CT-Planungsdatensätzen sind erforderlich, um

die präsentierten Ergebnisse zu bestätigen. Strategien zur Reduzierung der Patientendosis

wie Dual-Energy-CT und iterative Rekonstruktionsalgorithmen können in Betracht gezogen

werden. Darüber hinaus könnte der aRO Ansatz auf andere Körperstellen untersucht wer-

den. In naher Zukunft könnten weitere bildgebende Verfahren, wie Cone-Beam-CT und Ma-

gnetresonanztomographie, die für die Protonentherapie optimiert sind, verwendet werden,

um zusätzliche Datensätze zu erwerben. Darüber hinaus könnten alternative Ansätze zur

Modellierung von Variationen bei der Patientenpositionierung als biomechanische Modelle

und Deep-Learning-Methode zusätzliche in silico CT-Datensätze für die Protonentherapie

generieren.
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Zusammenfassend trägt diese Arbeit zur robusten Bestrahlungsplanung in der IMPT

bei: sie präsentiert den Ansatz, robuste Bestrahlungspläne unter zusätzlicher Einbezie-

hung anatomischer Veränderung zu erstellen. Mit diesem neuen Ansatz kann der klinische

Arbeitsablauf durch die Reduzierung des Bedarfs an Plananpassungen verbessert werden.
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Appendix

The next sections present supplementary material for both unilateral and bilateral HNSCC

studies. The data are tabulated here to improve the readability of the thesis main chapters.

A Supplementary Material for the Unilateral HNSCC Study

Table A.1. Total width of the CTV D98% parameter from the set of unilateral HNSCC integral-
treatment perturbed doses DPerNom and DPerCum; median (range) for the cohort of 8 patients.

ROI and Metric Plan DPerNom DPerCum

Low-risk CTV MFOPTV 1.8 (1.1–9.3) 1.9 (0.8–9.7)

D98% (%) MFORob 0.8 (0.5–1.2) 0.9 (0.2–2.0)

SFOPTV 0.6 (0.4–1.5) 0.7 (0.4–2.4)

SFORob 0.5 (0.3–1.3) 0.6 (0.3–2.9)

High-risk CTV MFOPTV 1.8 (0.8–3.0) 1.4 (0.6–5.9)

D98% (%) MFORob 0.9 (0.6–1.2) 1.5 (0.6–2.1)

SFOPTV 0.6 (0.3–1.4) 0.7 (0.4–3.8)

SFORob 0.9 (0.5–4.1) 1.2 (0.7–3.0)

Abbreviations: ROI, region of interest; CTV, clinical target volume; D98%, dose to
the 98% of the volume.
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Table A.2. Dose statistics for the four unilateral HNSCC plan approaches; median (range) for the cohort of 8 patients. The perturbed doses
correspond to the worst-case values considering the anatomy of the planning CT (DPerNom) and the anatomy of the control CTs (DPerCum)

ROI and Metric Plan Nominal dose Cumulative dose Perturbed dose Perturbed dose
DNom DCum DPerNom DPerCum

Low-risk CTV MFOPTV 99.5 (99.2–99.8) 99.6 (95.8–100.2) 98.7 (90.3–99.3) 98.2 (89.8–99.6)
D98% (%) MFORob 97.5 (96.9–98.8) 97.8 (96.9–98.5) 98.3 (97.5–98.8) 98.1 (94.8–98.9)

SFOPTV 100.0 (98.0–100.5) 100.0 (95.5–100.7) 100.0 (97.5–100.7) 99.6 (94.1–100.5)
SFORob 98.5 (97.0–100.4) 98.7 (95.6–100.4) 99.1 (96.9–100.8) 98.8 (93.6–100.5)

D2% (%) MFOPTV 117.5 (113.5–122.8) 118.4 (113.0–124.2) 119.9 (115.7–124.2) 120.4 (113.3–125.1)
MFORob 106.0 (105.1–108.0) 106.4 (104.9–108.7) 106.4 (106.0–108.3) 107.1 (106.1–110.0)
SFOPTV 118.8 (115.5–123.6) 119.1 (115.0–123.7) 120.0 (116.7–123.8) 120.5 (115.7–125.3)
SFORob 108.6 (107.4–111.2) 108.9 (106.3–112.2) 109.7 (108.6–113.3) 110.6 (107.8–113.8)

High-risk CTV MFOPTV 99.4 (99.0–99.6) 99.6 (97.9–101.4) 98.0 (97.2–99.1) 98.6 (93.0–100.9)
D98% (%) MFORob 98.5 (97.4–99.8) 98.0 (94.8–98.7) 97.7 (96.1–98.7) 96.3 (93.4–96.8)

SFOPTV 99.8 (99.5–100.8) 99.8 (97.0–100.6) 99.8 (98.5–100.4) 99.5 (94.0–100.0)
SFORob 99.3 (98.3–100.6) 98.2 (96.9–99.9) 98.0 (94.2–99.5) 96.6 (95.1–98.4)

D2% (%) MFOPTV 104.5 (104.1–105.1) 105.0 (104.3–109.6) 105.1 (103.9–105.7) 106.0 (104.4–112.0)
MFORob 105.6 (104.6–106.3) 103.3 (104.3–105.5) 104.8 (103.7–105.2) 104.7 (104.1–105.5)
SFOPTV 104.4 (103.6–104.6) 103.9 (103.2–104.3) 104.0 (103.3–104.1) 103.5 (103.0–104.3)
SFORob 105.0 (104.5–105.7) 104.5 (103.8–105.0) 104.4 (103.9–104.8) 103.9 (103.4–104.5)

Spinal cord MFOPTV 1.8 (0.5–10.0) 2.0 (1.4–10.8) 3.3 (0.8–11.2) 3.8 (2.0–12.4)
D1cc (Gy) MFORob 2.0 (0.6–7.5) 2.3 (1.3–8.5) 3.3 (0.9–9.2) 3.6 (2.1–10.4)

SFOPTV 1.8 (0.4–12.1) 2.0 (1.0–13.0) 3.0 (0.8–13.9) 3.3 (1.6–14.9)
SFORob 1.7 (0.5–9.8) 2.2 (1.3–11.0) 3.0 (0.9–11.9) 3.3 (2.2–13.0))

(Continued on next page)
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Table A.2. (Continued)

ROI and Metric Plan Nominal dose Cumulative dose Perturbed dose Perturbed dose
DNom DCum DPerNom DPerCum

Brainstem MFOPTV 3.3 (0.1–5.3) 3.9 (0.0–5.6) 5.2 (0.2–7.5) 6.4 (0.1–9.4)
D1cc (Gy) MFORob 3.1 (0.0–4.6) 3.4 (0.0–6.4) 4.1 (0.1–6.6) 5.2 (0.1–8.0)

SFOPTV 3.6 (0.0–6.2) 4.0 (0.0–6.4) 5.7 (0.0–8.4) 6.3 (0.0–9.3)
SFORob 3.1 (0.0–5.1) 3.6 (0.0–6.5) 4.8 (0.0–7.6) 5.6 (0.0–8.4)

Ipsilateral parotid gland MFOPTV 25.5 (24.0–29.8) 27.9 (24.1–31.5) 27.6 (26.2–31.6) 29.6 (26.1–33.4)
Dmedian (Gy) MFORob 24.8 (23.4–27.2) 25.1 (23.1–28.8) 26.9 (25.9–29.3) 26.9 (25.4–30.8)

SFOPTV 30.3 (27.2–33.1) 29.7 (26.9–34.5) 32.2 (29.5–35.3) 31.8 (28.4–36.5)
SFORob 28.5 (25.8–30.3) 27.6 (25.4–29.9) 30.6 (27.5–32.8) 29.7 (27.2–31.4)

Larynx MFOPTV 22.2 (7.0–30.3) 24.7 (13.2–32.0) 25.6 (8.2–32.7) 27.5 (14.4–34.3)
Dmean (Gy) MFORob 24.7 (7.2–31.0) 26.6 (13.6–32.6) 27.3 (8.5–33.0) 28.6 (14.9–34.7)

SFOPTV 24.6 (6.8–32.1) 27.4 (13.2–32.9) 28.1 (8.4–34.9) 29.9 (15.1–35.9)
SFORob 25.2 (7.8–32.9) 27.9 (14.8–34.4) 27.9 (9.5–35.3) 29.9 (16.6–36.4)

Oral mucosa MFOPTV 8.8 (5.5–28.4) 8.7 (5.3–27.9) 9.8 (6.1–31.2) 9.9 (5.8–30.5)
Dmean (Gy) MFORob 9.2 (4.4–29.0) 9.1 (4.3–28.8) 9.9 (5.1–31.1) 9.8 (4.7–30.2)

SFOPTV 8.8 (6.0–31.3) 9.0 (5.8–30.6) 10.0 (6.9–33.9) 10.2 (6.4–32.6)
SFORob 8.6 (5.2–31.8) 8.6 (5.1–31.1) 9.9 (6.2–33.2) 9.8 (5.6–32.7)

Constrictor muscles MFOPTV 26.5 (21.0–36.3) 26.1 (21.0–38.4) 28.8 (22.5–38.0) 28.5 (22.8–39.9)
Dmean (Gy) MFORob 26.9 (19.5–37.2) 26.3 (19.5–36.9) 28.4 (21.0–38.6) 27.8 (20.9–38.3)

SFOPTV 28.1 (20.2–37.7) 27.8 (20.9–38.7) 30.4 (21.9–40.6) 30.2 (22.6–40.6)
SFORob 27.7 (19.8–37.0) 27.3 (20.4–38.0) 29.8 (21.4–38.9) 29.5 (22.0–39.6)

(Continued on next page)
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Table A.2. (Continued)

ROI and Metric Plan Nominal dose Cumulative dose Perturbed dose Perturbed dose
DNom DCum DPerNom DPerCum

Esophageal inlet muscle MFOPTV 26.8 (2.4–29.2) 26.7 (2.5–37.0) 29.1 (3.7–32.4) 29.1 (3.6–39.2)
Dmean (Gy) MFORob 25.9 (3.1–31.2) 25.8 (3.0–36.4) 27.9 (3.9–33.7) 28.0 (3.8–38.3)

SFOPTV 26.7 (1.8–27.3) 26.1 (1.9–35.5) 29.3 (2.5–31.7) 29.1 (2.5–38.3)
SFORob 25.2 (3.0–31.4) 24.8 (3.0–37.0) 27.0 (3.8–34.0) 27.3 (3.7–38.8)

Abbreviations: ROI, region of interest; CTV, clinical target volume; D98%, dose to the 98% of the volume; D2%, dose to the 2% of the volume; D1cc, minimum

dose to the 1 cm3 of the volume; Dmedian, median dose; Dmean, mean dose.
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Table B.1. CTV D98% statistics of nominal, weekly and total cumulative doses of each bilateral
HNSCC planing approach; median (range) for the cohort of 20 patients.

ROI and Metric Dose PTVb cRO aRO

Low-risk CTV Nominal 99.3 (97.7–99.9) 98.2 (96.6–99.2) 97.5 (95.2–98.8)

D98% (%) Week 1 98.2 (88.9–99.9) 97.9 (93.8–99.4) 97.6 (95.8–99.0)

Week 2 95.5 (79.8–100.0) 96.9 (90.2–99.1) 97.7 (96.0–99.2)

Week 3 95.1 (82.5–99.5) 96.7 (92.8–99.1) 97.8 (95.9–99.2)

Week 4 95.5 (83.7–99.1) 96.6 (93.8–99.1) 97.5 (96.0–99.1)

Week 5 95.3 (82.8–99.1) 96.6 (93.5–99.1) 97.4 (95.9–99.1)

Week 6 94.9 (82.3–99.4) 96.3 (92.6–99.1) 97.3 (94.3–99.1)

Cumulative 94.6 (80.8–99.1) 96.1 (88.4–99.1) 97.2 (92.4–99.0)

High-risk CTV Nominal 98.7 (98.2–99.5) 97.9 (96.8–98.8) 97.4 (95.4–98.5)

D98% (%) Week 1 97.4 (89.8–99.1) 97.8 (94.8–98.7) 97.7 (95.5–98.7)

Week 2 95.5 (83.3–98.9) 97.6 (91.4–98.7) 97.9 (95.7–98.9)

Week 3 96.1 (83.7–98.9) 97.7 (89.4–98.8) 98.2 (96.3–99.0)

Week 4 95.4 (83.3–98.7) 97.7 (89.2–98.7) 98.1 (96.3–99.0)

Week 5 96.0 (83.7–98.6) 97.6 (89.2–98.7) 98.0 (96.6–98.9)

Week 6 95.4 (83.7–98.4) 96.8 (89.2–98.8) 97.8 (95.7–98.6)

Cumulative 95.0 (84.5–98.5) 96.9 (89.2–98.9) 97.7 (94.2–98.6)

Abbreviations: ROI, region of interest; PTVb, PTV-based plan; cRO, classical robustly optimized plan;
aRO, anatomical robustly optimized plan; CTV, clinical target volume; D98%, dose to the 98% of the volume.
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Table B.2. CTV and OAR dose statistics for the PTV-based bilateral HNSCC plan approach;
median (range) for the cohort of 20 patients.

ROI Metric Nominal dose Cumulative dose

Low-risk CTV D98% (%) 99.3 (97.7–99.9) 94.6 (80.8–99.1)

D2% (%) 113.2 (107.8–115.7) 112.2 (107.1–117.7)

High-risk CTV D98% (%) 98.7 (98.2–99.5) 95.0 (84.5–98.5)

D2% (%) 102.6 (100.7–104.8) 103.7 (99.6–111.7)

Spinal cord D1cc (Gy) 26.4 (11.2–35.2) 27.8 (11.3–35.5)

Brainstem D1cc (Gy) 11.9 (0.4–26.0) 12.9 (0.4–26.8)

Ipsilateral parotid gland Dmean (Gy) 23.3 (19.8–58.2) 24.8 (20.6–59.2)

Contralateral parotid gland Dmean (Gy) 20.2 (18.7–22.3) 19.9 (17.3–24.6)

Larynx Dmean (Gy) 37.9 (24.9–70.1) 39.6 (25.5–68.8)

Oral mucosa Dmean (Gy) 39.5 (17.1–66.5) 39.6 (19.6–66.2)

Constrictor muscles Dmean (Gy) 51.7 (40.3–65.5) 51.7 (38.5–66.4)

Esophageal inlet muscle Dmean (Gy) 38.4 (15.1–69.3) 39.5 (12.4–68.0)

Abbreviations: ROI, region of interest; CTV, clinical target volume; D98%, dose to the 98% of the volume;
D2%, dose to the 2% of the volume, D1cc, minimum dose to the 1 cm3 of the volume; Dmean, mean dose.

Table B.3. Total width of the CTV D98% parameter from the set of 30 bilateral HNSCC integral-
treatment perturbed doses; median (range) for the cohort of 20 patients.

ROI and Metric Plan Total width

Low-risk CTV cRO 1.5 (0.5–5.5)

D98% (%) aRO 1.0 (0.2–2.9)

High-risk CTV cRO 1.0 (0.2–3.9)

D98% (%) aRO 0.6 (0.2–3.3)

Abbreviations: ROI, region of interest; CTV, clinical target volume;
cRO; classical robustly optimized plan; aRO, anatomical robustly op-
timized plan.

102



B
S

upplem
entary

M
aterialforthe

B
ilateralH

N
S

C
C

S
tudy

Table B.4. Dose statistics for the robust bilateral HNSCC plan approaches; median (range) for the cohort of 20 patients. The perturbed doses
correspond to the worst-case values considering a range error of 0% (DPer0) and a range error of ±3.5% (DPerR)

ROI and Metric Plan Nominal dose Cumulative dose Perturbed dose Perturbed dose
DNom DCum DPer0 DPerR

Low-risk CTV cRO 98.2 (96.6–99.3) 96.1 (88.4–99.1) 95.6 (87.2–98.8) 95.2 (86.1–98.6)
D98% (%) aRO 97.5 (95.2–98.8) 97.2 (92.4–99.0) 96.6 (91.5–98.9) 96.4 (90.6–98.6)

Low-risk CTV cRO 107.1 (104.7–110.0) 107.4 (104.5–109.0) 107.2 (104.6–108.4) 107.3 (104.7–109.0)
D2% (%) aRO 107.6 (103.6–110.8) 107.3 (103.4–109.3) 107.1 (103.3–108.8) 107.2 (103.5–109.1)

High-risk CTV cRO 97.9 (96.8–98.8) 96.9 (89.2–98.9) 96.3 (88.7–98.7) 96.0 (87.2–98.5)
D98% (%) aRO 97.4 (95.4–98.5) 97.7 (94.2–98.6) 97.5 (93.9–98.6) 97.2 (93.8–98.5)

High-risk CTV cRO 103.9 (102.0– 105.5) 103.5 (101.5–106.7) 103.4 (101.4–106.1) 103.5 (101.6–106.5)
D2% (%) aRO 103.9 (100.6–105.9) 103.5 (100.6–106.0) 103.3 (100.5–106.0) 103.4 (100.5–106.0)

Spinal Cord cRO 24.9 (11.8–31.4) 26.2 (11.4–31.9) 27.0 (11.7–32.1) 27.2 (11.8–32.5)
D1cc (Gy) aRO 23.8 (12.0–33.2) 24.5 (11.2–32.8) 25.4 (11.5–32.8) 25.7 (11.6–33.0)

Brainstem cRO 12.4 (0.4–22.9) 12.3 (0.4–24.0) 12.5 (0.4–25.2) 12.7 (0.4–25.2)
D1cc (Gy) aRO 11.5 (0.7–23.4) 11.8 (0.8–23.7) 12.4 (0.8–24.6) 12.9 (0.8–25.3)

Ipsilateral parotid gland cRO 21.2 (19.2–55.2) 23.1 (19.2–56.8) 23.4 (19.1–57.1) 23.6 (19.3–57.1)
Dmean (Gy) aRO 21.0 (16.7–54.4) 21.7 (17.8–55.6) 22.3 (18.4–56.1) 22.5 (18.7–56.1)

Contralateral parotid gland cRO 20.0 (17.1–21.4) 19.9 (16.3–25.5) 20.6 (17.3–26.5) 20.8 (17.4–26.9)
Dmean (Gy) aRO 20.0 (10.8–21.3) 19.8 (10.6–23.3) 20.5 (10.7–24.1) 20.7 (10.8–24.7)

Larynx cRO 36.6 (23.7–69.9) 40.1 (26.9–69.8) 40.4 (27.1–69.8) 40.8 (27.7–69.9)
Dmean (Gy) aRO 35.3 (24.3–69.8) 40.1 (27.1–69.9) 40.5 (27.1–69.9) 41.3 (27.7–70.0)

(Continued on next page)103
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Table B.4. (Continued)

ROI and Metric Plan Nominal dose Cumulative dose Perturbed dose Perturbed dose
DNom DCum DPer0 DPerR

Oral mucosa cRO 38.7 (17.2–65.4) 39.6 (19.6–65.4) 39.9 (19.9–65.6) 41.0 (20.4–65.8)
Dmean (Gy) aRO 40.0 (17.5–65.3) 40.0 (19.3–65.4) 40.3 (19.6–65.7) 41.1 (20.2–65.8)

Constrictor muscles cRO 50.6 (39.4–64.4) 50.1 (39.5–63.6) 50.2 (39.7–64.0) 50.8 (40.3–64.1)
Dmean (Gy) aRO 50.9 (40.3–64.4) 50.8 (40.2–63.8) 51.1 (40.5–64.3) 51.5 (40.9–64.5)

Esophageal inlet muscle cRO 38.2 (16.2–69.7) 39.4 (13.6–66.3) 40.1 (14.3–66.3) 40.9 (14.6–66.4)
Dmean (Gy) aRO 38.5 (21.8–69.3) 40.0 (16.8–70.2) 40.7 (17.2–70.2) 41.7 (18.2–70.4)

Healthy tissue cRO 104.7 (66.4–133.3) 104.2 (67.2–131.0) 104.4 (67.2–131.1) 106.5 (68.3–134.1)
Integral dose (Gy·L) aRO 112.8 (68.8–146.1) 112.8 (70.1–144.2) 112.9 (70.1–144.2) 114.7 (71.1–147.5)

Abbreviations: ROI, region of interest; CTV, clinical target volume; cRO, classical robustly optimized plan; aRO, anatomical robustly optimized plan; D98%,

dose to the 98% of the volume; D2%, dose to the 2% of the volume; D1cc, minimum dose to the 1 cm3 of the volume; Dmean, mean dose.
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