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ABSTRACT 

A new primary torque control concept for hydrostatics mobile machines was introduced in 2018 [1]. 

The mentioned concept controls the pressure in a closed circuit by changing the angle of the hydraulic 

pump to achieve the desired pressure based on a feedback system. Thanks to this concept, a series of 

advantages are expected [2]. However, while working in a Y cycle, the primary torque controlled wheel 

loader has worse performance in efficiency compared to secondary controlled earthmover due to lack 

of recuperation ability.  Alternatively, we use deep learning algorithms to improve machines’ 

regeneration performance. In this paper, we firstly make a potential analysis to show the benefit by 

utilizing the regeneration process, followed by proposing a series of CRDNNs, which combine CNN, 

RNN, and DNN, to precisely detect Y cycles. Compared to existing algorithms, the CRDNN with bi-

directional LSTMs has the best accuracy, and the CRDNN with LSTMs has a comparable performance 

but much fewer training parameters. Based on our dataset including 119 truck loading cycles, our best 

neural network shows a 98.2 % test accuracy. Therefore, even with a simple regeneration process, our 

algorithm can improve the holistic efficiency of mobile machines up to 9% during Y cycle processes 

if primary torque concept is used.   

Keywords: Mobile machines, Y cycle detection, Deep learning, Power management, Hydrostatics,  

Primary torque control 

1. INTRODUCTION 

A new primary torque control concept for 

hydrostatics mobile machines was introduced in 

2018 [1] and after that, a series of further 

development has also been made [2]. To date, 

there are two kinds of mature torque control for 

hydrostatic drivetrain solution. Unlike the 

secondary control concept that typically has one 

or more hydraulic accumulators to build up a 

constant pressure and controls the output torque 

by adapting the angle of hydraulic motor, the 

primary torque control concept controls the 

pressure in a closed circuit by changing the angle 

of the hydraulic pump based on a feedback 

system but without accumulators. Although there 

are many advantages, primary torque control also 

has a disadvantage compared to secondary 

control. While working in Y cycles, which is a 

typical working process for wheel loaders, 

secondary control shows an excellent system 

efficiency even with a simple operation strategy 

due to its recuperation ability. Without hydraulic 

accumulators, recuperation is no more possible in 

a conventional vehicle that has only a combustion 

engine as its power source, resulting in a lower 

system efficiency for primary torque controlled 

mobile machines. Thus, an intelligent operation 

strategy is needed for primary torque control to 

improve regeneration performance to 

compensate for its disadvantage due to the lack of 

recuperation ability during a Y cycle. Concretely, 

we use deep learning algorithms to detect Y 

cycles so that that a current working-process-

based operation strategy for primary torque 

control that can be implemented to improve 

system efficiency. Apparently, the success of this 

strategy highly depends on the accuracy of 

individual working process identification. In this 

paper, we will focus on the Y cycles detection 

algorithms. In order to reveal the benefit, we 
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make a potential analysis of regeneration process 

during Y cycles.  

2. BACKGROUND 

2.1. Wheel loader 

The wheel loader is a typical mobile machine 

used for moving earth. A typical working process 

is the so-called Y cycle. Concretely, the machine 

digs the heap and transfers the soil to a truck. 

During this process, the machine is usually 

driving in a trajectory similar to a letter Y. 

Figure 1 illustrates this cycle.  

 

Figure 1: A typical truck loading process (Y cycle) 

2.2. Primary torque control 

Murrenhoff has drawn a rule in [3] to classify the 

different kinds of control concepts, and concrete 

details are shown in Figure 2. 

Figure 2: Segment of control concepts [3] 

One significant advantage of primary torque 

control is its high efficiency due to the successful 

introduction of central power management.   The 

basic idea of central power management derives 

from the requirement that the power made 

available to the system should be precisely the 

same as the power consumed by the system. 

Besides, in case of power shortage, power 

management will cut down the power supply to 

the devices which have a lower priority [1].   

To follow this basic idea, every component will 

compute the energy it requires first, and then the 

center power manager gathers the information, 

compares it with the disposable power of power 

source, and distributes the power to each 

requester [1].      

On hydrostatic mobile machines, there is no 

restrain condition between engine rotation speed 

and vehicle speed. Thus, optimization of engine 

efficiency is possible. Generally, the engine 

speed is set to as low as possible considering the 

requested vehicle dynamics.  

2.3. Operation strategy 

As aforementioned, a primary torque based wheel 

loader without a hydraulic accumulator cannot 

recuperate the energy. 

In order to increase the efficiency of our 

system, we use the regeneration method. Instead 

of using an additional component, we use our 

implement to regain the energy. Concretely, we 

transform the kinetic energy of earthmover to 

potential energy of the material in the shovel. By 

the time when the machine decelerates in the 

truck loading cycle, the hydraulic motor is 

working as a pump and transfers the energy to lift 

the shovel.  As a light of that, instead of losing 

this energy, our operation strategy uses this 

energy to accelerate the pump for implements on 

mobile machines.    

2.4. Working process detection algorithms 

Many scholars are interested in utilising machine 

learning to improve mobile machines regarding 

efficiency, maintenance, and usability. Especially 

in the field of working process detection, a series 

of methods have been drawn.  Pohlandt has used 

two simple neural networks to predict and 

recognize the desired work process separately on 

electrical mobile machines [4]. According to his 

publication, he splits the time series of measured 

power into many small slip windows to train the 

simple neural networks. In his research, he found 

out neural networks might work for some simple 

cases [4]. Another research is from Brinkschulte 

who points out that the prediction accuracy with 

bagged trees may dramatically decrease when the 

drivers have different driving skills [5]. Besides 

machine learning algorithm, research by Nilsson 

introduced a method that combined several 

individually simple techniques including signal 

processing, state automation techniques, and 

parameter estimation algorithms. Based on 159 

cycles, the accuracy is 93% [6]. In 2019, Keller 

made a case study for an excavator to classify the 
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machine functions using decision tree with an 

accuracy of 99.97% without using slip windows 

[7]. In addition, Starke shows that Y cycle can be 

online recognized with hidden Markov Models 

(HMM) since HMM was widely used within the 

context of word recognition to deal with the 

temporal variability of text or speech [8, 9], 

before 2012 [10]. Also, he pointed out that truck 

loading is a high variance problem and a simple 

algorithm should be used owing to the limited of 

on-board ECU [8].  

3. PROBLEM STATEMENT 

Based on our dataset and previous studies, we 

summarize the problems faced in this research.  

First of all, the detection of arbitrary Y cycles 

is a high variance problem. Y cycles are different 

from site to site. The distance between heap and 

truck can be quite different. Moreover, drivers are 

also different. Some drivers have many years of 

driving experience, and thus have become more 

aggressive. By contrast, some drivers are still 

novices who correct themselves during some 

processes. Last but not least, the materials for 

transport are different. Therefore, a complicated 

method is needed to handle the high variance. 

Another problem is the limitation of the 

computing capacity of the ECU on mobile 

machines. Backpropagation consumes more CPU 

than forward propagation; thus, online learning 

usually entails the adoption of a swallow neural 

networks or an efficiency well-known machine 

learning algorithm, such as support vector 

machine (SVM). Consequently, less intelligent 

learning ability is expected. As a light of that, we 

dedicate to find an off-line method. Since a 

simple algorithm might not be really good for 

dealing with high variance problems, scientists in 

the fields of Natural language processing (NLP) 

usually use algorithms that combine many 

technologies. In the case of HMM, vocal tract 

length normalization (VTLN) and feature-space 

maximum likelihood linear regression (fMLLR) 

are used before HMMs [11]. Neural networks 

should also be combined together [12]. 

4. WHY WE USE RNN, LSTM? 

The initial idea to use long short-term memory 

(LSTM) is inspired by analogy. Recurrent neural 

network has been proven to be a powerful tool in 

the fields of NLP in the past years [10]. One of 

the significant progress is the introduction of 

LSTM [13, 14]. More details about LSTMs can 

be found in [15]. In western countries, clauses are 

used extensively in writing, making sentences 

extremely and differently long. Splitting the 

sentence into many words and using a simple 

deep neural network (DNN) with a certain 

number of input layer units, the translation 

performance is usually unsatisfied. Intuitively, 

different lengths of sentences make the selection 

of numbers of input units difficult. A deeper 

reason lies in the fact that, the simple neural 

network does not take the sequence of words 

appearing in the sentence into consideration. 

With limited input units, simple neural networks 

can only detect the current situation based on a 

specific past period. If the decisive information 

occurred a long time ago, the artificial 

intelligence (AI) must make its decision based on 

somewhat useless information causing no wonder 

a detection mistake. To overcome this problem, 

LSTM uses update and forget gates to make a 

shortcut for the vital information to help with the 

current decision.  Akin to complicated sentences 

with clause, Y cycles can have very different 

lengths due to its transport process or workers of 

different proficiency. As a light of that, LSTM 

shall solve this principally similar challenge.  

Since our goal is using AI algorithm to detect 

the working process and thus improve the 

efficiency of mobile machines by regenerating, 

“future” information can be used to increase the 

detection accuracy. Generally, earthmover is first 

be accelerated in reverse direction and then 

decelerated after digging into a heap. The 

duration here implies that even though the 

algorithm does not recognize directly at the time 

Y cycle begins, it does not harm the regeneration 

performance as long as it detects the Y cycle 

slightly before the deceleration process. 

Therefore, we also use bi-directional LSTM to 

improve prediction accuracy. 

Similar to HMM that may use some additional 

technologies to improve its performance, LSTMs 

also have better performance if convolutional 

neural networks (CNNs) and DNNs are 

cooperating together [16–18]. The advantages of 

the combination of CNNs, RNNs, and DNNs, 

which we call CRDNN in this paper, are shown 

in the next section. 
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5. POTENTIAL ANALYSIS OF 
REGENERATION PROCESS 

In this section, a potential analysis is made to 

show how much energy we can regenerate from 

the vehicle under the assumption that our 

detection algorithm works 100% well, and the 

regeneration process works perfectly. A study 

mentioned that vehicle energy is difficult to reuse 

due to the high rolling friction by mobile 

machines [19]. However, according to our 

observation, most of the experienced drivers 

flatten the pavement using shovel as a warm-up 

process. With the preliminary process, they 

reduce the road roughness to have better driver 

comfort. Obviously, it also reduces the rolling 

friction and thereby makes the recuperation or 

regeneration possible.  

Concretely, we build a wheel loader in 

Simscape [20] to simulate Y cycles. The 

interactions of vehicle mass, vehicle velocity, 

material mass, and the friction coefficient are 

studied. Based on our results, the regeneration 

process can increase system efficiency by about 

9% in general. More details will be found in our 

other paper. In our simulation, we set the 

parameters based on the real vehicle and 

environment data, see Table 1 

Table 1: Parameters of the vehicle and 

environment  

Cylinder parameter Value [m²] 

Vehicle mass  10 t 

Materials mass  4 t 

Rolling friction coefficient [0.01 0.05 0.3] 

Pump loss coefficient 0.8 

Motor loss coefficient 0.8 

Mechanical loss coefficient 0.98 

6. DEEP LEARNING ALGORITHM 

As aforementioned, we use a series of neural 

networks to recognize Y cycles. For the sake of 

simplification, we can say that artificial 

intelligence is a scientific method for recognizing 

pattern based on the data with which it has been 

trained. However, truck loading cycles can be 

quite different from each other regarding 

traveling length between heap and truck, driver's 

 

Figure 3: Normalized measurement data with label 
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skill level, materials, and the dimension of mobile 

machines. The training of an end-to-end neural 

network needs a vast dataset, which is still a cost-

challenging task today. Instead, we proposed a 

multi-step approach to detect truck loading 

cycles. Instead of predicting the Y cycle directly, 

we firstly predict the loading, the traveling, and 

the unloading processes since much less data is 

required for training. Furthermore, after neural 

networks output its prediction, we might use a 

modification measure to avoid obvious mistakes. 

As a light of that, we divide our processes into 

three sub-processes: vehicle travels, loading, and 

unloading. 

As we mentioned before, we would like to use 

a more complicated and therefore smarter neural 

network so that we adopt the off-line learning 

method to avoid the time-consuming 

backpropagation. 

6.1. Data acquaint and allocation 

Data is the heart of deep learning.  We split the 

dataset into training and test data set, 80% and 

20%, respectively. Besides, we consciously 

selected three different drivers and did the 

measurement in different days. Some 

measurements were done on a rainy day so that 

the density of material changes. Moreover, we 

changed the position of heap and truck to vary the 

length of the Y cycles. The test drivers were not 

given the information about what we were going 

to do so that they would behave the same in their 

daily operations. In short, we consciously 

increased the diversity of our dataset and tried to 

include more challenging cases in our dataset.  

The data we fed into the neural networks were 

selected from the typical sensors on primary 

torque controlled mobile machines. Concretely, 

there are pressure difference inside of the bucket, 

vehicle velocity, vehicle direction signal on 

joystick, pressure difference inside of closed-

circuit drivetrain, and driver drive pedal. The 

sample rate is 50Hz so that we will not overload 

ECU. 

Totally, we have created a dataset with 119 Y 

cycles. 40 of them are gathered from an 

experienced test engineer, 30 of them are from a 

development engineer who has aggressive drive 

behavior, 20 of them are collected when the 

machine was not well tuned, 29 of them are 

measured by a senior manager who works many 

decades in the field of mobile machine. None of 

the data is collected by a complete layman since 

we do not think it makes sense. Notice that we 

have allocated the data collected as the machine 

with insufficient calibration process into training 

dataset since it can improve the robustness of our 

algorithm but not affect our test accuracy. The 

measurement dataset is labeled as shown in 

Figure 3. In the real world, the data is often not 

perfect. That is, some people may mislabel a tiny 

portion of data. Therefore, we deliberately 

labeled some windows as travels through it is 

actually a loading or unloading process to check 

the robustness of our algorithms. 

Apparently, the variable pressure inside of 

bucket and vehicle velocity indicates a very 

strong seasonally. The pressure inside of closed-

circuit implies the behaviors of a loading process. 

Moreover, the signal on joystick demonstrates the 

state change. Solely based on these variables, an 

experienced test engineer can tell whether the 

mobile machine is loading or unloading with 

almost 100% accuracy.  Without a doubt, a deep 

learning model can take over the job to detect Y 

cycles. However, in the measurement data we 

have, the Y cycle is not always so regular. For 

instance, one Y cycle does not always begin with 

a loading process, followed by an unloading 

process. The driver might think he has loaded too 

small amount of load so he comes back after a 

small reversing process and digs into the heap 

again. It happens when the driver is not so skilled 

or is mistaken. Such a case increases the 

difficulties of detecting the truck loading process 

by deep learning. 

6.2. Data preparation  

The measurement data were not pre-treated by 

human observation depending on the dataset 

before fed into neural networks even we agree a 

pre-processing can surely increase the accuracy 

of prediction. The reason for that is we are 

worried about the pre-processing may exaggerate 

the performance of neural network since some 

pre-processing are almost impossible in reality. 

Therefore, we did use the non-adaptive method to 

prepare the dataset: only a first-order system is 

used to smooth our data. After that, the dataset 

will be split into small slip windows. If the size 

of time windows is 10 sample times, the events in 

the past 2 seconds are taken into consideration 

since our sample frequency is 50Hz. Slip 
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windows are used for avoiding the influence of 

data too long ago.  

The measured data is normalized before 

training since we want to avoid one single 

variable that has too much influence on each 

gradient descent step. As a result of that, the cost 

function's shape changes into a more spherical 

one rather than a high curvature ellipse one.  

Besides, the labeled date is converted into one 

hot vector to have the same categorical value, as 

shown in equation 1,  

𝑌(1) = [0 1 0]  (1) 

which demonstrates that the 1st sample is labelled 

as loading. 

In our dataset, 11.62% of all working time is 

in the loading process, and 7.86% is in the 

unloading process. Obviously, our dataset for 

truck loading process is skewed. That means, 

even if we always predict that we are neither in 

loading nor unloading process, we have a test 

accuracy at about 80%. To avoid it, we should use 

confusion matrices and micro average F1 scores 

to evaluate the performance of our algorithm. 

Based on an exploratory training, the training cost 

without anti overfitting goes down to an 

extremely low level while the test cost goes firstly 

down and then explodes up. This indicated that 

our dataset has well considered the variance of Y 

cycle in different cases. 

7. COMBINED NEURAL NETWORKS 

To have a better detection performance, we take 

the advantages of combined neural networks, 

CRDNNs. We are going to explore the 

combination of CNNs, RNNs, and DNNs in this 

section. They all have limitations so that we 

believe that combined neural networks can be 

complementary for the disadvantages of each 

other. For example, LSTMs are good at temporal 

modelling while they cannot have a more 

significant number of hidden layers.  

As shown in Figure 4, we use one one-

dimensional convolutional neural network 

(conv1D) at the beginning to provide better 

features for LSTMs. It is followed by two DNNs 

to reduce the dimension of the output of CNN. 

Further, we add two LSTMs since it is considered 

as an excellent tool for many time series 

 

Figure 4: Detailed description of CRDNN with two LSTMs 
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applications. At the end, two DNNs are used to 

increase nonlinear hidden layers and thus 

increase the prediction performance by making a 

deeper mapping. The core of LSTMs is the 

update and forget gate to handle the long and 

short term data. Equation 4 demonstrates the 

idea. 
 

{
 
 
 

 
 
 
𝑐̃〈𝑡〉 = 𝑡𝑎𝑛ℎ(𝑊𝑐[𝑎

〈𝑡−1〉, 𝑥〈𝑡〉 ] + 𝑏𝑐)

Γ𝑢 = 𝜎(𝑊𝑢[𝑎
〈𝑡−1〉, 𝑥〈𝑡〉 ] + 𝑏𝑢)

Γ𝑓 = 𝜎(𝑊𝑓[𝑎
〈𝑡−1〉, 𝑥〈𝑡〉 ] + 𝑏𝑓)

Γ𝑜 = 𝜎(𝑊𝑜[𝑎
〈𝑡−1〉, 𝑥〈𝑡〉 ] + 𝑏𝑜)

𝑐〈𝑡〉 = Γ𝑢 ∗ 𝑐̃
〈𝑡〉 + Γ𝑓 ∗ 𝑐

〈𝑡−1〉

𝑎〈𝑡〉 = Γ𝑜 ∗ 𝑡𝑎𝑛ℎ 𝑐
〈𝑡〉

               (2) 

Generally, the learning ability is increasing as the 

number of hidden layers increase. However, 

more hidden layers result in much more training 

parameters that may be a heavy load for vehicle 

ECU. In this section, we evaluate the CRDNNs' 

test accuracy regarding the hidden layer, the units 

in a hidden layer, and time windows.  

Theoretically, LSTMs do not need a slip window. 

However, we need to avoid the data before a 

disruptive event, such that the driver stops the 

vehicle to relax for a while, which affects the 

prediction performance. Therefore, we also use 

the slip windows for CRDNN. The window size 

can affect the performance of neural networks 

since a larger window size allows the neural 
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Figure 5: Training- and test costs versus epochs 
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networks considered a more extended period to 

make the decision.  

Since we want to know which model has the 

best test accuracy and which one has a good test 

accuracy but with fewer training parameters, we 

show the different performances of different 

architecture with different window sizes. We 

supervise the training- and test costs over epochs 

and stop the optimization process when there is a 

noticeable tendency that test cost increases. The 

training cost versus iteration of different neural 

networks is shown in Figure 5. For example, in 

the case of CRDNN with 2 LSTMs that is fed the 

data with a window size of 9, we stop the iteration 

at epoch 60. 

To find out the suitable hyper-parameters of 

neural networks, we analyze the weights of each 

layers of neural networks. However, while people 

recognize the working process mainly by 

watching the pressure inside of bucket, CRDNNs 

do not pay too much attention to this variable 

since the absolute value of weight for it is no 

considerably larger than the others. 

As shown in Figure 5, the cost goes down to a 

certain level and then fluctuates if the 

regularization and drop-out method are used. 

Notice that the cost with anti-overfitting methods 

is higher since we use the regulation method: it 

does not mean the accuracy is worse than the one 

without anti-overfitting methods. Also, we add 

weight to the cost function. The weight can avoid 

a certain kind of error by recognizing. For 

instance, if the weight on loading is higher than 

the weight on the traveling process, the 

optimization process will take more attention to 

avoid the errors on loading rather than on the 

traveling process. Formally, see equation 2. 

𝐽(𝜃) =
1

𝑚
∑∑[−𝑦𝑘

(𝑖) log ((ℎ𝜃𝑥
(𝑖))

𝑘
)

𝐾

𝑘=1

𝑚

𝑖=1

 

         − (1 − 𝑦𝑘
(𝑖)) log (1 − (ℎ𝜃𝑥

(𝑖))
𝑘
)]𝑤𝑘      (3) 

     +
𝜆

2𝑚
[∑∑(𝜃𝑗,𝑘

(1))
2

32

𝑘=1

32

𝑗=1

+∑∑(𝜃𝑗,𝑘
(2))

2
32

𝑘=1

3

𝑗=1

] 

Obviously, compared to the cost function without 

regularization, the regularization might increase 

the total value of cost function. The 𝑤𝑘 denotes 

the weight of k state. In our case, we recommend 

setting the weight as 

𝑊̃ = [1 4 7]𝑇  (4) 

Since rectified linear unit (ReLu) has a 

constant gradient if the X>0, we use ReLu as 

activation function so that the calculation effort 

can be reduced and thereby converging or 

learning much faster. 

The Hyper-parameters we used are shown in 

Table 2. 

Table 2: Parameters of CRDNN 

Hyper-parameters Value  

Window size (ws) [9, 15, 25] 

Batch size  128 

Learning rate 1× 10−4 

Num filter conv1D 10 

Kernel size 5 

Num units 1st layer (RNN) 32 

Num units 2nd layer (RNN) 32 

Num units 1st layer (DNN) 32 

Num units 2nd layer (DNN) 32 

 

Generally, we shall use the F1 micro average to 

evaluate and select the best suitable architecture.  

Nonetheless, since we are going to implement an 

operation strategy based on the learning 

algorithm later, the F1 score alone does not 

indicate whether a result is easy to correct or not, 

so we also use confusion matrices to evaluate the 

results, see Figure 6, where the abscissa indicates 

the predicted value and the ordinate indicates the 

ground truth label. 𝑒0 , 𝑒1 , 𝑒2  denote the 

travelling process, the loading process, and the 

unloading process appropriately. The F1 score is 

used as a subordinate criterion to select the better 

overall performance solution. Obviously, the 

CRDNN with two bidirectional LSTMs has the 

best performance, which is similar to our 

assumption, with an overall accuracy at 98.5%. 

Compared to simple DNNs, CRDNN has an 

improvement of about 3%. Bidirectional LSTMs 

make the decision using a relatively more 

prolonged-time period and can consider the data 

after the event so with no doubt it has better 

accuracy. The improvement compared to DNN is 

because LSTMs are good at dealing with long 

term problems so that we can use a larger window 

size to fit into CRDNNs. Another potential 

architecture is CRDNN with two LSTMs, which 

is only slightly worse than the one with 

bidirectional LSTMs but the training parameters 

are much fewer. An additional advantage of 
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CRDNNs is that it has even fewer training 

parameters though it has a complicated 

architecture. Compared to the simple neural 

networks with two hidden layers and 128 units 

per layer, CRDNN with two layers of LSTMs has 

only 16,295 training parameters while the former 

has more than 30,000 training parameters, 

resulting in a much faster on-board calculation. 

8. EVALUATION OF THE METHODS 

As the results are shown in the last section, the 

improvement of test accuracy is almost stopped 

at 98.2%. To further improve the prediction 

accuracy, we draw out the place where our 

algorithm has made a mistake. 

As shown in Figure 7, we draw the ground truth 

and the mistakes made by CRDNN with two 

bidirectional LSTMs. The blue line denotes the 

ground truth label and the color points represent 

the place where CRDNN recognizes a different 

result as ground truth label and thus we say it 

makes a mistake.  Obviously, the mistakes mainly 

occur at the time when the machine changes its 

state from one to another. However, we can say 

that they are the states which are also 

controversial for humans to say whether the state 

should be loading, unloading, or travel since the 

features are vague in this region. When we further 

draw all the falsely recognized time windows, we 

found that almost all of the mistakes occur when 

the state is really fuzzy.  

 

Figure 7: Ground truth and prediction mistakes 
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Figure 6: Confusion matrices of CRDNNs 
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One exception is the windows around the 

2250th window in Figure 7, corresponding to the 

measurement data at 450 seconds, see Figure 3. 

As mentioned before, the time windows at 450 

seconds are the windows that we consciously 

mislabeled to the travel process. This proves that 

our CRDNN has a robust performance even if a 

few data is mislabeled. That is, the CRDNN with 

two bidirectional LSTMs accurately identified 

that the process is actually an unloading process 

rather than a travel process. Therefore, we believe 

that about 98% is the best number since different 

engineers define the ground truth differently with 

their plausible reasons. Moreover, although a tiny 

number of mislabeling might harm the test 

accuracy. However, it cannot affect the prediction 

performance of the CRDNN. 

9. CONCLUSION AND OUTLOOK 

In this paper, we have shown that CRDNN with 

bidirectional LSTMs has the best performance to 

detect the truck loading cycles, and the CRDNN 

with 2 LSTMs has the best performance-cost 

ratio if primary torque control concept is used. 

Because we use an offline learning strategy and 

the forward propagation is much faster than 

backward propagation, this method will not take 

up too much computational effort. By 

considering a period of 5 seconds, the test 

accuracy reaches 98.2%, and it never mistakes 

the loading process with the unloading process or 

vice versa, which makes the operation strategies 

easily to be implemented. Also, since we have a 

large dataset, a tiny mislabel could not harm the 

real performance of the CRDNNs. It is also 

worthy to point out that although CRDNN has 

only increased the test accuracy by 3%, it 

increases the most challenging 3%. As we 

mentioned before, we increase the difficulties by 

adding the data gathered when the drivers did not 

operate well. As a result of successful detection 

of truck loading process, our primary torque 

controlled wheel loader can increase its 

efficiency up to 9% due to regeneration process.  

The dataset and the code in this paper are also 

published on our Github website. 

https://github.com/XiangYusheng/IFK2020_Tru

ckLoadingProcessDetection_Xiang. 

9.1. Outlook 

Although the proposed deep learning algorithm 

can successfully handle the time series problem 

so as we can further improve the operation 

strategy of mobile machines, this method is 

challenging to predict the next process of mobile 

machines since truck loading cycles are quite 

different from the others. However, the Pandora’s 

box has not been fully opened yet. To achieve 

autonomous working mobile machines or further 

increasing work efficiency using artificial 

intelligence, the advantages of image recognition 

must be taken into account. With a camera, we 

can not only detect the current working process 

of mobile machines but also predict its intention. 

Consequently, power management can make 

better preparation.  

In our next paper, we are going to introduce 

the two-dimensional image detection method. 

The method proposed in this paper also provides 

the relevant information so that we can fuse them 

to produce even higher accurate classification or 

prediction results. A regret is that we did not 

spend much time optimizing the CRDNNs to 

detect truck loading processes due to the limited 

time. With further optimization, at least the 

training parameters can be reduced so that an 

even faster CRDNN can be expected. 
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