
A New Approach for Automated Feature Selection
Andreas Gocht , Christoph Lehmann, Robert Schöne

Center for Information Services and High Performance Computing (ZIH)
Technische Universität Dresden, 01062 Dresden, Germany

{andreas.gocht | christoph.lehmann | robert.schoene}@tu-dresden.de

Abstract—Feature selection or variable selection is an impor-
tant step in different machine learning tasks. In a traditional
approach, users specify the amount of features, which shall be
selected. Afterwards, algorithm select features by using scores
like the Joint Mutual Information (JMI). If users do not know the
exact amount of features to select, they need to evaluate the full
learning chain for different feature counts in order to determine,
which amount leads to the lowest training error. To overcome
this drawback, we extend the JMI score and mitigate the flaw
by introducing a stopping criterion to the selection algorithm that
can be specified depending on the learning task. With this, we
enable developers to carry out the feature selection task before
the actual learning is done. We call our new score Historical
Joint Mutual Information (HJMI). Additionally, we compare our
new algorithm, using the novel HJMI score, against traditional
algorithms, which use the JMI score. With this, we demonstrate
that the HJMI-based algorithm is able to automatically select a
reasonable amount of features: Our approach delivers results as
good as traditional approaches and sometimes even outperforms
them, as it is not limited to a certain step size for feature
evaluation.

I. INTRODUCTION

While more and more data is collected for machine learning,
validation and exploration of this data become increasingly
challenging. For example, neuronal networks need more
training data if the network is trained with more different
features. To tackle this challenge, two methodologies are used
in order to reduce the amount of features: Feature extraction
and feature selection [1, Chapter 6]. Feature extraction reduces
the amount of features by compressing their information.
In consequence, information density increases. Alternatively,
feature selection reduces the amount of features by selecting
only the most informative features. Therefore, if the collection
of feature data is expensive, or if the amount of features that
can be used is limited, feature selection is the better approach.
Let us consider two examples, one from the High Performance
Computing (HPC) domain and another more general one:

In the HPC domain, we collect performance data in form of
hardware performance monitoring counters (PMCs) [2]. PMCs
enable users to count events that occur in a processor and are
therefore suited to evaluate the performance of applications. An
example for such data is the number of executed instructions
or the number of Level 3 cache misses. The latter can be used
as an indicator for how often fetched data is not present in
caches but must be loaded from main memory. A high Level 3
cache miss rate indicates that the application can be memory
bound and is not able to utilize the full computing performance
of the processor. However, even though there are hundreds of

countable processor events, only a limited amount of counters
available to count these [3]. Therefore, a performance analyst
needs to carefully analyze and select which events he intends
to record. As the number of different events is too high for
manually evaluating all available events, an automated approach
for the selection would be helpful.

A more general example are production robots, which
incorporate sensors that ensure a correct behavior. Here, each
sensor increases the cost of the machine. Therefore, an engineer
might be interested whether the amount of sensors can be
reduced. This would be the case, if other sensors can provide
the information of the sensor that is to be removed. Again, this
is a classical task for feature selection, since it is interesting
how many features (sensors) are really needed.

Both tasks can be solved by using feature selection, but not
feature extraction. Therefore, we just consider feature selection
in this paper.

Feature selection itself is often distinguished in three
sections: embedded, wrapper, and filter methods [4]. The idea
behind embedded methods is to add and remove features in
order to minimize the prediction error of the whole learning
algorithm [4]. Especially in machine learning where tasks
have a long runtime, this approach is unpractical, as in theory,
each combination of features needs to be evaluated. Like
embedded methods, wrapper methods split data into training
and validation data. But instead of evaluating the prediction
error of the whole chain, wrapper methods are employed before
the learning algorithm is triggered [4]. Both, the embedded
and wrapper methods add hyperparameters to the optimization
chain of modern machine learning. In contrast, filter methods
employ the selection process before the actual learning is
done [4]. Therefore, the amount of experiments is reduced
significantly, as the features are chosen before the learning
algorithm is used. Most filter methods require the user to
specify the amount of features that the algorithm should select.
The amount of features to select can be evaluated based on
the error of the subsequent learning task: The lower the error,
the closer the optimal amount of features. Unfortunately, this
eliminates one main advantage of filter mechanisms. Especially
for deep learning tasks, this is not a good approach, where
the whole the network needs to be re-trained for each set of
features.

Resulting from this observation and the two examples
presented above, we infer the following properties for a good
feature selection algorithm:
• Automatic stopping after all informative features are selected

https://orcid.org/0000-0003-2760-3672

• Alternative stopping after an application dependent maximal
amount of features is selected

• No (re-)evaluation of the subsequent learning task
In order to implement such an algorithm, we extend the

well-known Joint Mutual Information (JMI) based feature
selection [5]. Our algorithm is capable of selecting the most
relevant features and stops once the information added does
not improve the quality of the result anymore. Moreover, it is
possible to specify an upper limit of features and our algorithm
is independent from any subsequent machine learning task.

The rest of the paper is organized as follows: Section II gives
a short overview about the theoretical background and related
work. In Section III, we explain our new feature selection
methods. Section IV presents our results in comparison with
JMI. Finally, we provide a summary and an outlook in
Section V.

II. THEORETICAL BACKGROUND AND RELATED WORK

In this section we summarize existing feature selection
scores and algorithms in order to establish the theoretical
background for our new approach, while Section IV focuses
on the implementation and evaluation of the new approach.

The target of all feature selection algorithms is to select
those features that provide most information about the class
they predict. Therefore, the most-used algorithms utilize scores
based on information theory.

A first approach in this direction was done by Lewis [6],
who used the Mutual Information (MI) as score for feature
selection. MI bases on entropy, cf. [7, p. 29] The entropy H
for a variable U is defined by:

H(U) = −
∑
u∈U

p(u) log p(u)

while u denotes the possible value from the variable U , and
p(u) denotes the relative frequency of u1. The conditional
entropy for a variable U depending on a variable V is defined
by:

H(U |V) = −
∑
v∈V

p(v)
∑
u∈U

p(u|v) log p(u|v)

while u and v denote the possible value for the variables U
and V .

As an example for further use, assume a classification task
where Y is a set containing different classes to be predicted.
Let X = {X1, X2, X3, ..., XK} be a set of K features. Now
we can calculate the MI:

JMI(Xk) = I(Xk;Y) = H(Xk)−H(Xk|Y)

for all k = 1, . . . ,K. A possible graphical representation of the
entropy and the MI is given in Figure 1. One of MIs properties
is I(Xk;Y) ∈ [0, 1], while I(Xk;Y) = 0 if Xk and Y are
statistically independent, i.e., Xk has no information about Y .
Moreover, I(Xk;Y) = I(Y ;Xk), cf. [7, p. 29].

For the description of the algorithm and for further use, let
l denote the number of most informative features, whereby

1Note that
∑

u∈U p(u) = 1.

H(Xk|Y)

H(Y |Xk)
I(Xk;Y)

H(Xk)

H(Y)

Figure 1: We can consider the entropy as the area of the circles,
while the circles themselves represents the different classes in
a feature. The Mutual Information, I(Xk;Y) is constructed
from the entropy, e.g., H(Xk), and the conditional entropy,
e.g., H(Xk|Y). The area marked by I(Xk;Y) represents the
information that is shared among the feature and the predicted
value Y .

l ≤ K. In order to select the l most informative features for
this task, the algorithm now calculates the MI score for all K
features, and rank them according to the score in descending
order. Finally, the algorithm collects l features with the largest
I(Xk;Y) into the set of selected features S.

The approach from Lewis was extended in different direc-
tions. For example, Yang and Moody used the Joint Mutual
Information (JMI) as score to avoid redundant information
between the selected features [5]. The JMI is based on the
Conditional Mutual Information (CMI). Let us consider the
CMI for Xk /∈ S, Y and an already selected feature Xj ∈ S,

I(Xk;Xj |Y) = H(Xk|Y)−H(Xk|XjY).

Note that the set S again contains all selected features. The
JMI is now defined as:

JJMI(Xk) =
∑
Xj∈S

(I(Xk;Y) + I(Xk;Y |Xj))

=
∑
Xj∈S

I(XkXj ;Y)

Figure 2 illustrates the score.
The algorithm proposed by Yang can be written as follows:

1) Calculate JMI(Xk) for all features in Xk ∈ X
2) Add the feature with the largest JMI(Xk) to S
3) Calculate JJMI(Xk) for all features Xk ∈ X\S
4) Add the feature with the largest JJMI(Xk) to S
5) Repeat 3) and 4) until |S| = l

The algorithm based on the JMI score has some advantages
over traditionally used approaches for feature selection. Yang
and Moody also show that it outperforms algorithms, which
are based on PCA or CCA when it comes to data that is not
Gaussian distributed. Furthermore, they demonstrated that four
features, i.e., l = 4, out of 20, i.e., K = 20, which are selected
by JMI, lead to a faster convergence of a neural network than
using all available features.

In a study of different information theoretic based feature
selection mechanisms, Brown et al. [7] recommended JMI as

Y

Xk

Xj

I(Xk;Xj |Y)

I(Xj ;Xk;Y)

I(Xk;Y |Xj)I(Xj ;Y |Xk)

Figure 2: The goal of JMI is to find a new feature Xk ∈ X
that maximizes the red marked area, together with the already
selected feature Xj ∈ S. Y represents the target class.

the best overall score for feature selection. They investigated
other scores like Conditional Mutual Information Maximization
or Mutual Information Maximization, but concluded that JMI
gives a good trade-off between stability and accuracy. Moreover,
they exposed the different feature selection mechanisms to a
subset of benchmarks from the NIPS 2003 Feature Selection
Challenge [8]. Brown et al. pointed out that the JMI-based
algorithm performs better than most other feature selection
methods. Therefore, we use JMI as base for our extension.

Hall [9] chose a conceptual different approach. He proposed
the so-called Correlation-based Feature Selection (CFS). To
calculate a score for currently selected features he used a
heuristic derived by Ghiselli [10]. The metric optimizes the
average feature-class correlation with respect to the average
feature-feature correlation. CFS uses a best-first search to add
features. Once the metric stops increasing, it drops back to
the next unexplored subset, and explores this subset. After a
specified number of steps, the search terminates and the feature
space is re-evaluated. Now, all features are added, which have
a correlation with the already chosen set of features that is
higher than the highest correlation between the feature and
all other already chosen features. CFS can handle continuous
valued data using the Pearson correlation coefficient, which is a
benefit against the information-theory-based features selection
mechanisms. However, due to the final step of re-evaluation,
it is hard to limit the amount of features that shall be added
to the final set of features. Moreover, the Pearson correlation
coefficient only works well on data with linear characteristics,
but the dependency between features is not necessarily linear.

III. A NEW SCORE FOR FEATURE SELECTION

Similar to most filter mechanisms, the JMI-based feature
selection method supports only a predefined number of features,
as described previously. Therefore, if the optimal amount of
features is unknown, it needs to be estimated. To do so, a
certain amount of features is selected, and the error of the
subsequent machine learning algorithm is evaluated. In a next
step, a different amount of features is chosen, and the error
of the algorithm is re-evaluated. For example, if we consider
l ∈ {20, 40, 60, ..., 200} relevant features, we need to evaluate
the error of the subsequent machine learning algorithm for
these 20, 40, 60, ..., 200 features. From these results, we have
to choose the amount of elements, i.e. l, which lead to the
lowest error. Depending on the given amount of data, the
machine learning algorithm, and the amount of features, such
an approach can become very time consuming. Therefore, an
automatic method to determine the required amount of features
would be helpful.

A. Description of the New Score and Algorithm

As we mentioned in previous sections, we use JMI as basis
for our new score. As reminder, the algorithm based on JMI,
selects a new feature if the score of

JJMI(Xk) =
∑
Xj∈S

[I(Xj ;Y) + I(Xk;Y |Xj)],

is larger than all other feature scores of the unselected features.
In order to understand the interconnections between the JMI
and our new score, we need to expand the JMI according to
Brown et al. [7, p. 62]:

JJMI(Xk) =
∑
Xj∈S

[
I(Xj ;Y) + I(Xk;Y)

−
(
I(Xk;Xj)− I(Xk;Xj |Y)

)]
.

According to Matsuda [11, Eq. 2.24], it is reasonable to rewrite
I(Xk;Xj)− I(Xk;Xj |Y) to I(Xk;Xj ;Y), which leads to

JJMI(Xk) =
∑
Xj∈S

[
I(Xk;Y) + I(Xj ;Y)− I(Xk;Xj ;Y)

]
.

(1)

Even though we do not use Equation (1) for calculations,
it helps us to explain the equation: The first term I(Xk;Y)
defines the mutual information between the potential feature
to select Xk and the target class Y . This can be interpreted
as the information that Xk holds about Y . The second term
I(Xj ;Y) adds the mutual information between the already
selected features Xj and the target class Y . This can also be
understood as the information that one of the already selected
values Xj holds about Y . However, if Xk and Xj hold similar
information about Y , we would account for this information
twice. Therefore, I(Xk;Xj ;Y) is subtracted, which is the
mutual information of Xk, Xj and Y .

With this score, we can determine which information the
joint features Xk and Xj hold about Y . We repeat this for
all features in S. This allows us to select the one feature Xk

out of the previously not-selected features, which adds the
most new information about Y , whereas Xk ∈ X and Xk /∈ S.
However, this score does not account for development of the
information, which our selected features in S accumulate over
time. In order to overcome this issue, we propose a novel score,
called Historical JMI (HJMI):

JHJMI(Xk, S) =JH + I(Xk;Y) (2)

−
∑

Xj∈S I(Xk;Xj ;Y)

|S|

where JH represents the historical information about the already
selected features. The function of JH is best explained by the
modified algorithm for the features selection, which is extended
by a stopping criterion:

1) set JH = 0
2) calculate JHJMI(Xk, S) for all Xk ∈ X\S
3) save the largest result for JHJMI(Xk, S) as JH and

add the associated Xk to S
4) repeat 2) and 3) until stopping criterion is met or the

maximal amount of features is reached

JH is therefore similar to the second term of Equation (1)
I(Xj , Y) as it holds the information about already selected
features. However, it holds even more information, as the last
term of Equation (2)

∑
Xj∈S I(Xk;Xj ;Y) is included for all

already selected features as well. As I(Xk;Y) ranges between
0 and 1, it is reasonable to divide

∑
Xj∈S I(Xk;Xj ;Y) by

the amount of already selected features |S|.

B. Computational Cost

For a fixed amount of features, e.g., |S| = l, it holds

JHJMI(Xk) ∝I(Xk;Y)−
∑

Xj∈S I(Xk;Xj ;Y)

|S|
. (3)

This is similar to the JMI for a fixed amount of features, as
outlined by Brown [7, p. 63]

JJMI(Xk) ∝I(Xk;Y)−
∑

Xj∈S I(Xk;Xj ;Y)

|S|
. (4)

This indicates that the computational complexity of JMI and
HJMI is the same for the same amount of features. However,
for practical applications, the computational costs of HJMI
will be smaller than those of JMI, since it stops once the
stopping criterion is met. In contrast, JMI continues until a
given amount of features is reached. Moreover, if the stopping
criterion stops the algorithm after all relevant features are
selected, it is not necessary to evaluate the prediction error
of subsequent machine learning tasks to choose the optimal
amount of features.

C. Stopping Criteria

Now that we have introduced the algorithm, we define the
stopping criterion. As we described in the previous section, the
algorithm adds a new term for each new feature. The question
is now, when it should stop adding new terms and consequently

new features. For ideal data, we can assume that there is no
new information added if the first two terms reach zero, i.e.,

0 = I(Xk;Y)−
∑

Xj∈S I(Xk;Xj ;Y)

|S|
. (5)

This would be a reasonable stopping criterion. However, real
life data is not ideal. Therefore, we define a threshold ε as
stopping criterion∥∥∥I(Xk;Y)−

∑
Xj∈S I(Xk;Xj ;Y)

|S|

∥∥∥ < ε. (6)

Nevertheless, determining a suitable value for ε is not easy.
Let us assume that we have a set of features which all result

in I(Xk;Y)−
∑

Xj∈S I(Xk;Xj ;Y)

|S| = 0.09. If ε is too high, e.g.,
0.1, all of these features will be ignored. If ε is too low, e.g.,
0.01, they will be added. Therefore, ε must be adopted to the
data it is applied to. This is a tedious task, which requires
a-priori knowledge and is not generalizable.

Therefore, we propose a different approach. Since we have
historical data available, our algorithm checks how much a
new feature improves the overall quality of the metric.

δ >
I(Xk;Y)−

∑
Xj∈S I(Xk;Xj ;Y)

|S|

JH
. (7)

If the information added by a new feature Xk does not
increase the information of the already selected features in S
by more than a given δ, the algorithm will stop. In consequence,
the selection will terminate at one point, independently of δ. For
most benchmarks shown in Section IV, a threshold of δ = 3%
seems to be a good choice. However, it is reasonable to apply
a smaller value if an application requires more precision or if
the costs per features are low.

IV. IMPLEMENTATION AND VALIDATION

To evaluate our approach, we use the NIPS Feature Selection
Challenge [8], [12]. We compare our results to that from
Brown [7].

A. NIPS Feature Selection Challenge
The idea of the NIPS Features Selection Challenge is to

provide a set of different classification challenges, which are
supposed to be sufficiently solved using as few features as
possible.

To do so, the authors chose different classification tasks
from various fields: Mass spectrometry (ARCENE), text
classification (DEXTER), drug discovery (DOROTHEA) and
digit recognition (GISETTE). A fifth task (MADELON) was
created artificially to represent the task of selecting features,
where “no feature is informative by itself” [8]. The different
tasks were enriched by features, which were drawn from a
random distribution.

While Brown presented the results for GISETTE and
MADELON, we chose to compute the results for all five
classification benchmarks. As we did not upload our results,
we just used the given training data, and evaluated it with the
given validation data.

Listing 1: MATLAB inspired pseudocode for the algorithm
utilizing HJMI
f u n c t i o n s e l e c t _ f e a t u r e s (X, Y, m a x _ i t e r a t i o n s)

s e l e c t _ f e a t u r e s = [] ;
c o l l e c t _ h j m i = [] ;
j _ h = 0

f o r n = 1 : m a x _ i t e r a t i o n s
f o r k = 1 : f e a t u r e s

i f ismember (k , s e l e c t e d _ f e a t u r e s)
c o n t i n u e

end
jmi_1 = mi (X(k) ,Y)
jmi_2 = 0
f o r j = s e l e c t e d _ f e a t u r e s

tmp1 = mi (X(k) , X(j)) ;
tmp2 = cmi (X(k) , X(j) , Y) ;
jmi_2 = jmi_2 + tmp1 − tmp2 ;

end
jmi (k) = j _ h + jmi_1
i f n > 1

jmi (k) = jmi (k) − jmi_2 / n − 1
end

[j_h , i n d] = max (jmi) ;
i f (((j _ h − hjmi) / h jmi) > 0 . 0 3)

and (l e n (s e l e c t _ f e a t u r e s) < m a x _ f e a t u r e s)
h jmi = j _ h
s e l e c t _ f e a t u r e s = [s e l e c t _ f e a t u r e s i n d] ;
c o l l e c t _ h j m i = [c o l l e c t _ h j m i h jmi] ;

e l s e
break

end
end

return [s e l e c t _ f e a t u r e s , c o l l e c t _ h j m i]

B. Classification Algorithm

Similar to Brown [7], we use a k nearest neighbor classifier,
with k = 3. Moreover, we choose to discretize each feature
into 10 bins. However, we did not succeed in reproducing the
exact same numbers as Brown, but our validation error is close.
The difference from our JMI results to the ones from Brown is
less than 1% for the GISETTE benchmark and around 1% for
MADELON, which seems acceptable. This difference might
be related to differences in the discretization or the dataset.

C. Implementation

As we defined I(Xk;Xj ;Y) over I(Xk;Xj)−I(Xk;Xj |Y),
we now re-substitute I(Xk;Xj |Y).

I(Xk;Xj ;Y) =I(Xk;Xj)− I(Xk;Xj |Y)

JHJMI(Xk, S) =JH + I(Xk;Y)

−
∑

Xj∈S [I(Xk;Xj)− I(Xk;Xj |Y)]

|S|

For our implementation, we rely on the MIToolbox
v3.0.1 [13] to calculate the mutual information I(Xk;Xj)
and I(Xk;Y) as well as the conditional mutual information
I(Xk;Xj |Y). The first feature is selected according to the
highest mutual information with the target class.

We chose MATLAB [14] as programming language. Listing 1
provides an overview on our implementation.

Benchmark JMI
Validation
Error [%]

JMI
Amount of
Features
(l)

HJMI
Validation
Error [%]

HJMI
Amount of
Features
(l)

ARCENE 21.19 20 19.64 32
DEXTER 15.0 60 13.0 21
DOROTHEA 32.99 200 25.63 24
GISETTE 4.1 200 8.0 26
MADELON 10.67 20 10.67 20

Table I: Results for NIPS Feature Selection Challenge. The
first column shows the smallest error for the validation set,
with features selected using JMI. The second column shows
the amount of features used to achieve this result. The third
and fourth column present the same information for the newly
introduced HJMI-based algorithm.

D. Results

Table I and Figure 3 provide an overview about our results.
We compute the results for the JMI-based algorithm by
evaluating the training and validation error for a different
amount of features. For the results in Table I, we select the
number of features, where the training error was the smallest.
To train the model, we use training data from the features
chosen by JMI as input. The error is calculated using the
validation data and is presented in Table I. For the results of
HJMI, we use the algorithm presented in the previous section.
We calculate training and validation error in the same way as
for the JMI algorithm.

The results, which we achieved for ARCNE, DEXTER, and
DOROTHEA are significantly worse than one would expect for
a good learning task. This can be related either to the selected
learning algorithm, or to the discretization of the training data
for the feature selection. However, in this paper, we focus
on the algorithm and the presented stopping criterion. The
challenge of finding a good solution for discretization or a
learning algorithm that outperforms the current state-of-the-art
is part of future work.

However, Table I also shows that in most cases HJMI-based
algorithm delivers better results than the JMI-based one. This
is related to the automated stopping criterion. It allows the
algorithm to select the number of features outside of predefined
steps. Only the GISETTE benchmark does not profit from
this, which is expected behavior. As shown in Figure 3, the
benchmark profits from a large amount of features, while the
improvement for each added feature is quite small. Therefore,
the increase of the HJMI score drops below 3 % and the
algorithm stops. Here, a lower threshold would lead to a higher
amount of selected features, and therefore to better results.
Depending on the application, an additional error of 3.9 %
could be acceptable if the effort to collect 174 features can be
saved.

Figure 3 also shows the behavior of the MADELON
benchmark described by Brown. As soon as the number of
selected features increase above 20, the learning algorithm
performs worse with every new feature that is added. Our
novel HJMI-based algorithm is able to detect this boundary by
itself.

0 20 40 60 80 100 120 140 160 180 200
Amount of Features

0

10

20

30

40

50

Er
ro

r i
n

%

ARCENE

0 20 40 60 80 100 120 140 160 180 200
Amount of Features

0

10

20

30

40

50

Er
ro

r i
n

%

DEXTER

0 20 40 60 80 100 120 140 160 180 200
Amount of Features

0

10

20

30

40

50

Er
ro

r i
n

%

DOROTHEA

0 20 40 60 80 100 120 140 160 180 200
Amount of Features

0

10

20

30

40

50

Er
ro

r i
n

%

GISETTE

0 20 40 60 80 100 120 140 160 180 200
Amount of Features

0

10

20

30

40

50

Er
ro

r i
n

%

MADELON

Training Error JMI
Validation Error JMI
Training Error hJMI
Validation Error hJMI

Figure 3: Comparison of the training and validation error archived with features selected using the JMI and HJMI score. For
the JMI-based algorithm the different results for the different given amount of features are presented. For the HJMI-based
algorithm only the automatically selected amount of features is shown.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel score for feature selection
called HJMI. The HJMI score allows an extension of the
selection algorithm based on JMI by a stopping mechanism.
Our results indicate that our approach performs well compared
against the original in terms of feature selection capabilities:
The new algorithm finds suitable features automatically if the
learning task can be discretized. Hence, users no longer has to
specify the amount of features needed for learning themselves.
However, they still can specify an application depended upper
limit of features Here, the new algorithm will select as many
features as needed, but no more than permitted.

Unfortunately, if the training data is continuous valued and
cannot be discretized, mutual-information-based metrics cannot
be used. Under these circumstances, the entropy, which is
used to determine the mutual information, can no longer be
calculated. Therefore, further research is needed to exploit
the properties of HJMI for such data. If being combined with
a better learning algorithm, our approach will significantly
improve the training and validation error, as we have shown.

Furthermore, the impact of the stopping threshold to the
subsequent machine learning task needs to be evaluated. A
possibility to estimate the improvement of the prediction quality
based on the stopping threshold could be used to improve cases
like the GISETTE benchmark. We also think about adding a
cost to each feature in the equation. This would enable us to
take the overhead of collecting each feature into account. To
do so, the HJMI score could be extended by adding a feature
specific cost term. This extension is interesting in mechanical
engineering where each feature relates to a sensor. Here, it
might be worthwhile to use multiple cheap sensors instead of
an expensive one.

ACKNOWLEDGMENTS

This work is supported by the European Union’s Horizon 2020 program
in the READEX project (grant agreement number 671657) and the German

Federal Ministry of Education and Research (BMBF, 01IS14014A-D) by
funding the competence center for Big Data “ScaDS Dresden/Leipzig”.

REFERENCES

[1] E. Alpaydin, Introduction to Machine Learning, ser. Adaptive computa-
tion and machine learning. MIT Press, 2014.

[2] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting performance
data with papi-c,” in Tools for High Performance Computing 2009, M. S.
Müller, M. M. Resch, A. Schulz, and W. E. Nagel, Eds., 2010, DOI:
10.1007/978-3-642-11261-4_11.

[3] D. Molka, R. Schöne, D. Hackenberg, and W. E. Nagel, “Detecting
memory-boundedness with hardware performance counters,” in Proceed-
ings of the 8th ACM/SPEC on International Conference on Performance
Engineering, 2017, DOI: 10.1145/3030207.3030223.

[4] A. L. Blum and P. Langley, “Selection of relevant features and examples
in machine learning,” Artificial Intelligence, 1997, DOI: 10.1016/S0004-
3702(97)00063-5.

[5] H. H. Yang and J. Moody, “Data visualization and feature selection: New
algorithms for nongaussian data,” in Proceedings of the 12th International
Conference on Neural Information Processing Systems, 1999, ACMID:
3009755.

[6] D. D. Lewis, “Feature selection and feature extraction for text categoriza-
tion,” in Proceedings of the Workshop on Speech and Natural Language,
1992, DOI: 10.3115/1075527.1075574.

[7] G. Brown, A. Pocock, M.-J. Zhao, and M. Luján, “Conditional likelihood
maximisation: A unifying framework for information theoretic feature
selection,” The Journal of Machine Learning Research, 2012, ACMID:
2188387.

[8] I. Guyon, S. R. Gunn, A. Ben-Hur, and G. Dror, “Result analysis of the
nips 2003 feature selection challenge,” in Advances in Neural Information
Processing Systems, 2004, ACMID: 2976109.

[9] M. A. Hall, “Correlation-based feature selection for discrete and numeric
class machine learning,” in Proceedings of the Seventeenth International
Conference on Machine Learning, 2000, ACMID: 657793.

[10] E. E. Ghiselli, Theory of Psychological Measurement (Psychology S.),
ser. Series in Psychology. McGraw-Hill Education, 1964.

[11] H. Matsuda, “Physical nature of higher-order mutual information:
Intrinsic correlations and frustration,” Physical Review E, 2000, DOI:
10.1103/PhysRevE.62.3096.

[12] I. Guyon, S. R. Gunn, A. Ben-Hur, and G. Dror, “Feature selection
challenge,” 2018, https://competitions.codalab.org/competitions/3931.

[13] A. Pocock, “Mitoolbox,” Online, accessed Feb 2017, https://github.com/
Craigacp/MIToolbox/tree/v3.0.1.

[14] The MathWorks, Inc, “MATLAB 2018a,” Online, accessed Oct 2018,
https://www.mathworks.com.

https://doi.org/10.1007/978-3-642-11261-4_11
https://doi.org/10.1007/978-3-642-11261-4_11
https://doi.org/10.1145/3030207.3030223
http://www.doi.org/10.1016/S0004-3702(97)00063-5
http://www.doi.org/10.1016/S0004-3702(97)00063-5
http://dl.acm.org/citation.cfm?id=3009657.3009755
http://dl.acm.org/citation.cfm?id=3009657.3009755
http://doi.org/10.3115/1075527.1075574
http://dl.acm.org/citation.cfm?id=2188385.2188387
http://dl.acm.org/citation.cfm?id=2188385.2188387
http://dl.acm.org/citation.cfm?id=2976040.2976109
http://dl.acm.org/citation.cfm?id=645529.657793
https://doi.org/10.1103/PhysRevE.62.3096
https://doi.org/10.1103/PhysRevE.62.3096
https://competitions.codalab.org/competitions/3931
https://github.com/Craigacp/MIToolbox/tree/v3.0.1
https://github.com/Craigacp/MIToolbox/tree/v3.0.1
https://www.mathworks.com

