TECHNISCHE ((‘
@ UNIVERSITAT

DRESDEN AALBO[;!EGN:ANAI:KERSITY

Adaptive Lightweight Compression
Acceleration on Hybrid CPU-FPGA System

Dissertation

submitted October 12, 2020

by M.Sc. Nusrat Jahan Lisa
born June 7, 1985 in Dhaka, Bangladesh

at Technische Universitét Dresden
and Aalborg University

Supervisors:
Prof. Dr.-Ing. Wolfgang Lehner
Prof. Torben Bach Pedersen

THESIS DETAILS

Thesis Title: Adaptive Lightweight Compression Acceleration on Hybrid

CPU-FPGA System

Ph.D. Student: Nusrat Jahan Lisa
Supervisors: Prof. Dr.-Ing. Wolfgang Lehner, Technische Universitdat Dresden

Prof. Torben Bach Pedersen, Aalborg University

This thesis consists of the following peer-reviewed and published papers.

1.

Nusrat Jahan Lisa, Annett Ungethiim, Dirk Habich, Wolfgang Lehner, Tuan D. A.
Nguyen, and Akash Kumar. Column scan acceleration in hybrid CPU-FPGA
systems. In Rajesh Bordawekar and Tirthankar Lahiri, editors, International
Workshop on Accelerating Analytics and Data Management Systems Using Modern
Processor and Storage Architectures, ADMS@VLDB 2018, Rio de Janeiro, Brazil, August
27,2018, pages 22-33, 2018. [Relates to Chapter 3]

. Nusrat Jahan Lisa, Annett Ungethiim, Dirk Habich, Tuan D. A. Nguyen,

Akash Kumar, and Wolfgang Lehner. Column scan optimization by increasing
intra-instruction parallelism. In DATA, pages 344-353. SciTePress, 2018. [Relates
to Chapter 3]

. Nusrat Jahan Lisa, Annett Ungethiim, Dirk Habich, Wolfgang Lehner, Tuan

Duy Anh Nguyen, and Akash Kumar. FPGA vs. SIMD: comparison for main
memory-based fast column scan. In Christoph Quix and Jorge Bernardino,
editors, Data Management Technologies and Applications - 7th International Conference,
DATA 2018, Porto, Portugal, July 26-28, 2018, Revised Selected Papers, volume 862 of
Communications in Computer and Information Science, pages 116-140. Springer, 2018.
[Relates to Chapter 3]

. Nusrat Jahan Lisa, Tuan Duy Anh Nguyen, Dirk Habich, Akash Kumar, and

Wolfgang Lehner. High-throughput bitpacking compression. In 22nd Euromicro
Conference on Digital System Design, DSD 2019, Kallithea, Greece, August 28-30, 2019,
pages 643-646. IEEE, 2019. [Relates to Chapter 4]

. Nusrat Jahan Lisa, Dirk Habich, Wolfgang Lehner, Akash Kumar, and Torben Bach

Pedersen. Adaptive Lightweight Integer Compression on FPGA. In preparation for
submission to the journal IEEE Embedded Systems Letters. [Relates to Chapter 4]

This thesis has been submitted for assessment in partial fulfillment of the joint Ph.D.
degree. The thesis is based on the published scientific papers which are listed above. As
part of the assessment, co-author statements have been made available to the assessment
committee and are also available at the Technical Doctoral School of IT and Design
at Aalborg University and the Faculty of Computer Science at Technische Universitét
Dresden.

ABSTRACT

With an increasingly large amount of data being collected in numerous application areas,
the importance of online analytical processing (OLAP) workloads increases constantly.
OLAP queries typically access only a small number of columns but a high number of
rows and are, thus, most efficiently executed by column-stores. With the significant
developments in the main memory domain even large datasets can be entirely held
in the main memory. Thus, main memory column-stores have been established as
state-of-the-art for OLAP scenarios. In these systems, all values of every column are
encoded as a sequence of integer values and, thus, query processing is completely done
on these integer sequences. To improve query processing, vectorization based the Single
Instruction Multiple Data (SIMD) parallel paradigm is a state-of-the-art technique. Aside
from vectorization, lightweight integer compression algorithms also play an important
role to reduce the necessary memory space. Unfortunately, there is no single-best
lightweight integer compression algorithm, and the algorithm selection decision depends
most importantly on the data characteristics. Nevertheless, vectorization and integer
compression complement each other, and the combined usage improves the query
performance. Unfortunately, the benefits of vectorization are limited on modern
x86-processors due to predefined and fixed SIMD instruction set extensions. Nowadays,
the Field Programmable Gate Array (FPGA) offers a novel opportunity with regard
to hardware reconfigurable capability. For example, we can use an arbitrary length
of processor word in FPGA leading to a higher performance, we can prepare proper
pipeline-based custom-made database accelerators, and we can develop embedded
systems through utilizing such accelerators. Moreover, modern hybrid CPU-FPGA
systems have a direct data communication channel between the main memory and FPGA
which is useful for throughput acceleration. Based on these advantages, this thesis
examines the utilization of FPGA for main memory column-stores. This examination
is two-fold. First, we investigate the column scan on compressed data as important
operation and second, we systematically look at lightweight integer compression. These
two aspects are considered from the hardware perspective to guarantee a certain level
of query performance acceleration. In particular, this thesis explores different embedded
design options and proposes an adaptive lightweight integer compression system. Based
on a comprehensive evaluation, we find out the optimal design constraint as per
implementation mechanism for column scan and lightweight integer compression. Finally,
we conclude this thesis by mentioning our upcoming research activities.

KURZZUSAMMENFASSUNG (ABSTRACT IN GERMAN)

Die Bedeutung von analytischen Anfragen im Sinne des Online Analytical Processing
(OLAP) im Datenbankumfeld nimmt stetig zu, da in zahlreichen Anwendungsbereichen
von der Wissenschaft bis zur Industrie immer groflere Datenmengen gesammelt
werden. Um aus diesen immensen Datenmengen die notwendigen Informationen
zu extrahieren, ist es notwendig, eine Vielzahl komplexer analytischer Aufgaben
auszufiihren. Derartige komplexe Analysen speisen sich normalerweise aus
einer zwar kleinen Anzahl von Attributen (Spalten) aber einer hohen Anzahl
von Zeilen und werden daher am effizientesten mit Hilfe von spaltenorientierten
Datenbanksystemen verwaltet und verarbeitet. Durch die signifikante Vergrofierung
der Hauptspeicherkapazititen im Laufe des letzten Jahrzehnts konnen mittlerweile
grofle Datensdtze vollstindig im Hauptspeicher gespeichert werden. Daher sind
hauptspeicherzentrische spaltenorientierte Datenbanksysteme Stand der Technik fiir
OLAP-Anwendungen. In diesen Systemen werden alle Werte jeder Spalte als eine Folge
von ganzzahligen Werten im Hauptspeicher codiert und die Abfrageverarbeitung erfolgt
vollstindig auf diesen ganzzahligen Folgen. Um die Effizienz der Abfrageverarbeitung
zu verbessern, ist Vektorisierung auf der Basis des parallelen Paradigmas SIMD (Single
Instruction Multiple Data) in diesen Systemen von entscheidender Bedeutung. Neben
der Vektorisierung spielen auch einfache Ganzzahlkomprimierungsalgorithmen zur
Reduzierung des erforderlichen Speicherplatzes eine wichtige Rolle. Leider gibt es
keinen optimalen Komprimierungsalgorithmus fiir Ganzzahlen und die Entscheidung
fiir einen Algorithmus hangt primdr von den Dateneigenschaften ab. Trotzdem
ergdnzen sich Vektorisierung und Ganzzahlkomprimierung, so dass die gezielte
Verwendung die Effizienz der Anfrageverarbeitung verbessert. Leider sind die
Vorteile der Vektorisierung bei modernen x86-Prozessoren aufgrund vordefinierter
und fester Befehlssatzerweiterungen von SIMD begrenzt. Heutzutage bietet aber
das Field Programmable Gate Array (FPGA) eine neuartige Moglichkeit hinsichtlich
der Hardware-Rekonfigurierbarkeit an. Zum Beispiel kénnen beliebige Langen von
Prozessorwortern in FPGA realisiert werden, was zu einer hoheren Leistung fiihrt.
Darauf aufbauend konnen spezifische Pipeline-basierte Datenbankbeschleuniger
eingebettet werden. Dariiber hinaus verfiigen moderne hybride CPU-FPGA-Systeme
iiber einen direkten Datenkommunikationskanal zwischen dem Hauptspeicher der CPU
und dem FPGA, was fiir die Durchsatzbeschleunigung wichtig ist. Hierauf aufbauend
untersucht diese Arbeit die Verwendung von FPGA fiir hauptspeicherzentrische
spaltenorientierte Datenbanksysteme und konzentriert sich dabei auf zwei
Schwerpunkte. Erstens untersucht die Arbeit die Verarbeitungsoperation Spaltenscan
(Column-Scan) komprimierte und zweitens wird die Ganzzahlkomprimierung
systematisch betrachtet. Diese beiden Aspekte werden aus Hardware-Sicht erortert,
um ein gewisses Mafs an Beschleunigung der Anfrageverarbeitung zu gewdhrleisten.
Dazu werden in dieser Arbeit verschiedene eingebettete Entwurfsoptionen untersucht
und ein adaptives Ganzzahlkomprimierungssystem vorgestellt. Basierend auf einer
umfassenden Evaluierung werden optimale Entwurfsbeschrankungen ermittelt. Die
Arbeit schliefit mit einer Diskussion weiterfithrender Forschungsaktivititen in diesem
Umfeld.

DANSK ABSTRAKT (ABSTRACT IN DANISH)

I takt med at der i mange sektorer indsamles stadigt sterre meengder data, stiger behovet
for effektivt af kunne udfere On-Line Analytical Processing (OLAP) foresporgsler.
OLAP-foresporgsler tilgar typisk kun et lille antal sgjler, men et stort antal reekker,
og kan derfor udferes mest effektivt pd data arrangeret i sejler. Samtidig ger
betydelige fremskidt inden for systemhukommelse at selv store dataseet kan lagres helt
i hukommelsen. Systemer der arrangerer data i sejler og lagrer komplette dataseet i
hukommelsen er derfor de forende til udfersel af OLAP-foresporgsler. Disse systemer
omskriver alle veerdierne i hver sgijle til sekvenser af heltal, og alle foresporgsler bliver
udfort pd disse heltalssekvenser. For at udfere foresporgsler mere effektivt kan de
paralleliseres ved brug af vektorisering baseret pa Single Instruction Multiple Data
(SIMD). Udover vektorisering spiller effektive letvaegtsheltalskomprimeringsalgoritmer
ogsd en vigtig rolle da de reducerer hukommelsesforbruget. Desveerre afhaenger
det af et dataseets karakteristika hvilken letvaegtsheltalskomprimeringsalgoritme der
giver det bedste resultat. Ikke desto mindre komplementerer vektorisering og
heltalskomprimering hinanden, og nar de kombineres, kan foresporgsler udferes
mere effektivt. Desveerre er effekten af vektorisering begreenset for moderne
x86-processorer da deres SIMD-instruktioner er foruddefinerede og uforanderlige. Field
Programmable Gate Arrays (FPGA)s abner nye mulighed eftersom deres hardware
kan eendres lobende efter behov. For eksempel kan en FPGA konfigureres som en
processor med en arbitreer ordleengde hvilket forer til en hojere ydeevne. Derudover
kan specialiserede pipeline-baserede database acceleratorer udvikles, og indlejrede
systemer kan blive udviklet som geor brug af sddanne acceleratorer. Desuden har
moderne hybrid CPU-FPGA-systemer en direkte datakommunikationskanal imellem
hukommelsen og FPGA'en som er nyttig til at accelerere udferslen af foresporgsler.
Pa bagrund af disse fordele ved FPGAer, analyserer denne afhandling brugen af
FPGAer i systemer der arrangerer data i sejler og lagrer komplette dataseet i
hukommelsen. Analysen bestar af to dele. Forst undersoges skanning af sgjler der lagrer
komprimeret data, og herefter analyseres letveegtsheltalskomprimeringsalgoritmer
systematisk. Disse to aspekter bliver betragtet ud fra et hardwareperspektiv for
at garantere et bestemt niveau af acceleration for forespergsler. Specifikt udforsker
denne athandling forskellige designmuligheder for indlejrede systemer og foresldr et
adaptivt letveegtskomprimeringssystem. Baseret pd en omfattende evaluering, finder
vi de optimale designbegraensninger for en implementering af skanning af sejler og
letveegtsheltalskomprimering. Endelig afslutter vi denne afhandling med at naevne vores
fremtidige forskningsaktiviteter.

CONTENTS

1 INTRODUCTION

1.1 Analytical Data Systems
1.2 Query Acceleration

1.3 Thesis Contributions

2 BACKGROUND AND PROBLEM DEFINITION

2.1 Main Memory Column-Store Database Systems.

2.2 State-of-the-art Optimization of Query Processing
2.2.1 Optimization using SIMD-Vectorization
2.2.2 Optimization using GPU-Accelerator

223 Summary

2.3 Opportunities and Challenges of FPGA-based Acceleration.
2.3.1 Hybrid CPU-FPGA Architecture
2.3.2 Related Works on FPGA-based Acceleration

2.3.3 Research Challenges . .

3 COLUMN SCAN ON COMPRESSED DATA

3.1 ColumnScan
3.1.1 Naive
3.1.2 BitWeaving
3.1.3 SIMD Implementation . .

3.2 FPGA Implementation.
3.2.1 Processing Element
3.2.2 Basic Architecture
3.2.3 Hybrid Architecture . . .

3.3 Comparative Evaluation
3.3.1 SIMD Evaluation
3.3.2 FPGA Evaluation

3.4 Lessons Learned and Summary

PAGE

o w N

11
11
13
14

15
15
17
19

21

22
22
24
26

29
30
31
31

32
33
36

38

4 ADAPTIVE LIGHTWEIGHT COMPRESSION SYSTEM 40

4.1 Lightweight Integer Compression 41
4.1.1 Overview and Classification 41
4.1.2 State-of-the-art Implementation Concepts 43
4.1.3 DISCUSSION 46

4.2 FPGA-based Implementation of Lightweight Integer Compression
Algorithms 46
4.2.1 Recap FPGA-based Architecture 47
4.2.2 Custom-made Compression HW Implementation 47
4.2.3 Lightweight Infeger Compression System Implementation ... 56
424 DIiSCUSSION 57
4.3 Adaptive CompressionSystems L. 57
4.3.1 User-Specified Adaptive System 58
4.3.2 HW-Specified Adaptive Systems 59
4.4 Experimental Evaluation 63
4.4.1 Data Properties Definition L. 64
4,42 Physical-Level Compression 65
4.4.3 Logical-Level Compression o 67
4.4.4 Cascaded Compressiono v v v i i e 69
4.4.5 Adaptive Compression 74
4.5 LessonslLearned and SumMmMAry 78
5 CONCLUSION AND FUTURE WORK 81
5.1 Conclusion e 82
52 Future Work 84
BIBLIOGRAPHY 86
LiST OF FIGURES 91
LIST OF TABLES 94

CONTENTS V

INTRODUCTION

1.1 Analytical Data Systems
1.2 Query Acceleration

1.3 Thesis Contributions

In the data-driven world, modern business technology is constantly taking care of a vast
variety of customer demands. To satisfy customer requirements business technology
requires to analyze and process information, whereby information is nothing but a
collection of data. This leads the business organizations to deal with data from a variety
of sources, including any kind of business transaction, industrial equipment, videos,
sensors, social media, smart Internet of Things devices, and more. That means the
amount of data is growing drastically. This gigantic amount of data arise the term "Big
Data" [ES16]. Big data refers to the amount of data which is huge in volume, complex for
analytics, and needs to be processed very fast [[WCW15, FLZ15]. This defines insights
analytics is very crucial for big data. Moreover, big data even outnumbers Moore's
law of digital circuit complexity [Sch97]. As a consequence, database researchers are
continuously facing challenges to tackle big data. Big data require fast analysis in the
huge amount of complex analytical queries. Fast analysis demands high-performance
with high-throughput and low-latency. Unfortunately, traditional database methods
are not good enough to manage analytical complex database queries more efficiently
along with high throughput and low latency. This situation leads to create fast database
architecture. As a result, database systems are constantly adapting novel features to
satisfy high performance with low latency demands.

1.1 ANALYTICAL DATA SYSTEMS

Analytical queries are required to quickly analyze massive amounts of data. That means
analytical queries are reading lots of rows but only a few columns of the database
tables, as all columns are not required for processing. Thus, the organizational pattern
of relational tables in the main memory influences the analytical query performance
[SABT05]. We can store a relational table either row-wise or column-wise. However,
data can be more precisely accessed by storing in columns rather than by rows. In other
words, column-wise storage allows us to ignore all the data that does not apply for a
particular query because we can retrieve the required information from the particular
columns. In contrast, the query of a row-oriented database system accesses each record
along with all of its fields in the database to get the information, which involves a lot of
unnecessary reads. As a result, query performance deteriorates drastically. In the case of
analytical queries, row-oriented query processing is not effective as it is dealing with a
large amount of data. Processing unnecessary information among the massive amounts
of data is not performance-efficient. Therefore, column-wise data stores are beneficial for
efficient and scalable processing of analytical queries.

Recently, the database community has been focusing on the main memory based system
to efficiently exploit the ever-increasing capacities of main memory [BKM08, OBL*17,
BATO13]. The main reason is, the price of semiconductor devices, e.g., transistors,
becomes cheaper and the memory chip densities increase with more capacity. This
enables the main memory to store larger datasets. To efficiently use this feature, database
systems are shifting from disk to main memory [BKM08, OBL*17]. The two most
important correlated reasons for this shifting are, i) main memory based sequential or
random read and write are significantly faster over a disk, ii) fast data communication
between main memory and processor words speed up the query processing speed
tremendously compared to disk or flash drive based systems [MS14]. Therefore, to speed
up the performance of database systems shifting from disk to main memory is fruitful. As
a consequence, main memory database systems became the state-of-the-art for analytical
workloads [SABT05, BATO13]. It is important for a specific system that the main memory
has a sufficient amount of space for the database. However, the space of main memories
is still multi-gigabyte, while disk can be multi-terabyte.

Chapter 1 Infroduction 2

One of the key primitives of a column-store main memory database system is scan,
as analytical queries compute aggregations over full or large parts of single columns
[LP13, LUH"18c]. The column-store main memory system increases the opportunity
for compactness and the ability to process multiple columnar values at once. Thus,
the optimization of the scan primitive is very crucial, in particular, for integer type
data [LP13, LUH"18c]. Analytical queries usually involve CPU intensive operations,
such as aggregation evaluation, column projection, sorting, searching, joins, and more
[BATO13]. Using an efficient optimization scheme in modern hardware to process
such query operations not only improves the query response time, but also minimizes
the impact on query analysis by offloading the expensive queries out of massive
data. However, it is highly questionable whether it is possible to hold and to process
large operational data sets in main memory, as the space of main memories is still a
bottleneck for large databases. Moreover, working with a giant dataset in the main
memory increases the hardware maintenance cost and failure rates. To deal with such
problems, data compression plays an important role in the main memory for analytical
query processing. Thus, another key primitive for the main memory based database
system is data compression. Data compression is a well-known optimization technique
for database systems [ZHNB06, AMF06]. Generally, analytical data systems have a
common approach to encode each data element as an integer value. Therefore, each
column is represented as a sequence of integer values. Dictionary encoding is used for
non-integer data like strings. Afterward, each sequence of integer data is compressed
using a lightweight integer compression algorithm. Based on this, each column is
represented as a sequence of compressed column codes. Thus, for the main memory
based database system, lightweight compression algorithms are used to optimize main
memory processing in terms of evaluating a query directly in the compressed form of
integer data [HHDL16, AMF06]. Processing analytical queries on column-store main
memory based systems accelerates performance while data are compressed through
lightweight compression algorithms. In this case, the processing is completely done on
the integer type of data. Any type of operator consumes integer columns for processing
and provides outputs of integer columns. During processing analytical queries on
compressed datasets in main memory, late materialization occurred to decrease latency,
whereby tuples are reconstructed on demand for each operator in the query plan.
Lightweight compression algorithms are handy as operators are working directly on
compressed data which accelerates the performance drastically. However, in the large
corpus of lightweight integer compression algorithms, there is no single best compression
algorithm and the choice depends on data characteristics [DUH'19].

1.2 QUERY ACCELERATION

Modern database systems are constantly exposed to a broad variety of novel
requirements to improve query performance, ranging from analytical, transactional, or
hybrid workload based applications to operators (relational model, graph processing,
etc.) and various data characteristics. To satisfy these diverse requirements, there
are several modern hardware opportunities available, that use the properties and
possibilities of modern hardware appropriately.

There are several hardware possibilities, the common one is a general purpose modern
CPU. To speed up CPU performance, CPU manufacturers usually increase the clock
speed of single-core processors. After increasing the clock speed of single-core processors
to a certain level it became increasingly difficult to increase further due to technological
limitations. Hence, CPU manufacturers move towards two directions to speed up CPU
performance, i) developing a system with either 2 to 8 processors oriented multicore
or hundred to thousand processors oriented manycore architectures, ii) developing

Chapter 1 Introduction 3

the idea of instruction-level parallelism, which is known as vectorization. The length
of general processor words in modern CPUs is usually fixed to 64-bit, which limits
the performance of query operation in particular for column scan. However, modern
column scan methods exploit the intra-instruction parallelism to increase performance
[WPB*09, LUH"18b]. To explore such a modern scan method, the vectorization concept
is used. The Single Instruction Multiple Data (SIMD) instruction set extensions such as
Intel’s SSE (Streaming SIMD Extensions) and AVX (Advanced Vector Extensions) have
been available in modern Intel processors for vectorization [WWT*14]. SIMD instructions
apply one operation to multiple data elements of so-called vector registers at once, which
reduces the instruction calls. The size of the vector registers ranges from 128-bit (Intel SSE
4.2) to 512-bit (Intel AVX-512). These registers are used instead of regular processor words
to improve performance [LUH'18b]. Therefore, SIMD vectorized implementations are
beneficial for analytical queries execution [PRR15, ZR02]. By utilizing SIMD fundamental
vector operations and good vectorization principles, several database primitives such as
selection scans, hash tables, sorting, join, compression, have been implemented [PRR15].
SIMD based database system is moderate in manufacturing cost as well as performance.

Another modern hardware opportunity to accelerate query performance is GPU,
whereby GPU acts as a co-processor to accelerate CPU based query processing. Typically,
there is a large number of simple cores residing in a GPU for massive parallelism through
thousands of threads of computation at a time. GPU cores are usually organized in blocks
of 32 cores that execute the exact instruction at a given time parallelly, similar to the
SIMD architecture of CPU. However, the main advantage of using GPU over CPU for
query acceleration is bandwidth, e.g., a modern GPU NVIDIA TITAN Xp has 547.7GB/s
memory bandwidth. In contrast, a modern CPU Intel Core i7-7700K has about 50GB/s.
GPU-accelerated database system is perfect for the column-store due to its connected
memory access pattern on the GPU. GPUs are not only suitable for column-store but also
other database operations such as relational operations, compression, XML filtering, scan,
etc. Although in the modern system, the CPU is transferring data to the GPU through
a powerful PCI express bus. Transferring large chunks of memory from CPU to GPU
is still a bigger challenge. However, query acceleration either through GPU or by using
vectorization of CPU is always implemented on the software-level. To guarantee a certain
expected level of performance on query processing also requires real-time hardware
configuration. Therefore, modern database systems consider efficient ways for query
processing not only through software-level implementation but also by hardware-based
configuration. This leads database researchers towards the other modern hardware
possibilities.

Nowadays, database researchers move towards the development of application-specific
integrated circuit (ASIC) based column-store database systems [BKG'18]. The ever
increasing demand for more and more performance-based database systems, also
becoming power-hungry. Hence, to balance performance and power efficiency, the
query processing engine can be implemented by developing the software design together
with the hardware architecture. However, it takes a year or more to design ASIC
based database systems, as such implementation requires several steps like fabrication,
testing, verifications [AIR"17, AHF"14]. Moreover, ASIC based implementation is
post-order configuration bound. This defines, after the fabrication process system acts
as a permanent circuitry, which can not go through reconfiguration phases to satisfy
additional requirements or modifications. As a consequence, such system development is
time consuming as well as not cost-effective. All these constraints of ASIC based systems
show the database researcher the way to the Field Programmable Gate Array (FPGA)
based system.

FPGAs are accumulated with reprogrammable integrated circuits, whereby integrated

circuits contain an array of programmable logic blocks. The high parallelism
characteristic ensures hardware together with software system development on FPGA. In

Chapter 1 Infroduction 4

other words, an FPGA is an innovative platform, whereby application-specific hardware
can be implemented on the fly. Thus, FPGAs not only reduce the energy footprint but also
provide software specific hardware-level implementation flexibility. All these features
indicate that FPGA is fruitful for the query performance acceleration. However, working
with FPGA requires comprehensive skills from high-level programming language skills
to low-level circuit implementation knowledge. Previously, the business world has
lost interest in FPGA based database acceleration, especially for main memory based
database systems as FPGAs have integrated with insufficient bandwidth based memory
interfaces which are limiting their performance [FMH"19]. Recently, the new generation
FPGAs, e.g. Xilinx® UltraScale+™, have overcome such limitations. Nevertheless, the
key feature of FPGA hardware is reconfiguration [Teul7]. Platform with reconfigurable
feature is always available to satisfy system-level requirements. Therefore, FPGA is
perfect for main memory based database systems regarding many aspects: performance,
manufacturing time as well as cost in terms of resource consumption.

1.3 THESIS CONTRIBUTIONS

A Column-store data organizational pattern in main memory based database systems is
necessary to accelerate the analytical query processing performance. Among others, the
column scan is one of the very crucial operators in the main memory based database
system. It has become obvious that the amount of data is ever-increasing in the modern
world. As a consequence, main memory based database systems are required to deal
with two major obstacles on top of the growing amount of datasets: i) to fit large datasets
within few gigabytes of main memory, ii) to speed up the important database operations,
e.g., the column scan operator. To deal with such obstacles, on the one side data needs
to be compressed, and on the other side, optimization is necessary for the operators to
work directly on the compressed form of data. Modern performance-efficient column
scan mechanisms make it possible to perform queries directly on compressed data
[LP13]. Additionally, lightweight compression algorithms are ideal for reducing the data
footprint by reducing the gap between processor speed and main memory bandwidth
[LB15]. Thus, constructing a system that producing compressed data through lightweight
compressions for direct query evaluation require software-level specifications together
with hardware-level attention. Recently, FPGA has become one of the most promising
approaches for query acceleration. The flexibility of reconfiguration as per individual
database operation implementation requirement makes FPGA an interesting platform.
In this situation, considering FPGA for database operators implementation, such as scan
or compression, for main memory based database system implies an optimistic choice.
Hence, we investigate FPGA regarding two aspects:

e Column scan operation on compressed data.
e Adaptive lightweight integer compression.

Therefore, this thesis investigates the main memory based hardware-level
FPGA-oriented implementations, specifically for column scan mechanisms and
lightweight data compression algorithms.

Chapter 1 Introduction 5

Describe the main memory column-store database system,
state-of-the-art optimization of query processing,
opportunities and challenges of FPGA-based acceleration.

Background and
Problem Definition

Implement SIMD-based and FPGA-based column scan.
Compare the evaluation between SIMD and
FPGA implementations with lessons learned.

] 1
1 1
1 1
] 1
1 1
1 1
1 1
] 1
1 1
| |
| e 1
L Main 3 |
" . 1
| \. Contributions .' :
v S p
1 1
] 1
1 1
] 1
1 1
] 1
1 1
1 1
1 1
1 1
] 1
1 1

Column Scan on
Compressed Data

Implement FPGA-based lightweight compression
Adaptive Lightweight systems. Separately evaluate physical-level,
Compression System logical-level and adaptive lightweight compression
implementations followed by lessons learned.

Conclusion and

Conclude this thesis with conclusion and future work.
Future Work

Figure 1.1: The Top-Down Structure of This Thesis.

Based on that, the top-down structure of this thesis is shown in Figure 1.1. Each
highlighted arrow represents a chapter of this thesis. In Chapter 2, titled Background
and Problem Definition, this thesis starts with a background study of the main memory
column-store database systems as it is the software-side foundation of this thesis, and the
hybrid CPU-FPGA architecture as it is the hardware-side foundation of this thesis. Then,
we discuss recent research on FPGA-based acceleration to show that this novel class
of accelerator is beneficial for query performance, and end with defining the research
challenges that this thesis strives to resolve. Next, in Chapter 3, titled Column Scan on
Compressed Data, this thesis gives an elaborate overview regarding state-of-the-art column
scan techniques. Here, this thesis focuses on a naive scan technique [Lam75] as well as on
a modern intra-instruction parallelism based technique called Bitweaving [LP13]. Then,
we show the efficient ways of state-of-the-art column scan techniques implementation
details using SIMD extensions and FPGA, comparison evaluations between SIMD and
FPGA based implementation, and end this chapter with lessons learned. Afterward, in
Chapter 4, titled Adaptive Light Weight Compression System, this thesis describes the possible
implementation opportunities on FPGA for lightweight integer compression algorithms.
Thus, this thesis implements the hardware-based physical-level, logical-level, and
cascaded lightweight integer compression algorithm based systems on FPGA. Moreover,
an efficient implementation detail for adaptive lightweight integer compression systems
on FPGA is proposed. Then, an exhaustive experimental comparative evaluation of all
the implemented compression systems is performed. This chapter ends with the lessons
learned from the evaluation. We conclude this thesis with a summary and list of potential
future work in Chapter 5.

Chapter 1 Introduction 6

BACKGROUND AND PROBLEM DEFINITION

2.1 Main Memory Column-Store Database Systems
2.2 State-of-the-art Optimization of Query Processing

2.3 Opportunities and Challenges of FPGA-based Acceleration

This chapter presents an elaborative description of main memory column-store database
systems along with selected related work. Thereafter, the state-of-the-art optimization
opportunities for query processing acceleration are illustrated. Then, the modern hybrid
CPU-FPGA architecture is discussed as the novel class of accelerator hardware including
recent database domain-related works on FPGAs. Finally, the research challenges and
proposed solutions of this thesis are defined.

2.1 MAIN MEMORY COLUMN-STORE DATABASE SYSTEMS

Order_Table
1 50 173 665.47 “Air”
2 100 46 929.18 “Mail”
3 25 193 846.25 “Rail”

Column-wise data traversal

All logical
173 665.47 data is mapped
to integer data
2 100 46 929.18 on the
3 25 193 846.25 physical level
Column-wise data store
2 3
100 25
17366 547 4692918 19384 625
20 30
| | Dictionary
Encoding
—

Figure 2.1: Illustration of Main Memory Column-Store Database System.

For decades, the main research goal of the database community has been performance.
To meet this goal, the database community has explored possible alternatives including
indexing, materialized views, vertical/horizontal partitioning, etc. Recently, the
so-called column-store database systems have become state-of-the-art regarding query
performance for certain workloads. Column-store database systems organize records or
tuples or data tables in a columnar fashion. Unlike traditional systems, column-store
databases are responsible to store and perform different types of queries. In various
tools or software, column-store databases act as the backbone of the system to extract,
transform, load, or for the visualization of data. However, storing data in columns
benefits the database systems, because they are accessing the particular data they need
to perform a query, but do not require scanning and discarding of unwanted data. The
query performance of the database system is explicitly correlated with the efficiency of
data movement between storage and CPU registers for processing. Usually, the storage
database systems are disk-oriented. A typical disk has an average read /write latency of 5
milliseconds while the main memory has 50 nanoseconds, which is nearly 100,000 times
as fast [OBL"17]. Undoubtedly, the disk-oriented data access is the major bottleneck of
the database systems. However, the characteristic of column-store databases increases
performance as less amount of read operation is required on disk. Additionally, shifting
column-store database systems from disk to main memory benefit even more regarding
performance. Figure 2.1 illustrates the main memory column-store database system
in an exemplary way. In this figure, the table called Order_Table, which has four

Chapter 2 Background and Problem Definition 8

columns, namely ID, #Items, Order_Price and Shipping Mode. The ID and #Items
columns consist of integer values, the Order_Price and Shipping_Mode columns consist
of float and string values, respectively. In column-store organization, all data traversal
happens column-wise one after another (see Figure 2.1). All logical data represented in
Order_Table are mapped to integer data on the physical level in terms of main memory.
Thus, the string values of the Shipping_Mode column are encoded to integer values using
the dictionary encoding technique. Similarly, the float values of the Order_Price column
are stored as integer and keep the precisions as metadata. As data are stored column-wise
at the physical level, it is easy to access a particular column at once for query processing
which accelerates the performance. Subsequently, the era of main memory column-store
database systems arises which creates several research dimensions for optimization.

For instance, Stonebraker et al. [SABT05] invented the extended version of column-store
database system as C-Store. Usually, an entry sequence order is maintained to insert data
in columns. This is efficient for new data insertion, either batch-wise or transactionally,
at the end of the column. However, this situation becomes very difficult and expensive
for column update operations without an entry sequence of orders, which is a common
problem. C-Store overcomes such issues through a read-optimized column-store and
an update/insert-oriented writeable store, connected by a tuple mover. C-Store is
implemented on top of several components. It has, i) a small Writeable Store (WS)
component to support high-performance inserts and updates, ii) the Read-optimized Store
(RS) is capable of supporting very large amounts of information, iii) additionally, RS
is optimized for reading and supports a restricted form of insert, for instance, the
batch movement of records from WS to RS is performed by the tuple mover [SAB105].
Stonebraker et al. evaluated C-Store on the TPC-H benchmark and the result showed that
C-Store is on average 21 times faster than the native column-store system [SAB*05]. The
design of C-Store emphasized radical departure from the traditional database systems.
C-Store targeted for the read-intensive database market. C-Store is a column-store
representation connected to a query execution engine [SABT05]. C-Store focused on
economizing the storage representation on disk by coding data values and dense-packing
the data [SAB'05]. C-Store supports distributed transactions without a redo log or
two-phase commit and efficient snapshot isolation [SAB™05].

In contrast, MonetDB is the first database system that accumulates the main memories for
column-store database systems effectively and efficiently for query processing [BZNO5,
IGN*12]. To increase performance, MonetDB mainly focuses on analytical workloads
that are read-intensive, whereby updates are appending new data in terms of large
chunks to the database. MonetDB reconsiders all aspects of the traditional database
systems in terms of design, architecture, and implementation. However, technology-wise
MonetDB effectively exploits the potentials of modern hardware. For example, Boncz et
al. [BZNO5] investigated the inefficiencies of modern CPUs. On one side, they triggered
out huge amount of query execution introduces interpretation overhead which prevents
the compiler from using the most performance-critical optimization techniques, such as
loop pipelining. On the other side, they analyzed that the main memory database system
MonetDB applies a column-at-a-time materialization policy, which makes it memory
bandwidth bound. Therefore, Boncz et al. [BZNO05] proposed pipelined operators that
pass to each other small, cache-resident, vertical data fragments called vectors and they
called this new query engine MonetDB/X100. This work [BZNO05] evaluated their system
on the TPC-H benchmark for 100 GB data, showing that MonetDB/X100 can be up to
two orders of magnitude faster than the existing system. Internally, MonetDB does not
follow the exact column-oriented data storage logic. MonetDB came up with a whole new
design tailored for columnar execution along with cache-conscious data structures and
algorithms to provide optimal use of hierarchical memory systems [BZN05, IGN*12].

Thus, we can state that the main memory column-store database systems rely on two key
factors,

Chapter 2 Background and Problem Definition 9

(a) Columnar Storage Organization.
(b) Columnar Processing.

(a) Columnar Storage Organization: In columnar storage organization, each column is
encoded as a sequence of integer values. Hence, it is very important to reduce the column
size to fit in the main memory. To obtain this, the columns are usually compressed
with a common approach: (i) Encode the values of each column as a sequence of
integers using some kind of dictionary encoding and (ii) Apply lightweight lossless
integer compression to each sequence of integers resulting in a sequence of compressed
column codes. Generally, there are two main types of compression: (i) Heavyweight
compression, (ii) Lightweight compression. Usually, lightweight compression algorithms
work for main memory oriented datasets and heavyweight compression algorithms
are for disk-based datasets. However, lightweight compression has two major benefits
compared to heavyweight compression. Firstly, the data transmission rate of lightweight
compression is higher than the heavyweight compression, as the main memory stays
closer to the CPU than the disk. Secondly, the computational effort of the lightweight
compression algorithm, especially for the (de)compression, is much lower than for
heavyweight compression algorithms. To achieve these benefits, there is a large corpus
of compression schemes that have been developed in the domain of lightweight lossless
integer compression. Every individual lightweight compression scheme depends on a
unique data property, such as value distributions, run lengths, sorting, or the number of
distinct data elements. Hence, in this large corpus of lightweight compression schemes,
there is no single-best scheme suitable for all datasets [DUH*19].

(b) Columnar Processing: It is very crucial to determine when the projection of
columns should occur to accelerate the performance during processing columnar queries.
In column-store, attributes are usually stored in a distributed manner on the storage
medium. Information of a single entity could be distributed over several columns. As a
consequence, query processing over several attributes is required to access a single entity.
Hence, during query processing, multiple columns have to be reassembled at some
point to create tuples. This tuple reconstruction process is called Materialization. In the
query plan design context, there are two types of Materialization, (i) Early Materialization,
(ii) Late Materialization. In Early Materialization, tuple reconstruction happens early in
the query plan. This means, during query processing, it selects all relevance columns
and reconstructs tuples from their component attributes first. Afterward, it executes
standard row-store operations on the resulting tuples. Thus, implementation-wise
Early Materialization is easy but generally performance-wise is poor. In contrast, Late
Materialization fetches columns on demand for each operator in the query plan. In
Late Materialization, tuple reconstruction happens at the end of the query plan. This
makes it necessary to keep efficiently the intermediate join operations results that have
been conducted on individual columns. These intermediate results are represented as
a set of ranges of positions. These positions can be intersected to extract the values
of interest which finally join into the final projection. Thus, implementation-wise Late
Materialization is complex but generally performance-wise is better. Additionally, in the
context of analytical columnar query processing, all query operators are working on
integer data and usually, the tuples are only reconstructed at the end for the query result.
Thus, the analytical columnar query processing applies the Late Materialization concept to
achieve good performance. For instance, MonetDB defined all operators using the Monet
Interpreter Language (MIL) which is an algebraic query language including a good
join order through emphasizing the Late Materialization concept [BK99]. Column-store
is suitable for the compression scheme. However, this advantage is not available in

Chapter 2 Background and Problem Definition 10

row-store since a tuple contains data from multiple different attributes. Column-store
does not guarantee to give better compression ratios but the column-store has the
potential to be highly compressible. Different factors are taken into account, such as
column cardinality, data types, and sorting, which help to decide about the compression
scheme. In this context, Late Materialization becomes more effective since it processes
the column values before forming tuples that helps to work directly on the compressed
columnar data. Therefore, the major advantage of lightweight integer compression in the
main memory based column-store databases is that some query operators can process
the compressed data directly, without decompression.

The goal of the above discussion was to show the importance of the main memory
column-store database systems. Main memory column-store database systems keep and
process data column-wise, which is perfect for analytical queries, because each query
is read-intensive on a limited set of columns. Another key aspect of the main memory
column-store database system is data compression. Nevertheless, data compression is
a well-known optimization technique for database systems. In particular, for the main
memory column-store database systems, lightweight compression algorithms are used
to optimize query processing by evaluating the query directly in the compressed form
of integer data. However, the most important aspect of the main memory column-store
database system is query performance. Hence, the software-side foundation of this thesis
is based on the main memory column-store database systems.

2.2 STATE-OF-THE-ART OPTIMIZATION OF QUERY PROCESSING

Main memory based analytical databases are continuously exploring a variety of
optimization opportunities with respect to the underlying hardware. Among several
modern hardware systems, SIMD-vectorization and GPU-based accelerator became the
state-of-the-art optimization opportunities for query processing. Therefore, this section
concentrates on some recent related works regarding SIMD-vectorization and GPU-based
database systems including the limitations of such optimization opportunities.

2.2.1 Optimization using SIMD-Vectorization

To accelerate performance, three different sources of parallelism are possible on the
hardware side: i) Thread parallelism, ii) Instruction level parallelism, iii) Data parallelism.
Among these parallelisms, data parallelism can be achieved through SIMD instructions.
Single instruction multiple data (SIMD) performs the same operation on multiple data
simultaneously. SIMD operations utilize a set of vector registers, whereby one operation
is applied to all elements of the vector at the same time. In other words, a single
instruction can be applied to multiple data elements in parallel. Several processors such
as Intel’s Xeon Phi, Intel Sandy Bridge, Haswell/Broadwell, AMD Bulldozer, ARM, and
PowerPC implement SIMD instructions, although the instruction details may vary. Since
hardware-specific SIMD instructions involved operations depend on vector operands.
SIMD operations are also referred to as vectorizations. Therefore, many database systems
continuously utilize SIMD-vectorization as an optimization opportunity to accelerate
performance. For instance, recent related works [PRR15], [PR19], and [BRT 18] utilized
SIMD-vectorization to implement the fundamental database operators. In the following,
we will detail on related works [PRR15], [PR19], and [BRT"18].

Chapter 2 Background and Problem Definition 11

Polychroniou et al. [PRR15] presented main memory based analytical database execution
using generic SIMD vectorized implementations. Selection scans, hash tables, sorting,
and join operators were implemented through the fundamental SIMD-vector operations.
For instance, SIMD-based fundamental vector operations were implemented that are
required to implement vectorized database operators. Among several, two operations are
termed as selective loads and selective stores. Selective stores write a specific subset of
the extension/vector lanes to a memory location contiguously based on a mask. Selective
loads are the symmetric operation that involves loading from a memory location
contiguously to a subset of extension/vector lanes based on a mask. Afterward, selective
store operation is utilized in the implementation of a selection scan database operator,
whereas the selection scan is a very useful operator for main memory query execution. A
selection scan is a conditional scan operation that uses selective store operation (which
Polychroniou et al. [PRR15] implemented through SIMD provided instructions) to
store the extensions or vector lanes that satisfy selection predicates. Polychroniou et al.
[PRR15] evaluated the performance of selection scans on Xeon Phi and Haswell systems
for the selection condition ki < k < kpyez, Where ki, and ko, are query constants.
Polychroniou et al. [PRR15] varied the selectivity and measured the throughput for
six different implementation versions of the selection scan to show the efficiency of
vectorized implementation over non-vectorized implementation. Polychroniou et al.
[PRR15] implemented two scalar variants with and without branching of selection scan.
The rest variants implemented using SIMD vectorization. On both systems: Xeon Phi
and Haswell, all vector codes outperform scalar codes. Besides selection scan, other
vectorized implementations, e.g., hashing, partitioning, sorting, and join, were evaluated
against scalar and vector code on Haswell and Xeon Phi systems. This work [PRR15]
utilized SIMD-vectorization in the context of main memory database operators, and
focused on the impact of vectorization on algorithmic designs, as well as the architectural
designs.

Some years later, the same database research group introduced an analytical query engine
implemented entirely by using SIMD instructions namely VIP [PR19]. The VIP engine
supports all fundamental database operators, such as selections, hash joins, group-by
aggregations, multiple data types, compression, and complex predicates or expressions.
The latest AVX-512 SIMD instructions are utilized on VIP, which supports 512-bit width
based vector registers and additional functionality, e.g. conflict detection or prefetching.
Polychroniou et al. [PR19] implemented one of the key lightweight physical-level
compression called Bitpacking using only 5 AVX-512 SIMD instructions. During the
evaluation of the TPC-H workload, VIP outperforms query-specific hand-optimized
scalar code.

Hashing is one of the important database operator that is very useful for hash-based
joins and aggregations. Hence, Behrens et al. [BRT"18] focused on the efficient
ways of hashing implementation. However, Behrens et al. [BRT'18] noticed that
vectorized database operators improve performance but require processor-specific APIs.
Therefore, Behrens et al. [BRT"18] vectorized the essential primitives, such as gather,
scatter, selective load, and selective store in OpenCL to reduce code complexity and
to ensure portability. This work [BRT'18] used Intel Core i7-6700K CPU and Xeon
Phi processors for evaluations. During evaluation, SIMD intrinsics based vectorized
hashing outperforms OpenCL-based hashing. However, on Intel Core i7-6700K CPU,
OpenCL-based vectorized hashing outperforms scalar hashing for moderately sized hash
tables that fit into the L2 cache. In this case, Behrens et al. [BRT*18] OpenCL-based
hashing scheme is competitive to intrinsics-based hashing.

Although the above-mentioned works explain that the SIMD-optimization became one
of the popular opportunities for database researchers, it is still not used in all cases.
For instance, a heavy flow control-oriented operator like parsing is not doable from
SIMD. However, SIMD-vectorize comparisons based parsing is possible using a large

Chapter 2 Background and Problem Definition 12

cache that can store more intermediate states. But it requires exclusive SIMD intrinsics
based cache control features which are not available in SIMD. Additionally, the extended
vector register increases power consumption and chip area of the system which increases
the system cost. Moreover, gathering data into SIMD vector registers and storing it to
the correct destination locations requires extra efforts and sometimes it is inefficient,
which implies data alignment is a big obstacle in SIMD. Finally, SIMD instructions
are hardware architecture-specific. Different processors have different sets of SIMD
instructions which implies that database researchers must provide multiple vectorized
database operator implementations to operate optimally on any given processor. Hence,
SIMD is a hardware-tight opportunity and it is not suitable for all types of operator
implementation. As a consequence, it provides limited system performance. All these
shortcomings show that SIMD-vectorization is not a flexible optimization opportunity in
the database domain.

2.2.2 Optimization using GPU-Accelerator

The massive parallel capabilities with thousands of cores for analyzing volumes of data
to solve difficult computational problems with great speed makes the GPU-accelerator
an interesting platform for data-intensive applications. As a consequence, database
researchers adopted the key feature perform parallel operations on multiple sets of data of
GPU (Graphics Processing Units) to accelerate performance. Initially, GPU was used in
databases to enhance operations by adding compute workloads to the graphics shields.
When the NVIDIA introduced GPU along with CUDA [BS10], the application-specific
general-purpose logic implementation became more convenient on GPU. Architecture
and processing paradigm wise GPU is completely different from CPU. GPU is
advantageous as it is keeping up with today's big data demands. Hence, GPU based
databases can provide speedups over the CPU-based system. Some related works are
discussed below.

The recent trend of database systems are changing hardware platform from
homogeneous CPU systems towards heterogeneous CPU-GPU based systems including
different computing units (CUs). The computing architecture in a heterogeneous
system is different from a homogeneous system. Therefore, database management
systems (DBMS) are continuously adapting to this hardware trend to efficiently utilize
the given opportunities. Traditional database systems require query execution plans
(QEP) to compute query results. To determine the most efficient QEP, the query
optimizer is used for logical and physical optimizations. In a heterogeneous CPU-GPU
based database system, before query execution, performing a placement optimization
is essential, because it assigns physical operators of the most efficient QEP to the
ideal computing units. Hence, Karnagel et al. [KHL17] proposed a novel adaptive
placement approach for query processing on a heterogeneous CPU-GPU system. This
work [KHL17] approaches a physical query execution plan as input and divides the plan
into disjoint execution islands at compile-time. The execution islands are determined
in a way that the cardinalities of intermediate results within each island are known or
can be precisely calculated. The placement optimization and execution are performed
separately per island at query runtime. The processing of the execution islands takes
place successively following data dependencies. Karnagel et al. [KHL17] also proposed
two additional improvements: (i) a fine-grained runtime estimation technique, (ii)
a placement-friendly data transfer technique. This work [KHL17] implemented the
techniques as a virtualization layer called HERO (HEterogeneous Resource Optimizer),
which can be used by any OpenCL-based database system. This work’s [KHL17]
evaluation is based on OpenCL driver implementation with the OpenCL database
systems gpuDB2 and Ocelot3. Karnagel et al. [KHL17] used a highly heterogeneous

Chapter 2 Background and Problem Definition 13

hardware setup consisting of a CPU and three different GPUs (AMD Radeon R7, Nvidia
Tesla K20, Nvidia GT 640), because of their general availability and their support for
OpenCL. In the evaluation, this work [KHL17] showed that their approach improves the
performance up to 50x over gpuDB and Ocelot system by choosing good heterogeneous
placements.

In the last few years, many approaches utilized GPUs for the database system
acceleration. Bref et al. [BHS'14] theoretically explored the design space of GPU-aware
database systems. Bref et al. [BHS14] argued that a GPU-aware DBMS should be
a main memory, column-oriented DBMS using the block-at-a-time processing model,
possibly extended by a just-in-time-compilation component. The system should have
a query optimizer that is aware of co-processors and data-locality, and can distribute
a workload across all available (co-)processors. Bref et al. [BHS'14] validated these
findings by surveying the implementation details of eight existing GPU-aware DBMSs
and classifying them according to the mentioned dimensions. Additionally, this work
[BHS™14] summarized common optimizations implemented in GPU-based DBMSs and
inferred a reference architecture for GPU-aware DBMSs, which acts as a starting point in
integrating GPU-acceleration in popular main memory DBMSs.

Despite having massive parallel capabilities, the GPU can only be programmed using
its available static vectored instruction set. Typically, a GPU is connected as a
co-processor of CPU, so the GPU-based programming model is quite restricted under
CPU. However, modern NVIDIA GPU overcomes a certain level of restrictions. However,
the transfer of data to the GPU increases the latency as it needs to go through the PCle
channel. Therefore, the PCle bus is still a bottleneck of GPU-based query processing.
Moreover, on GPU the low-level instructions are not implementable, which makes GPU
a hardware-tight platform. Additionally, GPU is not suited for all database algorithms.
Mostly, the database operations are reformulated to take advantage of the parallelism
of GPU, which increases the operation overheads. Finally, GPU is an instructional
computation device that needs to run various computing units to perform a particular
operation, which makes GPU a power-hungry device. All these limitations corroborate
that GPU is not perfectly suited for all types of database operators.

2.2.3 Summary

Recent related works show that SIMD optimization is heavily applied for different
query operators as well as lightweight integer compression [PRR15, PR19, BRT*18].
Additionally, recent works also show that columnar processing is suited for GPU
co-processing [KHL17, BHS*14]. In the database research domain, SIMD optimization
and GPU optimization are heavily used, but their benefits are limited to fixed hardware.
Fixed hardware defines that SIMD and GPU based on some fixed set of instructions.
Database researchers are bound to work within this fixed set of instructions. That
means researchers are neither able to modify any instruction nor implement any new
instruction to accelerate performance. This limits the implementation-level flexibility to
accelerate query performance. To overcome such limitations, a new class of accelerator
hardware arises the so-called FPGA. FPGA is not bound to fixed hardware. It is a flexible
platform where different types of operators can be implemented on-the-fly as per system
requirements. Hence, this thesis targets this new class of hardware to accelerate query
performance.

Chapter 2 Background and Problem Definition 14

2.3 OPPORTUNITIES AND CHALLENGES OF FPGA-BASED
ACCELERATION

In this section, the benefits and opportunities of the new class of accelerator hardware,
namely the hybrid CPU-FPGA architecture is defined. The hybrid CPU-FPGA
architecture is the hardware-end backbone of this thesis. Afterward, some exclusive
database related works with regards to FPGAs are discussed as an application of a
new class of accelerator hardware. In the end, we conclude this section by defining the
research challenges of this thesis.

2.3.1 Hybrid CPU-FPGA Architecture

In the early 1980s, the digital circuit community envision "reconfigurable after being
manufactured" type technology to gear up the scalability and flexibility regarding the
development process of integrated devices. As a continuation, the programmable
logic array (PLA) device was introduced for fixed architecture logic devices with
programmable AND gates followed by programmable OR gates. Manufacturing-wise
PLA was efficient while it collapsed during scaling as the programmable instances
in the array grew with the square of the number of inputs. Therefore, PLA became
impractical for integrated circuitry regarding power efficiency and performance. Later,
other devices like CPLD, EEPROM came onto the digital market, but none of them was
able to completely satisfy the "reconfigurable after being manufactured" vision. Later as a
successor of PLA in 1984, Xilinx® first introduced the concept of Field Programmable
Gate Array (FPGA), which fulfills the vision of reconfiguration [FMH*19]. In Field
Programmable Gate Array (FPGA), a group of reconfigurable logic array memory cells is
distributed along with interconnecting switching nodes and wiring. The reconfigurable
logic array memory cells of FPGA increase the scalability in terms of power efficiency
and performance compared to programmable AND-OR-based PLA structure.

Recently, FPGA vendors like Intel® or Xilinx® incorporate an FPGA and a CPU into
a common system leading to System-on-Chip (SoC) architecture. Thus, the modern
generation hardware era of hybrid CPU-FPGA hardware systems arises. This thesis
is evaluated on a hybrid CPU-FPGA hardware system from Xilinx® called Zynq
UltraScale+™ [Xil19b] as hardware foundation. The architecture of this hybrid system
is depicted in Figure 2.2. As shown in this figure, the target system is divided into two
major top-level blocks, i) Processing System (PS), ii) Programmable Logic (PL), while the AXI
Communication Protocol is used as a bridge to connect these two blocks.

Processing System (PS) is based on so-called multiple processor system-on-chip (MPSoC)
architecture. Therefore, PS integrates 64-bit quad ARM® Cortex-A53 based Application
Processing Unit (APU), dual-core ARM® Cortex-R5 based Real-Time Processing Unit
(RPU), ARM® Mali-400 based Graphics Processing Unit (GPU) in a single chip. The
maximum frequency of APU is 1.5 GHz. Although the PS part features RPU and
GPU cores, both are not considered further in this thesis. The PS part also includes
on-chip memory and a rich set of peripheral connectivity interfaces. Moreover, the Zynq
UltraScale+™ has two DDR4 main memories. While the size of one DDR4 is 4 GB, the
size of other one is 512 MB. Additionally, the platform management unit controls the
power of the overall system and the system control unit is occupied by various categories
of clock buffers and some pre-fixed controllers, such as direct memory access (DMA).

Programmable Logic (PL) part is responsible for designing all programmable custom-made
hardware. Internally, PL is composed of configurable logic blocks (CLBs), a

Chapter 2 Background and Problem Definition 15

Application Processing Unit (APU) -

ARM® ARM® ARM® ARM®
Cortex™ A53 Cortex™ A53 Cortex™ A53 Cortex™ AB3 !

1
I
1
1
1
1
I
]
1
. Platform Management Unit Graphics System Control |~
1
1
1
1
1
1
1
1

Processing -

RealTime Processing Unit Unit
Clock
DDR4 Memory

Controller

Processing System (PS)

ARM® ARM®
Cortex™R5 Cortex™R5

ARM®
Mali™ 400

Programmable Logic (PL)

Figure 2.2: Hybrid CPU-FPGA Architecture of Zynq UltraScale+™[Xil19b].

collection of block and distributed memories (BRAM, LUTRAM), and arithmetic units
(DSPs) [MTAQ9, TW13]. CLBs plays a significant role in the reconfiguration context,
whereby it occupied with look-up tables (LUTs). LUT is reflected as static RAM (SRAM),
which holds a custom-made truth table while the power is turned on. Basically, a LUT
circuit is occupied with SRAM, multiplexer (MUX), and flip-flops. The SRAM cells
hold the outputs of a custom-made truth table which is connected with a MUX and
the inputs of MUX act as the address lines for a corresponding one-bit-wide SRAM cell.
When a specific boolean function is configured, the SRAM cells are loaded with their
corresponding truth table. Therefore, instead of wiring lots of AND-OR-XOR-based logic
gates, LUTs just simulates this with SRAMs. A 2-input LUT circuit requires (4X1)-bit
SRAM as shown in Figure 2.3, whereby it can configure any 2-input boolean expression
F(A, B). Likewise 2-input LUT, 3-, 4-, 5-, as well as up to 6-input LUTs are available in
modern generation FPGAs. In CLBs, LUTs are cascaded to implement n-ary boolean
functions. Therefore, any type of application-specific custom-made hardware is realized
by cascading a bunch of CLBs in terms of various sizes of LUTs.

LUT Output: F

|

LUT Inputs: A B Clock Signal

Figure 2.3: Internal Circuit of 2-Input LUT.

In contrast to previous FPGAs offered by Xilinx® , the AXI Communication Protocol
between the PS and the PL on the Zynq UltraScale+™ is more powerful. Concretely,
it has several high performance AXI interfaces between PL and PS providing a data bus
width of 32-bit/64-bit/128-bit. More precisely, the configurable hardware on the PL part
has direct access to the main memory on the PS part, so that PS and PL can work on the
same data elements as shown in Figure 2.2.

Chapter 2 Background and Problem Definition 16

To describe the operation mode of a specific application logic on FPGAs, a hardware
description language, such as Verilog or VHDL is used. This description is
then synthesized to RTL (register transfer logic) through several steps towards
implementation along with bitstream for the FPGAs. Typically, FPGAs offer a higher
performance while maintaining a lower power dissipation than the CPUs. To be
competitive with common CPUs, the configurable hardware for a specific application
logic has to be well-designed, since current FPGAs usually run at very low clock-rates
around (200 — 400) MHz. To enable that, the most challenging issue is to create efficient
processing pipelines due to the proximity of logic and memories [MTAQ09, TW13].

The above-mentioned architecture defines that the hybrid CPU-FPGA system is
extremely beneficial for the main memory column-store database systems, in particular
for two reasons, i) the direct access to the main memory, ii) a large variety of custom-made
design implementation possibilities. To utilize such advantages for query performance,
the hardware-side foundation of this thesis is based on hybrid CPU-FPGA architecture.

Moreover, Xilinx® have very recently offered Alveo™ U50 data center accelerator cards
to optimize acceleration. The key features of such a card are 8 GB HBM memory with
data transfer rates up to 2 GT/s and 32 AXI channel access [Xill9a]. It clarifies that
the modern trends of FPGA is significantly useful for the main memory column-store
database systems regarding query performance.

2.3.2 Related Works on FPGA-based Acceleration

The application of FPGA in the database domain regarding acceleration is very common
nowadays. The database community continuously utilizes the high parallelism feature
of FPGA for the acceleration of distinct database operation. This thesis analyzes some
related works to show that FPGA is used to implement database operators, in particular,
XML parsing [TWN13], regular expression [SIOA17], near-data processing [ISA17], and
binary packing compression [MMFB20]. In the following, we detail on related works.

In the database system, a parser is responsible to break down the data information
into its corresponding specified grammar components leading to high parallel activities.
Thus, Teubner et al. [TWN13] utilized the high parallelism feature of FPGAs for XML
parsing processing through reducing the computation and main memory overhead.
They implemented an FPGA-based XML processor as so-called XLynx, whereby design
perspective-wise a skeleton automata is used for data-intensive hardware circuits that
offer high expressiveness and quick reconfiguration at the same time. However, skeleton
automata is a subset of finite state automata that provides the generic implementation.
XLynx is a microbenchmark-based engine for projection. The throughput of XLynx
in-network filtering is 180 MB/s, whereby in-network filtering with XLynx significantly
eases the XML parsing burden on the backend XML processor. XLynx operates on
streaming mode and processes one input character per clock cycle. Thus, the filtering
throughput of this system is independent of the query workload. XLynx addressed
the key limitation in modern system designs through savings up to 94% of electrical
power consumption. Finally, in many real-world database systems the main bottleneck is
parsing and XLynx is improving the overall query execution time in terms of performance
by reducing the parsing cost.

In the database domain, a regular expression operator provides a powerful and flexible
pattern match that helps to implement efficient search utilities for the systems. In other
words, regular expressions enable the search patterns in string type data by utilizing
standardized syntax. However, real-world data is occupied with complex information,

Chapter 2 Background and Problem Definition 17

and a regular expression operator is able to extract information within a limited number
of known formats which makes it compute-bound. Sidler et al. [SIOA17] looked into
this compute-bound regular expression matching operator. They exploited the modern
generation hybrid CPU-FPGA system for regular expression operator to overcome the
compute-bound bottleneck. In particular, they used Intel® provided by a hybrid
Xeon-FPGA system, whereby FPGA has coherent access to the main memory through
the QPI bus. Operator-wise they focused on two commonly used SQL operators for
strings, LIKE and REGEXP_LIKE. They implemented these regular expression operators
on the hybrid Xeon-FPGA system. The overall system can be categorized into three
parts, i) a CPU-based regular expression Hardware User Defined Function (HUDF) which
is integrated with the popular column-store system MonetDB, ii) a Hardware Operator
Abstraction Layer (HAL) for the interaction between Xeon and FPGA, iii) the FPGA-based
hardware part of the HAL and four regular expression Regex engines. All Regex engines
can operate independently for different queries and are parameterizable at runtime. The
max data processing throughput per Regex engine is 6.4 GB/s, while the combined four
Regex engines throughput is 25.6 GB/s. This meant a significant improvement regarding
response time and throughput. Precisely, Sidler et al. [SIOA17] evaluated the following
types of complex regular expression queries:

SELECT count (*) FROM address_table WHERE REGEXP_LIKE (address_string,
'[0-9]+(USD | EUR | GBP)’)

The traditional CPU-based MonetDB performs about 5x to 15x times slower than the
FPGA-based regular expression system [SIOA17]. In other words, the FPGA-based
regular expression system is capable of speeding up complex pattern matching by
an order of magnitude in comparison to the database running on a 10-core CPU. In
conclusion, Sidler et al. [SIOA17] proposed regular expression HUDF not only shows
a significant acceleration of query execution in comparison to traditional MonetDB, but
also provides predictable performance independent of regular expression complexity.

To achieve high bandwidth, low latency, and high parallelism, the near-data processing
system is a very attractive option for the database community nowadays. Therefore,
Istvan et al. [ISA17] explored near-data processing database system on FPGA. The
proposed system is called Caribou, an intelligent distributed storage layer with
specialized hardware. Internally, Caribou builds on top of distributed LUTs of FPGA. The
overall Caribou architecture is organized with, i) a so-called Cuckoo hash table to handle
read and write with constant time lookups, ii) a separate slab-based memory allocator
module for efficient memory allocation and this module is also responsible for carrying
out scans, iii) a filtering module for near-memory processing, which supports selection
on both, structured and less structured data and, iv) a TCP/IP stack-based network
interface to communicate both with clients and with other FPGAs. Caribou provides scan
performance up to 5 GB/s for low selectivity and 1.25 GB/s for high selectivity. Therefore,
Caribou is a highly efficient and intelligent data store that boosts the performance of
database operations as well as reduces power consumption.

Database researchers need to reduce the memory footprint, especially for many
column-based databases so that it can fit in multi-gigabyte’s main memory for query
processing. Thus, database researchers are considering FPGA to implement compression.
For instance, Mahmoud et al. [MMFB20] investigated how to achieve a better
compression ratio for integer compression using binary packing and prefix suppression
offloaded to an FPGA. Mahmoud et al. [MMFB20] presented a general OpenCL-based
parallelization approach with a multi-level distributor-collector architecture to scale

Chapter 2 Background and Problem Definition 18

FPGA performance until it reaches a PCle bus limitation. Mahmoud et al. [MMFB20]
experiments showed that the OpenCL-based implementation in an FPGA outperforms
CPU-based compression in SAP HANA by a factor of 2 in compression throughput along
with a 60% compression rate improvement.

Recently, Istvan et al. [Ist20] pointed out the need for more efficient large-scale data
management and storage solutions, and proposed FPGA-based high-level solution idea.
Istvan et al. [Ist20] found FPGA is very useful because they offer network-bound
performance even with small key-value pairs and near-data processing in a fraction of
the energy budget of regular servers. On the other side, the consistency guarantees
for concurrent client transactions are essential to be ensured. Thus, Istvan et al. [Ist20]
presented a high-level view of the typical pipelined architecture of FPGA-based Key
Value Stores (KVSs) that most existing designs follow, and show three different ways of
implementing transactions, i) through operation batching, ii) through two phase locking
(2PL), and iii) through a simplified snapshot isolation model.

The above-mentioned related works prove that FPGA-based acceleration is a novel
opportunity in the database domain for optimizing query performance. Previously,
database researchers were not much interested in FPGA, especially for big data analysis
cases. However, this scenario is changing now. The modern generation FPGA
exhibits new features, e.g., high bandwidth-based main memory [Xil19a], powerful AXI
communication protocol, etc., leading researchers to move towards the FPGA-based
acceleration.

2.3.3 Research Challenges

This thesis investigates in Section 2.1 and Section 2.2 the literature overview regarding
database system optimization opportunities either through defining innovative data
maintenance mechanisms or utilizing modern hardware technology. Query performance
acceleration is always the key issue for any research work in the database
domain. However, the effectiveness of the database system does not only rely on
high-performance aspects. Several other system dependencies also require major
consideration. Among several requirements, one of the key demands is optimizing
hardware resource utilization in the database system, which is proportional to the system
cost and power consumption. This leads to the following crucial research challenge:

RC1: How to make a balanced tradeoff between query performance acceleration and optimal
hardware resource utilization?

FPGAs are a novel and flexible class of hardware technology which offer interesting
features. Therefore, to tackle the research challenge RCI, this thesis chooses the
high-parallelism and power-efficient modern hybrid CPU-FPGA hardware platform
as depicted in Section 2.3.1. Such a hardware platform is advantageous to provide
system-level design configuration flexibility. This feature of the target hybrid CPU-FPGA
system leads to the next research challenge:

RC2: What are the certain level of design configuration aspects achievement feasible on top
of hybrid CPU-FPGA system for database operators?

Chapter 2 Background and Problem Definition 19

To resolve the research challenge RC2 this thesis concentrates on one of the crucial
database operations which is scan as an exemplary way for the main memory
column-store database system. Modern scan technology integrates with intra-instruction
parallelism-aware technique, whereby any database operation execution is possible
directly on compressed data [LP13]. Therefore, this thesis exploits modern scan
technology on top of the hybrid CPU-FPGA system to define possible design
configuration aspects. Additionally, such modern scan techniques require a compressed
form of data to perform query operations, which demands fast compression algorithms.
Recently, lightweight integer compression algorithms are applied in the main memory
oriented common CPU based system to tackle the gap between processor speed and main
memory bandwidth. FPGAs are already applied for database systems but not for the
columnar database system in particular for processing compressed data and compression
algorithms. Hence, the importance of compression in main memory column-store
databases leads to the final research challenge of this thesis:

RC3: To what extent are the design configuration aspects on top of the hybrid CPU-FPGA
system beneficial for lightweight data compression acceleration?

This thesis addresses the research challenge RC3 by proposing an adaptive lightweight
integer compression system on top of a hybrid CPU-FPGA system with high compression
throughput and optimum resource utilization as FPGA is an ideal hardware approach
which allows to design specific hardware components which ease the hardware
limitations.

Chapter 2 Background and Problem Definition 20

COLUMN SCAN ON COMPRESSED DATA

3.1 Column Scan
3.2 FPGA Implementation
3.3 Comparative Evaluation

3.4 Lessons Learned and Summary

In this chapter, we present the designs and the evaluations of FPGA-implementations
for state-of-the-art column scan techniques. Therefore, we start with a review of two
state-of-the-art column scan mechanisms: i) Naive, ii) BitWeaving in Section 3.1. We
focus on two well established hardware-oriented implementation opportunities for the
mentioned column scan mechanisms. Firstly, we discuss the implementations using
SIMD vector registers in Section 3.1.3. Secondly, the FPGA-based implementations are
described in Section 3.2. Later, an exhaustive evaluation using selective results for both
hardware-oriented implementations are compared in Section 3.3. At last, we summarise
this chapter with lessons learned in Section 3.4. This chapter presents the experimental
contributions of this thesis which is based on our publications [LUH*18b], [LUH*18c],
[LUH"18a]. This chapter resolves the first two research challenges as mentioned in
Section 2.3.3.

3.1 COLUMN SCAN

Column-oriented database management systems store data column-wise [BKMOS8]. Such
a system is constructive for scan performance, (i) as each column is considered separately,
and (ii) as columns always preserve the similar adjacent values. Both advantages offer the
opportunity for compactness and the ability to process multiple column values at once
which ensures high performance. Thus, the efficient realization of a column scan is an
active research topic, whereby the following scan mechanism consists of two components:
(i) storage layout for column values and (ii) scan operation (predicate evaluation) on the
proposed storage layout.

3.1.1 Naive

Column Codes [Ml

INT (Length: 3-Bit) lL

e [ofon wofofofofifofofi[1]

c=3fof1]|1 A—\ mlo| [t [ofof1]o]o]

G=6|1|1]o]| N, o|0 0|0|1|0|1|1| o lofofo[it[ofi1]o]o]

c=4|1]0]o N2|O|0|1|1|0|1|0|0| wlo] iJiJoJo] i [i1]o]

C=1[0]0]1 (c) BitWeaving/H Storage Layout

S oo onnnnnnn

C,=6 |1 1 o N4|0|0|1|1|0|1|1|0| A\ 0 0 1 1 0 1 1 1

co=6 110 voalo| 1t f1fofjo]of1]1
(b) Naive Storage Layout V;l 1 | 1 | 0 | 0 | 1 | 0 | 0 | O|

@ (d) BitWeaving/V Storage Layout
Figure 3.1: Storage layout example with (a) 8 integer values with their 3-bit codes, (b)
data representation in Naive layout, (c) data representation in BitWeaving/H layout and
(d) data representation in BitWeaving/V layout (figure taken from [LUH*18b])).

As described in Section 2.1, each column is encoded with a fixed-length order-preserving
code (see Figure 3.1(a)) as a base of column scan operations. Traditionally, the types
of column values are either numeric or string, which are encoded as unsigned integer
codes [BHF09, HHDL17]. The term column code refers to the encoded column value.

Chapter 3 Column Scan on Compressed Data 22

An intra-value parallelism-based compact storage layout is very useful to improve scan
performance while processing multiple column codes in a single processor word. In
1975, Lamport et al. [Lam75] first introduced intra-value parallelism-based column scan
mechanism. We call this method as Naive column scan technique. The storage layout
of Naive column scan technique is shown in Figure 3.1(b), whereby column codes are
continuously stored horizontally in processor words NV;. While storing the fixed-length
based codes into the processor words it may have some extra leftover bits as unused
bits in the words. These unused bits in the processor word are padded with zeros. In
Figure 3.1(b), 8-bit size oriented 4 processor words from N to IV, are used, whereby two
3-bit column codes fit into one processor word including 2-bit padding per processor
word.

Given Predicate:

C=39 Q, | 0 I 0| 0 | O| 0 | 0 | 1 | 1 | Initial Step: Load Predicate Constant 3, Q,

: Step 5: Repeat
1 these steps (1-4)
1 for all words
1
1
1

1 Step 1: Extarct and Load Step 2: Compare equality word-by-word

Q
Lol o[o o1 o 1]1]— o] ==[o]ofoJofo o1 1] [evenn
1

o]o

oo

o Jo

N, olojrfrjo|rjo|o
1 Step 3: If comparison is satisfied then increase count value by one.

N, {ofolofofi|if[o]o

| N, Q i N [oJoli[ifo] 1o
{0 3 3 3 8 Y e E O K 0 0 0 Y EX O O Y o et
| D[e
__ 1 code o 1

Figure 3.2: Equality predicate evaluation using Naive/S technique with

extract-load-compare each column code (figure taken from [LUH'18b]).

During Predicate Evaluation, the task of a column scan is to compare each column code
with a constant C' and to output the number of Count indicating how many times the
corresponding code satisfies the comparison condition. The predicate evaluation on
Naive layout can be done in two ways. Firstly, we can evaluate any predicate by simply
extracting, loading and evaluating each (single) code with the comparison condition
consecutively, without exploiting code-level parallelism. We named this technique as
Naive/S. Figure 3.2 describes the equality check in an exemplary way. The input from
Figure 3.1(b) is tested against the condition C; = 3. The predicate evaluation steps are as
follows:

Initially: Load the predicate constant 3 in word Q.

Step 1: Extract one code from N; and load in a temporary word.
Step 2: Check equality word-wise between ()1 and temporary word.
Step 3: If comparison satisfies, then increment the value of Count.
Step 4: Repeat Steps (1 to 3) for the next column code of V;.

Step 5: Repeat Steps (1 to 4) for the rest of words N to Ny.

Secondly, we can evaluate any predicate directly on the Naive layout by exploiting
code-level parallelism. The main advantage of such technique is that predicate evaluation
is done without decoupling the column codes from a word. We named this technique as
Naive/M. Figure 3.3 illustrated this technique in an exemplary way for the same input
and test condition like Naive/S. The detailed steps are described as follows,

Initially: Load the Naive layout of predicate constant 3 in @;.

Step 1: Check the equality bit-wise of each code between N; and) in parallel. There are
1-bit S; flag registers for each code of Naive word. For this example, each word has
two (S1 and S>) flag registers (see Figure 3.3). If the condition is satisfied, then set
one to S; flags, otherwise set zero.

Step 2: Perform addition between S} and S, and store the result in Count word.

Chapter 3 Column Scan on Compressed Data 23

i i~ [of oo i ol

S o1 S i |

Step 3: Repeat Step 1 and 2 in pipeline ! EI III N 1 t |
N N 1)

manner for rest of the words (N, to N). 1 il 1

. so Lol s 0o [of of oA o] i]

1 i - J .

L Colmt ___ i

0 i

- m& :

1

I

Figure 3.3: Equality predicate evaluation using Naive/M technique with directly evaluate
on compact words (figure taken from [LUH*18b]).

Step 3: Repeat Step 1 and Step 2 for the rest of words Ny to IV, in pipeline manner by
overlapping instructions.

In both examples (Figure 3.2 and Figure 3.3), only the second code (Cs) satisfies the
predicate, so the resulting Count value is one. In order to accelerate column scan, Naive/M
technique is a better choice than Naive/S for two reasons, i) Naive/M technique evaluates
predicate directly on the compact word, ii) it is using instruction overlapping mechanism
which reduces the number of clock cycles significantly. However, Naive/M technique
is difficult to implement on common CPUs using a 64-bit processor word, as common
processor words do not support intra-data parallelism. More precisely, the common CPU
provided instruction sets do not support multiple data processing at once. Generally,
the common CPU is an instruction set architecture (ISA) based abstract model. On
the contrary, Naive/M technique is based on multiple data processing on a single cycle.
Moreover, Naive technique does not have its arithmetic framework to perform operations.
Thus, it is very difficult to implement such a column scan technique on top of the 64-bit
processor word of common CPUs.

3.1.2 BitWeaving

To overcome the difficulties of Naive technique, BitWeaving [LP13] has been proposed.
As illustrated in Figure 3.1(a), BitWeaving takes each column separately and encodes
the column codes using a fixed-length order-preserving code (lightweight data
compression [AMF06, DHHL17]), whereby the types of all values, including numeric
and string types, are encoded as an unsigned integer code [LP13]. To accelerate column
scans, BitWeaving technique introduced two types of storage layouts along with an

arithmetic framework instead of comparisons for predicate evaluations: BitWeaving/H
and BitWeaving/V [LP13].

BitWeaving/H

In the storage layout of BitWeaving/H, the column codes of each column are presented at
the bit-level and the bits are aligned in memory in a way that enables the exploitation of

Chapter 3 Column Scan on Compressed Data 24

the intra-cycle (intra-instruction) parallelism for the predicate evaluation. As illustrated
in Figure 3.1(c), column codes are continuously stored in processor words H;, where the
most significant bit of every code is used as a delimiter bit between adjacent column
codes. In Figure 3.1(c), 8-bit size oriented 4 processor words form H; to Hy are presented,
whereby two 3-bit column codes fit into one processor word including one delimiter bit
per code. The delimiter bit is used later to store the result of a predicate evaluation.

Giveglpzrc;]imw: o [o] o]t [1JoTo] 1] 1] imitiar Step: Bitweaving/t Layout of Predicate Constant 3. Q,
s Lol [ifofo[1[1]iiw GLL[ofol Jolofit w [lofo[\[o[t[o[o]ti n L[To[o i o]
Bxclusive OR EQ' |0|0|||1|0|0|1|II:EQ1 |0|o|1|1|0|0|1|1|E:Q1 |o|o|1|1|o|o|1|1|iio. |0|0|1|1|0|0|1|1|!':.=
Step2: | | 00|oooooi: |T|||0|1|T|1|||1“i |T|o|1|o|T|n|1|l|H |0|1|o||[o|||0|.|:i.
e EM‘ of 1| 1|1]of1]1 l:EM'|0|l|1|1|0|1|1|1|iiM'|0|l|1|1|0|1|1|1|iiw nnnnnnnn
1 -
| BELLOEOLT): BILLECDT) EEGDECDL) BOCDEDl,
weiwineon | 1| M [o[o[o[iTo o o]} m, [oo o[iTo o o]} m. [o[oTo[i o o o]i: ™ [fofoo[ifolofo}]/
1 I o
 ELLLEL] ELLofo[ilofi; [@lofo[o[ilo]ii [eL:lofofoTofo]"

__

Step 4: Sum all the T | | | | | | I | | | | | | I |7
Delimiter bits 1O+ 1 +HO+[O]+[O[+]O]+]O]+]0|= 1

Figure 3.4: Equality predicate evaluation using BitWeaving/H technique [LP13].

To efficiently perform column scans using the BitWeaving/H storage layout, Li et
al. [LP13] proposed an arithmetic framework to directly execute predicate evaluations
on the compressed data. There are two main advantages: (i) predicate evaluation
is done without decompression, (ii) multiple column codes are simultaneously
processed within a single processor word using full-word instructions (intra-instruction
parallelism) [LP13]. The supported predicate evaluations include equality, inequality,
and range checks, whereby each predicate consisting of arithmetical and logical
operations are defined [LP13]. Figure 3.4 highlights the equality check in an exemplary
way. The input from Figure 3.1(c) is tested against the condition C; = 3. Then, the
predicate evaluation steps are as follows:

Initially: Load the BitWeaving/H layout of predicate constant 3 in Q).

Step 1: Exclusive-OR operations between the words (Hi, H2, H3, Hy) and @ are
performed.

Step 2: Masking1 operation (Addition) between the intermediate results of Step 1 and the
M, mask register (where each bit of M; is set to one, except the delimiter bits) is
performed.

Step 3: Masking?2 operation (Exclusive-OR) between the intermediate results of Step 2 and
the M mask register (where only delimiter bits of M is set to one and rest of all bits
are set to zero) is performed.

Step 4: Add delimiter bits to achieve the total count (final result).

The output is a result bit vector, with one bit per input code that indicates if the code
matches the predicate. In the example of Figure 3.4, only the second code (C) satisfies
the predicate which is visible in the resulting bit vector.

BitWeaving/V

In BitWeaving/V, the codes are stored vertically across several processor words [LP13],
such that one word contains one bit of several codes. Figure 3.1(d) shows the
BitWeaving/V layout oriented presentation of the column codes of Figure 3.1(a). The
words V; are 8-bit long. The bits of the first number C; are stored in the first position

Chapter 3 Column Scan on Compressed Data 25

Q 0 0 0 0 0 0 0 0

Given Predicate: Initial Step: BitWeaving/V Layout of | | | | | ’ ’ ’
C;=3? Predeicate Constant 3 Q
Qs

Step 1: Perform XOR -
Operation between V; and Q; Step 2: Perform OR
Operation Between all X;

) St.ep 3: Predicate satistied for
V,|0|0|1|l|0|l|1|1| /\ORX\|0|0|1|1|0|1|1|1| this column code (C,)

o Lo o [o [0 [o]o]0] N
0 I N N N N ANy vy vy o e R R - K ENENENENEN
o LD]

I I I I R R R e RS

o oo fefefn]

Figure 3.5: Equality predicate evaluation using BitWeaving/V technique [LP13].

of each word, the bits of the second number is stored in the second position, and so on.
This way, eight 3-bit codes can be stored across three 8-bit words.

To evaluate predicates in this layout, we consider the restriction operation Equality.
However, any kind of (restriction type) predicate evaluation can be performed in this
layout. Figure 3.5 illustrated the Equality check predicate evaluation for BitWeaving/V in
a exemplary way. In the example, we evaluate the column codes C; for an equality with
3. The necessary steps are:

Initially: Predicate constant 3 is loaded as BitWeaving/V layout (Q1, Q2, Q3).
Step 1: XOR operations are performed between BitWeaving/V layout based words and
predicate constant as follows,

Xi=Vieo
Xo=Vo® Q2
X3=V3® Q3

Step 2: Performed bitwise OR operations between (X1, X2, X3).
Step 3: In the result word, there is only one position set to 0. That means, the example
condition is satisfied for only one column code and the total count value is one.

3.1.3 SIMD Implementation

We prepared the SIMD-implementations for Bitweaving/H, Bitweaving/V, and Naive/M
as common CPU do not support intra-data parallelism feature for typical 32-bit or
64-bit processor words. Thus, we cannot rely on a typical 32-bit or 64-bit processor
word of common CPU to implement an intra-data parallelism oriented column scan
technique. It is established that the modern SIMD (Single Instruction Multiple Data)
extensions are characterized by extensive data parallelism which is able to gain potential
performance. In particular, in SIMD extensions one instruction applies for multiple
elements execution at once. Therefore, the SIMD extensions of a common CPU is one
of the vital hardware-based opportunity to optimize column scan technique. However,
we did not consider to implement the Naive/S (without code-level parallelism based
Naive technique) as this equals a SIMD-Scan [WPB*09] when it is extended to SIMD.
A comparison between a SIMD-Scan and the original BitWeaving variants has already
been done by Li et al. [LP13]. A SIMD implementation requires a system with the
corresponding vector registers and instructions. Initially, SIMD vector registers were
128-bit in size. In recent years, hardware vendors have introduced new SIMD instruction
set extensions operating on wider vector registers. For instance, Intel’s Advanced Vector

Chapter 3 Column Scan on Compressed Data 26

Extensions 2 (AVX2) operates on 256-bit vector registers and Intel’s AVX-512 uses 512-bit
for vector registers. The wider the vector registers, the more data elements can be stored
and processed in a single vector. Additionally, each new vector extension comes with new
instructions, e.g. gather-instructions were first introduced in AVX2. AVX-512 consists
of several instruction sets, each providing different functionality, e.g. conflict detection
or prefetching. For the evaluation of the SIMD-implementation, we used an Intel Xeon
Gold 6130 with DDR4-2666 memory offering SIMD extensions with vector registers of
sizes 128-, 256-, and 512-bit (SSE, AVX2, and AVX-512). This system offers the AVX-512
Vector Length Extensions (VL), which provide most AVX-512 intrinsics for 128-bit and
256-bit registers, that would otherwise only work with 512-bit registers. There is a 32 KB
L1 cache for instructions and 32 KB L1 for data. The L2 cache is 1 MB and the LLC (Last
Level Cache) is 22MB. The CPU runs at a base frequency of 2.1 GHz. It has 4 sockets,
each containing 16 cores with up to two hyperthreads per core. However, in this thesis,
we considered the influence of the different vector layouts and sizes, not the influence of
multiple memory channels or CPU cores. Thus, all benchmarks are single threaded.

The SIMD-implementation shows different challenges depending on the evaluation
algorithm to be applied. For instance, the code-level parallelism based Naive technique
Naive/M could be implemented using regular registers. However, this would not be
efficient because single bits cannot be addressed. This introduces an overhead to test
whether a set of arbitrary bits, which may or may not be aligned within byte boundaries,
is set or not. A SIMD implementation has to solve this with a limited number of available
instructions. Furthermore, while BitWeaving/V is trivially extended from the original
approach to vector sizes, BitWeaving/H either has to make compromises in the usage of
the registers, or work around the fact that the instruction set does not offer a full adder
for numbers larger than 64-bit.

Naive/M

Vector storage layout: The Naive storage layout can easily be adapted to vector registers.
Figure 3.6 shows different layouts in an exemplary way for 128-bit registers and 10-bit
codes. The Nuaive layout stores all codes consecutively in a register. Since 10-bit codes
can not be fitted evenly over a 128-bit register, some bits of a register remain unused.
However, the Naive layout is more compact than the BitWeaving/H layouts, because there
are no delimiter bits.

Predicate Evaluation: The most simple predicate evaluation, which can directly be
performed on data in the Naive layout, is an equality check. For such an evaluation,
two tasks have to be solved: (1) a bit-wise equality check between the input data and
the predicate, and (2) a check for all code words in the input, whether all bits of the
comparison from step 1 are set. While task one can simply be done by applying an
exclusive OR and negating the outcome, task two requires an additional bit-mask to
filter the bits of each code word and perform the comparison. This is because we cannot
explicitly access arbitrary bits of a vector register. The exact procedure for 128-bit is as
follows:

1. Load the predicate in Naive layout with _mm_loadu_si128.

2. Load data in naive layout (input) with _mm_loadu_si128.

3. Perform bitwise XOR on the registers loaded in step 1 and step 2 with
_mm_xor_sil28.

4. Negate the result from step 3. Perform a bit-wise AND with a vector, where the
bits at the position of the current code are set to 1 and all other bits set to O (filter).
_mm_andnot_si128 performs both operations.

Chapter 3 Column Scan on Compressed Data 27

5. Compare the result from step 4 with filter using _mm_cmpeq_epi32_mask. The result
is an 8-bit mask with the first four bits set to one if both vectors are equal.

6. Compare the result from step 5 with an 8-bit number where the first four bits are set
to one.

7. If all codes in input have been processed, repeat from step 2, else repeat from step 4
with the next code in input.

This procedure can be ported to 256-bit and 512-bit by simply renaming the intrinsics
accordingly.

BitWeaving/H

Vector storage layouts: A straightforward way to implement Bit Weaving/H using vector
extensions is to load several 64-bit values containing the column codes and delimiter bits
into a vector register. In this case, the original processor word approach is retained as
proposed in BitWeaving. This vector layout is shown as Layout 1 in Figure 3.6. However,
this method does not use the register size optimally. For instance, in a 128-bit register,
there is space for 11 column codes with a bit width of 10 and their delimiter bits (see
Figure 3.6 Layout 2), but Layout 1 can only hold 10 codes. In Layout 2, we treat the
vector register as a full processor word and arrange the column codes according to the
vector register size. Figure 3.7 shows the percentage of unused register space for different
register sizes and both layouts, where the dashed line shows the usage for Layout 1 and
the remaining lines for Layout 2. As we can see, Layout 2 makes better use of the vector
register.

unused bits per vector

64)?11 64kbit
Layout 1: A 0 N
=< OO0 00 O S £’
125021 00 OO0 OO OO OO Ot
128t b ts L delimiter bit b column codes (10 bit

unused bits b delimiter bil column codes . ’ \fﬁl /\//\
. . -]
Na'ﬁe e |11 1 LS N\

28 bit 6 7 8 5 10 1 12 13 14 15 16 17
bitwidth (excl. delimiter bit)

unused bits (%)

Unused bits: Layout 1: 18 (14%), Layout 2: 7 (5.5%), Naive Layout: 8 (6.25%)
Codes per Register: Layout 1: 10, Layout 2: 11, Naive Layout. 12 == -64DItx2[4[8 ——128bit ——256 bt stz

Figure 3.7: Percentage of unused
bits per vector register depending
on the vector layout (figure taken
from [LUH"18b]).

Figure 3.6: Different variants to arrange
column codes in a vector register (figure
taken from [LUH"18b]).

Predicate Evaluation: Like in the original approach, the query evaluation on data in the
BitWeaving/H layout in vector registers consists of several bit-wise operations and one
addition. The exact bit-wise operations and their sequence depends on the comparison
operator. For instance, a smaller than comparison or an equality check requires XOR
operations and an addition as shown in Section 3.1.2. For counting the number of results
quickly, an AND is also necessary. For 512-bit registers, this is realized by using AVX-512
intrinsics. The following steps are necessary for a smaller than comparison if the data is
using the vector Layout 1 (see Figure. 3.6):

1. The predicate and the data in BitWeaving/H layout is loaded with

_mm512_loadu_si512. The filter value need to be loaded once.
2. The bit-wise XOR is performed with _mm512_xor_si512.

Chapter 3 Column Scan on Compressed Data 28

The addition is performed with _mm512_add_epi64.

Optional: To set only the delimiter bits, an AND between the precomputed inverted

bit-mask and the result from step 3 is performed with _mm512_and_si512.

5. Optional: For counting the number of set delimiter bits _mm512_popcnt_epi64 is
applied.

6. Optional: The result from step 5 can be further reduced by adding the individual
counts with _mm512_reduce_add_epi64.

7. Finally, the result is stored with _mm512_storeu_si512. If only the number of results

is required, this step can be skipped. Afterwards, a new iteration starts at step 1.

B

Note that the SIMD intrinsics for steps 5 and 6 do not exist for 128-bit and 256-bit registers.
In these cases, the result is written back to memory and treated conventionally, i.e. like
an array of 64-bit values. These steps work for Layout 1 but not for Layout 2, because,
in step 3, a full adder is required. However, this functionality is supported for words
containing 16-, 32-, or 64-bit, but not for 128-, 256-, or 512-bit. For Layout 2 larger than
64-bit adder is required. However, there is no full adder available on recent CPUs larger
than 64-bit. Therefore, to realize the addition for 128-, 256-, or 512-bit, more than one
64-bit full adders are used consecutively, whereby the carry at the 64-bit boundaries is
determined and added to the subsequent 64-bit value. The detail of this custom-made
addition mechanism is described in [LUH"18b].

BitWeaving/V

The implementation of vectorized BitWeaving/V is straightforward because all needed
functionality is provided by the SIMD intrinsics of SSE, AVX2, and AVX-512. The layout
stays the same as described in Section 3.1.2. In our case, the processor words V; are 128-bit,
256-bit, or 512-bit long. The number of necessary words for a segment equals the number
of bits per code word. The evaluation is also done as described in Section 3.1.2. For
instance, an equality check using AVX-512 requires the following steps for each segment:

1. Load the first word of the segment and a vector filled with the 1st bit of the predicate
with _mm512_loadu_si512.

2. Perform a bit-wise XOR on the registers loaded in step 1 with _mm512_xor_si512.

3. Invert result from step 1. Perform a bit-wise AND with a 1-vector if it is the first
word of the segment, perform bit-wise AND with the result from the last iteration
otherwise. The inverting and bit-wise AND are done with _mm512_andnot_si512.

4. Repeat from step 1 with next word of the segment and the next bit of the predicate.

3.2 FPGA IMPLEMENTATION

Besides the implementation of column scan technique using SIMD extensions, the second
hardware-based implementation possibility is Field Programmable Gate Arrays (FPGAs).
As described in Section 2.3.1, FPGAs are integrated circuits, which are reconfigurable
after being manufactured. More specifically, a hardware description language, e.g.,
Verilog, is used to describe the hardware modules. This description is then translated
via several steps to an implementation for the FPGAs. From the perspective of intra-code
(intra-instruction) parallelism based storage layout, the advantage of FPGAs is that we
can use an arbitrary length of processor word in the custom made hardware design.

Chapter 3 Column Scan on Compressed Data 29

Stage 1 Stage 2 Stage 3 Stage 2 Stage 3 Stage 4 Stage 5 Stage 2 Stage 3 Stage 4

Read Input Check Condition || Addition of S Bitwise Masking1 Masking?2 Addition of Bitwise Perform Pl TS
Words Bit-Wise Flag Bits Exclusive-OR (Addition) (Exclusive-OR) Delimiter Bits Exclusive-OR Bitwise OR word
I i 1 ' ' '
1st Clock | i i ! i i
1 1 1 ! [N 1
———————————————————————— e enteieteied S e et R b
i 1 i
2nd Clock Process i 11 Process ' ' ! Process 1 |
i I i
SRRy L I — Fommmmmmman . S T e ErEs H
| 1
3rd Clock Process | Process i Process 1 Process ' Process | Process H
[I
R T e e B B S— i SRR R— :
4th Clock Read il Process | Process 11 Process 1 Process 1 Process \1 Process 1 Process H |
I L '
I

i i i i i
————————————————————————— R B e ettt elel et etetetetefel St leteletetetette
h

b S R — .
5th Clock |

' ' ' H
Process i Process i Process 1 Process 1 Process 1 Process Process 1 Process
i ' ' '

6th Clock |

'
7th Clock |
'

'
8th Clock |
'

Naive/M BitWeaving/H BitWeaving/V

Figure 3.8: Pipeline-based PE for different intra-instruction parallelism based column
scan techniques (figure taken from [LUH'18b]).

3.2.1 Processing Element

Inside the PL area of the targeted FPGAs, we developed Processing Element (PE)
modules for restriction type of predicates using Configurable Logic Block (CLB) slices,
where each CLB slice consists of Look-up Tables (LUTs), Flip-Flops (FFs), and cascading
adders [TW13]. As illustrated in Figure. 3.8, the stages of PEs are processing words
in pipeline manner through overlapping instructions, whereby we developed 3-stage,
5-stage and 4-stage pipeline-based PE for equality check predicate evaluation on the
basis of Naive/M, BitWeaving/H and BitWeaving/V techniques as introduced in Figure 3.3,
Figure. 3.4 and Figure 3.5, respectively. All PEs have a common Stage 1 of reading
data words from main memory (see Figure 3.8). Rest in every stages a specific task
is performed as shown in Figure 3.8, whereby the stages for different techniques are
grouped by colors. The detail of Naive/M pipeline stages are:

Stage 2: Check equality condition bit-wise and set S flag values according to the condition
satisfying result,
Stage 3: Perform addition between S flags in order to count the matched column codes.

Then, the detail of BitWeaving/H pipeline stages are:

Stage 2: Executing bit-wise Exclusive-OR operations,

Stage 3: Masking operations (Addition),

Stage 4: Masking operations (Exclusive-OR) using predefined mask registers to prepare
the output word,

Stage 5: Adding delimiter bits of output words in order to count the matched column
codes.

Finally, the detail of BitWeaving/V based pipelines are:

Stage 2: Executing bit-wise Exclusive-OR operations,

Stage 3: Executing bit-wise OR operations,

Stage 4: Adding all bits of previous stage resultant words in order to count the matched
codes (this stage would execute after every w cycles, whereas w is the width of
column code).

Chapter 3 Column Scan on Compressed Data 30

For all cases, we write only the final output word of count to the main memory. This is
not shown in Figure 3.8 as it is a non-pipeline stage which executes once only. Therefore,
the total number of cycles for Naive/M, BitWeaving/H and BitWeaving/V is (n + 3), (n + 5)
and (n + 4), respectively, where n is the total number of input words.

3.2.2 Basic Architecture

We started with developing 64-bit word based hardware design as Basic Architecture
(BASIC_64) and subsequently increased the word width to 128-bit (BASIC_128) (see
Figure 3.9). In this architecture, we use Direct Memory Access (DMA) between the main
memory and the PE, to reduce the load of the ARM core and to reduce the latency of
accessing the main memory. We prepared basic architecture based designs having either
Naive/M or BitWeaving/H or BitWeaving/V technique based PE, whereas each design is
processing either 64-bit or 128-bit words. Therefore, Basic Architecture implies a very
simple hardware design.

1
: Processing System (PS) Address Channel (40-Bit): @ - :
: Data Channel: €¢—» :
VR T T T T T T T T T T T T T T T T B GHz
VL - i ARM® ARM® ARM® ARM® ::
: : Cortex™AS53 Cortex™A53 Cortex™A53 Cortex™A53 ::
1 = - Lo - - - - - - -———- al
| 2ttt *
' - - ‘ ! 1
! « > Main Memory Controller 1967 MHz : !
L 1 1

Design Name Data Channel |) 4 :
BASIC_64 64-Bit | [PE_ Je—>| DvA |«—> ® :
: I

I

BASIC_128 128-Bit I Programmable Logic (PL) 250 MHz |
L

Figure 3.9: Basic Architecture (figure taken from [LUH*18b]).

3.2.3 Hybrid Architecture

Processing more data elements at once may provide benefits for further improvement on
the column scan performance. In this case, the main challenge arises when the word to be
processed becomes larger than 128-bit, because the width of the data channel of the main
memory can only be extended up to 128-bit although the PEs are capable to handle word
sizes beyond 128-bit. To tackle this challenge, we developed a hybrid architecture based
on multiple DMAs, where each DMA is accessing the main memory via an independent
data channel. As a consequence, we replicate our PE and DMA a few times depending
on the number of available main memory data channels.

Moreover, two main memory modules are available on our targeted FPGA platform as
mentioned in Section 2.3.1, whereby one is connected with the PS, and the other one is
connected to the PL. The PS part main memory has four data channels, while the PL
part has only one. However, the maximum channel width is 128-bit. So, maximum
of five times of 128-bit words can be processed in parallel by using multiple main
memory modules. However, having the maximum number of data channels in a design
saturates the bandwidth of main memory. Therefore, we can prepare another custom
hardware module, whereas 128-bit words can be combined into larger words. Thus, we
implemented and replicated a custom combiner (namely Combiner_256) to combine two

Chapter 3 Column Scan on Compressed Data 31

vifolfo |t |1 o1]1]1 vifolo | 1|1 o1]1]1
vofof| 1|1t fo]olof|1]1 viiofjo |t |1 o f1]1]1
vifr |1 Jofo]1lo]o]o vofo | 1|t folofo] 1|1
vilofof 1ot] 1] vilo | 1|1 fofo]o] 1]
vil o | 1 1{ofofofn1 1 Vi [rjfofof1rfofofo
Ve | 1 tr{ofof1fofofo Ve | 1 rjfofof1rfofofo

(a) (b)

Figure 3.10: BitWeaving/V storage layout patterns, (a) for basic and (b) for hybrid
architectures (figure taken from [LUH"18b]).

128-bit words to produce a 256-bit word. This introduces another stage in each proposed
pipeline design, such that each PE is processing a 256-bit word in each clock cycle.
Such a combiner can easily adaptable in Naive/M and BitWeaving/H techniques based
hardware designs as they stored codes in words horizontally rather than vertically like
BitWeaving/V. Therefore, for BitWeaving/V, the input words are stored alternately rather
than sequentially as illustrated in Figure 3.10(b) for 3-bit column codes, so that combiner
can merge two words perfectly without breaking the sequence of codes. However, we
keep the as usual storage pattern of BitWeaving/V for basic architecture as described in
Section 3.1.2 (see Figure 3.10(a)).

- 9-¢
- 9-¢

v '
! H .
! v v i : 9-60-0-0- |
. 1 .o
i Interconnect Interconnect : Interconnect ‘mc%\mmt 60006 !
! X . ! I
i e------—- | S il I Fo--e 96000 |
i A 4 A 4 | X A 4 | I
i | omas [omasz leoi [DvMA2] [oma 0000
i v ¥ : i
i [_Combiner_256 | | [Combiner_256 | | ! [_Combiner_256 | | [Combiner 256 | H
H H 3 1 H H .o
! v v ; v v Data Channel (128-Bit): ¢ 1 !

- 1
: FIFO_4 FIFO_3 i FIFO_2 FIFO_1 Data Channel (256-Bit): = 1
. H H 1 H B
! ; v v Address Channel (40-Bit): @ = 1 1
! i PE_2 [[Pe1 [
! H 1!
; HYBRID_1024 [HYBRID 512 e
i Programmable Logic (PL) 250 MHz |

Figure 3.11: Hybrid Architecture (figure taken from [LUH"18b]).

Moreover, we use appropriate depth based FIFO between the combiners and the PEs to
synchronize IO transmission between PEs and main memory, whereas stream-based data
transmission is used. This avoids an overflow of the buffer. By mixing all the above
mentioned concepts, we prepared hybrid architecture based designs as HYBRID_512
and HYBRID_1024, to process two and four times of 256-bit word in parallel to make
512-bit and 1024-bit words, respectively for all techniques (see Figure 3.11). So, Hybrid
Architecture implies a complex hardware design.

3.3 COMPARATIVE EVALUATION

This section contains the evaluation results of our presented SIMD and FPGA based
column scan mechanisms implementation techniques, whereby we separately evaluate
each implementation.

Chapter 3 Column Scan on Compressed Data 32

3.3.1 SIMD Evaluation

In the evaluation, we want to observe the influence of the different vector layouts and
sizes, not the influence of multiple memory channels or CPU cores. Thus, all benchmarks
are single threaded. All measurement values are averaged over ten runs.

Throughput Performance
15 1.5E+10

1E+10

5E+09 \-\

0

10

3 4 5 6 7 8 9 10 11 12 13 14 15 16
bitwidth

3 4 5 6 7 8 9 10 11 12 13 14 15 16
bitwidth

Throughput [GB/s]
«
Performance [codes/s]

e Bitweaving/H 128 bit === BitWeaving/H 2 x 64 bit e BitWeaving/H 128 bit === BitWeaving/H 2 x 64 bit
Naive/M 128 bit BitWeaving/V 128 bit Naive/M 128 bit BitWeaving/V 128 bit

Figure 3.12: Throughput and performance of all presented 128-bit implementations for
growing code sizes in terms of bitwidth (figure taken from [LUH'18b]).

Overview

Figure 3.12 shows a comparison of the performance (codes/s) and the throughput (GB/s)
of all implementations using 128-bit. As expected, the Naive layout provides the lowest
throughput and performance. The time needed for evaluating every code in a register
individually cannot make up for the slightly better usage of the available bits. The two
layouts of BitWeaving/H do not show any significant differences but perform better than
the Naive/M approach.

Finally, BitWeaving/V shows the highest throughput and performance as could be
expected since it is the approach with the least operations, which have to be performed
while the input vector layout is more compact than in BitWeaving/H. Moreover, it has
the smallest output size, resulting in less store operations, i.e. the bits containing the
evaluation result are stored consecutively in the result register.

Naive/M BitWeaving/H BitWeaving/V
Register size [bit] 128 64 128 2x64 256 4x64 512 8x64 128 256 512

Throughput-wise M
Performance-wise
Figure 3.13: Comparison of the implemented column scan techniques (figure taken

from [LUH18b]).

BitWeaving/V is the only implementation, where the throughput increases when the code
size increases, while Naive/M and BitWeaving/H show a constant throughput. A reason for
this behaviour is, in BitWeaving/V, the number of result bits per input bit decreases when
the code size increases because more data is needed to compute a result. This leads to less
store operations for the same amount of input data. For instance, if the bit width of the
codes is 3, one segment consists of 3 processor words. Thus, the result, i.e. one processor
word, is written back after these 3 processor words have been evaluated. But if the bit
width is 15, there are 15 processor words, which are evaluated before one processor word
is written back to memory. At the same time, the performance decreases for all Bit Weaving

Chapter 3 Column Scan on Compressed Data 33

approaches while the size of the codes increases. In BitWeaving/H, this is because less
codes fit into one processor word when the code size increases. In BitWeaving/V, it takes
more operations before a result is computed as explained before. Before going into detail,
Figure 3.13 shows an overview of all implementations. While BitWeaving/V stays clearly
on top of the other approaches, it also shows some variation between the different vector
sizes. BitWeaving/H is less influenced by the vector size.

BitWeaving/H

Performance

8E+09

Throughput

7E+09

6E+09
» SE+09
@

P
8 4E+09

o
© 3E+09

2E+09

1 1E+09

0.5 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 Bits per code (excl. delimiter)

34 5 67 8 9 10 1 12 13 14 15 16 17 2 X 64 bit ——4 x 64 bit ——8 X 64 bit == 128 bit === 256 bit -~ 512 bit ++++64 it

Bits per code (excl. delimiter
P () ~ ~
2 X 64 bit =——4 x 64 bit ——8 x 64 bit === 128 bit ==~ 256 bit 512 bit +++++ 64 bit Layout 1 Layout 2

Figure 3.14: Throughput and performance for BitWeaving/H (figure taken
from [LUH™18b]).

For codes containing 3-bit and a delimiter bit, the non-optimized 64-bit
implementation achieves a throughput of 2.9 GB/s, which equals a performance of
almost 5.8¢9 codes per second. The results for 3-bit column codes for all different
horizontal vector layouts are shown in Table 3.1. All values are averaged over 10
runs. The results show, that there is a performance gain when using the vectorized
approach, but it is not as significant as expected. For instance, we would expect a 100%
speed-up when changing from 64 to 128 bits since we can process twice the data at once.
Unfortunately, the throughput and the performance increase only by 14%. Moreover, it
even decreases when changing from 256 to 512 bits for both vector layouts. However,
these numbers can only provide a rough estimation since the throughput varies by
up to 0.5GB/s between the individual runs. Figure 3.14 shows the throughput and
performance for all implemented BitWeaving/H versions and different code bitwidths.
For comparison, we also implemented a scalar 64-bit BitWeaving/H version without
any further optimization for special cases, such that the predicate evaluation is always
executed in the same way:.

The differences between the vectorized implementations and the scalar implementation
becomes even smaller when the code size increases while the throughput oscillates
between 2.5GB/s and 4 GB/s for all versions (see Figure 3.14). There is a mere tendency
of the 256-bit implementations to provide the best performance on average and for
the 512-bit versions to provide the least performance. Nevertheless, the insignificance
of the differences cannot be explained with the query evaluation itself. To find the
bottleneck, we deleted the evaluation completely, such that only the vectorized load
and store instructions were left. Then, we measured the throughput again and received
results between 3GB/s and 4GB/s. A simple memcopy had a stable performance
around 4.5GB/s. Hence, in contrast to the naive implementation, the vectorized
implementations are bound by the performance of loading and storing data, while the
peak throughput cannot become larger than 4.5 GB/s.

Chapter 3 Column Scan on Compressed Data 34

Table 3.1: Evaluation Results on Intel Xeon Gold 6130, 3 Bits Per Code, Average over 10
Runs (table taken from [LUH"18b]).

w

2E+09
0

Vector Layout Throughput (GB/s) Performance (Codes/s)
none (64-bit) (baseline) 2.9 5.8¢9
2X64-bit (Layout 1) 3.3 6.6¢9
4X64-bit (Layout 1) 3.5 6.9¢9
8X64-bit (Layout 1) 2.9 5.8e9
128-bit (Layout 2) 3.6 7.2e9
256-bit (Layout 2) 3.6 7.2e9
512-bit (Layout 2) 2.9 5.9e9
BitWeaving/V
Performance
Throughput e
20 2 14410
9 S 1E+10
= 3 8E+09
3 E 4E+09

o

3 4 5 6 7 8 9 10 11 12 13 14 15 16 3 4 5 6 7 8 9 10 11 12 13 14 15 16

bitwidth bitwidth

BitWeaving/V 128 bit BitWeaving/V 256 bit ——BitWeaving/V 512 bit BitWeaving/V 128 bit === BitWeaving/V 256 bit === BitWeaving/V 512 bit

Figure 3.15: Throughput and performance for BitWeaving/V (figure taken
from [LUH18b]).

The performance and throughput of all implemented BitWeaving/V versions for
different code sizes are shown in Figure 3.15. Contrary to BitWeaving/H, there is a clear
increase in performance and throughput when the register size increases. A reason
for this is the already mentioned smaller output size. Unlike in BitWeaving/V, in the
horizontal approach, there is a padding between the result bits, which is as wide as
a code word. To get these result bits, the whole vector word has to be extracted to
several regular registers, where the bits can be shifted together, or even written back to
memory completely if there are not enough registers. Since it is common for CPU cores
to have only 16 general purpose registers, this worst-case is the usual case. However,
BitWeaving/V does not have such padding, which makes the output more compact and
reduces store operations. This relaxes the memory bandwidth bottleneck to a certain
degree. This is especially obvious in the throughput for larger code sizes, where there
are more input registers processed before the output register is written back. The
performance decrease for 512-bit at a code size of 4-bit is reproducible. It comes with a
throughput, which is not increased as much as expected. We did not find an explanation
for this in the algorithm itself, especially because it only occurs for 512-bit. A possible
reason is the fail of the optimizer during compilation. To test this theory, we compiled
the same source code with icc, whereas we were using gcc before. The results did not
show the decrease at 4-bit. Instead, there is a peak at 10-bit and the overall increase is
less steady. Thus, it is safe to assume that these outliers are caused by the compiler rather
than the implementation or the hardware.

Chapter 3 Column Scan on Compressed Data 35

3.3.2 FPGA Evaluation

Experiments are evaluated using two main metrics: throughput (GB/s) and performance
(Codes/s). In these evaluations, we did not show energy consumption due to having the
same behavior as performance as it depends on codes. However, in our work [LUH'18c],
we evaluated the energy consumption metric as estimated energy and actual energy
for codes per joule on BitWeaving/H scan. These evaluations are targeted to analyze
the behaviour between Naive/M, BitWeaving/H, BitWeaving/V column scan techniques for
basic and hybrid architectures. We evaluated with BASIC_64, BASIC_128, HYBRID_512
and HYBRID_1024 designs for Naive/M, BitWeaving/H and BitWeaving/V scan techniques,
whereby Figure 3.16 shows the results for 3-bit column codes (excluding delimiter bit for
BitWeaving/H scan) with equality check predicate.

(a) (b)
| Naive/M 30 H] Naive/M

10 E BitWeaving/H E BitWeaving/H
| BitWeaving/V | BitWeaving/V

Throughput(GB/s)
[\~
S
T

Perf.(Billion #Codes/s)
=

B_64 B_128 H_512 H_1024 B_64 B_128 H_512 H_1024

Figure 3.16: Analysis on (a) Throughput-wise, (b) Performance-wise for basic and hybrid
architectures using different column scan techniques for 3-Bit Column Code (figure taken
from [LUH18b]).

We started with BASIC_64 design based evaluations and found that, Naive/M provides
higher throughput than BitWeaving techniques (see Figure 3.16(a)). Because it is able to
execute on 300MHz frequency due to having simple logic instruction based technique,
whereas others execute on 250MHz. However, this scenario changed for BASIC_128,
HYBRID_512 and HYBRID_1024 based designs, where we achieved approximately
the same throughput for all techniques (see Figure 3.16(a)) as the frequency of these
designs are identical. Moreover, the different numbers of total clock cycles of PEs for
different techniques as shown in Section 3.2.1 do not affect the throughput due to its
pipeline mechanism. In the hybrid architectures-based designs data words are uniformly
distributed among the PEs. In addition, the hybrid architecture based designs are
processing beyond 256-bit width based data words through multiple main memory data
channels and also flexible to use additional hardware (i.e., Combiner_256, FIFO), which is
not available on BASIC_64 and BASIC_128 designs. As a consequence, for all techniques,
HYBRID_1024 gives a peak throughput of approx. 12GB/s, whereas three data channels
from PS part main memory and one data channel from PL part main memory, are used.
Although the PS part main memory has maximum of four data channels. But using
the maximum number of channels in parallel saturates the bandwidth of PS part main
memory. So, in HYBRID_1024 we used multiple main memories in order to have four
individual data channels.

Performance-wise evaluation varies between different techniques. BitWeaving/H
provides always less performance in terms of codes per second among all techniques
(see Figure 3.16(b)). In BASIC_64 design, Naive/M provides the highest performance
(see Figure. 3.16(b)). However, rest in all designs the performance become marginal
between Naive/M and BitWeaving/V (see Figure 3.16(b)). There are two reasons. On the
one side, the number of bit padding increases in Naive/M technique based BASIC_128,

Chapter 3 Column Scan on Compressed Data 36

HYBRID_512 and HYBRID_1024 designs exponentially than BASIC_64 as the word size
increases. As mentioned earlier, hybrid architecture merged two 128-bit words to make
one 256-bit word. So, there are 2-bit bit padding in one 128-bit word for 3-bit column
code. It extends to 4-bit bit padding for 256-bit word and so on. As a consequence,
we are losing number of codes per word as the word size increases which effects the
performance. On the other side, there is no chance of losing codes in Bit Weaving/V as each
bit of a code is stored vertically per word (see Figure 3.1(d)). This makes the marginal
balance of processing codes per second between Naive/M and BitWeaving/V. Therefore,
performance-wise Naive/M and BitWeaving/V both win over BitWeaving/H.

Naive/M BitWeaving/H BitWeaving/V
T .

— @- Speedup , . 61| - @- Speedup - - 617 ®- Speedup e »

4 e - -
, o 4 L]
- e * -7 e

21 o n 2| _ N 2 o

LA - | | o | o

B_64 B_128 H_512 H_1024 B_64 B_128 H_512 H_1024 B_64 B_128 H_512 H_1024

Figure 3.17: Analysis in terms of Speedup between basic and hybrid architectures for all
column scan techniques (figure taken from [LUH18b]).

Technique-wise the behavior of throughput and performance are identical among the
basic and hybrid architectures (see Figure 3.16). Therefore, the speedup for main
memory based intra-value parallelism based scan techniques among the basic and hybrid
architectures on the targeted FPGA platform is linear (see Figure 3.17), whereas the
BASIC_64 design is the baseline. This defines, that the HYBRID_1024 design is best for
all mentioned column scan techniques on FPGAs.

Naive/M BitWeaving/H BitWeaving/V
10.5 10.5
10 B throughput(GB/s) B throughput(GB/s) 10 B turougnput(cB/s)
B Performance(Codes/s) B performance(Codes/s) B performance(Codes/s)
1010 I% 10" I% 10 Ig
- [
3 7 15 3 7 15 3 7 15
Bits/Code Bits/Code Bits/Code

Figure 3.18: Analysis on HYBRID_1024 design using different column scan techniques
for different number of bits per code (figure taken from [LUH"18b]).

We also evaluated different numbers of bits per (column) code for three mentioned
techniques using the best design: HYBRID_1024 (see Figure 3.18). In this case,
symmetrical behavior was found between all techniques, whereby a linearly decreasing
behavior was found for performance as the bits per code increases except the throughput.
The reason is, increasing the code size decreases the number of codes per word which
negatively affects the performance which is evaluated on the basis of the number of codes
as expected, whereas throughput evaluation is independent of codes.

Table 3.2 illustrated the overall resource utilization in terms of LUTs(%) and FFs(%) for
the best design HYBRID_1024 among all techniques using Xilinx® resource analyzer,
whereby Naive/M technique requires least resources due to its straight-forward predicate
evaluation mechanism. After all kind of evaluations we found that, throughput-wise
all techniques showed identical behaviour, performance-wise Naive/M and BitWeaving/V
techniques are better than BitWeaving/H, but resource utilization-wise Naive/M technique
is the most optimum one. Finally, these leads us to conclude that, Naive/M technique is
the best technique for FPGAs (see Figure. 3.19).

Chapter 3 Column Scan on Compressed Data 37

Table 3.2: Resource Utilization for Hybrid_1024 Designs (table taken from [LUH"18b]).

Scan Tech. | LUTs(%) | FFs(%)

Naive/M 12.89 8.64
BitWeaving/H 13.68 9.5
BitWeaving/V 13.99 9.15

Naive/M BitWeaving/H BitWeaving/V

Throughput-wise
Performance-wise

Resource Utilization-wise

Figure 3.19: Evaluation matrix-wise analysis on the column scan techniques (figure taken
from [LUH™18b]).

3.4 LESSONS LEARNED AND SUMMARY

Section 3.1.3 and Section 3.2 showed that Naive and BitWeaving column scan mechanism
is not only implementable using common CPU based wider SIMD vector registers
but also using new class of accelerator namely FPGA. It is also noticeable that the
hardware-based optimizations of Naive and BitWeaving employing SIMD or FPGA is
feasible.

In SIMD-implementation, exhibiting different varieties of storage layouts for the wider
vector registers (i.e., SSE, AVX2, AVX-512) to increase intra-data parallelism provides
slightly increased performance but not as much as expected. Two vital reasons are
highlighted for this less performance gain: i) the main memory bandwidth is already
fully utilized for low vector register size, as a consequence utilizing wider vector registers
become pointless for performance gain; ii) SIMD intrinsics available instructions are often
limited, it requires very good understanding of data parallelism feature. In particular,
SIMD programming is highly complicated. Therefore, neither wider vector registers
nor different categories of vector storage layout overcome the performance penalties for
column scan acceleration using SIMD.

However, the evaluation results proved that, FPGAs is a reliable opportunity in
the context of performance gain for column-scan operator. The key advantage of
such hardware-based optimization is, we can design a custom-made system as per
requirement. FPGA provides flexibility to develop pipeline based custom-made
processing element for any type of column scan technique. Pipelineing is one of the
effective ways to improve the performance. The architectural approach of pipeline allows
the simultaneous execution of several instructions. In other words, pipeline exploits
parallelism at the instruction level by overlapping the execution of several instructions.
Proper pipeline oriented processing elements as well as design implementation is
also helpful to reduce the usage of resources of FPGAs, whereby reduce resource
utilization improves cost-efficiency. However, unlike SIMD, FPGA is not bound with
limited instructions as the key feature of FPGA is customizability. ~Additionally,
working on FPGA flawlessly two perspectives are considered: i) custom-made hardware
implementation, e.g., processing element; ii) pre-build hardware utilization, i.e., DMA,
ARM® core. Because implementing any type of hardware accelerator oriented design on
FPGA is doable, but such design also requires a control mechanism on top of it to reduce
system complexity and resource utilization. Therefore, we targeted the CPU-FPGA

Chapter 3 Column Scan on Compressed Data 38

based hybrid system to accelerate performance as well as reduce resource utilization,
whereby FPGA is used for developing the column-scan accelerator and ARM® processor
is used for initiating the address and control signals to the overall custom-made column
scan system. More importantly, the high bandwidth based direct data communication
channels to main memory of the targeted hybrid CPU-FPGA system play a significant
role regarding performance gain. Finally, the FPGA optimization is superior to SIMD
optimization from the performance as well as throughput perspective. However, 512-bit
SIMD vector registers with a BitWeaving/V deliver the best performance on our test
SIMD intrinsics oriented hardware. In contrast to SIMD, the FPGA optimization brings
a significant increase in performance. In this case, a data width of 1024-bit based
hybrid architecture delivers the best performance. However, hybrid architecture utilizes
more resources than basic architecture. Thus, the first and second research challenges
of this thesis are resolved through hybrid architecture, whereby it defines the feasible
level of design configuration aspects including a balanced tradeoff between performance
enlargement and optimum hardware resource utilization.

In this chapter, we explored two hardware-based implementation opportunities for
column scan optimization using SIMD extensions and using hybrid CPU-FPGA system.
In particular, we analyzed the behavioral differences between Naive and BitWeaving scan
mechanisms as per hardware-based implementation. With both implementations, we
can improve the scan performance, whereas the FPGA is best for Naive technique and
BitWeaving is perfect for SIMD. Therefore, improving scan performance through FPGA
does not require any fancy scan mechanism like BitWeaving due to its high parallelism,
adaptability, reconfigurable criteria which makes it easier to prepare any technique as per
requirements.

Chapter 3 Column Scan on Compressed Data 39

4

ADAPTIVE LIGHTWEIGHT COMPRESSION
SYSTEM

4.1 Lightweight Infeger Compression

4.2 FPGA-based Implementation of Lightweight Infeger Compression
Algorithms

4.3 Adaptive Compression Systems
4.4 Experimental Evaluation

4.5 Lessons Learned and Summary

So far, we concentrated on column scan on compressed data through utilizing the
compact columnar storage layout for performance acceleration, not on the construction of
the compressed layout. In this context, lossless lightweight integer compression schemes
are crucial to keep the memory storage capacity as low as possible and to speed up the
column scan as presented in Chapter 3. Hence, this chapter gives an overview of lossless
lightweight integer compression. We focus on physical-level as well as logical-level
lightweight integer compression algorithms. Moreover, we discuss the FPGA-based
implementations for physical-level, logical-level, and cascaded compression algorithms
as well as develop the adaptive lightweight integer compression system. Later, an
exhaustive experimental evaluation for all the hardware-oriented implementations is
shown. At last, we summarize this chapter with lessons learned. The physical-level
lightweight integer compression implementation is based on our publication [LNH"19].
This chapter resolves the third research challenge mentioned in Section 2.3.3.

4.1 LIGHTWEIGHT INTEGER COMPRESSION

As mentioned in Chapter 2, the database architecture shifted from a disk-centric to a
column-store main memory-centric architecture to efficiently exploit the ever-increasing
capacities of main memory. To reduce the gap between computing power of the
CPU and main memory bandwidth, to minimize the necessary storage capacity, and
to increase the query performance, main memory stored columnar integer values
are usually compressed using a lightweight integer compression algorithm [AMF06,
DHHL17, HHDL16, LMF*16]. Some computational efforts in terms of lightweight
integer compression algorithm always include to reduce the main memory space. As
a consequence, the result is a compressed columnar representation, whereby the input
sequence is represented with as few bits as possible on the physical level. Therefore, this
section is structured as follows:

(1) We give an overview of available integer compression schemes including a
classifcation.

(2) We introduce state-of-the-art implementation concepts.

(3) We discuss advantages and disadvantages of the current solutions.

4.1.1 Overview and Classification

The lightweight integer compression algorithms can be differentiated into two levels.
Firstly, compressing integer values physically by reducing the number of bits per
value. Secondly, compressing integer values logically by mapping large values to small
values. Hence, the large corpus of lossless lightweight integer compression algorithms
is categorized in three types, i) Physical-Level, ii) Logical-Level, and iii) Cascades of
logical-level and physical-level, whereby physical-level compression algorithms reduce
values at bit-level, logical-level compression algorithms reduce values at the value-level,
and cascades reduce values at value-level as well as bit-level, respectively. Four
well-known and frequently used lightweight integer compression algorithms are, Null
Suppression (NS), Delta, Frame of Reference (FOR) and Run Length Encoding (RLE), whereby
NS is the physical-level and the other three algorithms are the logical-level compression
algorithms as illustrated in Figure 4.1.

Null Suppression (NS). NS is one of the most studied physical-level compression schemes

in this domain [AMF06, LMF*16]. The basic idea of NS is to discard the leading unused
zeros in the bit representation of integer values. For instance, in Figure 4.1, for a given

Chapter 4 Adaptive Lightweight Compression System 41

a b G a b-a c-b

b -5 b-5 c¢-5
‘ - =5 < Logical-Level Lightweight
FOR | 32 | 5 | 21 | '_’l 27 | 0 | 16 | | Integer Compression Algorithms
(Reducing integer values at
> Run Value — value-level)

RE — [54]2[4]
4 equal values I
L > Run Length

bitwidth = 2 Physical-Level Lightweight
s |oon | ooto] oot | |—[a0 o] Integer Compression Algorithm
(Reducing integer values at bit-level)

Figure 4.1: Illustration of Lightweight Integer Compression Algorithms.

dataset all the leading unused zeros are discarded in each value and keep the reduced
bitwidth based values after performing NS compression.

Delta. Delta compresses integer values through preserving the consecutive values
differences. That means Delta reduces a value by keeping the difference from the
preceding position value. Therefore, two requirements need to be satisfied for Delta
compression. Firstly, Delta compression is suitable for a sorted dataset, so that it can
avoid the negative value occurrences. Secondly, the first value of a dataset is always
required to store for decompression. For instance, in Figure 4.1, for a given sorted dataset
the first (a), second (b), and third (c) values are 5, 21, and 32, respectively. Thus, after Delta
compression, the first three consecutive differences are 5, 16, and 11, whereby it keeps the
first value as it is.

Frame of Reference (FOR). Two steps are required in FOR compression. Firstly, FOR
detects the smallest value as a reference number. Secondly, FOR keeps the differences
between integer values and the smallest value. As all values deduct the smallest value,
there is no chance for negative value occurrences. Hence, FOR is suitable for sorted and
unsorted datasets. For instance, in Figure 4.1, for a given dataset the first (1), second (b),
and third (c) values are 32, 5, and 21, respectively, and the reference value is 5. Thus, after
FOR compression, the first three differences are 27, 0, and 16.

Run Length Encoding (RLE). RLE counts the successive subsequence of equal values
occurrences. Hence, it reserves integer values, and its corresponding counts of equal
values occurrences as run lengths. For instance, in Figure 4.1, for a given dataset the
successive equal value of 5 is 4. Thus after RLE, the run length of the corresponding run
value 5 is 4.

However, Delta and FOR always have a (1 : 1) mapping between uncompressed input
and compressed output values. But RLE has a (N : 1) mapping instead of a (1 : 1)
mapping between uncompressed input and compressed output values. It happens
because RLE encodes a successive subsequence of equal values in the output as a pair
of a value and run length. Therefore, in RLE, it is not always the case that every input
value is mapped necessarily to an encoded output value.

Chapter 4 Adaptive Lightweight Compression System 42

4.1.2 State-of-the-art Implementation Concepts

Database researchers are moving their research direction more and more towards
lightweight integer compression algorithms due to its potential benefits. Thus, there
are lightweight integer compression algorithms research works available, not only in
the direction of a CPU-based implementation [DUH"19], but also for GPU [RB17, PK12,
FHL10]. Some selected research works regarding CPU or GPU-based lightweight integer
compression implementation concepts are discussed below.

A dataset for compression is usually partitioned with a group of a fixed number of values
called block, as most of all lightweight integer compression algorithms implementational
concepts depend on block. The size of a block should be power of 2, such as 27 = 128,
28 = 256, 29 = 512, etc. For instance, a dataset can be partitioned with a group of 128
integer values. That means each block consists of 128 integer values.

Work by Damme et al. (DUH*19)

In recent years, CPU-based vectorized implementation of lightweight integer
compression algorithms using SIMD (Single Instruction Multiple Data) instructions
has attracted a lot of attention as SIMD reduces the computational effort. For
instance, Damme et al. [DUH"19] implemented several lightweight integer compression
algorithms as well as cascades of basic techniques utilizing CPU-based vectorization
for implementations. In particular, Damme et al. [DUH"19] used the 128-bit vector
registers of the Intel SIMD instruction set extension SSE, which can fit four uncompressed
32-bit integers. In the following, we introduce some SIMD-based compression algorithms
implementation concepts that are based on Damme et al. [DUH*19] work.

Bitpacking (BP) is one of the most frequently applied NS algorithms which shows a very
good behavior for different data properties [DHHL17]. BP compresses integer values by
omitting leading unused zeros that physically reduce the values at bit-level. BP partitions
uncompressed dataset with a fixed number of values as blocks and detects the largest
value bitwidth per block. Afterward, it packs the values per block, whereby the bitwidth
of all the values in a block is dependent on its corresponding largest value bitwidth.
Damme et al. [DUH'19] obtained the implementation of BP as SIMD-BP128 from the
FastPFOR-library.6. The BP implementation uses vectorized shift and mask operations as
well as a dedicated optimized packing and unpacking routine for each of the 32 possible
bitwidths of a vector register.

The vectorized implementation of Delta represents each input element as the difference to
its fourth predecessor [DUH'19]. Thus, the processing of four integers happens at once
through vectorization. In the vectorized Delta implementation, the first four elements are
always copied from the input to the output during compression. Damme et al. [DUH19]
calculated the differences using _mm_sub_epi32().

Damme et al. [DUH"19] implemented the FOR compression as a vectorized two-pass
algorithm. Firstly, the vectorized FOR implementation iterates over the input and
determines the reference value of the minimum using _mm_min_epu32(). Then, the
vectorized FOR implementation copies this minimum into all four elements of one vector
register. Secondly, the vectorized FOR implementation iterates over the input again and
subtracts this vector register from four input elements at a time using _mm_sub_epi32().
At the end of the vectorized FOR implementation, the reference value is appended to the
output.

Chapter 4 Adaptive Lightweight Compression System 43

Damme et al. [DUH"19] proposed a four-step based vectorized RLE implementation.
In the first step, the vectorized RLE implementation loads one 128-bit vector register
with four copies of the current input element. Secondly, the next four input elements
are loaded. Thirdly, a parallel comparison by intrinsic _mm_cmpeq_epi32() is employed,
and the result is stored in a vector register. Fourthly, the vectorized RLE implementation
obtains a 4-bit comparison mask using _mm_movemask_ps(). Each bit in the mask
indicates the (non-)equality of two corresponding vector elements. The number of
trailing 1-bits in this mask is the number of elements for which the run continues. If this
number is 4, then the run's do not end yet and continue from the second step. Otherwise,
the run's has reached the end, the implementation appended the run value and run length
to the output, and continue from step one with the next element. The implementation is
repeated the above steps until the end of the dataset is reached.

Finally, Damme et al. [DUH"19] mention that many lightweight integer compression
algorithms can be ported to the SIMD extensions of AVX2 (256-bit vector registers) or
AVX-512 (512-bit vector registers), but for some algorithms, this is not possible. For
instance, large block-based null suppression algorithms increase the vulnerability of these
algorithms to outliers in the data, which affects both the compression rate as well as the
performance negatively. Basically, the algorithms quickly become memory-bound when
the computations are accelerated through wider vector registers processing more data
elements at once.

Work by Fang et al. (FHL10)

Fang et al. [FHL10] propose nine lightweight integer compression schemes (null
suppression with a fixed length, null suppression with variable length, dictionary encoding,
bitmap, run-length encoding, frame of reference, delta, separate, scale) on the GPU and the
combinations of these schemes for a better compression ratio. Based on this work
[FHL10], some of the GPU-based compression algorithms implementation concepts are
highlighted below.

Fang et al. [FHL10] implement the GPU-based RLE in four steps. First, the
implementation identifies boundaries between runs. A boundary is represented by a 1
between 0's. Fang et al. [FHL10] called this array of 0's and 1's boundary array. Second,
the implementation gets the write positions for output data by applying an exclusive
prefix sum on the boundary array. Third, given the write positions, the implementation
scatters both the values and the boundary positions. Finally, the implementation
computes each run length by subtracting the corresponding boundary position from the
next boundary position. The compression process of Fang et al. [FHL10] is lock-free,
which well exploits the massive parallelism of the GPU.

In the FOR implementation, Fang et al. [FHL10] transform each value in a column into
an offset from a base value, whereby the base value of a column represents the smallest
value. The FOR implementation uses the map primitive to subtract the base value from
each array element.

The Delta implementation of Fang et al. [FHL10] encodes a value in a column as the
difference from the value at the preceding position. The first value in the column is
stored in the database catalog. The differences are usually within a small value domain
for a sorted column. The Delta implementation uses the map primitive to perform
compression and applies the inclusive prefix sum for decompression.

Fang et al. [FHL10] designed a compression planner to find the optimal combination.
This GPU-based compression and decompression achieved a processing speed of 45

Chapter 4 Adaptive Lightweight Compression System 44

and 56 GB/s, respectively. This implementation also utilized the partial decompression
concept to improve GPU-based query co-processing performance. Fang et al. [FHL10]
included their GPU-based compression into MonetDB, an open-source column-oriented
DBMS, and demonstrated the feasibility of offloading compression and decompression
to the GPU.

Work by Przymus et al. (PK12)

Przymus et al. [PK12] focus on the acceleration of the GPU-based decompression
performance by the utilization of shared memory. Przymus et al. [PK12] developed
optimized GPU parallel decompression methods using global and shared memories.
This work [PK12] uses lightweight compression for time series and applies it to
a data-intensive pattern matching mechanism. This work [PK12] shows that data
decompression in GPU shared memory generally improves the performance of other
data-intensive applications due to ultrafast parallel decompression procedure. This work
[PK12] analyzes the relationship between global and shared memory decompression
showing that although shared memory may limit the number of possible applications
due to lack of global synchronization mechanism, it significantly improves performance.
Przymus et al. [PK12] achieve speed up improvement from 2% with decompression rate
2 up to 10% with decompression rate 6. However, this work’s current implementation
version does not have a general-purpose library that could be used in a similar way to
the CUDA library. Moreover, the implementation uses a common iterator pattern that has
a possibility of overlapping memory blocks which could break the barrier of inter-block
threads communication.

Work by Rozenberg et al. (RB17)

Recently, Rozenberg et al. [RB17] have focused on decompressing columns into GPU
memory. Rozenberg et al. [RB17] combine two prominent approaches, i) materializing
small chunks into a cache between query plan operations, ii) just-in-time compiled
pipelined execution of multiple fused operators, where tuple data is passed through CPU
registers. In these approaches, data is required to be decompressed into registers before
filtering and aggregation. For the cascaded compression schemes, it is decompressed into
the block-shared memory, whereby blocks are performing operations on decompressed
chunks. In both of these cases, the decompression implementations serve well as they
try to get rid of the bottleneck of having written much than read into global GPU
memory. This work [RB17] also includes an initial exploration of GPU oriented patched
compression schemes. In the patched compression schemes, a query plan compiler
schedules three different work paths for the underlying-scheme decompressed column.
In the first work path, no patches are applied. In the second work path, the naive patch
data of a small column is represented in sparse. In the third work path, the query
plan compiler schedules a different decompressor that patches locally, whereby queries
are operating on the smallest byte-addressable compressed form of data directly. The
third path points at the possibility of queries operating on the smallest byte-addressable
compressed form of data directly. If data are compressed using sub-byte bitwidths, then
partial decompression to the smallest whole byte-width could be used, which has the
disadvantage of decompressing to the full SQL type the schema demands.

Chapter 4 Adaptive Lightweight Compression System 45

4.1.3 Discussion

As presented in the preceding subsection there are a lot of algorithms and
implementations available. Damme et al. [DUH"19] conducted an exhaustive
experimental survey by evaluating several lightweight integer compression algorithms
as well as cascades of basic techniques. Damme et al. [DUH7'19] considered three
different hardware platforms for their evaluation: Haswell, Xeon Phi and Skylake.
During the survey evaluation Damme et al. [DUH'19] observed some general trends.
For instance, null suppression usually performs better when the values are lower,
SIMD-BP128 is one of the good choices among other null suppression techniques, RLE
works well for long runs, the logical-level techniques can improve the data distributions
significantly in favor of null suppression. Therefore, cascades of logical-level and
physical-level techniques can achieve very good compression rates, which are depending
on the data characteristics. Damme et al. [DUH"19] concluded their survey with two
statements, i) there is no single-best lightweight integer compression algorithm suitable
for all situations, ii) the best algorithm regarding the compression rate is often not the
fastest. Damme et al. [DUH"19] proposed a cost-based model for the selection strategy
and proved its ability to select a suitable lightweight integer compression algorithm for
a given dataset. However, the selection strategy has to be done on the algorithm level
during runtime which restricts the flexibility. Moreover, a block-based selection strategy
on the algorithm level during runtime would be more advantageous.

Generally, compression is an additional processing step that should not come with
additional cost during runtime. Thus, compression should be provided transparently
without compromising the overall system performance. To achieve that, advances in
hardware are always an interesting opportunity, but the utilization aspects are also
a major challenge. At the moment, hardware systems are more and more moving
from homogeneous CPU systems towards hybrid systems with different computing
units. In particular, hybrid hardware systems incorporating a Field Programmable Gate
Array (FPGA) and a CPU are emerging, being very interesting from a performance
perspective. Generally, FPGA is an integrated circuit, which is reconfigurable after being
manufactured. Thus, FPGA works as a hardware extension to the database systems
where some specialized function is implementable efficiently. Additionally, modern
FPGAs come with more flexibility for an efficient implementation that has direct access
to the main memory as well as offloading specialized function to the FPGA.

We are looking for an adaptive technique out of some compression artifacts depends
on a block-based selection strategy that is orchestrating at runtime. Based on this, we
focus on lightweight integer compression acceleration by offloading such functionality
to Field Programmable Gate Array (FPGA) in our target hybrid CPU-FPGA hardware
system. Moreover, to the best of our knowledge, none of the existing works investigate,
neither the domain of FPGA-based hardware-level implementation of a lightweight
integer compression algorithm nor exploring the different categories of hardware designs
on FPGA to achieve high-throughput regarding compression.

4.2 FPGA-BASED IMPLEMENTATION OF LIGHTWEIGHT INTEGER
COMPRESSION ALGORITHMS

Using FPGA resources, such as LookUp-Tables (LUTs), FlipFlops (FFs), etc. we can
implement any type of application-specific custom-made hardware. Therefore, in
this section, we describe the implementation details of custom-made physical-level
and logical-level lightweight compression accelerators. We explored different design
templates for physical-level and logical-level lightweight compression by incorporating
multiple accelerators for the best possible compression throughput.

Chapter 4 Adaptive Lightweight Compression System 46

4.2.1 Recap FPGA-based Architecture

In Chapter 3, we described the single (see Subsection 3.2.2) and multiple (see
Subsection 3.2.3) DMA-based FPGA architecture for column scan. The lesson learned
of such a type of FPGA architecture is that the independent access between the
main memory and the custom-made hardware through a DMA is beneficial regarding
throughput. Thus, a DMA is acting as a bridge between the main memory and the PL
part custom-made hardware. We define such a type of design template having a single
DMA as DMA_1, which is illustrated in Figure 4.2. As described in Subsection 3.2.3 we
can replicate the design template DMA_1 multiple times to prepare multiple DMA-based
design templates to accelerate the throughput. The number of DMA replication in an
FPGA architecture depends on the number of available AXI data channels of the main
memory controller. In our targeted Hybrid CPU-FPGA system, the PS part main memory
controller has 4 AXI data channels, whereby each data channel is 128-bit wide. That
means we can replicate the design template DMA_1 from 2 to 4 times, whereby each DMA
is accessing the main memory through an independent AXI data channel to avoid the
data collision. We named such templates DMA_2, DMA_3, and DMA_4 (see Figure 4.2).

1 1 1

128-bitl 128-bitl 128-bit1 128-bit

1 28—bit¢ 1 28—bit¢ 128-bit¢ 1 28—bit¢

DMA_1

DMA_2

DMA_4 DMA_3

CHW?* = Custom-made Hardware

Figure 4.2: Different #DMA Oriented Hardware Design Templates.

4.2.2 Custom-made Compression HW Implementation

This section describes the proposed custom-made physical-level and logical-level
lightweight compression hardware implementation in detail.

Physical-Level Compression

In this section, we describe our implementation detail of the FPGA-aware physical-level
compression algorithm BitPacking (BP).

As mentioned in Subsection 4.1.2, BP partitions a sequence of integer values into blocks,
determines the bitwidth of the largest value per block, and compresses each value as per
largest value bitwidth in a block. Thus, two similar read operations are required, (i) one
for determining the bitwidth of the largest value in a block, and (ii) one for packing the
values in a block. Accessing the main memory twice just to read the same set of values
is inefficient. As a consequence, an effective FPGA option is to use internal buffers with
a depth which equals the block size to temporarily store the integer values block-wise. As

Chapter 4 Adaptive Lightweight Compression System 47

mentioned earlier, the block size has always the power of 2, such as 27 = 128, 28 = 256,
29 = 512, etc. Thus, the depth of a buffer could be 128, 256, 512, etc. Additionally, this
buffer option helps filling up the pipeline stages in an FPGA-aware BP implementation.

00000014 00000012 00000016 00000019
128-bit Input

words: cach word 00000007 00000017 00000006 00000010
C";“ams 4 Integer 00000014 00000012 00000016 00000019
values.

3
i After BitPacking

s|w|2|t6|19| 7 176 |10[14]12[16][19]7 |17]|6|10|14|12|16|19|7 [17|6 [10]:
s|w|2|te|19| 7 176 |10f14f12[16[19]7 |17]|6|10|14|12|16|19|7 176 [10]:
128-bitOutput ¢+ | 5 |14 |12 |16 19| 7 [17| 6 [10]14[12[16[19] 7 [17]6 [10]14[12]16]19]| 7 [17] 6 |10}
words: each word | :fé :
contains mutiple | & [5 [14]12]16f10] 7 17]60juf2]w]o]7|7]e|t0ju]iz|le|]7]17[6]0]
compressed ; s luafwefwe|w|7|17]6][9] 7]17]6|10]|1a|12]16]19]7]17]6]10]
values. The 1% ' H
byte of each word | 510000 00|00|00|000000000000[00]|00|00{00]|00]|14]|12|16|19|7 |17 6 [10]:
holdslhelarges[E'___'_':_'_'::____:_'::_'::___-:_'::_'_'_____-_'_'_':_'_'::_-_'_'_':___'::_'_'_'_':___'_'___'_'_'_':___'_'__:_'_'::_____'_____'_'_':_____'_'___'_'_'_______'_'__:_'_'_______'_'__:_'_':____:_'_'::_'::__:_'_':::
value width in bits | sl f12|16|19]| 7 [176|10|14|12|16[19|7 |17|6|10|14[12[16|19]| 7 [17] 6 |10
(bit width) per H '
block, whereas | s|wa|i2|t6|19| 7 176 |10[14]12][16][19] 7 |17]|6|10|14|12|16|19|7 |17 6 [10]:
block contains 128+ 5 Ty Ta T 19 7 [17[6 [10] 14 12]16[19] 7 [17] 6 J10]1a]r2]16]10] 7 [17] 6 [10]
integer values.] '
vE |5 |14]12]16]|19]) 7 |17| 6 |10 |14 |12|16|19| 7 [17| 6 [10[14[12|16[19]7 [17]6 [10]
: s ||| 7|17]6|w|afnfie|of7]17]6]|10[1a]12]16]19]7]17]6]10]
bitwidth——>5 [00 [00 [00 [00 [00000000 |00]oo]oo|oo]oo]oo[oo[oo]1afia]ie]ro]7]17]6]10]
e S e
@
Figure 4.3: Illustration of Bitpacking Compression.
E 4
o 140
£ 120
= 120
o, 100
2 80
@]
g 60 0
5 a0 302420171513121 1
5 20 0109 88776665555 444444
8 1
3=

[l [
1234567 8 91011121314151617 1819 20 21 22 23 24 2526 27 28 29 30
Bitwidth (#Bits per Value)

Figure 4.4: Analysis in terms of Bitwidth and #Values Packing Per Output Word.

35 323232323232

30 26262626

25 222222
20 1919

15 10111313

#Output Words per Block

|
123456 7 8 91011121314151617 1819 20 21 22 23 24 25 26 27 28 29 30
Bitwidth (#Bits per Value)

Figure 4.5: Analysis in terms of Bitwidth and #Output Words in a Block for Block Size 128.

As per our target system maximum I/O port bitwidth configuration, the input and output
words bitwidth in the BP implementation are 128-bit. Therefore, an input word contains
four 32-bit integer values, and the number of values packed in an output word depends
on the largest value bitwidth in a block. Figure 4.3 depicts an exemplary way of BP,

Chapter 4 Adaptive Lightweight Compression System 48

Block-Wise #Unused Bits (%)

1234567 8 91011121314151617 18 19 20 21 22 23 24 25 26 27 28 29 30
Bitwidth (#Bits per Value)

Figure 4.6: Analysis in terms of #Unused bits (%) in a Block After Packing for Block Size
128.

whereby a block is occupied with 128 integer values. In Figure 4.3, input and output
values are shown in hexadecimal format, whereby the bitwidth of each value after
bitpacking is 5-bit. The most significant 8-bit of the output words contains the bitwidth of
the largest value per block, and the rest 120-bit are used for packing values (see Figure 4.3).
It seems redundant to append the bitwidth of the largest value in each output word per
block, but it is necessary for decompression. In Figure 4.3, after packing each output word
contains 24 values as the largest value bitwidth per block is 5-bit. Figure 4.4 and Figure 4.5
illustrate the possible number of values per output word for packing, and the possible
number of output words per block for a given largest value bitwidth ranging from 1 to
30, respectively. The number of output words per block depends on the block size and

the largest value bitwidth. For instance, the largest value bitwidth of 5-bit in a given

block contains 128 integer values can be packed into [%Sl = 6 output words, where each

output word contains 24 integer values (see Figure 4.5).

It is worth noting that such implementation is not able to utilize every possible bit per
output word to pack values due to a fixed length of encoding values as well as a fixed
block size. For instance, in Figure 4.3, the first 5 output words in each block contain
24 values, but the last output word contains the remaining value which is 8. In this
case, there are 11% unused bits per block (see Figure 4.6). Thus, the implementation of
bitpacking requires attention to the following three aspects, i) the number of values per
output word (see Figure 4.4), ii) the number of output words per block (see Figure 4.5), iii)
the number of unused bits after packing in a block (see Figure 4.6). However, despite
having some overhead in storing the data after packing, this method simplifies the
hardware implementation. As a consequence, it reduces FPGA resource consumption.
Furthermore, it eases the implementation of the decompression technique. Although we
do not focus on decompression in this work as most queries can be processed directly
on compressed data. But we keep decompression implementation flexibility so that we
can extend this work in the future for unusual query cases that can not be processed on
compressed data.

Based on this, Figure 4.7 illustrates the proposed pipeline-based FPGA accelerator for BP
called CBP (Custom-made BitPacking), whereby the width of each input/output word is
128-bit. In this case, a block is occupied by 128 integer values, hence the block size is 128.
The CBP works as follows:

@D Read a 128-bit input word per clock cycle, whereby each input word contains four
32-bit integer values.

@ Store the input word into the buffer. In parallel, to detect the bitwidth of the largest
value, perform bit-wise OR-operations between input words per block to create a
combined word. Afterward, determine the width of the combined word by finding
the left-most bit of which value is 1. This operation is done by using predefined
mask registers to achieve a constant one clock cycle latency.

Chapter 4 Adaptive Lightweight Compression System 49

Read Values/Word i\

128-bit

32-bit 32-bit 32-bit 32-bit

Bit-wise

Or Operation

Figure 4.7: CBP Overview—Flows for Offloading Values per Pipeline Stage (figure taken
from [LNH'19)).

@ Pack buffer values into the output words, while each buffer value is compressed
with the largest value bitwidth per block by performing bit-wise Right-Shift
operation. During packing, the most significant 8-bits of each 128-bit output word
contains the bitwidth of the largest value per block and the remaining 120-bit are
used for packing values.

@ Write the 128-bit output word, while one output word is fully packed with
compressed values.

128-bit Input Words

£ 128-bit Word based Buffer | 00000014 00000012 00000016 00000019
e -= . 8 T POt
-------------------- I | ; .
128- b1t| 00000014 | 00000012 | 00000016 | 00000019 | : } ° LJ., TR, 32 bit
128- bltl 00000007 | 00000017 | 00000006 | 00000010 | | { R . 00000016 | | 32-bit
128-bit] 00000014 | 00000012 | 00000016 | 00000019 ! | e] 00000012 | { 32-bit
' 3 ’ b — == ————— —{ 00000014 | {32-bit
__________ 1) et ' > '
__________________________ 5
32-bit Word based Buffer
@ (b)

Figure 4.8: (a) 4-Value Based Buffer Words, (b) 1-Value Based Buffer Words.

In the implementation, we can use either 128-bit or 32-bitwidth based buffer words. A
128-bit width-based buffer stores 4-value per word as illustrated in Figure 4.8(a). A 32-bit
width-based buffer stores 1-value per word in little-endian ordering format, whereby the
least significant value per input word is stored first as shown in Figure 4.8(b).

Although in CBP the input and output words width are 128-bit, but for packing with
the maximum possible number of values per word for a given largest value bitwidth as
mentioned in Figure 4.4, the buffering word width need to be 32-bit instead of 128-bit
containing a 1-value instead of a 4-value. The reason is that packing by a 128-bit word
based buffer creates a misalignment problem for some cases, because the number of
values per output word is not always divisible by 4 as mentioned in Figure 4.4.

For instance, for the largest value bitwidth 17-bit, the number of values per word for
packing is 7 which is not divisible by 4. In such cases, a 1-value per word buffer is
required, and every cycle it packs one value, which increases the latency exponentially.
For example, as illustrated in Figure 4.9(a), for the largest value bitwidth 5-bit, it takes 24
cycles to finish packing a word by using 1-value per word buffer. On the contrary, using
4-value per word buffer takes only 6 cycles to finish packing a word (see Figure 4.9(b)). In

Chapter 4 Adaptive Lightweight Compression System 50

Figure 4.8 and Figure 4.9, the input and output words values are shown in hexadecimal
format. Thus, to reduce the latency as well as to avoid misalignment problems, we
prepared the CBP using a 4-value buffer concept as illustrated in Figure 4.8(a) with some
modification in the number of values packed per output words for some of the largest
value bitwidth cases.

128-bit Output Word 128-bit Output Word
[5] [14][5] [1a] 2] 16]19]
[5] [12]1a][5] [a]i2]16]19]1a]12]16]19]
o o
3 3
[5]1a]12]16]19] ooo [14] 2] 16]19][5]1a]12]16] 10|14 12]16][19] e00 [1a]12] 16] 19]
{)
: { : J
(a) 1-Value Packing (b) Div4 Based 4-Value Packing

128-bit Output Word

4 o]s]alc
4 [o]s]alc]o]8]a]c

S

o
[efofsfafclofs]afc] ooo [Jofs|la]c]

— e Rest 2 Values are

Iil |a|c|9|8|alc| packed in the
] LD sl oale] ™™

(c) Div2 Based 4-Value Packing

Figure 4.9: (a) 1-Value Based Buffer Words Packing, (b) 4-Value Based Buffer Words
Packing using Div4, (c) 4-Value Based Buffer Words Packing using Div2.

Table 4.1: Iteration of Packing Values.

#Clock Cycles | #Values Packing using Div4 | #Values Packing using Div2

nth 4 4
(n+1)" 444 444
(n+m)th A4+4+..+4 A4+44 .. 42
(n+m+1)" 4 244
(n+m+2)" 444 2+4+4
(n+m+p)!" 4444 .. +4 24+44+4+..+4
20
17, 6 B Previous
15 1514 [Modified

#Values per Output Word
w5

—_

Illlllllnn I

Blthdth (#Bits per Value

Figure 4.10: Rearrangement of the #Values per Output Word for Some Specific Largest
Value Bitwidth Cases.

Chapter 4 Adaptive Lightweight Compression System 51

Thus, we categorized the number of values packed per output word in two parts, (i) Div4:
the number of values packing per output word is divisible by 4, (ii) Div2: the number of
values packing per output word is divisible by 2. As a result, we rearranged the number
of values packed per output word for the largest value bitwidth of 7-, 8-, 9-, 13-, 16-, 17-,
21-, 22-, 23- and 24-bit which are neither divisible by 4 nor by 2. It is done by reassigning
the nearest smaller number which is either divisible by 4 or by 2 (see Figure 4.10). For
instance, the number of values packed per output word for the largest value bitwidth of

7-bit is &70 = 17, which is neither divisible by 4 nor by 2. The nearest smaller number

of 17 which is either divisible by 4 or by 2 is 16. Thus, the new number of values packed
per output word for this example is 16.

The number of values packing per iteration for Div4 and Div2 packing categories is
illustrated in Table 4.1. For instance, in the n'" clock cycle both packing categories start
packing with a new 4-value buffer word. In the (n+m)" clock cycle packing one output
word is finished in both cases. In this clock cycle, Div4 category packed a complete
4-value buffer word, but Div2 category packed only 2-value of the current buffer word,
and keeps the rest 2-value of the current buffer word for the next iteration packing.
Hence, in the next (n+m+1)" clock cycle, Div4 category start with a new 4-value buffer
word for packing. On the other side, Div2 category starts packing with the last cycle
leftover 2-value including a new 4-value buffer word. Therefore, in every clock cycle,
a new 4-value buffer word is packed in Div4 category packing. However, this scenario
is not similar to Div2 category packing. In Div2, in some iterations, while one-word
packing is finished, there are two values leftover in every alternate output word which
is packed in the next output word, and it continues packing as described in Figure 4.9(c).
In Figure 4.9(c), the largest value bitwidth for a given block is 4-bit, and the number of
values per output word for the bitwidth of 4-bit is 30 which is divisible by 2 not by 4.
Thus, a bitwidth of 4-bit satisfies the criteria of Div2 packing.

Logical-Level Compression

In this section, we describe our implementation detail of FPGA-aware logical-level
compression algorithms, and we consider three frequently used logical-level algorithms:
Delta, Frame of Reference (FOR), Run Length Encoding (RLE).

@ Perform Successive Deduction
and Buffer Differences per Block
*P_V = Previous Value

@ Write Values/Word

[0] o T o [0 Jevmal o] 0] 0 [1]
[] L] 1 s \o2bit 52bit | 32 32bi)

i

@ Read Values/Word : 128-bit
|
|

| L 1 e

MSW LSW [
[128 | 127 [126 | 125]
\32:bit__ 32-bit 32bic 32-bit /

1 I 1 1 I 1 | P V=0
bt s2bit 32bit
128%it

1

U 32-bit

128-bit

MSW = Most Significant 32-bit Word
LSW = Least Significant 32-bit Word

Figure 4.11: CDelta Overview—Flows for Offloading Values per Pipeline Stage with
Example.

Chapter 4 Adaptive Lightweight Compression System 52

Delta. Delta represents each value as the difference to its predecessor value. In
other words, Delta performs the successive deduction between consecutive values to
reduce values. The first values per block are required to store for decompression
purposes. Usually, Delta compression algorithm is suitable for sorted data, so that it
can avoid generating the negative integer values. Figure 4.11 illustrates the proposed
pipeline-based FPGA accelerator for Delta called CDelta (Custom-made Delta) in an
exemplary way. The input and output words size in the implementation are 128-bit like
CBP. Hence, input and output words contain four 32-bit integer values. However, output
words contain four reduced 32-bit integer values. The pipeline flows of CDelta are as
follows:

D Read a 128-bit input word per clock cycle, whereby each input word contains four
32-bit integer values. For instance, a block is occupied with 128 sorted integer values
(ie,1,2,3,..,126, 127, 128). So, there are 32 input words in a block as each input
word contains four 32-bit integer values. Hence, the last input word contains ({128},
{127}, {126}, {125}) integer values (see (D in Figure 4.11).

@ Perform successive deduction between the consecutive values of a word, and buffer
the reduced values per clock cycle. The buffer size depends on the size of a block. In
our implementation, each block is occupied by 128 integer values. Hence, the buffer
is 128-bit wide and the depth of buffer is 32. In an input word, values are stored
in descending order. Each cycle, the most significant 32-bit word of the current
input word is stored in a 32-bit register called P_V (Previous Value) to maintain the
consecutive deduction constraint for the least significant 32-bit word of the next
input word. For instance, a block is occupied with sorted 128 integer values (i.e.,
1,2,3,..,126, 127, 128). There are 32 input words per block, whereby in an input
word, four integer values are stored in descending order. Such as the most and
the least significant 32-bit of the last input word of the block contain 128 and 125
integer values, respectively. Hence, the last input word of the block contains 128,
127, 126, 125 integer values (see @D in Figure 4.11). In this case, the value of P_V
is 124, as it was the most significant 32-bit word of the previous input word. So,
after performing successive deduction ({128-127}, {127-126}, {126-125}, {125-124}) the
differences ({1}, {1}, {1}, {1}) are buffered. In this cycle, the P_V is updated with zero,
as all values of a block are reduced (see @ in Figure 4.11).

(@ Write each word of the buffer to the 128-bit output word per clock cycle, while the
buffer of pipeline stage) is full.

It is noteworthy to mention that pipeline stages D and @ have one clock cycle latency.
The pipeline stage 3 starts writing the buffer words to the output words, while the buffer
is full. Tt defines the stage () is required to wait until the buffer is not full, and stage @
is required to wait until the buffer is not empty. It extends the latency. Moreover, value
overwrite problem may occur unless these stages are not waiting for each other. Hence,
to overcome such problems we keep two buffers (namely buffer1 and buffer2) of same size
in stage ®. As a consequence, while stage B is writing from buffer1, stage @is buffering
the reduced values in buffer2, and vice versa. In this way, we overcome the latency and
value overwrite problems.

Frame of Reference (FOR). FOR represents each integer value as the difference to a
certain given reference value. More precisely, FOR requires two steps to be performed:
i) detect the smallest values per block as the reference value, ii) subtract the values
of a block to the smallest value. The smallest values per block are required to
store for decompression purposes. FOR compression algorithm is perfect for both
sorted and unsorted data, as there is no chance to generate negative integer values.
Figure 4.12 illustrates the proposed pipeline-based FPGA accelerator for FOR called
CFOR (Custom-made FOR) through an example. The pattern of input and output words
are similar to CDelta. Below, the pipeline flows of CFOR are depicted:

Chapter 4 Adaptive Lightweight Compression System 53

Buffer_Value Buffer_Differences
@ Detect Smallest Value @ Perform Subtraction

between all Values and
and Buﬂ'ei‘ Vilues per Smallest Value per Block;
@ Read Values/Word - Ll e ffer the Differences
28 | 27 | 126 | 125 | [os [o7 [o [was || ([27 [w26 [s | n24 |
_32-bit___ 32-bit 32-bit 32-bit
~ [[a [1 2 [z ||| 3 [21 [120 |
128-bit
S sl s
Ls [7 [6 [s /L7 [e[s [4]
[+ [s [2 [+ I s [2] 1 [o =

_32-bit 32-bit 32-bit 32-bit / _32-bit 32-bit 32-bit 32-bit /
Y Y.
128-bit 128-bit

Figure 4.12: CFOR Overview—Flows for Offloading Values per Pipeline Stage with
Example.

D Read a 128-bit input word per clock cycle, whereby each input word contains four
32-bit integer values. For instance, a block is occupied with 128 integer values (i.e.,
1,2,3,..,126,127, 128). So, there are 32 input words in a block as each input word
contains four 32-bit integer values. Hence, the last input word contains ({128}, {127},
{126}, {125}) integer values (see D in Figure 4.12).

@ Detect the smallest value of a block, and store the smallest value in a 32-bit register
called S_V(Smallest Value). Store the input words of a block in a buffer called
Buffer_Value. The buffer pattern is similar to CDelta. For instance, a block is occupied
with 128 integer values (i.e., 1, 2, 3, ..., 126, 127, 128). Each cycle is buffering an input
word having four integer values in Buffer_Value as well as detecting the smallest
value among these four integer values and the S_V register. As a consequence, each
cycle it is updating the S_V register with the smallest value. Once all the input
words of a block are buffered, the S_V register contains the final smallest value and
in this case it is 1 (see @ in Figure 4.12).

(® Perform subtraction from all the values of Buffer_Value to the final smallest value of
Buffer_Value, and store the differences in an another buffer called Buffer_Differences.
As illustrated in Figure 4.12, once the Buffer_Value of the pipeline stage @) is full, the
pipeline stage @ starts subtraction from the values per word of the Buffer_Value to
the S_V register in each cycle, and store the differences per word in Buffer_Differences.
The @ in Figure 4.12 showed the outcome of Buffer_Differences for the same example.

@ Write the words of Buffer_Differences to the 128-bit output words per clock cycle,
while Buffer_Differences is full.

In addition, we keep two buffers in stage @ called Buffer_Valuel, Buffer_Value2, two
buffers in stage @ called Buffer_Differences1, Buffer_Differences2 instead of one buffer to
overcome the increased latency and value overwrite problems likewise CDelta.

Run Length Encoding (RLE). RLE encodes the uninterrupted sequences of the same
integer values occurrences as so-called runs. In RLE, each run contains its corresponding
value and length. Therefore, the compressed data in RLE is a sequence of {value, run-length}
pairs. Figure 4.13 illustrates the proposed pipeline-based FPGA accelerator for RLE
called CRLE (Custom-made RLE) through an example. In CRLE, the maximum run-length
for encoding the uninterrupted sequences of the same integer values occurrences in an
uncompressed data depends on block size. However, in the proposed implementation, a
block contains 128 integer values. The input and output words size in the implementation
are 128-bit, whereby the input word contains four 32-bit integer values and the
output words organization is different than the other two logical-level algorithm

Chapter 4 Adaptive Lightweight Compression System 54

@ Read Values/Word Detect Consecutive Equality and Set the Mask Register
@ (*P_V = Previous Value)

MSW LSW
Previous [128 | 128 [128 [128 | | 128 [128 —128 [128—128 [128— 128 |#p '~ 128
Curremt [128 | 128 | 125 | 124] | 12s=r v [128=128 [1284125 | 1254124 |sp v 124
% 32-bit 32-bit. 32-bit 32—bi[}

128 bt [1 [1] o] o] abitMask Register
MSW = Most Significant 32-bit Word 1-bit 1-bit 1-bit 1-bit
LSW = Least Significant 32-bit Word \/
@ According to the state of mask register store the values and its
corresponding run length in VAL Buffer and RUN Buffer

RUN_Buffer VAL _Buffer

Wordjll 6 | 1 | 1 Word7n| 128 | 125 | 124 -I

32-bit 32-bit 32-bit 32-bit 32-bit 32-bit 32-bit 32-bit

@ First Write
All Values/Word,
Afterward Write All
Runs/Word

Y Y
128-bit 128-bit

Figure 4.13: CRLE Overview—Flows for Offloading Values per Pipeline Stage with
Example.

implementations. In this case, output words require a (1 : 1) mapping between values
and their corresponding run-lengths. Thus, in the implementation two buffers are used
to store values and their corresponding run-lengths to maintain (1 : 1) mappings. The
pipeline flows for CFOR implementation are described below,

D Read a 128-bit input word per clock cycle, whereby each input word contains four
32-bit integer values. For instance, in (g of Figure 4.13 the Previous and Current input
words contain ({128}, {128}, {128}, {128}) and ({128}, {128}, {125}, {124}) integer values,
respectively.

@ Perform consecutive equality checks per input words to encode the uninterrupted
sequences of the same integer values occurrence, and preserve the outcome in a
4-bit mask register. The least significant 32-bit word of an input word is required
to store in a register called P_V (Previous Value) to maintain the uninterrupted
sequences checking, and every cycle P_V is required to update. The example in
@ of Figure 4.13, the values of Current input word ({128}, {128}, {125}, {124}) are
checked for equality consecutively, and the results are kept in the corresponding bit
position of mask register. In this case, the P_V is 128. Thus, the first two equality
conditions are satisfied, and remaining two conditions are not satisfied. Hence, the
4-bit mask register value is ({1}, {1}, {0}, {0}). In this cycle, the P_V is updated to
124 as the value of the least significant word of Current input word is 124 (see @ in
Figure 4.13).

(® This pipeline stage maintains two buffers to store values and its corresponding
run-lengths called VAL_Buffer and RUN_Buffer, respectively. These buffers update
according to the state of mask register. These buffers are 128-bit wide and the depth
is 32. Hence, both buffers can store four values and its corresponding four run-lengths
per words. In both buffers, values and run-lengths are stored from left-most to
right-least significant word order. The count of run-lengths depends on the mask
register, whereby a bit position of the mask register occupied by 1 means equality,
and 0 means non-equality. Such as the mask value ({1}, {1}, {0}, {0}) means, among
the four values, two values are equal and two values are not equal. As illustrated
in D of Figure 4.13, the Previous and Current input words contain ({128}, {128}, {128},
{128}) and ({128}, {128}, {125}, {124}), respectively. The mask value of Previous input
word is ({1}, {1}, {1}, {1}). This mask value defines all four integer values of this
word are the same. Hence, run-length is 4. Thus, the most significant 32-bit word

Chapter 4 Adaptive Lightweight Compression System 55

of Word_n in VAL_Buffer stores 128, and the most significant 32-bit word of Word_n
in RUN_Buffer stores 4. Now, for the Current input word ({128}, {128}, {125}, {124}),
the mask value is ({1},{1},{0},{0}). That means the first two values are equal
to the previous value, and last two values are not equal to each other. Thus, the
most significant 32-bit word of Word_n in RUN_Buffer increases to 6 (4+2), and
the next two 32-bit words are occupied with 1 and 1, respectively. Similarly, the
most significant 32-bit word of Word_n in VAL_Buffer is already filled up with 128,
and the next two 32-bit words are occupied with 125 and 124, respectively (see
@ in Figure 4.13). In this way, (1 : 1) mapping between values and run-lengths is
maintained through VAL_Buffer and RUN_Buffer. In Figure 4.13, the empty 32-bit
words of the both buffers in (3 are highlighted with dark color. Once four 32-bit
words of a 128-bit buffer word is full then it starts buffering in the next word.

@ Write the words of VAL_Buffer and RUN_Buffer one after another to the 128-bit
output words per clock cycle, while VAL_Buffer and RUN_Buffer are full.

Additionally, we keep four buffers in stage @ called VAL_Bufferl, VAL_Buffer2,
RUN_Bufferl, RUN_Buffer2 instead of two for similar reasons like CDelta and CFOR.

4.2.3 Lightweight Integer Compression System Implementation

1 1

*
128—bitl l 128-bitl 128-bit l

128—bit¢ 128—bit¢ 128-bit¢ 128—bit¢

DMA_1

DMA 3 DMA 2

DMA _4

250 MHz CHW?* = CBP or CDelta or CFOR or CRLE

Figure 4.14: Lightweight Integer Compression System based on Different Custom-made
Compression Hardware using Different Design Templates.

After the implementation of custom-made compression accelerators as described in
Subsection 4.2.2, we start with the development of lightweight integer compression
system based on design template DMA_1 for each custom-made (i.e., CBP, CDelta, CFOR,
CRLE) compression accelerator. Afterward, we developed multiple DMA-based design
templates DMA_2, DMA_3, and DMA_4 oriented lightweight integer compression systems
for each custom-made compression accelerator (see Figure 4.14). All these designs with
single or multiple DMA work perfectly with 250MHz PL part frequency (see Figure 4.14).
That means all these designs meet the timing with 250MHz. However, in the multiple
DMA-oriented designs, we distribute data among the multiple DMA evenly. That means
we virtually partitioned the dataset in main memory, and distribute them consecutively
one after another DMA. For instance, compressing values using DMA_4 design, the
dataset is virtually partitioned into 4 in main memory, whereby the first partition dataset
transfers to DMA1, the second partition dataset transfers to DMAZ2, and so on. Hence, in
the multiple DMA-based designs, the virtually partitioned dataset in the main memory
is evenly distributed among the multiple DMA consecutively.

Chapter 4 Adaptive Lightweight Compression System 56

4.2.4 Discussion

The proposed implementation mechanism of CBP, CDelta, CFOR and CRLE on FPGA
is highly effective due to the hardware-level custom-made implementation flexibility of
FPGA. At this point, it is important to mention that usually lightweight compression
algorithm implementation is highly read-intensive. For example, the vectorized
implementation of FOR in [DUH'19] reads each input data element two times from
the main memory: i) for detecting the reference values, ii) for detecting the differences
from the input values to the reference values. Reading the same data elements two
times from the main memory affects the performance negatively. This problem is easily
overcome on our FPGA based algorithm implementations through introducing the input
buffer concept. In our FPGA-based implementation, each data is read from the main
memory once, and while processing values it buffers the input values on block RAMs
as so-called BRAMs [TW13] of FPGA in parallel for future use. By using BRAMs, we
avoid the redundant reads from the main memory. Moreover, we explore four design
templates for each of the proposed custom-made compression accelerators from DMA_1
to DMA_4. These designs prove that proposed custom-made compression accelerators are
highly adaptive to other hardware. However, the DMA_4 requires the maximum resource
of FPGA compared to other designs as it is utilizing all the available direct data channels
of main memory. It is important to distribute input data evenly among the data channels.
Because the main memory controller chooses to serve a particular DMA through a data
channel in a round robin fashion as physically there is only one data channel connected
between the main memory and the main memory controller (see Figure 4.14). However, it
is not possible to distribute data evenly in DMA_3 as it has an odd number of data channels,
and some custom-made compression accelerator such as CBP compresses data elements
block-wise, whereby each block contains an even number of data elements. Hence, in such
case DMA_3 may affect the performance negatively.

4.3 ADAPTIVE COMPRESSION SYSTEMS

In the previous section, we proposed custom-made physical-level as well as logical-level
lightweight compression accelerators. Moreover, we implemented different template
oriented hardware design architectures based on proposed custom-made lightweight
compression accelerators. All these designs are compressing the whole dataset
using a single compression algorithm. For instance, the DMA_4 design of CDelta
compression system compresses the whole dataset using Delta algorithm, the DMA_4
design of CBP compression system compresses the whole dataset using Bitpacking
algorithm and so on. However, to guarantee a certain level of compression throughput
acceleration, the block-wise compression is necessary as each block may have different
data properties. Thus, this thesis concentrates on the block-based lightweight integer
compression system implementation, whereby different blocks are compressed with
different custom-made compression accelerators. Therefore, in this section, we
describe different types of implementations for the FPGA-aware adaptive lightweight
compression system. We explore different implementation opportunities in the target
CPU-FPGA system, by utilizing our custom-made physical-level and logical-level
compression accelerators, with taking care of minimum resource utilization, and for the
best possible compression throughput. FPGA-aware adaptive implementation is based
on a two-level compression accelerator for integer values. In the first level, reducing
values by custom-made logical-level lightweight compression accelerator. In the
second level, logically reduced values are compressed by a custom-made physical-level
lightweight compression accelerator. Thus, selecting the appropriate logical-level
accelerator demands appropriate design-level specifications based on data properties. To
satisfy such demand, we start our implementation with a straightforward User-Specified
Adaptive System, and later we introduce other types of Adaptive Systems.

Chapter 4 Adaptive Lightweight Compression System 57

4.3.1 User-Specified Adaptive System

The User-Specified Adaptive System is a straightforward design, whereby during runtime
a user can select a lightweight compression algorithm to compress integer values. A
user has the flexibility to compress integer values, either logically at value-level as
well as physically at bit-level, or physically at bit-level only without any logical-level
compression. Therefore, we prepared a custom-made scheduler called CScheduler
to select a user-specified compression algorithm. Figure 4.15 illustrates a single
DMA based User-Specified Adaptive System. In the User-Specified Adaptive System, the
uncompressed data including the choice of user-specified compression algorithm are
passed through DMA from the main memory controller to the CScheduler. CScheduler is
responsible to choose a specific custom-made compression accelerator as per user choice.
Therefore, CScheduler has data channel connections to all the logical-level compression
accelerators (CDelta, CFOR, CRLE). Conceptually, CScheduler can transfer data block-wise
into different custom-made compression accelerators as per user-specified block-wise
choices. However, we do not consider such scenario in this implementation.

128bit - ==~ ’ 2};3317 . Jis-bit
| Cpéla | " CRLE |
= 1128-bit -
128bit S~0 4 o= 128 bit
~ o -
oo omme
128-bit
s] 128 bit

Figure 4.15: User-Specified Adaptive System for Lightweight Integer Data Compression.

T 128-bit T 128-bit T 128-bit T 128-bit

250 MHz

128-bit 128-bit 128-bit

_128:bi 128t

128-bit

_128:bit 125t

~

-
128Lbit

~

-
128Lbit

~ 128-bit

S

-bi -7 NS 128-bit -bi -7 0N S _ 128-bit -bi - bi - ~ o 128-bit
128b1’[’, 128t S~ 128b1’l’, 128t S~ 128b1’l’, 128b1’t’, S~

~ - ~ s ~ - oY s
128-bi ~ lzsi'b‘L 2 128-bit 128-bit” > '23:"“: -2 128-bit 1286i0 > 12801t “og b 128-bif ~ '251"’", . * T 128-bit
~ ~ ~ Ld ~

(m———— ===
P
e

1
1
1

A2

- —— > -— = ————

128-bit
128-bit

128-bit 128-bit 128-bit

128-bit 128-bit 128-bit

DMA 2 DMA_1

DMA_4 DMA_3

Figure 4.16: Different #DMA Based Hardware Designs for User-Specified Adaptive System.

Moreover, during compression CBP accelerator is always required as it is reducing data at
bit-level. That means all logical-level compression accelerators including CScheduler are
required to access this CBP. But CBP is designed with a single pair of input-output ports.
Thus, we prepared a custom-made hardware called CTransfer. CTransfer is responsible to
pass data from the active data channel of either CScheduler or CDelta or CFOR or CRLE to
the input port of CBP. Basically, CTransfer is working like a (4 : 1) input switch for CBP

Chapter 4 Adaptive Lightweight Compression System 58

(see Figure 4.15). Moreover, there is a direct data channel that comes from the CScheduler
to the CTransfer as the User-Specified Adaptive System also supports compressing values
only using the physical-level compression accelerator CBP without cascading with any
logical-level compression accelerator (see Figure 4.15).

Afterward, we developed single and multiple DMA-based hardware designs of the
User-Specified Adaptive System as DMA_1, DMA_2, DMA_3, DMA_4, where each DMA is
accessing the main memory controller via an independent data channel (see Figure 4.16).
Hence, we replicated the User-Specified Adaptive System up to 4 times as the number
of available data channels in the main memory controller of the targeted system is 4.
Likewise, the CBP designs, the single and multiple DMA-based User-Specified Adaptive
Systems meet the timing with 250MHz (see Figure 4.16).

4.3.2 HW-Specified Adaptive Systems

wy 64-bit
>
X 128-bit

128-bit

128-bit

128-bit

128-bit 128-bit

200 MHz

Figure 4.17: HW-Specified Adaptive System for Lightweight Integer Data Compression.

The User-Specified Adaptive System is a naive implementation as it is a user-dependent
platform, which is not effective for real-life purposes. User-Specified Adaptive System is not
autonomous as the user is responsible to choose a compression algorithm. The goal of
this thesis is to prepare an autonomous system for lightweight integer data compression,
whereby the hardware is responsible for choosing the appropriate algorithm as per data
properties. Thus, we introduced the HW-Specified Adaptive System, whereby the hardware
makes the decision for choosing the appropriate algorithm as per data properties.

Damme et al. [DHHL17] already mentioned that all lightweight integer compression
algorithms are highly data properties dependent. Therefore, an appropriate algorithm
selection requires in-depth data properties analysis. Preparing a compression system
which first analyzes the properties of data to select an appropriate algorithm for
compression and later compresses the same data with its corresponding algorithm
selection increases the read overhead drastically. To avoid such constraint, we implement
the compression system in a speculative way, where a dataset compresses through
system available different compression algorithms in parallel, and later a sophisticated
custom-made hardware selects the compressed values from the appropriate algorithm.

As illustrated in Figure 4.17, the HW-Specified Adaptive System is based on the post-order
decision making to choose an appropriate compression algorithm as per data properties
instead of making the pre-order decision. In the implementation, a custom-made
broadcaster called CBroadcaster is used to broadcast uncompressed data from a DMA
to all the logical-level compression accelerators (CDelta, CFOR, CRLE). Each logical-level

Chapter 4 Adaptive Lightweight Compression System 59

compression accelerator has its own CBP accelerator to compress values at the bit-level.
Finally, three different algorithm based compressed values go to a custom-made
hardware called CSelector. CSelector is responsible to identify the most compressed data
among the three different compression algorithm based compressed data. In this case,
the mechanism of CSelector is very simple. CSelector works on the basis of first come first
out. This defines CSelector output that algorithm-based compressed data which came
as input to it at first. For example, for a given uncompressed dataset, if the (CDelta +
CBP) accelerator generates faster compressed values-based output words than the other
compression accelerators, then CSelector accepts the (CDelta + CBP) accelerator generated
output words as input words, and ignores the other compression accelerator generated
inputs. In this adaptive system implementation, we do not consider to compress data
using CBP accelerator only. Moreover, this adaptive design meets the timing with
200MHz instead of 250MHz (see Figure 4.17).

64-bit
>
E 128-bit

200 MHz 128-bit

128-bit

128-bit 128-bit

[P

Valid Signal === Data Channel—,

Figure 4.18: HW-Specified Pre-BitPacking Adaptive System for Lightweight Integer Data
Compression.

It was mentioned earlier that there is no single best lightweight compression algorithms
[DHHL17]. All lightweight compression algorithms are data properties dependent. For
instance, Delta algorithm is suitable for sorted data. However, the HW-Specified Adaptive
System is compressing the whole uncompressed dataset using one of the logical-level
compression accelerators that produces faster-compressed output words among the
others, which may not always provide the most optimum compression throughput. In
the real world, a single dataset consists of different properties. Thus, if a single dataset
is partitioned into a fixed number of blocks then different types of properties can be
distinguished. As a consequence, in this block-based partitioned dataset, we can apply
different compression algorithms in different blocks as per block-based data properties
which may provide optimum compression throughput. Therefore, compressing data
block-wise has a possibility to accelerate compression throughput. Thus, instead of
compressing the whole dataset using a logical-level compression algorithm, compressing
data block-based using different logical-level compression algorithms as per block-based
data properties is more ideal. Therefore, we modified the HW-Specified Adaptive System
and developed the adaptive design for lightweight integer data compression called
HW-Specified Pre-BitPacking Adaptive System as depicted in Figure 4.18, whereby values
are compressed block-wise. As a consequence, the CSelector, CDelta and CFOR are
modified, whereby CDelta and CFOR are generating 1-bit valid signals to CSelector. These
valid signals define whether a particular block is suitable for a particular logical-level
compression algorithm or not. In CDelta, the value of the valid signal depends on
whether a particular block of integer values is sorted or not. If the values of a block are
sorted then the valid signal is set to active-high signal, otherwise it is set to active-low
signal. In CFOR, the value of the valid signal depends on the value of the smallest value

Chapter 4 Adaptive Lightweight Compression System 60

per block. If the value of the smallest value per block is larger than 1024 then it is set to
active-high, otherwise active-low. In CSelector, at first it is checked the CDelta produces
valid signal, and then it is checked CFOR produces signal, per block. The checking of
signals in CSelector is based on the following three priority conditions:

Priority 1: If the CDelta produced valid signal is active-high, then CSelector chooses the
(CDelta + CBP) generated compressed values.

Priority 2: 1f the CDelta produced valid signal is active-low, then CSelector checks the
CFOR produced valid signal. If the CFOR produced valid signal is active-high, then
CSelector chooses the (CFOR + CBP) generated compressed values.

Priority 3: If the CFOR produced valid signal is active-low, then CSelector chooses only
the CBP generated compressed values.

1 128-bit 1 128-bit

Data Channel— 128-bit Data Channel—! 128-bit
Valid Signal ==== ¢ P Valid Signal ===

128-bit

128-bit

128-bit 128-bit 128-bit

128-bit

DMA_1

DMA_2 100 MHz

Figure 4.19: Different #DMA Based Hardware Designs for HW-Specified Pre-BitPacking
Adaptive System.

Moreover, in the HW-Specified Pre-BitPacking Adaptive System, it is important that all the
logical-level algorithms, compress values without changing the number of blocks in a
dataset. However, in RLE the number of blocks is not constant like Delta or FOR. In
the worst-case scenario, in a given uncompressed dataset if there are no uninterrupted
sequences of the same integer values occurrences, then RLE may double the number of
blocks. On the contrary, in the best-case scenario, for a given uncompressed dataset, if all
the values are the same integer values then it may have only one block. As a consequence,
a (1 : 1) block mapping is not possible for CRLE like the other compression accelerators.
Hence, in HW-Specified Pre-BitPacking Adaptive System, we do not consider RLE algorithm.
Although the one DMA-based HW-Specified Pre-BitPacking Adaptive System meets the
timing at 200MHz, it goes down to 100MHz for two DMA-based design (see Figure 4.19).
Hence, we do not go for further DMA-based design implementation for HW-Specified
Pre-BitPacking Adaptive System.

However, HW-Specified Pre-BitPacking Adaptive System is using CBP accelerator three
times, that increases the hardware resource utilization. To reduce hardware
resource utilization, we modified the HW-Specified Pre-BitPacking Adaptive System, and
prepared another design for lightweight integer data compression called HW-Specified
Post-BitPacking Adaptive System (see Figure 4.20). In the HW-Specified Post-BitPacking
Adaptive System, we placed the CSelector hardware in between the logical-level and
physical-level compression accelerator. Hence, the logically compressed values per block
of CDelta and CFOR go to CSelector directly, and CSelector sends the selected block of
values to the CBP, whereby the selection of a block in CSelector is based on the values of
valid signals. Thus, in HW-Specified Post-BitPacking Adaptive Design, there is only one CBP
accelerator. In addition, there is a direct data channel connected between CBroadcaster
and CSelector, so that CSelector can have the uncompressed block of data for CBP to

Chapter 4 Adaptive Lightweight Compression System 61

64-bit
>
i 128-bit

200 MHz 128-bit

128-bit

1]
-

Valid Signal === Data Channel—

Figure 4.20: HW-Specified Post-BitPacking Adaptive System for Lightweight Integer Data
Compression.

satisfy the priority condition 3 of CSelector. In this case, the one and two DMA-based
HW-Specified Post-BitPacking Adaptive System meets the timing at 200MHz, it goes down to
100MHz for the three DMA-based design (see Figure 4.21). Hence, we do not go for four
DMA-based design implementation for the HW-Specified Post-BitPacking Adaptive System.

128-bit 128-bit 128-bit

128-bit { Data Channel 128-bit { Data Channel—
4 + 1 ———————9¢ Val i

i Data Channel—}

128-bit

128-bit 128-bit 128-bit

————

Ty

DMA _1 200 Mtz

DMA 2 200 MHz

DMA_3 100 MHz

Figure 4.21: Different #DMA Based Hardware Designs for HW-Specified Post-BitPacking
Adaptive System.

Chapter 4 Adaptive Lightweight Compression System 62

4.4 EXPERIMENTAL EVALUATION

In this section, we experimentally analyze the behavior regarding compression
throughput(GB/s), resource consumption(%) and power dissipation(W) based on a
combination of three-dimensional instances on the targeted hybrid CPU-FPGA system.
More precisely, most of the evaluations are based on Zynq UltraScale+™ hybrid
CPU-FPGA system. The combination of three-dimensional instances shown in
Figure 4.22. The three-dimensional instances are based on data characteristics,
compression system implementation categories, and data channels. That means we have
evaluated different data characteristics oriented synthetic datasets on different categories
of compression systems implementation based on the different number of data channels.
We have categorized the compression system implementation based on lightweight
integer algorithms into four types: physical-level, logical-level, cascaded, and adaptive.
Each of these implementation categories has sub-category implementations based on
a different number of available data channels of the main memory controller of our
targeted CPU-FPGA system. Each data channel is accessing a DMA to take control
over the CPU on main memory, and transfer data between main memory and PL part
custom-made compression system. Thus, in the remainder of this section, we call
such implementations DMA_1, DMA_2, DMA_3, DMA_4, whereby DMA_1, DMA_2, DMA_3, DMA_4
systems are accessing 1, 2, 3, 4 data channels of the main memory controller, respectively.
Therefore, this section is subdivided as follows,

e In Subsection 4.4.1, we define different data characteristics oriented synthetic
datasets.

e In Subsection 4.4.2, we evaluate the physical-level compression systems based on
different numbers of DMAs for the synthetic datasets.

e In Subsection 4.4.3, we evaluate the logical-level compression systems based on
different numbers of DMAs for the synthetic datasets.

e In Subsection 4.4.4, we evaluate the cascaded compression systems based on
different numbers of DMAs for the synthetic datasets.

o In Subsection 4.4.5, we evaluate different types of proposed adaptive compression
systems based on different numbers of DMAs for the synthetic datasets.

Implementation_Categories
A

Adaptived

Cascadedt

Logical_Level+

Physical_Level+

DO D1 D2 D3 D4

} > Datasets

#Data_Channels

Figure 4.22: The Combination of Three-Dimensional Instances for Experimental Analysis.

Chapter 4 Adaptive Lightweight Compression System 63

4.4.1 Data Properties Definition

We have prepared different characteristics of synthetic datasets for our exhaustive
experimental evaluations to observe the influence of various data properties over the
proposed different compression designs. We categorize synthetic datasets into five.
The data features description of the different datasets is shown in Table 4.2. The first
category dataset called D0 is based on the exact bitwidth of integer values. However, in
Subsection 4.2.2, we have mentioned that in the implementation of bitpacking the most
significant 8-bit of each output word is preserved for keeping the bitwidth of the largest
value of a block and the remaining 120-bit is used for keeping the compressed integer
values, whereby each output word is 128-bit wide. Thus, in our implementation, a
maximum of 30-bit wide integer values can be processed. Therefore, we have prepared
60 exact bitwidth based datasets from 1-bit to 30-bit. Among 60 datasets 30 datasets are
sorted and 30 are unsorted called D0_sorted and DO_unsorted, respectively (see Table 4.2).

The next category dataset is called D1, which consists of sorted data, and the data is
distributed by different numbers of distinct consecutive integer values. This kind of
dataset is suitable for RLE algorithm. For instance, a D1 category dataset called Dist_15
defines that the dataset is distributed by 15-bit bitwidth based distinct consecutive integer
values.

Afterward, we prepared ratio-based different bitwidth oriented datasets called D2 and
D3, whereby D2 dataset is distributed by 90% small and 10% big integer values, and
D3 dataset contains 50% small and 50% big integer values. In Subsection 4.4.2, we have
defined the small and big integer values based on our evaluation results. In D2 and D3
datasets, we have considered sorted and unsorted categories. Therefore, D2 and D3 have
the sub-categories D2_sorted, D2_unsorted, D3_sorted and D3_unsorted (see Table 4.2).

Finally, we have prepared a block-wise distributed sorted and unsorted category dataset
called D4. This category dataset has mixed bitwidth based integer values. For instance,
a D4 category based dataset called Block_128 means 128 sorted, and 128 unsorted mixed
bitwidth based integer values are distributed alternately. Similarly, a D4 category based
dataset called Block_512 means 512 sorted, and 512 unsorted mixed bitwidth based
integer values are distributed alternately (see Table 4.2).

The size of each dataset is 128MB consists of 225 = 33,554,432 (in words: thirty-three
million, five hundred fifty-four thousand, four hundred thirty-two) uncompressed 32-bit
integer values.

Table 4.2: Different Categories Synthetic Datasets.

Datasets | Sorted | Data Properties

DO0_sorted Yes
DO0_unsorted No
D1 Yes #distinct consecutive integer values
D2_sorted Yes
D2_unsorted No
D3_sorted Yes
D3_unsorted No
D4 Both | block-wise sorted and unsorted mixed bitwidth based integer values

common exact bitwidth based integer values

90% small integer values and 10% big integer values

50% small integer values and 50% big integer values

Chapter 4 Adaptive Lightweight Compression System 64

4.4.2 Physical-Level Compression

DO0_sorted and DO_unsorted Datasets

20
—— DMA_1

3 15 —— DMA_2
2 —0— DMA_3
g/ —— DMA_4
§ 10 Compression Ratio
%‘3 [o S SV
£ 5 e
H

0 |

| | |
1 23 456 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
BW(BitWidth)

Figure 4.23: Throughput Analysis for CBP Compression Systems based on Different
#DMAs (Average over 5 runs).

We have started our evaluation with the physical-level compression systems based on
different numbers of DMAs for D0 category datasets as illustrated in Figure 4.23. As
BitPacking is compressing data at bit-level, it does not matter whether the data is sorted or
not sorted. Therefore, same throughput effects were found on D0_sorted and DO_unsorted
in all CBP compression systems (see Figure 4.23). In Figure 4.23, a symmetric throughput
of 3.8 GB/s (for the largest value bitwidth of 1- to 15-bit) and 1.9 GB/s (for the largest
value bitwidth of 16- to 30-bit) has found at DMA_1, whereby these are the read and
read-write throughput of any custom-made AXI channel based hardware, respectively.
It defines three points:

@ The latency of the CBP hardware depends on read/write-operations not on
compressing the values.

@ As the bitwidth increases, the compression ratio decreases, and after bitwidth
15-bit the compression ratio is ~1 (see the Compression Ratio curve of DMA_1 in
Figure 4.23).

3 Asthe throughput decreases above 15-bit, we have defined (<15)-bit bitwidth based
integer values as small values and (>15)-bit bitwidth based integer values as big
values.

Point number Q) defines, after bitwidth of 15, the compression rate is approximately
1 as both input and output words contain almost equal number of values. The other
hardware designs have achieved improved throughput compared to DMA_1 as the values
are evenly distributed among the multiple CBPs for parallel compression which increases
the throughput, except DMA_3 which provides mostly the same throughput as DMA_2. The
reason is, BitPacking compresses values per block basis, whereby the block size is always
even and divisible by the power of 2. In DMA_3, data for compression is not evenly
distributed, as it has an odd number of data channels. However, the throughput behavior
in the other designs per bitwidth is not symmetrical as DMA_1. The reason is, multiple
DMAs interact with the main memory controller in a round robin fashion. That means
while one DMA is ready to interact, the main memory controller may be busy with others,
which affects the throughput [LUH ™ 18a].

Besides throughput, the other evaluation metric is hardware resource consumption. In
this case, we have considered two types of Zynq UltraScale+™ FPGAs, i) ZCU102, ii)
Ultra96. Ultra96 is a smaller version FPGA board in terms of resources than ZCU102.
We have chosen both FPGAs to see the effects regarding resource consumption, power
dissipation, and timing (see Table 4.3). In both FPGAs, resource consumption and power

Chapter 4 Adaptive Lightweight Compression System 65

Table 4.3: Resource Utilization and PL Part Frequency Analysis for CBP Compression
Systems based on Different #DMAs.

ZCU102 Ultra96
#DMA LUTs(%) FFs(%) Power(W) Freq(MHz) #DMA LUTs(%) FFs(%) Power(W) Freq(MHz)
DMA_1 4.48 2.09 3.709 250 DMA_1 1742 8.12 2.724 250
DMA_2 8.79 4.06 3.915 250 DMA_2 34.10 15.79 2.829 200
DMA_3 1293 5.96 4.110 250 DMA_3 50.13 23.15 2.882 150
DMA_4 17.09 7.85 4.331 250 DMA_4 66.25 30.48 2.848 100

dissipation increase as the number of DMA increases. Ultra96-based implementations
have less power dissipation and more resource consumption than ZCU102-based
implementations. It happens because ZCU102 has four times more hardware resources
in terms of transistors per logic function than Ultra96. As a result, for a specific logic
function implementation on both FPGAs, on average, Ultra96 requires more hardware
resources compared to ZCU102. The power dissipation analysis, especially based on
the specific design resource usage on top of overall resources. Thus, as Ultra96 has
less number of overall hardware resources than ZCU102, Ultra96 consumes per design
less power dissipation compared to ZCU102. However, unlike ZCU102, Ultra96-based
implementations do not meet the timing at 250 MHz except DMA_1. Therefore, working
on Ultra%96 is productive, as all designs fit on it resource-wise, and it consumes less energy
than ZCU102. However, Ultra96 can not meet the timing at 250 MHz in all design cases,
which reduces the throughput drastically. Moreover, optimum throughput is the main
focus of this thesis. Thus, in the rest of our evaluation, we do not consider Ultra96.

2 118

Resource Utilization(%)

DMA_1 DMA_2 DMA_3 DMA_4

B LUTSs Utilization (%) B FFs Utilization (%)

Speed up

Figure 4.24: Comparison Between Speed up and Resource Utilization for CBP
Compression Systems based on Different #DMAs.

In Figure 4.24, we show the trade-off between resource consumption and speed up of the
CBP designs. Based on that our observations are as follows,

e The resource consumptions are linearly increasing DMA-wise.

e The speed up is linearly increasing with a break down in DMA_3 compared to DMA_2
due to non-even data distribution.

e DMA_4 speeds up to 1.9x. Hence, DMA_4 is the best design for the physical-level
compression system.

e The best design of the physical-level compression system provides the maximum
throughput with maximum hardware resources consumption.

e The throughput acceleration of the physical-level compression system depends on
bitwidth of integer values and different #DMAs in terms of #data channels of the
main memory controller.

Chapter 4 Adaptive Lightweight Compression System 66

4.4.3 Llogical-Level Compression

(a) CDelta for DO_sorted (b) CFOR for DO_unsorted

7 DBw.s Bee ol 7| BBw_s - I
w EBWJO i uhh w EIBWJO Irl 1] nlh
E OBw 15 pin n :I . a OBw 15 Jpn nhh i
O 6 -] 1 gy O 6 - Jpn alih i
= 'Bw 20 pln nf hig = 'Bw 20 S it i
5 nin (11N U] =1 S nhh iR
Q. BBw 25 ln uhl nfy aQ, BBw 25 10 ol i H
= n 1 nlh U1] < n " 14 1]
ob 5 [-| £ BW_30) 1 i § ob 5 || £BW_30 i g ¢ g
5 in nlh 1 5 S il B
] pin nh hgy o o i :I B
< (an 1" I| hgp = g nhh i h
= 1 nlh gy = 1 104 150
4 . :I il it :| i :r 41 :I il :I 0 :I :I
Iﬁl’“llll i ni g IHH:II:I g i :I B
DMA_1 DMA_2 DMA_3 DMA_4 DMA_1 DMA_2 DMA_3 DMA_4

Figure 4.25: Throughput Analysis for (a) CDelta, (b) CFOR Compression Systems based
on Different #DMAs (Average over 5 runs).

CDelta and CFOR Compression Systems

In the evaluation of the logical-level compression system, we have started with the
different numbers of DMA-based CDelta and CFOR compression systems for D0_sorted
and DO_unsorted category datasets as illustrated in Figure 4.25, respectively. In this case,
we have considered the 5-, 10-, 15-, 20-, 25- and 30-bit bitwidth based D0_sorted category
datasets for CDelta and DO_unsorted category datasets for CFOR. During evaluation,
bitwidth-wise almost equal throughput was found in all design cases. The reason is,
CDelta and CFOR generate an equal number of input and output words as Delta and
FOR are compressing values in value-level. As a consequence, there is almost equal
throughput on different bitwidth based datasets. DMA-wise throughput improvement
has been achieved in both cases. However, in both cases, DMA_2 and DMA_3 have given
almost equal throughput and, in DMA_4 throughput goes down, as expected.

Table 4.4 shows the resource consumption for the different numbers of DMA-based
CDelta and CFOR compression systems. As the logic of Delta and FOR is very simple
compared to Bitpacking, they consume very little resource and power compared to CBP.
However, all designs meet the timing at 250 MHz.

Table 4.4: Resource Utilization and PL Part Frequency Analysis for (a) CDelta, (b) CFOR
Compression Systems based on Different #DMAs.

(a) CDelta (b) CFOR
#DMA LUTs(%) FFs(%) Power(W) Freq(MHz) #DMA LUTs(%) FFs(%) Power(W) Freq(MHz)
DMA_1 2.28 1.76 3.678 250 DMA_1 2.92 1.79 3.703 250
DMA_2 4.30 3.40 3.843 250 DMA_2 5.58 3.47 3.887 250
DMA_3 6.20 4.96 3.977 250 DMA_3 8.12 5.07 4.067 250
DMA_4 8.12 6.53 4.183 250 DMA_4 10.67 6.66 4.252 250

In Figure 4.26, we show the trade-off between resource consumption and speed up of the
CDelta and CFOR designs. Based on that our observations are as follows,

e In both cases, the resource consumptions are linearly increasing DMA-wise.
o CDelta speeds up to 1.78x at DMA_2 (see Figure 4.26(a)), whereas, CFOR speeds up to

1.87x at DMA_3 (see Figure 4.26(b)).

Chapter 4 Adaptive Lightweight Compression System 67

(a) CDelta (b) CFOR

2] 110 2 ‘ N

B B

g 18 g

b b

& § 56 5 5
g 5 3 6 35
n 8 n 1.4 N 8
= 4 =

=] H =

2 12 e) 2

o o

1 0
DMA_1 DMA_2 DMA_3 DMA_4 DMA_1 DMA_2 DMA_3 DMA_4

| B LUTs Utilization (%) B FFs Utilization (%) === Speed up | | B LUTs Utilization (%) H FFs Utilization (%) Speed up |

Figure 4.26: Comparison Between Speed up and Resource Utilization for (a) CDelta, (b)
CFOR Compression Systems based on Different #DMAs.

e DMA_2is the best design for the CDelta compression system. On the other side, DMA_3
is the best design for the CFOR compression system.

e In both cases, the best design does not consume maximum hardware resources.

e Throughput acceleration of CDelta and CFOR compression systems are bitwidth
independent, but they depend on the different #DMAs.

CRLE Compression Systems

In Figure 4.27, we have considered two different categories of datasets for CRLE
compression systems throughput analysis, i) RLE algorithm compatible with D1 dataset
and ii) RLE algorithm not compatible with DO_unsorted category dataset. During
evaluation, the RLE compatible dataset D1 has accelerated 6.9 GB/s on average
throughput at DMA_3. On the contrary, the D0_unsorted dataset which is not RLE
algorithm compatible has accelerated 4 GB/s on average throughput at DMA_4. In both
category datasets, bitwidth-wise throughput effects are almost the same as RLE does not
compress values at bit-level. Table 4.5 shows the resource<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>