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Abstract

This thesis reveals methods for estimating individual perception at the regional level, such
as environmental awareness or wage effects due to labour market tightness. Environmental
awareness belongs to individual attitudes, which is driven by socialization, culture and
education. Consequently, it is difficult to compare environmental awareness between
regions. Labour market tightness might be reflected in individual wages, but the latter is
also triggered by a lot of exogenous variables. Given that a simple linear regression model
fails in both cases, existing alternative approaches from the econometrics like Multiple
Indicator Multiple Cause model and Least Absolute Shrinkage and Selection Operators
are used.

First, a Multiple-Indicator Multiple-Causes model is introduced, which allows us to
estimate a not-directly observable individual attitude, environmental awareness, for dif-
ferent regions and to rank them. The method is cost-effective and less time-consuming,
it also allows for comparisons between regions. The study area serves 81 regions in Rus-
sia. The model is constructed in such a way that Internet queries from the search engine
c©Yandex are assumed to be indicators, which are affected by the regional environmental

awareness index. In addition, regional characteristics, such as Gross Regional Product per
capita, the proportion of employees in specific industry sectors, and also the environmen-
tal situation within the regions are potential cause variables. The regional environmental
awareness index is estimated for each of the Russian regions from January 2014 until April
2016. Furthermore, the findings shows a rather non-linear positive relationship between
the regional environmental awareness and regional wealth, as well as a strong negative
correlation with the temperature. The colder the region and the observed month, the
higher the interest of the population in environmental topics. Furthermore, the regions
can be grouped into four environmental awareness clusters by using k-means clustering al-
gorithm. It seems that the environmental awareness index shrinks from the Eastern to the
Western part of Russia. The highest values can be estimated in Chukotka, Kamchatka,
and Magadan. The lowest values are found in the rather poor and warm Caucasus area.

Second, another issue concerns the estimation of an effect of an observable regional
variable, such as labour supply shortage, on individual wages. This thesis investigates
the ten year wage development of employees who first enter the labour market from 1995
until 2004 and looks for positive wage effects of labour market tightness in different oc-
cupational groups. Due to incomplete vacancy data, labour market tightness is measured
as the number of unemployed people divided by the number of employees within an oc-
cupational field and region. Mean and quantile regression methods are applied. Because
the number of right-hand side variables could lead to incorrect detected statistical signifi-
cant coefficients, different Least Absolute Shrinkage and Selection Operators are used for
reducing the variables set. The findings suggests that regional labour market tightness
in occupational fields affects individual wages. Employees who start their carrier in a
tighter labour market enjoy higher wage growth compared to workers from more relaxed
labour markets. The wages in technical professions, such as several engineer groups, IT-
occupations, technicians, and also in some commercial occupations are especially affected



by a shortage of labour supply. Health care occupations, such as nurse, reveals a complete
reverse relationship. A shortage of workforce seems to be correlated with smaller wages.
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recht herzlich Prof. Dr. Bernhard Schipp danken, der kurzfristig das Zweitgutachten der
Dissertation übernahm.

Die Dissertation basiert auf fünf wissenschaftlichen Fachartikeln, die nicht ohne Un-
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professionelle Arbeitsumgebung zur Verfügung, in der ich mit den Daten arbeiten konnte
und standen mir bei technischen Schwierigkeiten mit Rat und Tat zur Seite.

Ein besonderer Dank gilt außerdem Dr. Stefan Lämmer. Dr. Lämmer überzeugte
mich bereits als Studentin davon am Lehrstuhl zu arbeiten und begeisterte mich für das
Fach Statistik. Er glaubte schon damals an meine Fähigkeiten und ermutigte mich zum
Anfertigen einer Dissertation.

Zum Schluss bedanke ich mich recht herzlich bei meiner Familie, allen voran meinem
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Chapter 1

Introduction

1.1 Two Issues in Empirical Regional Science

This thesis follows up on the issue of modelling not-directly measurable individual

perceptions, such as environmental awareness or wage effects due to labour market

tightness, at the regional level. If they were easy to quantify, then only a linear re-

gression model would need to be applied. In the first case, environmental awareness

is a more subjective individual attitude, which cannot be easily transferred at the

regional level. The second case handles an object that is triggered by an enormous

list of exogenous variables. This thesis adapts some existing methods from econo-

metrics like Multiple-Indicator-Multiple-Causes (MIMIC) model and Least Absolute

Shrinkage and Selection Operator (LASSO) to overcome the mentioned problems.

Chapter 2 discusses a measurement for environmental awareness of a population

in a geographical area, which allows the compatibility of environmental conscious-

ness with other regions. In some studies a very time-consuming and expensive survey

is performed, see Hiramatsu, Kurisu, and Hanaki (2015). However, respondents are

inclined to give socially desirable answers (the so-called “yes-bias”). Because the

replies depend enormously on individual education, personal socialisation and lo-

cal culture, they might differ between regions and countries. Thus, the answers

are hardly comparable and it is not useful to sequence the regions in terms of the

population’s environmental awareness. Another method might be to compare ob-

jective environmental data (i.e. expenditure on environmental protection, waste per

capita, waste sorting rate, etc.). However it is often difficult to get access into this

kind of detailed environmental data for each region/area of interest. Furthermore the

method of data record may vary between regions. Chapter 2 introduces an approach
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that avoids such problems. The proposed method allows a comparison of various

regions in respect to their environmental awareness and is less time-consuming and

less-expensive. The idea is to use the number of Internet queries of environmental-

specific words and phrases, which might be affected by attitude of a population in

terms of environmental issues. The more that a regional population is interested in

such topics, the more frequent the Internet is asked for a certain word or phrases

(i.e. relative to all other requests). This value can easily be compared with other re-

gions. Furthermore the interest in environmental topics might be driven by regional

specific characteristics, such as the regional wealth or industrialisation, which should

be considered. The proposed method is explored by investigating the environmental

awareness of 81 regions (Oblasts, Krais and Republics) of the largest country of

the world—the Russian Federation. Given that a simple regression analysis fails

estimating such an unobservable latent construct as environmental awareness, a

MIMIC model from Jöreskog and Goldberger (1975) is performed and estimated

through optimizing a Maximum Likelihood function. In Chapter 2 the advantages

of the method are highlighted. Based on the theoretical concept, different empirical

models are estimated. This allows a measurement to be made of an environmental

awareness index for each of the 81 Russian regions and to rank them. The original

method is extended by considering trend and seasonal effects. Therefore, climate or

temperature circumstances, respectively, of the different regions deliver especially

interesting results. A cluster analysis is performed for grouping the Russian regions

in terms of their environmental awareness. In addition, environmental awareness is

separately measured for (Sub-) Arctic areas and compared with all other Russian

regions. Beside the climate data, further regional characteristics as drivers of en-

vironmental awareness are discussed. In addition, further application areas of the

measurement are mentioned. A summary concludes the chapter.

A further issue in empirical regional science is discussed in the second part of

this thesis. Chapter 3 occupied with a rather quantifiable variable labour market

tightness and its effects on measurable individual wages. However, different not-

directly measurable influencing factors on individual wages need to be considered,

such as individual negotiating skills and productivity, for extracting the effect of

a labour supply shortage. However, a very homogenous sample of employees may

mitigate this issue. Consequently, a 10% sample of very young German employees

who finished a vocational training is drawn. The Institute for Employment Research
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provides the data, including information about the training before, the time up to

entering and the first 10 years on the labour market, such as wage changes, periods

of unemployment, firm changes, etc. Thus, there might be less variations in the

productivity level within the sample. In addition, employment specific and regional

information are added. However, this leads to a sample of 320 thousand individuals

with 628 observed characteristics. The individual log-wages at the first-ten years are

predicted by estimating a linearised regression model through minimizing the sum

of squared errors. Because almost the half of the variables are binary, the estima-

tion could suffer from collinearity. Although this does not influence the prediction

quality of the log-wages, it does make the extraction of the effect of occupational-

specific labour market tightness on the log-wages difficult because collinearity leads

to erroneously statistical significant estimated coefficients. Consequently, LASSO

from Tibshirani (1996) and Zou (2006) is used to shrink the number of variables.

Because occupational specific differences in the effects of labour market tightness on

the log-wages might be partly driven by technological progress, stronger effects for

technical professions are expected. Furthermore, differences between the quantile

levels are investigated. On the one hand, it is conceivable that well-paid employees

have a stronger negotiating position compared to low-paid workers because they

have certain rather rarely skills. On the other hand, low-skilled people might rather

accept a job for lower wages due to the competitive situation with machines. There-

fore, the unconditional quantile regression method by Firpo, Fortin, and Lemieux

(2009) is used to measure the effect of labour shortage on the different quantile lev-

els of the log-wage distribution. Finally, Chapter 4 concludes the thesis and gives a

prospect for future work.

1.2 Published and Submitted Articles

Five papers have been published as part of this research project. Chapter 2 quantifies

regional environmental awareness and includes parts of the following four published

papers:

1. Khakimova et al. (2019): Index of environmental awareness through the

MIMIC approach. Papers in Regional Science, 98, 3, 1419 – 1441. https:

//doi.org/10.1111/pirs.12420
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This paper introduces a structural equation model for estimating a latent con-

struct, the regional environmental awareness (EA), by using Internet queries

as indicators, which are affected by EA, as well as regional characteristics as

potential causes for EA. A so-called EA index is estimated for each of the

81 Russian regions for two time points: the years 2014 and 2015. This paper

highlights the relationship between regional wealth and EA. It also investigates

the correlation between the environmental situation (for example the regional

contaminated water per km area) and EA of the population. The regions can

be ranked in terms of EA.

My part of the paper includes the performance of the empirically analysis, the

editing of the results in tables and graphics, as well as the interpretation of

the results.

2. Lösch, Okhrin, and Wiesmeth (2018a): Awareness of climate change: differ-

ences among Russian regions. Area Development and Policy, Routledge, 4, 3,

284 – 307. https://doi.org/10.1080/23792949.2018.1514982

This paper is basically an extension of the previous paper Khakimova et al.

(2019). The temporal and spatial development of EA is investigated. The

research area is again the 81 Russian regions during the time period between

January 2014 and April 2016. In contrast to Khakimova et al. (2019), more

data are available and the EA index development can be analysed for each of

the 28 months. We find seasonal and spatial variations of the EA, which are

strong correlated with the regional temperature. The colder the region, the

higher the EA. Furthermore, the EA is higher in the winter months than in

the summer months. This effect can be observed in all regions. It seems that

there is a regional spread from East Siberia to the Western part of Russian in

Europe. The highest EA indices can be measured in the Eastern part of the

Russian Federation. The lowest in the poor, rather warm Caucasus area. Four

EA clusters are found.

Again, my main part lies on the development and estimation of the empirical

models as well as the statistical analysis and interpretation of the results.

3. Lösch, Okhrin, and Wiesmeth (2018b): Awareness of climate change: fo-

cus on the Russian Arctic Zone. Proceedings of the International Research
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Workshop on Information Technologies and Mathematical Modeling for Ef-

ficient Development of Arctic Zone, ceur-ws.org, Vol. 2109, 38-42. http:

//ceur-ws.org/Vol-2109/paper-07.pdf

This paper focus on the EA in the Arctic area, which is also significantly

different from other regions. We suspect that the stronger regions are con-

cerned by environmental problems (e.g. shrinking of the permafrost areas in

the Northern part of Russia) and they have a larger interest in environmental

topics.

In this paper, I performed the empirical analysis and edited the results.

4. Lösch, Okhrin, and Wiesmeth (2017): Diffusion of environmental awareness.

diffusion-fundamentals.org, Vol. 30, No. 2, 1-16. http://diffusion.uni-leipzig.

de/pdf/volume30/diff_fund_30(2017)02.pdf

This paper is a preparatory work to Lösch, Okhrin, and Wiesmeth (2018a).

The temporal analysis is on a quarterly instead of monthly level. The results

are more inexact. However, the seasonal variation of the EA, as well as four

spatial clusters are found. In comparison to Lösch, Okhrin, and Wiesmeth

(2018a), a link between regional temperature and EA is not yet visible.

As in the previous papers, my main work consists of the empirical analysis

and interpretation of the results.

Furthermore, Chapter 3 analyses the influence of a labour market shortage on

individual wages. Parts of this chapter come from a joint project with

5. Brunow, Lösch, and Okhrin (submitted): Labour Market Tightness and Indi-

vidual Wage Growth – Evidence from Germany.

The paper investigates the 10-year-wage growth of employees who finished

a vocational training and it looks for positive wage effects of labour market

tightness in different occupational groups. Different mean and quantile re-

gression methods, as well as dimension-reduction approaches are applied. The

findings suggest that regional labour market tightness in occupational fields

significantly explains wages. Individuals that start their carrier in a tighter

labour market enjoy higher wage growth compared to workers from more re-

laxed labour markets. The effect is especially strong in technical professions,

such as several engineer groups, IT-occupations, technicians, and also in some
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commercial occupations. Interestingly, health care occupations, such as nurs-

ing, reveal a complete reverse relationship. A shortage of workforce seems to

be correlated with smaller wages.

My role in this paper was to develop the motivation and literature overview

(partly), the data preparation (partly), empirical work of this paper, including

estimation and interpretation of the results (mainly).
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Chapter 2

Quantifying Regional

Environmental Awareness

This chapter contains parts, figures and tables, which are published in Khakimova

et al. (2019), Lösch, Okhrin, and Wiesmeth (2018a), Lösch, Okhrin, and Wiesmeth

(2018b) and Lösch, Okhrin, and Wiesmeth (2017). The citations is unified and the

format is adjusted.

2.1 Introduction

This Section 2.1 and 2.2 is adopted by Khakimova et al. (2019), pages 1419 – 1424.

Environmental degradation remains a global issue, and the Russian Federation is

no exception. Various regions and cities continue to suffer from poor environmental

conditions due to, or in spite of, the economic decline after the breakdown of the

Soviet Union and the economic recovery in the years thereafter (Kozeltsev et al.

2013). Air pollution, soil and water contamination are likely responsible for unnec-

essarily high rates of morbidity and even mortality. With emissions a little above

1.7 Gt CO2 equivalents per year, as plotted on Figure 2.1, Russia is still among the

largest five emitters of greenhouse gases after China, the United States, European

Union and India.

There are various signals and actions, which document the political willingness

to reduce environmental pollution in Russia. For example, in 1991 a system of

fees on emissions, discharges, and solid waste became a key element of Russia’s
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Figure 2.1: Left: CO2 emissions (in metric tonnes) per capita of the five largest
greenhouse gas emitters from 1991-2014. Source: World Bank (2018); Khakimova
et al. (2019).

environmental policy. There were even differentiated fees per unit of emissions of

hazardous substances (Kozeltsev et al. 2013). Moreover, in 2004 Russia was the

last party to join the Kyoto Protocol and was instrumental regarding its successful

implementation, and in 2009, the Russian government passed a resolution On the

Measures Stimulating Reduction of Atmospheric Pollution by Products of Associated

Gas Flaring, which limits associated gas flaring levels to 5% of the entire output

from 2012 (IEA Statistics 2017).

The economic recession following the breakdown of the Soviet Union, significantly

reduced per capita emissions of greenhouse gases in Russia. In 2015, due to this and

other reasons, these emissions were still some 30% below their 1990 level, despite

some smaller more recent increases of 7% in 2010 and 5% in 2011 (IEA Statistics

2017). As a consequence, it was relatively easy for Russia to reach the Kyoto target

of a 0% reduction of GHG emissions in the period from 1990 to 2012. With regard to

the UN Climate Change Conference in Paris in 2015, Russia declared the willingness

to stabilize CO2 emissions on a level of 75% of the emissions in 1990.

Thus, Russia seems to be ready to reduce environmental pollution and to par-

ticipate in the provision of global environmental commodities, such as the reduction

of greenhouse gas emissions. In this context the question arises to the extent of the
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environmental awareness (EA) of the people living in the Russian regions. To be

more concrete: to what extent are people concerned about environmental issues?

Can the government expect a certain “willingness” in the population to support

corresponding initiatives? How to measure this willingness, this “awareness”? Are

there differences regarding this awareness in the regions of the Russian Federation?

If so, which regional factors are responsible for these differences? Answers to these

questions provide valuable insight into the current and, in particular, the future state

of the environment in Russia and the Russian regions. After all, documented EA in

the population could raise pressure on local politics to improve the environmental

situation and/or invest in environmental protection projects.

As environmental issues such as global warming, air pollution, soil and water

contamination and others are of relevance in many regions, EA in the context of

these questions is of relevance for an investigation, the research agenda of this paper.

Figure 2.2: Left: GDP per capita in 2011 international Dollars, purchasing power
parity, from 1990-2017. Source: World Bank (2018); Khakimova et al. (2019).

The Russian Federation provides a particularly interesting study area for these

research questions. If, for example, there were a relationship between economic

development and whatever concept of EA, then a somewhat more environmentally

focused behaviour could be expected from a growth-stimulating economic policy,

mirroring also relevant differences between the regions. As Figure 2.2 shows, GDP
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per capita in Russia increased from 12,051 Dollars in 2000 to 24,516 Dollars in

2015 (international Dollars based on 2011; data source World Bank (2018)). The

substantial differences between the regions of the Russian Federation in terms of

economic and demographic development, and in terms of ethnic composition should,

thus, allow a careful analysis of the research questions.

First of all, however, the basic question referring to the concept of EA has to

be addressed. How can “awareness” be measured in the framework outlined above?

Moreover, what are the relevant differences among the Russian regions in this con-

text? Which structural characteristics of the various regions are decisive for differ-

ences regarding EA? Is there, in particular, a relationship between GRP per capita

of a region and EA? The direct effects of economic, demographic and political condi-

tions on the environment have been investigated in many empirical studies. However,

the sentiments or understanding of environmentally relevant issues in the population

are usually not taken into account, although they are important for a successful im-

plementation of environmental policies. This refers, for example, to the concept of

“stakeholder integration”, which is of utmost importance for environmental policies

(Wiesmeth and Häckl 2017).

For this reason, we develop a new index of EA and provide a ranking for 81

Russian regions for two periods in 2014 and 2015. This index of EA is a latent

construct, which affects various indicators derived from search entries in c©Yandex,

the most prominent Russian search engine. The data refers to some 200 phrases,

both in Russian and in English, which are related to environmental issues and,

thus, mirror the environmental concerns of the people. These search phrases are

clustered into five categories covering, among others, direct climate change queries

as well as literature searches. In the average, the environmental phrases generated

between approximately 4750 (July 2014) and 7400 (January 2015) clicks per month

and Russian region in our data set.

We assume that these indicators are depended on or, rather, result from certain

economic and societal developments in the Russian regions. Therefore, we integrate

these “causes” into the model in order to investigate their influence on a specific

level of the index. The resulting model is the Multiple Indicators-Multiple Causes

(MIMIC) model, which allows us to estimate the latent variable from various indi-

cators and various causes of EA (Jöreskog and Goldberger 1975).

In the next section, we briefly investigate the development of the concept of EA

10



in the literature. The formal aspects of the MIMIC model are presented in Section

2.3 and 2.4, including a discussion on the applicability of this model to the concept

of EA. The data are introduced in 2.5. Section 2.6 and 2.7 presents the empirical

results, and some final in Section 2.8 remarks conclude the paper.

2.2 Environmental Awareness in the Literature

In this Section we first consider briefly the development of the concept of EA in the

literature. Thereafter the focus is on the literature describing factors influencing

EA.

2.2.1 Emergence of the Concept of EA

EA is usually considered a prerequisite for environmentally friendly behaviour. How-

ever, it is not so straightforward to conceptualise it in order to make stringent use

of it in academic research. In particular, in order to understand the EA index devel-

oped in this paper, it is necessary to have a brief look at the literature documenting

the emergence of the concept of EA.

Not too surprisingly, interest in the concept of EA or environmental conscious-

ness originated with the ecological movement in the 1960s. According to Soyez

et al. (2009), in order to explore the business potentials of environment-related

commodities, researchers in marketing and social psychology focused first on the

personal characteristics of environmentally conscious people, such as socio demo-

graphic variables. In the 1970s and 1980s, environmentally friendly behaviour was

explained more in terms of environmentally friendly attitudes, which were measur-

able by means of multi-item scales. The “theory of planned behaviour”, which is

applicable to this context (Ajzen 1991), allows an integration of a variety of factors

or attitudes (self interest, norms, situational barriers, etc.) that influence a specific

action or behaviour related, for example, to the environment.

Personal value orientation as a precursor of sustainable behaviour was consid-

ered in a further stream of research followed by cultural values, which have been

investigated approximately for the last 15 years (Soyez et al. 2009). Of course, cul-

tural values form the basis for cross-cultural studies on environmentally friendly be-

haviour, which are, again, of particular interest for researchers in marketing and so-
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cial psychology. In this context, Soyez (2012) analyses how environmentally friendly

behaviour is influenced by cultural values and how national cultural values can be

linked to personal pro-environmental behaviour.

These studies present further links to the earlier literature, and are among the

first to provide insight into environmentally friendly consumer behaviour in Russia in

comparison to Germany. They make use of methods of factor analysis and structural

equation modelling to conceptualize environmentally friendly value orientation.

Besides behavioural characteristics, indices of environmental quality have been

introduced to categorise EA. There is, for example, the prominent Environmental

Performance Index (EPI), a project affiliated with the Yale Center for Environ-

mental Law and Policy and the Center for International Earth Science Information

Network at Columbia University (Hsu et al. 2016). The EPI ranks countries’ per-

formance on high-priority environmental issues: protection of human health and

protection of ecosystems. Within these policy areas the EPI scores the performance

of the countries by means of issue areas comprised of a multitude of indicators. Each

indicator is weighted within the issue categories to create an issue category score

with the weightings respecting the indicator’s relevance, among other things. Then,

these subindices are weighed approximately equally, thus yielding indices of protec-

tion of human health and protection of ecosystems. Finally, those two indicators

are summarized into the EPI by applying equal weights. Cf. Hsu et al. (2016),

pp. 23. Lisciandra and Migliardo (2017), for example, use the EPI to explain the

effect of corruption on environmental degradation. They find a negative relation of

corruption level as well as a positive correlation of regional income on the regional

environmental quality.

For another example, Expert RA (2018) introduces an Investment Index for

Russia focusing on, among other topics, ecological risks. This index relates invest-

ment risks in Russian regions to regional environmental quality. It considers costs

of pollutant removal, the elimination of inherited environmental liabilities and other

environmental issues on a regional level to measure investment risks. Some aspects

of this index and the associated ranking of the Russian regions are discussed in

Section 2.6.2.

Clearly, the choice of the various weights in the construction of such indices re-

quires a lot of experience on the one hand, and some stability regarding the influence

of certain variables on the indices on the other. In addition to that the EPI and the
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Investment Index are performance indicators. If interpreted as indices of EA, they

are measuring EA through past environment-relevant activities of the population.

They do not directly respect the attitude of the population regarding environmental

issues and means to influence this attitude and environmentally friendly behaviour

thereafter. Performance indices and awareness indices should therefore be expected

to yield different rankings, in general. Moreover, as we do not really know the im-

portance of the various indicators in our approach, it might be a good idea to refrain

from exogenously assigned weights, at least in this first step. All these issues are of

relevance for the design of environmental policies.

These considerations guide us to our approach based on structural equation

modelling. Soyez (2012) uses this methodology and derives conclusions on environ-

mentally friendly value orientation for cross-cultural marketing. There are, however,

only few words on possibilities to influence these orientations (cf. p. 641). But this

is an important aspect for designing and implementing environmental policies in

areas, which require the cooperation of the individuals. As most environmental is-

sues belong to these areas, we are looking for economic and socio-economic causes

affecting EA.

2.2.2 Influencing EA

Buehn and Farzanegan (2013) are among the first to construct an environmental

index, which is dependent on certain determinants. Their “new index of air pollu-

tion” is calculated by means of a MIMIC model and shows the influence of economic,

demographic, and governance factors. Some of these factors can be modified by eco-

nomic policies and can, thus, also affect the future level of the index. This, as

already indicated, might be of importance for certain activities of relevance for the

environment.

The analysis of Buehn and Farzanegan (2013) supports the Environmental Kuznets

Curve (EKC) hypothesis, pointing to a significant influence of the level of GDP per

capita on the index (cf. p. 109). The economic background for observations like this

is the intrinsic nature of environmental commodities. They are, at least in industri-

alised and newly industrialised countries, characterised by a high income elasticity,

resulting from a gradual transformation of societies with increasing economic pros-

perity (Inglehart 1990). Consequently, demand for these commodities should rise

and environmental pollution should be reduced as real GDP per capita increases.
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In order to provide support for this hypothesis, Grossman and Krueger (1995)

find no evidence that environmental quality deteriorates steadily with economic

growth. In other words, for most indicators, economic growth brings an initial

phase of deterioration followed by a subsequent phase of improvement. The turning

points for the different pollutants vary but in most cases they come before a country

reaches a per capita income of $8000 (for USD in 1985). Grossman and Krueger

(1995) use urban air pollution, the state of the oxygen regime in river basins, fecal

contamination of river basins, and contamination of river basins by heavy metals.

Going one step further, the EKC is a hypothesised relationship between various

indicators of environmental pollution and GDP per capita (Stern 2004). The concept

emerged in the early 1990s with studies of the potential environmental impacts of

NAFTA. Stern (2004) provides an interesting survey on “the rise and the fall” of

the EKC, characterising the EKC as an essentially empirical phenomenon with not

much support from econometrics. Similarly, Huang, Lee, and Wu (2008) do not find

empirical evidence supporting the EKC hypothesis for greenhouse gas emissions.

Nevertheless, in the last few years increasingly advanced econometric techniques

were employed to investigate the existence or non-existence of the EKC with respect

to aspects of global warming. Fosten, Morley, and Taylor (2012), for example,

analyse the EKC with respect to CO2 and SO2 emissions in the United Kingdom,

and provide a useful literature survey on the econometric methods used in this

context. Cf. also Brajer, Mead, and Xiao (2011), He and Richard (2010), Wang

(2013), Yang, He, and Chen (2015). Maddison (2006) shows that the countries’

emissions per capita are affected by events in neighbouring states. These effects

should be considered by creating an EKC. Rupasingha et al. (2004) find a more

cubic than inverted-U-shaped relationship between county per capita income and

toxic pollutants, also affected by ethnic diversity. A comprehensive survey of the

EKC hypothesis up to the year 2004 is provided by Dinda (2004).

Beyond GDP per capita, there are other factors, which could affect the attitude

towards environmental issues. Diederich and Goeschl (2014), for example, uncover

education, the information structure among the population, and exogenous environ-

mental conditions as causes of voluntary climate action. Similarly, Rabe, Borick,

and Lachapelle (2011), and Lorenzoni and Pidgeon (2006) study public views on

climate change in the United States and Canada, and in Europe and the United

States, respectively. The focus of the special survey “European’s attitude towards
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climate change” in the “Eurobarometer” from the European Commission (2008)

was on, among other issues, the extent to which citizens feel informed about climate

change, and reveals the influence of information on EA.

Thus, there is some justifiable interest in factors determining EA, in particular

regarding the economic factors such as GDP per capita.

2.3 Multiple Indicators-Multiple Causes Model

Khakimova et al. (2019) pick up the approach used by Buehn and Farzanegan (2013)

processing an index of air pollution for 122 countries for the period between 1985

and 2005. Their index is based on a MIMIC model, which was originally developed

by Jöreskog and Goldberger (1975) and is a special case of a structural equation

model. Buehn and Farzanegan (2013) use three different indicators, different kind

of measurable emissions, which are influenced by the air pollution index and several

cause variables affecting the index. Similarly, EA can hardly be described by means

of a single indicator, and different framework conditions might lead to different levels

of awareness.

The MIMIC approach helps to overcome the difficulty with a priori fixed weights

for the various indicators in a situation where awareness is still emerging. This

might currently characterize the situation in the Russian Federation and the Russian

regions. It uses well defined indicators to measure a latent construct (index of

EA) with associated properties and regresses them against theoretically discovered

causes, as Buehn and Farzanegan (2013) did.

The two parts of the model can be explained as a measurement model for the

latent construct and a structural part, which describes the causal structure of the

model. The measurement part looks as follows:

y = λ η + ε, (2.1)

where y = (y1, y2, . . . , yp)⊤ is a set of observable endogenous indicators. They are

affected by EA, which is the latent variable η, and ε = (ε1, ε2, . . . , εp)⊤ being a

vector of p random errors. The factor loadings are summarized in the p-vector λ.
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The structural part follows the theoretical assumptions and can be written as

η = β⊤x + ζ, (2.2)

where x = (x1, x2 . . . , xk)⊤ are exogenous causes, β = (β1, β2, . . . , βk)⊤ is a set of

model parameters, and ζ being a random error term. Inserting (2.2) into (2.1)

results in

y = λ
(
β⊤x + ζ

)
+ ε = Π⊤x + v, (2.3)

with Π = β λ⊤ and v = λ ζ + ε. It is assumed that the random errors ε and ζ are

mutually independent and normally distributed

ε ∼ N(0, Θ2) and ζ ∼ N(0, σ2), (2.4)

with E(ζε⊤) = 0 where Θ = diag(θ1, θ2, . . . , θp). The parameters of λ and β, and

the variances θ2 and σ2 of the error terms ε and ζ, can be estimated using a ML

approach. There is indeterminacy in the structural parameters (if λ is multiplied by

a scalar and β and σ2 are divided by the same scalar parameters do not change).

Avoiding this indeterminacy, one parameter is set fixed, see Goldberger and Hauser

(1971).

Following Jöreskog and Goldberger (1975) the fixed case, where x is [N × k]

fixed matrix, y is multivariate normally distributed [N × p] matrix, x ∈ MN×k and

y ∈ MN×p ∼ N(xΠ, Ω), with the sample size i = 1, . . . N .

The multivariate probability density function of y is

f(y) =
1

(2π)p/2|Ω|1/2
exp

{
−(y − xΠ)⊤Ω−1(y − xΠ)/2

}
. (2.5)
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Thus the likelihood function can be described by

L(y|xΠ, Ω) =
N∏

i=1

f(yi; λ2, . . . λp, β, θ2, σ2)

=
N∏

i=1

1

(2π)p/2|Ω|1/2
exp

{
−(yi − xiΠ)⊤Ω−1(yi − xiΠ)/2

}

=
1

(2π)Np/2

1

|Ω|N/2
exp

{
−

N∑

i=1

((yi − xiΠ)⊤Ω−1(yi − xiΠ)/2)

}

The natural logarithms simplified the estimation.

log L(y|xΠ, Ω) = l(y|xΠ, Ω) = −
Np

2
log(2π) −

N

2
log(|Ω|) −

1

2

(
N∑

i=1

(yi − xiΠ)⊤Ω−1(yi − xiΠ)

)

l(y|xΠ, Ω) = −
N

2

{
log |Ω| + tr

(
Ω−1W

)}
−

Np

2
log(2π) → max!

with the sample size N , Ω = E
(
vv⊤

)
= σ2λλ⊤ + Θ2 and W = (y − xΠ)⊤(y − xΠ).

The function can be maximized by setting the first partial derivative of L(β, λ, θ2, σ2)

with respect to all arguments to zero.

∂l(β, λ, θ2, σ2)

∂β, ∂λ, ∂θ2, ∂σ2
= 0

The estimators of the coefficients and variances λ̂, β̂, θ̂2, σ̂2 can be computed through

an iterative approach.

1. Set initial values λ̂0, Ω̂0;

2. Compute β̂ =
(

1
λ̂⊤Ω̂−1λ̂

)
(x⊤x)−1x⊤yΩ̂−1λ̂;

3. λ̂ =
(
1 + β̂⊤x⊤xβ̂

)
λ̂;

4. θ̂2
j = rjj −

(
1 + β̂⊤x⊤xβ̂

)
λ̂2

j for (j = 1, . . . , p);

rjj is the jth diagonal element of the matrix R = y⊤y;

5. Repeat step 2 until 4 until the convergence.

The estimated parameters are plugging in (2.2) and η is computed for each ob-

servation i. The normality is a strong assumption, which leads to consistent, but
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inefficient estimators. The variances of the parameters cannot be exactly deter-

mined. This leads to more inexact indication of the parameters significance. For

that reason, Khakimova et al. (2019) use two different methods to correct the es-

timated parameter variances. The first method from Satorra and Bentler (1994)

weights the incorrect standard errors by the asymptotic covariance-matrix. The ap-

proach from Yuan and Bentler (2000) uses a kind of sandwich estimator correcting

the standard errors. Determining the parameter significance, the largest corrected

standard error is taken into account. For the extended research in Section 2.6.1 the

approach from Satorra and Bentler (1994) is used.

2.4 Empirical Models

Having the mathematical construction of the MIMIC model in mind, Khakimova et

al. (2019) look for eligible indicators y, which are affected by EA, and some regional

causes x, that might have a direct influence on EA. In the age of the Internet and

search engines, queries of relevant environmental phrases might be good indicator

for the interests in environmental topics of a regional population. c©Google is one of

the most popular search engines world wide. Currently, c©Google’s market share is

approximately 92.04% world wide in June 2019, following by c©Yahoo! with 2.67%,

c©Bing with 2.39%, c©Baido with 0.89% and c©Yandex with 0.51%. Unfortunately,

there is not currently publicly available access to the number of Internet queries

as frequency data from the c©Google search engine. However, the search engine

c©Yandex provides such data. Since the market share of c©Yandex is quite small

world wide, Russia is used as study location. The market share of c©Yandex is

measured by 50.42% in Russia (May 2019) compared with 46.06% for c©Google. In

the study period, 2014 to 2016, the market share of c©Yandex was a bit smaller,

approximately 41%, and c©Google a bit larger with 51%. Notwithstanding, the

influence of c©Yandex is large enough to ensures statistical representativeness of the

query data, if the assumption hold that the EA of the c©Yandex users is similarly

to the EA of the c©Google users. For more information about the market shares of

Internet search engines see StatCounter Global Stats (2019).

Following Khakimova et al. (2019) the indicators y of the MIMIC model are clus-

tered queries of environmental phrases from the Internet search engine c©Yandex.

The requested phrases are in English and Russia available.
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The queries are grouped by different environmental categories:

y1: Climate Change Queries,

y2: Endangered Environment Queries,

y3: Political Queries,

y4: Science Queries,

y5: Renewable Energies and Technologies Queries,

The Climate Change cluster includes words and phrases such as “global warming”,

“greenhouse effect”, “temperature record” and others. The Endangered Environ-

ment cluster contains “acid rain”, “forest fire”, “overfishing” and others. Political

queries summarizes words and phrases in the context of political engagement and

environmental contracts such as “Asia-Pacific Partnership on Clean Development

and Climate”, “Kyoto Protocol” as well as “green movement”, “carbon trading”,

etc.. The Science queries cluster includes words or phrases such as “geoengineer-

ing”, “cloud reflectivity enhancement” as well as “El Nino” and summarizes terms

from environmental and ecological science. The last group summarizes words and

phrases about energy and technology like “ecologically clean energy” and “electric

mobility”. A list of the terms and the related categorisation can be found in the

supplementary material of online version of Lösch, Okhrin, and Wiesmeth (2018a).

In few cases, a clear assignment of a word or a phrase into one group is rather diffi-

cult. Another clustering might be possible. Thus, we collected the number of such

phrases monthly, from January 2014 to April 2016 for each region. For comparability

purposes, the indicator variables y are calculated as follows,

yin =
number of queries of category i in region n

number of all queries in region n
, (2.6)

where i = 1, . . . , p denotes the indicator index with p = 5 categories and n =

1, . . . , N is the index of Russian region with N = 81. As in Khakimova et al. (2019)
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the measurement model (2.1) of region n is described in terms of the EA η as follows:




y1

y2

y3

y4

y5




=




1

λ2

λ3

λ4

λ5




× η +




ε1

ε2

ε3

ε4

ε5




. (2.7)

The structure of the equations follows logical considerations. Of course, it could be

a conceivable solution to investigate, whether these indicators can be measured by

a single variable like η. For examination purposes, we perform a factor analysis for

these five indicators. As Figure 4.2 in the appendix reveals, the four variables can

be explained by factor 1. The fraction of the explained variance is measured by 0.41

for this factor. The Endangered Environment (EE) group is only strong related with

factor 2. This factor shows a variance fraction of 0.25. However, all five categories

are summarized as one single factor η, because all five categories are expression of

interest and knowledge building of a regional population as well as an awareness of

the environmental issues and possibilities.

Furthermore, cause variables are used to explain the EA index η. The gross re-

gional product (GRP) per capita in purchasing power parity in first, second and third

order are included capturing a possible non-linear relationship between the regional

wealth and the interest in environmental topics of the population. Additional, re-

gional characteristics about industry, social status in population and environmental

situation are considered.

From (2.3) it follows:




y1

y2

y3

y4

y5




=




λ1

λ2

λ3

λ4

λ5










β1

...

βk




⊤




GRP per capita

GRP per capita2

GRP per capita3

set of control variables




+ ζ




︸ ︷︷ ︸
η=Index of Environmental Awareness

+




ε1

ε2

ε3

ε4

ε5




. (2.8)

The construction of the MIMIC model and the assumed direction of causality are

shown in Figure 2.3. After estimating the weights of the causes, β, in the regression

20



Figure 2.3: Path Diagram of the MIMIC Model inspired by Khakimova et al. (2019).

model, the environmental EA index can be computed for each region. The index

allows to calculate a ranking of environmental consciousness among the regions of

the Russian Federation.

Considering the EA status of regions to a specific time point by using cross sec-

tional data, the Default MIMIC model is adequate to estimate the regional EA index

as in Khakimova et al. (2019). However, the search engine provider of c©Yandex

gives access to time series of Internet queries and thus the possibility to estimate

the EA index over the course of time. Parts of this Subsection are adopted from

Lösch, Okhrin, and Wiesmeth (2018a) and Lösch, Okhrin, and Wiesmeth (2017).

Since the relative number of Internet queries are subject to seasonal deviations,

the primary structural part of the MIMIC model is extended through a seasonal

component, which captures quarter fixed effects. Taking a year-to-year development

into account, a trend component is also included. The structural model part, which

explains the latent EA variable η quarterly, looks now as follow:

η̃ = β⊤x + γ⊤z + ζ, (2.9)

Thereby, x is again a set of the over-all-years standardized cause variables. The

vector z includes three binary variables for the quarter (reference is the 4th quarter)
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and two binary variables for the years (reference is the year 2016). Moreover, β

and γ are coefficient vectors and ζ is the normally distributed random error. The

MIMIC model (2.8) is extended and looks as follow:




y1

y2

y3

y4

y5


 =




λ1

λ2

λ3

λ4

λ5










β1

..

.

βk




⊤



GRP per capita

GRP per capita2

GRP per capita3

set of control variables


 +




γ1

..

.

γ5




⊤




1st quarter

2nd quarter

3rd quarter

1st year

2nd year


 + ζ




︸ ︷︷ ︸
η̃=Index of Environmental Awareness

+




ε1

ε2

ε3

ε4

ε5


 .

(2.10)

The whole model is again estimated in one step, all the theory holds from the

used ML estimation. For examination purposes, the average EA-index is separately

estimated by each month using (2.8) and compare it with the estimation of the

full-model (2.10). The results are shown in Section 2.7.

Seasonal dummies allow capturing the variation during the time, but differences

between the regions are not considered. It is conceivable that the population in

regions with long cold winters are particular interested in climate change, or general

in environmental awareness topics, than in warmer regions. There are two possi-

ble scenarios. First, people believe in climate change and are interested in that

topic, because their region is especially affected by the impact of the environmental

change. Or second, they do not believe in climate change issues, because the peo-

ple in the cold regions experience very cold winters. More or less, both scenarios

might be displayed of interest in environmental topics and should be revealed in a

larger number of internet queries. Thus, the average monthly temperature might

be captured seasonal variation in time as well as differences between the geograph-

ical position of the regions. For examination purposes, the EA index time series is

estimated with and without seasonal dummies and with as well as without average

monthly temperature for each region.

After estimating the EA index for each region and each available time point,

commonalities of regions with similar awareness structure are analysed using a k-

means clustering algorithm from Hartigan and Wong (1979). The main idea is to

minimize the within-cluster sum of square for a given number of cluster. The optimal

number of cluster can be found by using the Silhouette method by Rousseeuw (1987)

or the elbow criterion, see for example Thorndike (1953), Ketchen Jr and Shook
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(1996). In addition, different region groups with similar EA - structure are composed

for 2014, 2015 and 2016, separately, and their development compared over the time.

This method is here called “Cluster-Break-Analysis”. Furthermore, the regions are

grouped by assorted characteristics, for example by GRP per capita quantile levels,

and compared regarding their awareness indices.

2.5 Procedure and Data Preparation

First, the results from Khakimova et al. (2019) are presented and discussed in Sec-

tion 2.6.1. For this analysis, the monthly data of the indicator (query) variables from

c©Yandex are aggregated at year level, for 2014 and 2015. The data are available

for each of 81 Russian regions. Beside the indicators, observable causes are needed

to explain the index variable η. Since we expect a positive relationship between the

wealth of a region and the EA in the population, the GRP per capita in purchas-

ing power parity is considered. As already mentioned, the variable is included in

the first, second and third order to allow for a non-linear correlation. Furthermore,

in order to capture regional economic effects, we control for the structure of the

industry (the share of workforce in mining and manufacturing sector). Differences

in the EA might also arise from the quality of the regional environment. For that

reason, regional air pollution per capita, contaminated water per square kilometre

surface, as well as the identified costs for environmental protection are taken into

account. In addition, controls for the infrastructure (access to the Internet, vehicle

rate), agglomeration (population density), proportion of people older than 65 years,

and education of the regional workforce are included. The collected dataset is in

Table 4.1 in the Appendix. The data are provided by Organisation for Economic

Co-operation and Development (2016), Federal Statistics Service of Russia (2016) as

well as Ministry of Natural Resources of Russia. For some regional variables, data

were only until 2014 available. For this reason, the data for 2015 are predicted by

linear extrapolations. However, in some case there are hardly data from the past

available, for that reason only data from 2014 are used. For example, since the share

of employees in manufacturing sector are currently not available for 2015, we use

the 2014 data for estimating the EA index in 2015. This leads to a biased awareness

index for these years. However, the bias relates equally to all regions and hardly

affects the ranking of the awareness index for these years.
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All variables are standardized for each year separately. The standardization of

the variables compensates for different scaling and helps to avoid problems in the

convergence process applying the iterative ML approach. Since all of the variables

are standardized, the EA index is standardized for each year as well. That means,

the estimated mean of η, and thus of the EA index is 0 for each year. Conse-

quently, the previous MIMIC model allows to evaluate a year-to-year change of the

EA-position of a region taking the ranks of all other regions into account. Avoiding

indeterminacy in the MIMIC-model, λ1 = 1 fixed for all estimations. Then model

2.8 is estimated for 2014 and 2015. Making the values of the λ-parameter compa-

rable and interpretable, all λi are standardized to have
∑p

i=1 λi = 1 after each ML

estimation.

Second, seasonal effects are considered as in 2.10 by using monthly query data

from c©Yandex from January 2014 to April 2016 for each of the 81 Russian re-

gions, see also Lösch, Okhrin, and Wiesmeth (2018a). The words and phrases are

again clustered as in Section 2.4 and divided by the total number of all Internet

queries in region n in a certain month. The previous regional data are used as

cause variables. In addition, information about nitrogen oxides and carbon dioxide

are included. It allows to consider pollutants, as well as air pollutants, which are

released into the atmosphere during the year from fuel combustion (for generating

electricity and heat) and from stationary sources (as index values). Furthermore,

the average temperature in ◦C for each region and each month from Meteo (2018)

is included in the dataset. Since there were two events during the observation time,

which might affect the interest in EA topics: the enormous Russian Rouble (RUB)

devaluation and the Climate Change Conference in Paris (COP). For that reason bi-

nary variables for the RUB devaluation (=1 from December 2014 until April 2015)

and COP (=1 from November until December 2015) are generated. Taking sea-

sonal variations into account, the data are stacked, which leads to a sample size of

N = 81 regions × 28 month = 2268 observations. Not removing the time compo-

nent, all variables are here standardized over all years (all 2268 observations). Again

λ1 = 1 is fixed before each estimation. After the estimation, λi are standardized as

above. The results are presented in Section 2.7.

The statistical language R Core Team (2016) (version 3.3.1), in particular the

package Rosseel (2012), is used for the analysis of the data.
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2.6 Results of the Default MIMIC Model With-

out Considering Seasonal Effects

After methods and data are introduced, the findings are revealed. Subsection 2.6.1

presents the results of the Default MIMIC model without considering seasonal ef-

fects, which are already published in Khakimova et al. (2019), p. 1427–1430. The

estimated model is discussed. Afterwards, the EA index is measured as well as

ranked for 81 Russian regions for 2014 and 2015 in Subsection 2.6.2, which comes

from Khakimova et al. (2019), p. 1430–1432. A non-linear relationship between EA

and regional wealth is revealed in Subsection 2.6.3, which can partly be found in

Khakimova et al. (2019), p. 1432.

2.6.1 Model Fit and Estimated Coefficients

The Default MIMIC model without seasonal components is estimated with all spec-

ifications discussed in the previous Section. The results of the estimations are given

in Table 2.1, as well as in Tables 4.2 and 4.3 provided in the Appendix. We consider

different model structures, indicated by a capital letter, each of them estimated

three times: separately for 2014 and 2015, as well as together for the two years by

using a pooled data pattern. In the latter case, a dummy variable for the year 2015

is additionally included capturing year fixed effects. Tables 2.1 and 4.2 reveal the

estimated parameters of the MIMIC models, which differ according to the included

cause variables. The model patterns in Table 4.3 are similar to those in Table 2.1,

except for the indicator variables: in view of the results from the factor analysis in

Section 2.4, we also estimate η by considering only the Climate Change, Science and

Renewable Energies and Technologies indicator variables.

The Akaike Information Criterion (AIC), Comparative Fit Index (CFI), as well

as Root Mean Square Error of Approximation (RMSEA) reveal the statistical signif-

icance of the different models. Small values of AIC and RMSEA show a good model

fit. Interestingly, AIC and RMSEA differ between and within the model struc-

tures (between 2014, 2015 and the pooled model). A RMSEA value < 0.1 shows a

good model fit for a structural equation model, which is only the case for 2015 (A),

2014 (E), 2014 (G) and 2015 (J). It seems that the yearly EA is differently affected

through the cause variables. Further information about the model fit indices can be
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found in Table 4.4 in the Appendix.

Various estimated parameters are fairly robust. The indicators of EA have a

positive sign, as expected, or are not significant. This supports our intuition that

the index stands for high interests in environmental issues. The results hold, even

if we consider only three instead of five indicator variables. The standardization
∑p

i=1 λi = 1 facilitates the comparison between 2014 and 2015: it seems that the

interests in Climate Change and Renewable Energies/Technologies topics have risen,

the interest in Endangered Environment and Science has remained constant, and the

interest in Politics has fallen. However, we cannot measure statistically significant

differences of the indicator parameters between 2014 and 2015. Interestingly, the

estimated parameter of the year dummy is negative or not significant. However, it

is difficult to interpret this result, because the variable captures all unobservable

differences between the years.

The first cause variable, GRP per capita, indicates a strong positive relation

between regional wealth and EA. We assume a non-linear relationship between re-

gional wealth and EA considering the EKC hypothesis in the literature. For that

reason, GRP per capita2 and GRP per capita3 are also included as cause variables.

However, the estimated coefficients reveal a monotone growing slope for the EA

index function of the GRP per capita, since the values from Table 1 (pooled B)

are βGRP = 2.430, βGRP2 = −4.788 and βGRP3 = 2.755. There are no maxima

or minima of the curve. Since the coefficients are standardised before the estima-

tion, the coefficient values can hardly be interpreted. The mining variable, which

controls for the importance of the mining and oil industry in each region, shows a

positive sign as the volume of this sector increases. However, there is also a strong

positive correlation between GRP per capita and the mining variable (Pearson =

0.710, p-value=0.000). More manufacturing implies a smaller EA, with a negative

correlation with GRP per capita (Pearson = -0.523, p-value=0.000). The share in

manufacturing sector and mining sector are also related with Pearson’s r = −0.518

(p-value=0.000) as Figure 4.1 in the Appendix shows. In other words, the richer the

region the higher the share in mining sector, and thus indirectly, the higher the EA

index. The poorer the region the higher the share in manufacturing sector. Since

the effect from mining sector as well as manufacturing sector seems not to be very

robust, we suspect, there is an indirect wealth-effect on EA.

In particular, EA seems to be related to the wealth of the regions (cf. Section
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2.6.3). Furthermore, we find a positive relation between the environmental quality

and the EA index: a lower level of the air pollution indicates a higher EA index

with a similar result for contaminated water. The effect disappears in models with

many cause variables, as in model D. It might be a collinearity problem.

As already mentioned, these are only correlations and it is not possible to derive

direct causalities. Perhaps, the population in regions with a high EA improved the

environmental situation already in the past. This could explain the insignificant

effect of the environmental protection costs. In regions with high EA and a good

environmental quality there is no urgent need for further and higher environmental

expenses.

Other structural factors, such as the share of old people or the labour force in the

tertiary sector, seem not to be significant. Unfortunately, there is no information

on the environmental education in the regions, and whether there are differences

between the regions. As mentioned above, we also control for the regional access to

the Internet. The coefficients are negative in some models, but mostly not significant.

Interestingly, there is no linear correlation between GRP per capita and access to

the Internet (Pearson = 0.153, p-value=0.172).
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2.6.2 A Ranking of Environmental Awareness in Russia

The construction of the EA index gives us some new insight into the environmental

situation of the Russian regions. Given the estimated EA index for each region and

each year, a ranking of these regions in terms of their environmental consciousness is

possible. We also provide the ranking of the Investment Index regarding ecological

risks in Russian regions mentioned in Section 2.2.1.

Figure 2.4: Left above: relationship between the ranking of the EA index in 2014
and 2015 by using model B (pooled) in Table 2.1 for estimating the EA index.
Right above: negative relation between the ranked regions corresponding to the
Investment Index in 2015 and estimated EA index in 2015. Left below: relation
between the ranking of the EA index and regional contaminated water per km2

in 2015. Right below: relation between the ranking according to the Investment
Index and contaminated water in 2015. The pictures right above, left below and
right below illustrate also the corresponding linear regression line. The colours
comply with the environmental investment risk (red: high, orange: middle, green:
low environmental investment risk). The region with the highest EA is on place 1.
Analogously, the region with the highest environmental investment risk is on the
1st rank. The Ids corresponds to the regional keys in Table 4.5 in the Appendix.
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As seen from Figure 2.4 (left above), there is a linear relationship between the

ranking of the EA index in 2014 and 2015. The results hardly change from period

to period and they seem to be robust. The regions with the highest EA in 2014,

Chukotka AO (13), and in 2015, Magadan (40) are on place 1. A highly ranked re-

gion in 2014 is most likely well-placed in 2015, as well. Nevertheless, there are some

regions, which occupy a lower rank in 2015: the regions Chuvashia (14), Kaliningrad

(21), and Tambovsk (66). In contrast, Leningrad with St. Petersburg (38), Komi

(32), Murmansk (44), and Sverdlovsk (65) reveal a higher EA in 2015. The highest

EA index values are observed in relatively rich regions, such as Chukotka AO (13),

Magadan (40), Nenets AO (45), Kamchatka (24), and Sakha (59), located more

or less in the North of Russia. The regions with the smallest EA values belong to

the poor and conflictual Caucasus area, such as Karachay-Cherkessia (25), North

Ossetia-Alania (47), Ingushetia (16), Chechnya (11), and Dagestan (15).

Figure 2.4 (right above) resembles that regions, which are ranked high accord-

ing to EA tend to be ranked low regarding the ecologically based investment risk

developed by Expert RA (2018). The Spearman’s ρ between this Environmental

investment risk ranking and the estimating ranking of the EA index amounts -0.647

(p-value = 0.000) for 2015, see Table 2.3. The higher the environmental investment

risk, the worse the quality of environment and the higher the costs for correspond-

ing hazardous waste disposal. Interestingly, in this case our forward oriented EA

index corresponds to the Investment Index based on ecological risks resulting from

environmental pollution in the past.

According to Figure 2.4 (left below), there is a negative relationship between

regional contaminated water per km2 and the EA index (see in Table 2.3 Spearman’s

ρ = -0.563, p-value = 0.000 for 2014 and ρ = -0.539, p-value = 0.000 for 2015). A

similar result holds for air pollution and EA. It is conceivable that due to a high

EA an increasing pressure on local politics in the past has helped to improve the

environmental situation. In view of the remarks on ecological investment risks,

a comparable result holds for the reaction between the ranking according to the

ecological investment risks and contaminated water per km2 (see Figure 2.4, right

below).

The colours in all four pictures correspond to the ranking regarding the ecological

investment risk (red: high, orange: middle, green: low environmental investment

risk). The calculated ranks of the EA indices for 2014 and 2015 are illustrated as

maps (cf. Figure 4.3 and Figure 4.4 in the Appendix).
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Table 2.2: The EA index and the corresponding ranking for 81 Russian regions
for the years 2014 and 2015. The keys correspond to the Ids in Table 4.5 in the
Appendix. The EA indices are estimated by using model pooled (B) from Table 2.1.

Key Region Index ’14 Rank ’14 Index ’15 Rank ’15 Key Region Index ’14 Rank ’14 Index ’15 Rank ’15

13 Chukotka AO 331.0 1 191.3 3 29 Khakassia -3.7 42 -34.6 48
40 Magadan 311.1 2 280.2 1 53 Penza -5.4 43 -29.7 41
45 Nenets AO 273.3 3 60.1 6 64 Stavropol -7.5 44 -30.8 45
24 Kamchatka 223.8 4 172.3 4 49 Novosibirsk -7.6 45 -21.3 33
59 Sakha 213.3 5 192.6 2 5 Arkhangelsk -8.8 46 -35.4 49
2 Altai 188.1 6 41.7 8 46 Nizhny Novgorod -8.8 47 -30.3 44

70 Tuva 89.2 7 26.3 15 77 Vologda -9.4 48 -37.2 51
28 Khabarovsk 76.8 8 39.9 9 78 Voronezh -9.5 49 -33.6 47
6 Astrakhan 71.9 9 45.9 7 9 Bryansk -11.3 50 -38.4 54

81 Zabaykalsky 61.1 10 30.2 12 23 Kaluga -11.6 51 -38.0 53
60 Sakhalin 59.2 11 71.5 5 65 Sverdlovsk -13.4 52 -22.5 34
10 Buryatia 58.9 12 27.4 14 38 Leningrad/St.Petersburg -15.7 53 -28.7 40
51 Orenburg 54.3 13 33.1 10 36 Kurgan -16.0 54 -41.8 58
72 Tyumen 45.9 14 31.6 11 31 Kirov -18.0 55 -50.6 62
55 Primorsky 43.2 15 19.1 16 80 Yaroslavl -18.6 56 -37.3 52
4 Amur 37.6 16 8.0 18 32 Komi -19.1 57 -26.7 37
3 Altai 34.2 17 -11.9 28 27 Kemerovo -20.7 58 -40.1 57

76 Volgograd 33.0 18 -6.4 25 61 Samara -22.2 59 -53.8 65
22 Kalmykia 30.8 19 5.5 19 42 Mordovia -23.3 60 -36.5 50
68 Tomsk 28.3 20 15.2 17 37 Kursk -25.6 61 -45.4 61
26 Karelia 27.4 21 -2.2 22 44 Murmansk -26.0 62 -24.3 36
35 Krasnoyarsk 22.8 22 -5.8 24 71 Tver -27.4 63 -55.4 67
8 Belgorod 15.2 23 -21.1 32 12 Chelyabinsk -28.7 64 -42.2 59

19 Jewish 14.5 24 -11.8 27 48 Novgorod -30.6 65 -39.8 56
54 Perm 14.2 25 -6.7 26 75 Vladimir -31.0 66 -62.6 73
7 Bashkortostan 12.7 26 -19.4 31 63 Smolensk -34.3 67 -58.0 72

79 Yamalo-Nenets AO 11.0 27 28.0 13 39 Lipetsk -34.3 68 -76.3 79
73 Udmurtia 10.2 28 -31.2 46 58 Ryazan -36.2 69 -52.2 63
67 Tatarstan 8.0 29 -5.4 23 18 Ivanovo -39.1 70 -66.5 75
34 Krasnodar 6.7 30 -22.9 35 74 Ulyanovsk -46.1 71 -57.9 71
14 Chuvashia 6.6 31 -52.4 64 20 Kabardino-Balkaria -48.5 72 -72.9 77
57 Rostov 5.5 32 -29.9 42 33 Kostroma -48.5 73 -53.8 66
50 Omsk 4.9 33 1.6 20 69 Tula -52.9 74 -55.8 68
62 Saratov 3.2 34 -30.0 43 52 Oryol -54.7 75 -65.3 74
43 Moscow 1.1 35 -16.2 29 56 Pskov -56.8 76 -57.7 70
41 Mari El -0.5 36 -27.9 38 25 Karachay-Cherkessia -77.5 77 -71.5 76
66 Tambovsk -0.7 37 -39.0 55 47 North Ossetia-Alania -79.8 78 -75.9 78
1 Adygea -1.6 38 -28.2 39 16 Ingushetia -90.0 79 -56.4 69

17 Irkutsk -2.9 39 -17.5 30 11 Chechnya -91.3 80 -126.3 81
30 Khanty-Mansi AO -3.4 40 -1.7 21 15 Dagestan -96.9 81 -118.1 80
21 Kaliningrad -3.4 41 -42.3 60

Correlation between η̂ and . . . Pearson’s cor Spearman’s rho
coef. p - value coef. p - value

GRP per capita 2014 0.434 0.000 0.414 0.000
2015 0.353 0.001 0.532 0.000

Environment Protection Costs 2014 -0.155 0.176 -0.338 0.002
2015 -0.147 0.199 -0.396 0.000

Contaminated Water 2014 -0.266 0.019 -0.563 0.000
2015 -0.161 0.162 -0.539 0.000

Environmental Inv. Risk Rank 2015 -0.647 0.000

Table 2.3: Pearson’s and Spearman’s correlation coefficient for measuring linear as
well as monotone relationship between the EA index and GRP per capita, Environ-
ment protection costs as well as Contaminated Water in 2014 and 2015. The EA
indices are estimated by using model pooled (B) in Table 2.1.
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2.6.3 Dependence of EA on GRP per capita

The results of the estimation yield a curvilinear relationship between GRP per

capita and EA in the regions: the parameter values β1 for (GDP per capita), β2

for (GDP per capita)2, and β3 for (GDP per capita)3 with β1 > 0, β2 < 0, and

β3 > 0 are significant in almost all estimated model variations. Nevertheless, the

relationship might be rather linear, especially for poorer regions.

Figure 2.5: Relationship between GRP per capita in purchasing power parity in
thousand USD and the EA index using local polynomial regression fit (left, orange)
as well as linear regression fit (right, orange), 95% pointwise confidence interval
(orange area). The keys correspond to the Ids in Table 4.5 the Appendix. The EA
indices are estimated by using model pooled (B) in Table 2.1.

The average regional EA indices are plotted in Figure 2.5 against the GRP per

capita (in purchasing power parity in 2014) of the Russian regions. The curve on the

left hand side is fitted by local polynomial regression enclosed by a 95% point-wise

confidence interval. On the right hand side the scatter plot is constrained by regions

with a GRP per capita smaller than 50 thousand USD in 2014, the five richest

regions Khanty-Mansi AO (30), Nenets AO (45), Sakhalin (60), Tyumen (72) and

Yamalo-Nenets AO (79) are excluded. Thus, we cannot confirm the EKC hypothesis

in general, but we find a positive correlation between awareness in environmental

topics and regional wealth, see also Table 2.3.

There is a moderate relationship between the EA index and GRP per capita. For

the data in 2014, the Pearson’s correlation coefficient is approximately similar to the

Spearman’s ρ. In 2015 the Spearman’s coefficient for monotone correlation is larger

than the Pearson’s coefficient for a linear relation. On the one hand, there is the

32



leverage effect of the outliers. There are some very rich regions with rather small EA

index values, as Nenets AO, Yamalo-Nenets Autonomous Obkrug (AO), Khanty-

Mansi AO and Sakhalin. For that reason, a linear relationship between wealth and

the regional interest in environmental topics is rather conceivable for the poorer

regions, as Figure 2.5 shows. In Russia, many regions obtain a GRP per capita less

than 50 Tsd. USD in 2014. A few of them generate more such as Chukotka AO

(13), Khanty-Mansi AO (30), Sakhalin (60), as well as Yamalo-Nenets AO (79) and

Nenets AO (45). The last two mentioned regions are especially rich and generate

the steep rising slope in the curve on the left hand side picture. Regarding poorer

regions like the Kamchatka (24), Oblast Magadan (40) and Sakha Republic (59)

are above the 95% Confidence Interval. These regions have above average high EA

Index related to their GRP per capita. Kamchatka, Oblast Magadan and Sakha

Republic are neighbours positioned in the far East of the Russian Federation. The

Sakha Republic is the largest federal area in Russia with almost the geographic

size of central Europe. It is part of the central Siberian mountain region bordered

by the Arctic Ocean in the North and the Aldan Highlands in the South. Oblast

Magadan is situated in the East of Sakha Republic and part of the East Siberian

mountain region bordered by the Sea of Okhotsk in the West. Kamchatka is the

largest peninsula in the Eastern part of Asia. It is bordered by Chukotka to the

north and Magadan to the east. On the peninsula are 29 active volcanoes and many

geysers. Large parts of Kamchatka belongs to of the UNESCO world heritage site.

All three areas are very thin populated and most of the locals live in cities. The

regions are very rich in raw materials (precious metal, diamonds, mineral oil, gas,

coal). The locals live especially from the mining sector, but as well from fishing

(especially in Kamchatka), forestry and energy production.

Some regions, such as Oblasts Ivanovo (18), Kostromo (33) and Kermerovo

(27), lie on the regression fit in Figure 2.5 (right above). Oblasts Ivanovo and

Kostroma are part of Central Russia. Oblast Ivanovo is situated in the North East

of Moscow and lies in the East European lowland. It is bordered by Kostroma

Oblast in the North. Both regions live from textile production, but also from

chemical and food processing industry. The tourism sector plays for Kostroma

Oblast an economic role, too. Oblast Kermerovo lies between the West Siberian

lowland and the South Siberian mountains. It is one of the most dense areas in

Siberia. The locals live especially from the coal production, but also from metal

processing, chemical industry and steel production, see also Kerneck and Oertel

(2016).

Notwithstanding, the geographical position seems to play a role as well. The
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largest EA indices can be measured in the East of Siberia. This comes to no surprise,

since the locals there are said to be close to nature.

2.7 The Results of the Extended MIMIC Model

with Seasonal Variation

The current section shows the estimated EA index for the extended model by consid-

ering seasonal effects. Moreover, the advantages of using temperature data instead

of seasonal dummies capturing seasonal effects are discussed. In addition, some

events, such as the Rubel devaluation (RUB) at the end of 2014 and beginning of

2015 as well as the Climate Change Conference (COP) in December 2015 are in-

vestigated, which could influence the interest in environmental topics. The findings

are already published in Lösch, Okhrin, and Wiesmeth (2018a) and Lösch, Okhrin,

and Wiesmeth (2017).

The last part of this section addresses the EA situation in the Arctic and Sub-

arctic regions and is published in Lösch, Okhrin, and Wiesmeth (2018b). All three

publications focus on the awareness of climate change, which belongs to environ-

mental issues. The Environmental Awareness Index is there called Climate Change

Index, because of the strong correlation between environmental, especially climate,

queries and regional temperature, which is going to be shown later in detail. Staying

in line with concept of the chapter of this thesis, Environmental Awareness Index

(EA) is further on used instead of Climate Change Index (CC) as in the published

articles.

In order to investigate the development of EA in the Russian regions, the index

η̃ is estimated through the MIMIC model (2.10) considering variation in time for

the 2268 stacked data as described in 2.5. The estimated coefficients are shown in

Table 2.4. All models from m1 to m11 include the five indicators y and the GRP

per capita-cause variable x. We consider either GRP per capita, (GRP per capita)2

and (GRP per capita)3 or log(GRP per capita) capturing the expected non-linear

relationship between income and the regional EA. The binary variables z for the

time components: quarters (z1, z2 and z3) and years (z4, z5) are included in model

m4, m5 and m12. The other models consider the temperature for capturing seasonal

and spatial differences. In addition, binary variables capturing geographical affilia-

tion are included in model m5, m6, m10 and m11. Further cause variables follow as

mentioned above.

For examination purposes, we also estimate the EA index separately for each
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Figure 2.6: Concurrent (blue; stacked data) and sequential estimation of the quarter
EA index by using m3 in Table 2.4.

quarter by using model m3 without quarter dummies in Table 2.4 and compare it

with the joint estimation of m3 using the stacked data (including all quarter) with

quarter dummies. As Figure 2.6 shows, with the exception of quarters four and

eight, there are hardly differences between the average quarter EA indexes of both

methods. Only there are some convergence problems for the separate estimation the

average EA index of the 8th quarter (red peak). For that reason, a joint estimation

of the pooled data is rather suitable.

The reduced model m1 in Table 2.4 shows the lowest Akaike information criterion

(AIC) value and the lowest robust Root Mean Square Error of Approximation

(RMSEA), thus m1 has the best model fit. The model fit of model m2 hardly differ

from m1. Both models only differ in the form of the GRP variables. Interestingly,

the models, which include temperature variables instead of time dummies, reveal a

better model fit. Thus, the temperature might adequate capture seasonal deviations

and, additional, spatial conditioned climate characteristics. Information about the

used model fit measurements are in Table 4.4 in the Appendix.

A look at signs and variances of the estimated coefficients might be very inter-

esting. The coefficient of the temperature is highly negatively significant and very

robust over all 11 model variations, even if we additionally consider time dummies

as model m4 shows. This result confirms our expectation of stronger EA interest

in colder regions. If the temperature variable is included instead of time dummies,
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the coefficient of the COP dummy becomes positively significant. If we could anal-

yse a longer time-series, it might be easier to differ between seasonal effects and

the actual influence of the event. However, the first results meet our expectations.

Especially, the coefficient for the RUB devaluation event, approximately one year

before the COP, is in almost all models insignificant. All λs are significantly pos-

itive. Thus, as expected, there is a positive relationship between the index and

environmental queries. The most interesting Internet queries seem to belong to

the Climate Change group, because λ1 shows the highest coefficient value in each

model. Beside the EA queries, all the other indicator variables include the relative

number of phrases, which are closed to the EA topics, too. Thus, the awareness

index can be interpreted as high interest in the environment, especially in EA.

To sum up, model m1 fits the data well enough. The other cause variables,

besides the GRP per capita, the temperature and COP dummy, seem to have a

weak impact of the awareness index. The most of them have significant coefficients,

but hardly affect the model fit.

Nonetheless, it is worthwhile looking at the signs of the other coefficients. As

before, the coefficients of the GRP per capita are positive in the first and third

order, β1 and β3, but negative in the second order β2. This suggests a curvilinear

relationship between wealth of a region and the awareness index. The models with

log(GRP per capita) show a positive sign for its highly significant coefficient, which

supports this hypothesis. From the geographic aspect, the coefficient value of the

North-Eastern Europe dummy is negative significant compared with the reference

(Far) Eastern Siberia. A overview of the geographical groups can be found in Table

4.7 in the Appendix.

Moreover, other socio-economic causes such as the share of employees in man-

ufacturing or the rate of unemployment have a certain influence on awareness.

Consequently, as in Khakimova et al. (2019), promising efforts to stimulate EA are

fundamentally related to the economic system.
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Furthermore, we investigate the dependence of EA in the various regions of the Rus-

sian Federation on certain regional characteristics. Also, the possible effects of the RUB

devaluation end of 2014 and their dependence on regional aspects are of interest, as well

as the COP end of 2015.

2.7.1 Regional Differences of EA

Russian regions differ substantially regarding GRP per capita, the share of manufacturing,

level of air pollution, and the share of the older generation, just to name a few. Using

estimation results from version m1 MIMIC model (2.10), we again aim at investigating,

how these additional causes variables affect EA. Apart of this we are also interested in the

effect of temperature on EA. The regions are grouped into four clusters according to the

size of the index of EA by using the k-means algorithm from Hartigan and Wong (1979).

As Figure 2.7 shows, there is a linear relationship between the average temperature

and the average EA index. This result confirms the expectations of the high interests

in EA topics in colder than in warmer areas. However there is a larger temperature

variation in regions with higher EA indices. This result might be driven by the other

cause variables, such as GRP per capita.

Furthermore, Figure 2.8 refers to the relevance of the share of employees in manu-

facturing in the various regions. Interestingly, we observe an increase of awareness with

a rising share of manufacturing in the lowest cluster (red), and a decrease in the other

cluster. Regions with a relatively low share of employees in the manufacturing sector and

low EA indices, such as Dagestan, Cechnya and Ingushetia in the lowest (red) cluster,

have a strong agriculture sector and are very traditional. The population seems not to

be so interested in more “modern” issues such as EA. The population in (higher) cluster

(grey and blue) with a relatively weak manufacturing sector and high EA index values

are rather richer regions, which live especially from oil-extracting industry (for example

Nenets Autonomous Okrug, Yamalo-Nenets Autonomous Okrug). The regions with a

relatively high share of employees in manufacturing and low EA indices are rather poor.

There is a relation between GRP per capita and the share of employees in manufacturing

sector.

Surprisingly, the situation is quite different when we look at the effect on awareness of

higher levels of “air pollution” in Figure 2.9. Especially the second and third cluster with

a large variance of these emissions show no sensitivity regarding awareness with respect

to increasing levels. Similar results hold for the influence of the rate of unemployment,

the share of employees in mining, and the share of older people in the population of the

regions. This result is also reflected through some unstable coefficients (changing signs)
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Figure 2.7: Estimated average awareness index depending on the average temperature for
the regions assembled in four clusters according to the level of index. The affiliation of
the regions to the cluster can be found in Table 4.6 in the appendix. Model m1 is used
for estimating the EA index.

in Table 2.4.

2.7.2 Devaluation of RUB and Climate Change Conference

The substantial fall of the world market prices of natural oil and gas starting end of 2014

implies the decline of the RUB-Dollar exchange rate and other negative consequences for

the Russian economy, which is largely dependent on the export of oil and gas. Moreover,

there might be environmental issues associated with these developments: efforts to reduce

the consumption of oil and to mitigate climate change might be weakened.

On the other hand, end of November 2015 the COP inspired many countries to con-

tribute towards mitigating EA and support efforts to adapt to consequences of climate

change, especially in the developing countries.

Thus, for both these issues the question arises, whether there are also measurable

effects regarding EA, perhaps dependent on the characteristics of certain regions of the

Russian Federation.

Again, the estimation of version m1 of model (2.10) yields interesting results regarding

awareness in different contexts. Figure 2.10 shows the time-series of the EA (left) and

the average temperature (right) per month and region, whereby the regions are clustered
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Figure 2.8: Estimated average awareness index depending on the share of employees in
manufacturing for the regions assembled in four clusters according to the level of the index.
The affiliation of the regions to the cluster can be found in Table 4.6 in the appendix.
Model m1 is used for estimating the EA index.
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Figure 2.9: Estimated average awareness index depending on per capita greenhouse gas
emissions for the regions assembled in four clusters according to the level of the index.
The affiliation of the regions to the cluster can be found in Table 4.6 in the appendix.
Model m1 is used for estimating the EA index.
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regarding their awareness index (left) or their average temperature by using a k-means

algorithm. The colours reveal the rank related to the EA index: red < green < blue

< black (grey). The coloured areas are the 95% Confidence Intervals. Table 4.6 in

the appendix lists the corresponding regions within the EA index cluster. The pictures

in Figure 2.10 confirm the relationship between EA and temperature as in Figure 2.7

shown. In addition, Figure 2.10 reveals seasonal variations in the EA, which are related

to the monthly temperature. The higher the temperature, the less the interests in EA

topics. The results remain, if we cluster the regions for each year separately. Figure 2.11

shows the result of this “Cluster-Break-Analysis”. From the algorithm of clustering, it

can happen that cluster g includes a different set of regions in 2014 as in 2015, but the

within-cluster variances are minimized for each year and each cluster. It seems that, the

currency devaluation at the end of 2014 until the first half year in 2015 does not affect the

interest in EA topics significantly. The awareness index seems to be on a high level. This

result is confirmed in Table 2.4 through the insignificant coefficient β7. The devaluation

of the RUB might have deflected interest to other areas. However, in Figures 2.10 a rising

of the EA index is observable between August and December 2015, in particular in cluster

2 until cluster 4, which might be interpreted as a increase in EA topics before and during

the COP. But after the conference, a decrease in the interest in EA topics is measurable.

This result could be also driven by season, or rather temperature effects. However the

deepest temperature point is reached in February. The coefficient for the COP, β6 in

Table 2.4 is positively significant in the most models, but if we include season dummies

there, than the coefficient becomes insignificant, as m4 shows.

If we cluster the regions differently, for example, regarding the height of their GRP

per capita, as in Figure 2.12, then this results remains.

This result also holds, if we cluster the regions with respect to other variables: the

share of employees in mining or manufacturing, or the emissions of greenhouse gases.

A further question refers to regional differences of awareness and their development

over time. In this context, Figure 2.13 shows that the regions located in the eastern part

of the Russian Federation tend to reveal a higher level of awareness in comparison to the

regions located in Europe or in Central and Western Siberia; see also Table 4.7 in the Ap-

pendix for the corresponding regions within the geographical cluster. The results hardly

change from Figure 2.10. The intensity seems to decrease from east to west. Already

the estimated coefficient values in Table 2.4 confirm these results. This phenomenon is

already mentioned in Lösch, Okhrin, and Wiesmeth (2017).

Figure 2.14 details the location of the clustered regions with the highest (grey) and

lowest (red) values of EA. Lösch, Okhrin, and Wiesmeth (2017) provide more information

on the “diffusion” of EA, which seems to spread from the eastern parts of the country to
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Figure 2.10: Estimated average awareness index for 28 month for the regions assembled in
four clusters according to the EA index (left) and temperature (right). The affiliation of
the regions to the cluster (left picture) can be found in Table 4.6 in the appendix. Model
m1 is used for estimating the EA index.

Figure 2.11: Estimated average awareness index for 28 month for the regions assembled
in four clusters according to the temperature (right). Model m1 is used.
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Figure 2.12: Estimated average awareness index for 28 month for the regions assembled
in four clusters according to the size of the GRP per capita. Model m1 is used.

Figure 2.13: Estimated average awareness index for 28 month for the regions assembled
in four clusters according to the geographical position. Model m1 is used.
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Figure 2.14: Map with associated average levels of awareness index for the regions in
2014 assembled in four clusters according to the level of awareness of EA. Model m1 is
used for estimating EA index per month. The average EA index for 2014 in each region
is subsequent computed. The Ids corresponds to the regional keys in Table 4.5 in the
Appendix.

the western parts.

The final Figure 2.15 in this context shows some box plots for the changes of the

average levels of awareness in the regions clustered according to their awareness levels.

The graphic depicts the changes in the levels of awareness from 2014 to 2015. Although

the composition of the clusters changes a little bit, taking into account this effect would

not alter the picture radically.

We thus observe a light upward development of average awareness levels in each cluster

when moving from 2014 to 2015 levels. The variability within the clusters decreases.

2.7.3 Environmental Awareness in the Arctic Zone

The previous results might confirm the presumption, that the population of colder regions

are especially interested in EA topics. For that reason the current section focuses on the

EA of Arctic and Subarctic regions in the North of the Russian Federation. The well-being

of the citizens in the Arctic regions depends on the environmental situation particularly.

The impacts of the global climate change are already apparent. They reveal through the

speed of melting permafrost areas as well as the changing picture of the forests, agriculture

and so forth. The 81 Russian regions are grouped into Arctic, Subarctic and all the

others (rest) regions. The Arctic zone comprises regions, which are, at least partially,

north of the parallel of 66◦north latitude. These are Arkhangelsk, Nenets AO, Yamalo-

Nenets AO, Chukotka AO, Murmansk, Sakha, and Krasnoyarsk. Moreover, Khanty-

Mansi AO, Karelia, Komi, Magadan, Kamachatka, and Leningrad with St. Petersburg,

lying between the parallel of 66◦ and 60◦ north latitude, are here defined as Subarctic

zones. As mentioned above, the Russian regions differ substantially in their characteristics.

As before, MIMIC model 2.10 is estimated and the average EA indices per regions are
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Figure 2.15: Box plot with associated levels of awareness index for the regions assembled
in four clusters for 2014 (black) and 2015 (red) according to the level of EA. Model m1 is
used.

computed. In contrast to Lösch, Okhrin, and Wiesmeth (2018b), which used model m3

from Table 2.4 estimating the awareness index, the better data-fitted model m1 is here

exploited. However, the results hardly change. The most of the Arctic or Subarctic

regions have an above average GRP per capita and/or higher EA indices.

Figure 2.16 shows the development of awareness in the Arctic and Subarctic zones in

comparison to that in the other regions. Interestingly, awareness tends to be higher in

the Arctic regions in comparison to the rest of the country. Since there does not seem

to be statistically significant differences between the defined Arctic and Subarctic zones,

a common spatial group is generated. The average EA index time-series for this Arctic-

Subarctic group can be found in Figure 2.17 including 95% CI. Since the joint variance

shrinks with a rising number of observations, the CI of the Arctic-Subarctic group hardly

touch the CI of all other regions. In particular, there are statistically significant differences

in the winter terms observable. This result confirms the hypothesis above. Figure 2.18

details the regions with Arctic (blue) and Subarctic zones (orange) as well as all others

(grey). Actually the region Krasnoyarsk extends from the north to the south of Siberia,

which could strongly influence the variability of the average Arctic EA index. But if we

exclude this region as an Arctic area, the results hardly change from Figure 2.16.
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Figure 2.16: Estimated average EA index for 28 month for the Arctic (light blue), Sub-
arctic (orange) and all other regions (black). Picture shows 95% CI of Arctic and all other
regions. Model m1 in Table 2.4 with temperature data and without seasonal dummies is
used for estimating EA index.
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Figure 2.17: Estimated average EA index for 28 month for the joint Arctic-Subarctic
Area (violet) and all other regions (black). Picture contains 95% CI of the two groups.
Model m1 in Table 2.4 with temperature data and without seasonal dummies is used for
estimating EA index.

Figure 2.18: Map of Russia with defined Arctic (blue) and Subarctic (orange) regions
without Chukotka Autonomous Obrug.
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2.8 Concluding Remarks

To sum up, the current chapter reveals a less time-consuming and less-expensive method

for estimating regional environmental awareness. After an introduction and literature

overview about EA, the structure of the applied MIMIC model is described and discussed.

The idea is to estimate the not-directly observable regional EA Index of 81 Russian regions

through some endogenous indicators, which are here the number of Internet queries of

certain environmental phrases from the search engine c©Yandex. These Internet queries

are less subjective, and a general problem of EA surveys, the so-called “yes-bias” can be

avoided Hiramatsu, Kurisu, and Hanaki (2015). In addition, the regional EA depends on

some exogenous causes, such as GRP per capita, industry characteristics, age structure of

the citizens, education level, but also the environmental attributes and regional climate

condition, which are included into the model.

In Section 2.6, the results of the MIMIC model for the aggregated year data of the

Russian regions are revealed and discussed. The regions are ranked concerning their EA

index. In particular the relationship between regional EA and GRP per capita is pointed

out, but also further correlations with regional characteristics are discussed.

In the following Section 2.7, the results of the extended MIMIC model, which considers

seasonal variation, are reveals and mooted. Therefore the MIMIC model is estimated for

each month through stacking the monthly data and capturing seasonal by using binary

variables for quarter and years. In addition, because seasonal dummies do not allow to

consider variation between the regions, temperature data are instead included into the

model. This allows to taken regional climate circumstances and the involvement of the

population in the climate change process into account.

As a result of both sections, a non-linear positive relationship between GRP per capita

and regional EA can be found. In contrast, other cause variables, such as the share of

employees in manufacturing sector, unemployment rate or greenhouse gas emissions hardly

affect the consciousness of the population. The highest index levels can be measured in

the eastern part of Russia, particular in Chukotka Autonomous Okrug, Oblast Magadan

and Kamchatka. Large parts of these regions belong to the UNESCO natural heritage,

which might be a reason for this result. Other high-awareness regions are the rich Nenets

Autonomous Okrug and Republic Sakha, which live from oil-intensive industry sectors.

The most of the regions with high awareness indices lie in the cold North of the country.

The fear that the permafrost areas defrost will amplify climate change process might be

explain this results, see Witman (2017). Moreover, the interest in EA topics decreases

from the eastern to the western part of Russia. The smallest EA index values can be

measured in the European part, especially in the Caucasus region, which belongs to the
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poorest as well as warmest region in the country.

Furthermore, there are seasonal variability in the temporal development of the EA

index, which can be partly explained by the regional climate circumstances. The interest

in environmental topics is lower in warmer month (summer) and warmer regions than in

colder month (winter) and colder regions. There are peaks between October and December

as well as in March and April of 2014 and 2015. The RUB devaluation at the end of 2014

seems not influence the regional EA. In contrast, a positive effect of the COP on the

EA index is measurable. However, the analysis cannot answer conclusively the question,

whether this positive effect is driven by the COP event or conditioned by the season. A

longer observation period may here lead to clarification.

Notwithstanding, the approach, which is here applied, is only limited by the data and

can easily be used for further (environmental or economic) issues and/or for other regions.

It would be interesting to extend the analysis by using data from further countries and/or

further search engines. Furthermore, it could be possible to relate the regional interest in

environmental topics to consumption of electrical energy from renewable sources, instead

of using Internet queries. In addition, the assumption concerning the random variables,

which were here made, might not hold. Future work could deal with these issues.
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Chapter 3

Labour Market Tightness and

Individual Wage Growth

This section arises from a collaboration with the senior labour market researcher Stephan

Brunow, formerly research associate at the Institute of Employment Research (IAB) in

Nürnberg and currently Professor at University of Applied Labour Studies in Schwerin.

3.1 Introduction

Globalisation and technological progress have challenged many developed countries for a

long time, especially in economic and social terms. Technological progress has shaped

the labour market pattern. Recently, Acemoglu and Restrepo (2018) show that inequal-

ity is increased by faster automation and the establishment of new tasks. At the same

time, robots and machines can potentially replace simpler routine tasks performed by

low-skilled workers, leading to an oversupply of low-skilled labour in the non-service sec-

tor, which potentially pushes down their already rather low wages. Digitalisation has

brought many new and complex tasks, which requires the control, maintenance and the

extension of machines. Although the workers who undertake these jobs might profit from

digitalisation, they require specialised knowledge in advanced science-related subjects.

Moreover, the productivity growth in these technologically complex production processes

can potentially accelerate, which increases the already rather high wages of these skilled-

workers. Therefore, those industries that mainly employ workers who perform routine task

might experience enormous employment restructuring by adaption of computer systems

and machines. This effect accelerates wage inequality, which is also so called Skilled-Bias

Technological Change (Goldin and Katz 2009, Acemoglu and Autor 2011). Acemoglu and

Restrepo (2018) present mechanisms under which human work is substituted by, or is
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complementary to capital intensive production. This depends on production costs, and

whether it leads to higher unemployment and stagnant wages for specific groups. Ac-

cording to Autor, Levy, and Murnane (2003), it might not (yet) be possible to replace

workers by machines in non-routine tasks, such as housekeeping, hotel and personal care,

which are mostly low-paid jobs. These effects could be a reason for the job polarisation

at the margins of the wage distribution: low-paid non-routine tasks are still in demand

and high-paid technologically demanding jobs have become increasingly important, but

middle wage jobs are increasingly substituted by machines (for the United States: Autor

and Dorn 2009; Autor, Katz, and Kearney 2006 and Autor, Katz, and Kearney 2008;

the UK: Goos, Manning, and Salomons 2014 and West-Germany: Spitz-Oener 2006 and

Dustmann, Ludsteck, and Schönberg 2009).

In Germany, specialists in medical subjects and food services are urgently needed.

Specialists in nature science and technology (here called STEM for Science, Technol-

ogy, Engineering and Mathematics) are also in demand because of technological change

(Federal Employment Agency Germany 2017). Beside technological change, the so-called

demographic change is expected to become more important over the coming decades.

The retirement of the ‘baby boomer’ generation and population decline leads to another

expected reorganisation at the labour market. The first signs of this change can already

be seen: the (relative) numbers of young people leaving school is growing smaller and

almost half of them decide for further training in universities. Therefore, companies have

started to compete for these youngsters to fill their apprenticeship workplaces, see Statis-

tisches Bundesamt Deutschland (2017). Consequently, the apprenticeship market becomes

tighter and wage increases are expected. Technological change place higher labour de-

mand on specific occupations (e.g. for STEM workers), whereas other occupations are

crowded and do not enjoy such a wage growth. Therefore, it has to be asked if there

is a shortage of young labour in occupations? If so, then it should be associated with

relatively higher wage growth for a given or even growing stock of labour and a reduction

in unemployment. This is the departure of this research: when the labour market becomes

tighter, we expect higher wages. We raise two questions: first, can we identify higher

individual wage growth for apprenticeship leavers depending on the relative shortage in

separate occupations? And second, is this effect more pronounced for specific occupations

(e.g. STEM)? For this purpose, we construct a labour market tightness measure follow-

ing the Wage-Curve-literature (e.g. Blanchflower and Oswald 2008) and we estimate an

individual 10 year wage growth equation in the setting of Mincer (1974). We make use

of an extensive German administrative database of young individuals for the time period

1995–2014.

Believing that the effect of occupational labour market tightness is driven by techno-
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Figure 3.1: Wages in a labour demand and supply equilibrium.

logical change or by demographic change, we set up arguments of the wage curve literature

in a basic macroeconomic setting, see Blanchflower and Oswald (2008). Consider labour

demand D and labour supply S curves of a specific occupation as outlined in Figure 3.1.

There is a maximum endowment of labour in a specific occupation and region, either

employed E or unemployed U . In equilibrium, E1 people are employed and U1 people

are unemployed, leading to wage w1. If labour demand in an occupation increases, then

the demand curve shifts outwards. Wages are expected to rise from w1 to w2. However,

in the short run, employers usually pay w1 and, therefore, an excess demand results. We

interpret the excess demand as open vacancies. At the same time, U1 unemployed workers

are available but are unwilling to take a job for wage w1. Within a labour market match-

ing framework the number of open vacancies and the number of unemployed people are

usually employed to construct a labour market tightness measure. However, as discussed

later on, data on open vacancies is only very rarely available at the regional-occupational

level and, therefore, we use the employment level E1 instead, similar to Moscarini and

Postel-Vinay (2016). Consequently, our tightness measure relates to the unemployed-to-

employed in a region and occupation. In the medium and long-run, wages will adjust

and the E2 − w2 − U2 combination will describe the new equilibrium. As can be seen,

when the labour market becomes tighter, this implies higher employment and lower un-

employment levels. If the unemployment level decreases, then wages are expected to rise.

Therefore, our measure of regional, occupation-specific labour market tightness is the ra-

tio of unemployed to employed (ue), which has already been employed by Moscarini and

Postel-Vinay (2016). If this ratio decreases, then wages are expected to rise. Moreover the
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question arises of whether or not there are different effects on the wage growth between

certain income groups due to labour market tightness within an occupational field (for

example IT, salesman, social occupation). We assume that low-paid employees within

a certain occupation, who are hypothetically low-skilled, can be more easily replaced by

capital (machines) than well-paid (high-skilled) employees in the same professional field.

Low-skilled people might be aware of their weak bargaining power and they are much

more ready to work for lower wages than high-skilled people if the unemployment rate

rises. Meanwhile, the stronger bargaining power of the well-paid high-skilled employees

leads to an increase of their wages when the labour supply is low. Both of these situations

lead to a rising wage inequality between these both income groups. Furthermore this

wage dispersion seems to be task driven and, thus, expedited by technological progress;

see Kim and Sakamoto (2008), Fortin and Lemieux (2016), Firpo, Fortin, and Lemieux

(2011).

Inspired by Mincer (1974) wage equation, we estimate monthly log-wages 10 years

after the apprenticeship training of employees through initial characteristics at the first

job and the changes of these attributes. Having this in mind, we attempt to answering

following questions:

Q1: Does labour market tightness affects individual wages?

Q2: If Q1 holds, then does this effect influence all occupational/gender groups in the

same fashion?

Q3: If Q1 holds, then does labour market tightness differently affect individuals from

different income groups?

This chapter is structured as follows. Our data and variable constructions are in-

troduced in Section 3.2. The econometric methods, which are used in this chapter, are

presented in Section 3.3. Afterwards, the results are shown and discussed. Section 3.7

summarises and concludes the chapter.

3.2 Data and Sample Selection

We use the individual data of the Integrated Employment Biographies (IEB) provided

by the Institute for Employment Research (IAB) for the years 1995–2014. This is ad-

ministrative data and it includes individuals working who are subject to social security

contributions and individuals who are unemployed. This allows us to construct the en-

tire (un-)employment history of about 90% of the entire German labour market. From
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the whole universe of all of the employment entries of all individuals (so-called spells)

contained in the IEB, we aggregate data at the level of the firm and all higher levels of

hierarchy, such as the industry, occupation and region, and we derive a linked-employer-

employee dataset. A summary of the constructed variables is shown in Table 4.11 in the

Appendix.

Card and Lemieux (2001) argue that different cohorts are imperfect substitutes be-

cause the older ones have already attained experience and, thus, are potentially more

productive. In contrast, the newest cohorts hold the newest knowledge but have almost

no experience. They start with similar conditions at the labour market and have a more

or less similar productivity level. Furthermore, they might profit from the latest tech-

nological changes. Thus, they are easier to compare and do not have a long and very

complex employment biography, which can affect their individual wages. Consequently,

we are interested in the newest cohort and we aim to get rid of this productivity gap.

We consider a 10% sample of employees under 30 years of age when they just completed

vocational training leading to a homogeneous sample of 350000 individuals.

We consider their wage growth within the next 10 years. Although the data is highly

reliable, we drop few outlier cases with exceptional low or high wages. Occupations are

grouped into 54 distinct occupational fields on the basis of the KldB88 at the three digit

level. This classification takes within-occupation mobility into account, such that low

mobility rates between occupations occur. Because we consider wage growth of the in-

dividuals between the first job and 10 years after, we only consider individuals that are

employed at both moments in time. We are aware of the potential selection bias, espe-

cially for not controlling of being unemployed or self-employed 10 years after. Our final

sample contains 316711 individuals. Because we only focus on young individuals, their

wages are below a specific social security contributions threshold and we do not have

to impute truncated wages. Our focus variables describe the economic conditions of the

occupation-specific regional labour market. We suppose stronger individual wage growth

in occupations and regions, where relatively few potential workers are available for start-

ing a new job relative to the number of employees. Therefore, the focus variable, ue, is

computed as the number of unemployed people divided by the number of employees within

an occupational field and labour market region, where an observed individual started to

work after finishing vocational training. In addition, we also compute the change, ∆ue,

between the first job and 10 years after. To account for alternative explanations, we

control for the occupation-specific regional labour market size to account for Marshal-

lian externalities, Marshall (1920). We also consider the direct competition through the

proportion of academics employees (holding an university degree) within an occupation

and region to account for potential substitutional or complementary relationship between
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apprenticeship and university-degree holders. If there are, for example, many employed

university degree holders and only a few workers who have passed vocational training, then

the labour market is relatively tight from a vocational training perspective because this

qualification level becomes scarcer. Furthermore, we include firm specific characteristics

at the entry time point and its change, such as firm size, firm age, share of human capital,

proportion of women and foreigner within firms, while taking different productivity levels

into account.

3.3 Methodological Approach

Let us define and formalise the setup with the model. Having an initial log wage wi,t

at time t ∈ [1995, 2004] of an individual i ∈ 1, . . . , N with N = 316711 depending on

occupational o, firm f , regional r and also industrial s environment, we intend to model

its change ten years after entering the labour market wi,t+10. Computing a wage growth

measure as the dependent variable requests for controlling not just initial conditions (as

e.g. in the specification of the growth model from Solow (1956) but also for the situation

in the future). We estimate

wi,t+10 = α0 + wi,tα1 + xT
i,tβ1 + zT

ri,oi,t
β2 + ueT

ri,oi,t
β3 (3.1)

+ vT
fi,t

β4 + ∆xT
i,tγ1 + ∆zT

ri,oi,t
γ2 + ∆ueT

ri,oi,t
γ3

+ ∆vT
fi,t

γ4 + µoi
+ µri

+ µsi
+ µui

+ εi,t+10.

According to the wage equation from Mincer (1974), the individual log wage is ex-

plained by individual characteristics xi,t at the entry time point, as well as their change

∆xi,t. Furthermore, the labour market situation (labour market size; number of other

employees in the same occupation field within the same labour market region) zri,oi,t at

t and its change ∆zri,oi,t depending on the occupation(s) o of i and labour market re-

gion(s) r of i are considered. We also include the firm’s characteristics vfi,t and its change

∆vfi,t depend on the firm(s) where i works. The vectors ueri,oi,t and ∆ueri,oi,t contain

the labour market tightness variables, which include the number of unemployed related

to the employed individuals with the same profession within a specific labour regions and

the interaction of these variables with occupational dummies. In addition, we control for

occupational µoi
, regional µri

, industrial µsi
and time µui

fixed effects. For simplification

purposes, (3.1) is aggregated to

wt+10 = zT
t η + εt+10, (3.2)
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with wt+10 = wi,t+10. Vector zt = (1, wi,t, xi,1,t, . . . xi,J,t, ∆xi,1,t, . . . ∆xi,K,t, zri,1i,t, . . . zri,Oi,t,

∆zri,1i,t, . . . ∆zri,Oi,t, ueri,1i,t, . . . ueri,Oi,t, ∆ueri,oi,t, . . . ∆ueri,oi,t, v1i,t, ∆vFi,t, d1i
. . . dOi

,

g1i
. . . gRi

, h1i
, . . . hSi

, l1i
, . . . lUi

)T includes the intercept and the log wage wi,t at the begin

of the first job; xi,j,t denotes a set of j = 1, . . . J individual characteristics at the first

job to time t, ∆xi,k,t is their change from t to t + 10, with k = 1, . . . , K and K ⊆ J .

Capturing possible unobservable heterogeneity in the occupational o = 1, . . . , 53, regional

r = 1, . . . , 140, industry s = 1, . . . , 58, and year u = 1, . . . , 9 information corresponding

binary variables doi
, gri

, hsi
and lui

are included in the model. The associated weights are

aggregated in the coefficient vector

η = (α0, α1, β11, . . . , β1J , β21, . . . , β2R, β31, . . . , β3R, β41, . . . , β4F , γ11, . . . , γ1K ,

γ21, . . . , γ2R, γ31, . . . , γ3R, γ41, . . . , γ4F , µ1i
, . . . , µOi

, µ1i
, . . . , µRi

, µ1i
, . . . , µSi

, µ1i
, . . . , µUi

)T .

The error term vector is εt+10 = εi,t+10. All of the right hand side variables (RHS) that

might affect individual log wages in general are considered at the initial time point t

and their changes within t and t + 10. Furthermore, we assume there is no unobservable

correlation between εt+10 and wt+10. If this assumption holds, then we can consistently

estimate the parameter vector η by minimising the sum of error squares, which leads to

η̂ = (zT
t zt)

−1ztwt+10. To overcome difficulties with the different levels (f.e. occupational,

regional, industrial specific, etc.) in the data, the variance of η is estimated by using

a clustering method V̂ar(η) =
(
zT

t zt

)−1 (∑P
p=1 zT

r,tε̂r,tε̂
T
r,tzr,t

) (
zT

t zt

)−1
after the OLS esti-

mation, see Cameron and Miller (2015). Therefore the RHS variables zr,t and estimated

residuals, ε̂r,t = wr,t+10 − zr,tη̂, are clustered at the regional level. However, the vari-

able set is quite large containing 628 variables with 291 binary variables, which leads to

typical collinearity problems during the OLS estimation of the coefficients. Overfitting

of the model is probable. Some of the estimated coefficients become statistically signif-

icant by coincidence, but they perform rather poorly, see Ahrens, Schaffer, and Hansen

(2018). Consequently, we use Least Absolute Shrinkage and Selection Operator (LASSO)

algorithms to shrink the dimension and avoid collinearity in the structural parameter.

The idea is to penalise the parameters of RHS-variables η that hardly influence the LHS-

variable wt+10 and push them down to zero. The aim is to obtain a simpler model, which

does not include rather irrelevant variables. It should help to improve the forecast ac-

curacy and the interpretability of the models. Here, the default LASSO approach by

Tibshirani (1996) with the resulted LASSO coefficient vector

η̂∗ = argminη̂∗ ||wt+10 −
P∑

p=1

zpηp||2 + λ
P∑

p=1

|ηp|, (3.3)

is used. Thereby, λ ≥ 0 is the penalty coefficient, which is found by cross validation, and
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Figure 3.2: An extract of the LASSO solution path. Variables are being removed from
the model as λ increases.

p denotes a specific RHS variable in the model. However, the LASSO variables selection

can be inconsistent under certain conditions, see Meinshausen and Bühlmann (2006), Fan

and Li (2001). Consequently, Zou (2006) augmented the penalty term through different

weights for different coefficients. This yields to

η̂∗AD = argminη̂∗AD ||wt+10 −
P∑

p=1

zpηp||2 + λ
P∑

p=1

1

|ηp|γ∗AD |ηp|, (3.4)

with γ∗AD > 0 and λ ≥ 0. The data-driven weights should ensure the so-called oracle-

properties, see Zou (2006). The LASSO coefficients path in Figure 3.2 illustrates the

variable selection process, which corresponds to a piecewise linear and continuous function

of λ. Variables enter or leave the active set because of changes in the slope of the function.

If λ = 0, then the full set (here called Full Model) is achieved.

The optimal λ, λopt, that minimises the mean-square prediction error is chosen by

k-fold cross-validation algorithm see Ahrens, Schaffer, and Hansen (2018):

STEP 1: The dataset is divided into (approximately) five equal folds.

STEP 2: Fold 1 is treat as the validation dataset. Folds 2–5 are the training data.

STEP 3: The model is estimated by using the training data. The predictive performance of

a range of λ is determined by using the validation data.

STEP 4: STEPS 2 and 3 are repeated using folds 2, . . . 5 as validation dataset.

STEP 5: Find the λ that reveals the best out-of-sample predictive performance.
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Figure 3.3: Choose λ that leads to the smallest mean-square prediction error (MSPE).
The red-solid vertical line corresponds to λopt that minimises the MSPE. The red-vertical
dashed line shows the largest λLSE at which the MSPE lies within one standard error of
the minimal MSPE.

Figure 3.3 illustrates the λ selection process by using the observed data. Because the

resulting LASSO coefficient vectors η̂∗, η̂∗AD are biased, we estimate the reduced models

after the variable selection by OLS and compare the estimated coefficients of the main

variables, this is in line with Chernozhukov, Hansen, and Spindler (2015).

Furthermore, we expect that the levels of the individual, occupational, firm, regional,

industry characteristics affect the log wage distribution Fwt+10 differently. For example,

a changing labour market situation might influence the demand of low-paid jobs in other

ways than better-paid-jobs and thus their wage growth. Consequently, we also estimate

the distribution Fwt+10 of wt+10 through the unconditional quantile regression method by

Firpo, Fortin, and Lemieux (2009). This approach is based on the concept of sample

quantile qτ added to the influence function IF
(
wt+10; qτ , Fwt+10

)
of this quantile of the

wage growth for a specific level τ = {0.25, 0.50, 0.75}:

w̃τ,t+10 := qτ +
(τ − I wt+10 ≤ qτ )

fwt+10(qτ )
= zT

t η(τ) + ε̃t+10, (3.5)

where w̃τ,t+10 is the unconditional τ quantile, which is called the recentered influence func-

tion and I {wt+10 ≤ qτ } is the indicator function. The density fwt+10(qτ ) depends on qτ and

is estimated in our study using KDE with Gaussian kernel. We regress a set of variables

zt against w̃τ,t+10. The coefficient vector η depending on τ can be simply estimated via

OLS. In comparison with the more traditional conditional quantile regression method by

Koenker (2005), the estimation takes place in one step. Given that the model is estimated
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Full Model LASSO Ada LASSO
(1) (2) (3)

ue effect without interaction -0.078 -0.100# (0.030) -0.195# (0.019)
∆ue effect without interaction -0.059 -0.067# (0.025) -0.151# (0.015)

N 316711 316711 316711
adj. R2 0.593 0.591 0.592
AIC 3.90E+05 3.90E+05 3.90E+05
BIC 3.90E+05 4.00E+05 3.90E+05

Table 3.1: (Post-) OLS estimation of the ue coefficients: by using the full model with
628 RHS variables (2nd column), LASSO (3rd column) and adaptive LASSO with 224
RHS variables (4th column). Heteroscedasticity robust clustered standard errors of the
coefficients are in parentheses; significance level #p < 0.01, +p < 0.05, ∗p < 0.1.

via OLS, no particular assumptions for the error term vector ε̃t+10 are needed. There are

no convergence problems. In addition, the marginal effect of a change in the distribution

of zt on the marginal quantiles of wt+10 is directly readable through the coefficients η. For

further information, see Firpo, Fortin, and Lemieux (2009) and Borah and Basu (2013).

3.4 Does Labour Market Tightness Affect Individual

Wages?

Let us start with the relationship between log wages and unemployment variable ue. In

the case of a labour force shortage rising log wages are expected. A shortage occurs if the

unemployment rate shrinks but the labour demand rises. The relative number of potential

freely available staff decrease, which should rise the wage power of the employees.

Table 3.1 shows the estimated coefficients for ue and ∆ue, by using the full model

with 628 RHS variables (column 1), the selected model by using LASSO from Tibshirani

(1996) (column 2), as well as the selected model by using adaptive LASSO from Zou

(2006) (column 3). The latter model contains only 224 RHS variables. This corresponds

to a two-third dimension reduction without a loss in the model fit. The reduced model

has less collinearity problems, in particular by considering interaction variables. The

estimated coefficients are more precise. In addition, the dimension reduction serves as a

kind of robustness check for the coefficient’s significance. All of the models can almost

explain approximately 60% of the variance of the 10-years log wages.

The coefficients of the unemployment variables in all three model variations are neg-

ative and significant as expected. The elasticity of ue = −0.195 (column 3) can be
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interpreted as follow: 1% decrease in unemployment at the first job would lead to an

increase in wages of about 0.195 % 10 years after. A 1% change of this ue - ratio at the

first 10 years after entering the labour market would to a further wage growth of approx-

imately 0.151%. Nijkamp and Poot (2005) find a mean wage curve elasticity of −0.07 in

their meta-analysis, which is weaker than our findings and close to our result in the full

model. This could be related to the very young samples, which we observe. Young people

are more likely to be employed within one year unemployment than older unemployed

people; see Axelrad, Malul, and Luski (2018). Firms rather decide upon younger people,

thus they have a greater bargaining power, especially if there is a shortage in the labour

force. This result is quite robust through all our specifications and answers Q1: Labour

market tightness positively affects the individual’s wages.

3.5 Differences Between Occupations And Genders

To answer the second question Q2, we interact ue and ∆ue with occupation dummies.

The results can be found in Table 3.2. Thereby, columns 2–4 reveal the coefficients of

the estimated ue variables interoperated with the occupations. Columns 5–7 correspond

to the estimated ∆ue interaction variables. Some ue - occupation interaction variables,

which are selected by adaptive LASSO, were not inevitably chosen as a ∆ue interaction

variable with the same occupation, and vice versa. For example, the interaction variable

ue for metal and plant engineers is selected by adaptive LASSO but not the corresponding

∆ue for the same occupation, which measures its change within 10 years. We suppose

that there is no (robust) significant difference of the ∆ue interaction variable to the

average ∆ue effect for this occupation. For example, the coefficient of ∆ue for metal and

plant engineering becomes weaker from the largest to the sparingly model as Table 3.2,

columns 5–7 show. The cells for the coefficients of the not-selected variables are empty.

The estimated coefficients hardly change between the large model (columns 2 and 5)

and the smaller models, but the respective standard errors in this cases are significantly

reduced. Most of them are negative significant, which means that the log wages of these

occupations were especially negatively affected by a changing in ue. This means that

the log wages of the individuals who were working in these occupations react particularly

strong positively through labour market tightness. The more relaxed the labour market

is, the more the log wages decrease. Meanwhile, the expected log wages are higher when

there is a smaller number of potential employees in an occupation.
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Interaction between ue and Occupation Interaction between ∆ue and Occupation
Full model LASSO Ada LASSO Full model LASSO Ada LASSO

mineworkers -0.135 (0.156) -0.134 * (0.081) -0.092 (0.070)

stone workers, ceramics, glass -0.284 (0.191) -0.170 (0.171) -0.321 + (0.143) -0.306 + (0.145)

chemical & plastics work. -0.421 # (0.160) -0.400 + (0.168) -0.185 + (0.080) -0.167 + (0.081)

paper processing -0.353 + (0.164) -0.453 # (0.155) -0.318 # (0.101) -0.300 # (0.099)

metalworking -0.263 # (0.091) -0.263 # (0.089) -0.002 (0.060) 0.004 (0.060)

metal and plant engin. -0.378 # (0.064) -0.339 # (0.063) -0.270 # (0.056) -0.104 # (0.031) -0.097 # (0.031)

Industrial, tool mech. -0.400 # (0.068) -0.374 # (0.064) -0.342 # (0.054) 0.006 (0.037) 0.010 (0.037)

car, aircraft construction, maint. -0.682 # (0.103) -0.678 # (0.101) -0.620 # (0.101) -0.045 (0.042) -0.037 (0.043)

precision mechanic 0.029 (0.156) 0.033 (0.158) -0.384 # (0.109) -0.381 # (0.109) -0.295 # (0.099)

electrical & electronic engin. -0.612 # (0.084) -0.690 # (0.078) -0.669 # (0.074) -0.184 # (0.048) -0.197 # (0.048)
silkworm moth, textile finish. 0.106 (0.195) 0.109 (0.197) -0.063 (0.078) -0.076 (0.078)
textile & leather process. -0.171 (0.211) -0.130 (0.208) -0.152 (0.209) -0.126 (0.208)

bakers & confectioners -0.071 (0.159) -0.061 (0.130) -0.240 # (0.071) -0.233 # (0.071) -0.149 + (0.066)

butcher -0.175 (0.149) -0.086 (0.080) -0.149 + (0.064) -0.136 + (0.062)

cook -0.130 ∗ (0.073) -0.079 (0.068) -0.164 # (0.048) -0.150 # (0.048)
beverages, drink & tobacco proc. -0.307 ∗ (0.183) -0.285 (0.186) -0.110 (0.228) -0.123 (0.233)

building professions -0.106 # (0.040) -0.107 # (0.034) -0.051 + (0.025) -0.025 (0.029) -0.019 (0.030) 0.055 + (0.022)

product tester -0.085 (0.095) -0.030 (0.084) -0.145 + (0.066) -0.153 + (0.065)

labourers -0.135 # (0.042) -0.091 + (0.039) -0.024 (0.034) -0.136 # (0.032) -0.124 # (0.032) -0.044 ∗ (0.025)

engineers -0.808 + (0.329) -0.842 # (0.315) -0.745 # (0.146) -0.810 # (0.155)
chemists -0.761 (1.111) -0.603 (1.148) -0.348 (0.725) -0.330 (0.685)

technicians -0.903 # (0.216) -1.047 # (0.194) -0.777 # (0.136) -0.540 + (0.209) -0.539 # (0.207)

technical drawer -0.504 # (0.194) -0.434 + (0.196) -0.565 # (0.174) -0.557 # (0.172) -0.322 + (0.140)
surveyor -0.367 (0.268) -0.343 (0.255) -0.216 (0.195) -0.159 (0.189)

technical special forces 0.001 (0.301) -0.462 ∗ (0.258) -0.456 + (0.231)

salesman 0.503 # (0.066) 0.647 # (0.057) 0.598 # (0.049) -0.205 # (0.044) -0.207 # (0.046) -0.144 # (0.044)

retailers and distributors 0.081 (0.113) 0.134 (0.108) -0.337 # (0.077) -0.318 # (0.075) -0.204 # (0.064)

bank empl. & insurance 0.124 (0.299) 0.296 (0.301) -0.734 + (0.364) -0.712 + (0.362) -0.670 ∗ (0.365)

other salesmen 0.111 (0.161) 0.132 (0.159) -0.448 # (0.139) -0.461 # (0.136) -0.424 # (0.132)
advertising experts -0.252 (0.264) -0.236 (0.236) -0.017 (0.134)

transport-related voc. -0.426 # (0.150) -0.388 + (0.160) -0.075 (0.069) -0.062 (0.069)

aviation & shipping -0.654 ∗ (0.394) -0.676 + (0.320) -0.800 # (0.217) -0.843 # (0.223)

packer & warehouse -0.196 # (0.073) -0.138 + (0.068) -0.172 # (0.042) -0.159 # (0.042) -0.067 + (0.033)

management -0.458 ∗ (0.265) -0.604 + (0.273) -0.412 # (0.154) -0.377 + (0.149)
administration -0.11 (0.356) -0.033 (0.378) -0.594 ∗ (0.355) -0.610 ∗ (0.357)

finance & accounting 0.122 (0.245) 0.041 (0.256) -0.864 # (0.266) -0.824 # (0.263) -0.471 + (0.195)

IT- core occupations -1.034 # (0.355) -1.064 # (0.361) -0.637 + (0.249) -0.758 # (0.224) -0.761 # (0.235)

business office occ. -0.238 # (0.072) -0.097 (0.063) -0.162 # (0.059) -0.387 # (0.056) -0.384 # (0.055) -0.303 # (0.053)
temporary office stuff -0.143 (0.138) -0.101 (0.124) -0.140 (0.150) -0.135 (0.146)

personal security occ. -0.171 (0.176) -0.073 (0.156) -0.280 + (0.110) -0.310 # (0.107)
janitor -0.265 (0.368) 0.115 (0.335) 0.015 (0.055) -0.014 (0.060)
security occupations 0.501 (0.345) 0.696 ∗ (0.356) -0.172 ∗ (0.099) -0.166 (0.106)
legal professions -0.201 (1.034) -0.365 (1.110) -0.532 (0.471) -0.486 (0.475)

artists -0.129 (0.200) -0.065 (0.207) -0.108 + (0.046) -0.099 + (0.047)

designer -0.407 # (0.192) -0.282 (0.200) -0.285 # (0.047) -0.249 # (0.049)
health care occ. w license -0.669 (0.865) -0.733 (0.887) 0.212 (0.626) 0.228 (0.641)

health care occ. w/o license 2.224 # (0.289) 2.407 # (0.291) 2.151 # (0.283) -0.678 # (0.119) -0.674 # (0.121) -0.602 # (0.119)

social occupations 0.185 (0.135) 0.265 ∗ (0.151) -0.847 # (0.148) -0.833 # (0.160) -0.784 # (0.153)

teacher 1.336 # (0.512) 1.815 # (0.522) -0.107 (0.128) -0.078 (0.122)
publicist, more scientific -0.281 (0.293) -0.239 (0.291) -0.279 (0.241) -0.255 (0.238)

occupations in body care 0.877 + (0.413) 0.758 ∗ (0.400) -0.373 # (0.079) -0.375 # (0.079) -0.271 # (0.076)

occupations in hotel and catering 0.069 (0.073) 0.148 + (0.066) -0.213 # (0.075) -0.206 # (0.076) -0.134 ∗ (0.074)

occup. in room clean., waste coll. -0.124 (0.081) -0.003 (0.068) -0.269 # (0.077) -0.254 # (0.074) -0.216 # (0.068)

Table 3.2: (Post-) OLS estimation of the ue and ∆ue interaction coefficients: the full model with over
628 RHS variables (2nd column), LASSO (3rd column) and adaptive LASSO with 224 RHS variables
(4th column). Heteroscedasticity robust clustered standard errors of the coefficients are in parentheses;
significance level #p < 0.01, +p < 0.05, ∗p < 0.1.



Health care occupations without license to practice medicine (e.g. nurses, geri-

atric nurses, etc.) are exceptions. The ue interaction coefficient is positively sig-

nificant and very robust. Interestingly, the effect of the ∆ue interaction variable is

negatively significant but it is similar to the other occupations. The unusual pos-

itive effect is measured for the time when the employees enter the labour market.

The reason for this could be a political intervention, so that the market mechanisms

are levered out. The log wages of the employees who have worked in the occupa-

tions from Table 3.2 were particularly strongly affected by the relative number of

unemployed people in their labour market region. The number of vacancies is an-

other proxy for labour market tightness, see Hershbein and Kahn (2018). By using

the IAB-Job-Vacancy Survey, we additionally employ the number of vacancies but

are, unfortunately, limited to the years 2007 and 2008, in which occupation-specific

data can be matched uniquely to our individual data. The data limitation does

not allow to construct the change of vacancies within the 10 years. Individuals,

who have worked in occupations that are not listed in the vacancy-survey are not

considered in either model.

As the results in Table 3.3 show, there are no difference between the estimated

(∆) ue coefficients, meaning that the ue variables capture the labour market tight-

ness situation very well. The (log) vacancy coefficient is positively significant but

with an effect of 0.009, which is very small. This confirms that higher wages are

expected if there are less unemployed people available and the number of vacancies

increases. As shown in Table 3.3, the log wages of typical STEM occupations (such

as metal and plant engineering, industrial and tool mechanic, car, aircraft construc-

tion, maintenance specialists precision mechanic professions) are especially strongly

effected by a shortage or a flood of labour force, respectively. For these occupations,

the entry situation seems to play an important role for the wages after 10 years,

as the interactions of ue with the occupations show. The changing labour market

situation becomes more important for commercial and transportation professions,

which can be explained by the rapid development of online trading.

We now perform substantial robustness checks. We find that the main ue and

∆ue effects are relatively stable over the observation time, as Figure 3.4 shows.

One exception is the year 2012 (entry cohort 2002). The ∆ue coefficient becomes

insignificant but ue is still the same as in the other years. The economic crisis could

be levered by the usual market mechanism in the short run. Furthermore, there are

collectively agreed wages in Germany, which cannot easily be reduced—even the

if market situation becomes poorer. Consequently, some employers may suspend

or not extend fixed-term employment contracts, which increases the unemployment
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Ada LASSO Ada 0708 Ada 0708vac FullModel0708vac

ue without interaction -0.195 # (0.019) -0.196 # (0.059) -0.195 # (0.059) -0.112 (0.995)
∆ue without interaction -0.151 # (0.015) -0.346 # (0.041) -0.348 # (0.041) -0.263 # (0.065)
Log Vacancies 0.009 # (0.003) 0.008 # (0.002)

Interaction between ue and Occupation
metal and plant engin. -0.270 # (0.056) -0.323 + (0.132) -0.335 + (0.133) -0.643 # (0.158)
ind. and tool mecha. -0.342 # (0.054) -0.672 # (0.214) -0.665 # (0.215) -0.839 # (0.254)
car, aircraft constr., maint. spec. -0.620 # (0.101) -0.655 ∗ (0.345) -0.647 ∗ (0.346) -0.936 # (0.362)
electrical and electronic eng. -0.669 # (0.074) -0.869 # (0.230) -0.886 # (0.231) -0.897 # (0.256)
building professions -0.051 + (0.025) -0.142 (0.090) -0.146 (0.089) -0.301 + (0.131)
labourers -0.024 (0.034) -0.060 (0.115) -0.064 (0.115) -0.295 + (0.134)
technicians -0.777 # (0.136) -1.014 ∗ (0.523) -1.014 ∗ (0.523) -0.433 (0.730)
salesman 0.598 # (0.049) 0.645 # (0.195) 0.650 # (0.196) 0.345 (0.212)
IT- core occu. -0.637 + (0.249) 0.223 (0.620) 0.242 (0.614) -0.133 (0.885)
commercial occu. -0.162 # (0.059) -0.344 ∗ (0.179) -0.334 ∗ (0.179) -0.602 # (0.224)
health care occ. w/o license 2.151 # (0.283) 1.837 # (0.577) 1.771 # (0.560) 1.407 + (0.623)

Interaction between ∆ue and Occupation
precision mechanic -0.295 # (0.099) -0.490 ∗ (0.283) -0.479 ∗ (0.284) -0.343 (0.283)
bakers and confectioners -0.149 + (0.066) -0.196 (0.363) -0.190 (0.364) -0.194 (0.337)
building professions 0.055 + (0.022) 0.149 # (0.050) 0.149 # (0.050) 0.057 (0.071)
labourers -0.044 ∗ (0.025) 0.060 (0.102) 0.058 (0.102) -0.083 (0.117)
technical drawer -0.322 + (0.140) -0.142 (0.188) -0.135 (0.187) -0.413 (0.256)
salesman -0.144 # (0.044) -0.189 (0.118) -0.180 (0.120) -0.300 + (0.148)
retailers and distributors -0.204 # (0.064) 0.044 (0.128) 0.043 (0.129) -0.044 (0.145)
bank empl. and ins. salesman -0.670 ∗ (0.365) -0.912 # (0.295) -0.893 # (0.294) -1.157 # (0.314)
other salesmen -0.424 # (0.132) -0.367 (0.253) -0.366 (0.255) -0.630 + (0.290)
packer and warehouse -0.067 + (0.033) -0.114 (0.097) -0.114 (0.097) -0.251 + (0.102)
finance and accounting -0.471 + (0.195) -0.308 (0.469) -0.307 (0.474) -1.977 # (0.770)
commercial occupation -0.303 # (0.053) -0.285 (0.206) -0.293 (0.209) -0.405 ∗ (0.208)
health care occ. w/o license -0.602 # (0.119) -1.035 # (0.374) -1.044 # (0.375) -1.038 # (0.339)
social occupations -0.784 # (0.153) -0.145 (0.224) -0.144 (0.226) -0.211 (0.247)
occu. in body care -0.271 # (0.076) 0.159 (0.270) 0.166 (0.273) -0.011 (0.244)
occu. in hotel and catering -0.134 ∗ (0.074) -0.204 (0.134) -0.209 (0.134) -0.292 + (0.137)
occu. in room clean., waste coll. -0.216 # (0.068) -0.177 (0.125) -0.166 (0.128) -0.354 + (0.169)
Contant 3.328 # (0.074) 3.416 # (0.175) 3.420 # (0.175) 4.513 # (0.691)

N 316711 30147 30147 35124
adj. R2 0.592 0.589 0.589 0.591
AIC 3.90E+05 35000 35000 35000
BIC 3.90E+05 37000 37000 37000

Table 3.3: Post-OLS estimation of the ue and ∆ue (interaction) coefficients by using
adaptive LASSO for all observation years without (log) vacancies (2nd column), for
2007 and 2008 without (log) vacancies (3rd column) and for 2007 and 2008 with
(log) vacancies (4th column) as well as the full model with all 628 RHS variables
plus (log) vacancies (5th column). Heteroscedasticity robust clustered standard
errors of the coefficients are in parentheses; significance level #p < 0.01, +p < 0.05,
∗p < 0.1.
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Figure 3.4: Year-by-year (red) and the overall (blue) mean estimation of the ue and
∆ue coefficients by using one model selected by adaptive Lasso including the 95%
CI

rate without affecting wages. Let us consider various sub-groups. The results can

be found in Table 3.4. First, we estimate the adaptive model for men and women

separately (columns 3 and 4). Interestingly, the ue effect seems to be stronger

for men than for women. Because the interaction terms of the ue ratio with the

occupations show typically male and female occupations, the difference is driven by

the selectivity of women and men into gender-specific occupations, with lower wage

perspectives for the females. A list of the proportion of men and women within the

occupational fields can be found in Table 4.13 in the Appendix. However, the labour

market development is identical for both genders because there is no significant

difference in ∆ue. Thus, men and women benefit to the same extent when the

labour market becomes tighter. Furthermore, for comparison purposes, we estimate

the model for other subsamples. The decision of an individual having an additional

training and/or changing a job or/and region can be driven by insufficient wages,

which leads to a potential endogeneity problem. Consequently, we only consider

individuals with reduced mobility and look to find whether the previous results

change. For the following subsamples, we come to the same conclusion: we limit

the men sample to a more homogenous group (column 5; A (men;edu.)) consisting

of men with a valid school-leaving certificate and who have completed vocational

training. We consider individuals who did not change from a typical STEM to

non-STEM occupation, and vice versa (column 6; B (cl1)), to account for potential

income growth perspectives and between job mobility.
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We restrict the sample to employees who do not change the employer as another

source of endogeneity driven by mobility during their life course (column 7; C (cl2)).

The main (∆) ue coefficients become slightly weaker. A few occupations (e.g. bak-

ers and confectioners, and building professions) become insignificant. The results

hardly change if we more homogenise the sample C (cl2) and exclude individuals

who have switched between occupations (column 8, D (cl3)). Most effects become

less significant, especially ue, because it concerns a rather inflexible or inelastic

sample group. However, there is no other conspicuousness.

By considering all of the employees holding up to a secondary school-leaving

qualification (column 9, E (cl4)), differences to the initial adaptive model are hardly

visible. These individuals have no option to study and are therefore less flexible.

The results hold even if we augment the model by potential endogenous variables,

such as the average firm wages (and its change) and the (change in the) proportion

of foreigners who worked in the firm of the observed employees (Table 3.4, columns

10 - 12). The main (∆) ue coefficients become solely weaker. In summary, the

strength of ue depends on the occupations. Wages of STEM occupations react

usually more sensitively to labour market tightness, indicating that technological

progress associated with higher labour demand puts additional pressure in that

field.

3.6 Differences Between the Quantiles of the Wage

Distribution

So far, we have presented evidence of tightness effects on the average log wage.

However, there is a variation in the wage growth within each occupation, as shown

in Figure 3.5, for some selected occupations. Bar plots of the wage growth for

different quantile levels of the occupation fields are illustrated in Figure 3.7. This

variation happens not just because of within-variation arising from sub-summation

of three-digit occupations to the employed 54 occupational fields but also because

of uncontrolled individual heterogeneity. For instance, there is a much higher wage

growth for employees in IT occupations at the first 10 years in the labour market

compared with employees within the health care professions (without license to

practice medicine). In addition, we observe a much stronger variation between the

different quantile levels for the latter, but also social occupations in general. That

means that the wage inequality rises much more between the health care workers

than between the employees in the IT professions. A question arises here: are there

different effects on the log wage - quantiles through the (changing) labour market
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Figure 3.5: The quantiles of the ten-years wage growth for four occupations.

situation (Q3)? That is, do potentially more or less productive workers benefit

more from tighter labour markets? To answer these questions, we estimate different

quantile levels of the log wages by using the unconditional quantile regression by

Firpo (2009). The RHS variables for each quantile level τ = {0.25, 0.5, 0.75} are

separately selected by using adaptive LASSO, see Table 4.9 in the Appendix. For

comparison purposes, we also estimate the different quantile levels of the log wages

through all 628 RHS variables, see Table 4.10 in Appendix. Again, the model fit

values remain the same, although almost two third of the variables are dropped

through the adaptive LASSO algorithm. Considering the results of the estimations,

the coefficients for (∆) ue variables vary strongly between the different quantile

regressions. The (∆) ue coefficient is negative or not significant. In particular, the

0.25 quantile and the median regressions show a strong negative ue effect, which is

rather weak for the upper quantile level of the log wages.

Figure 3.7 shows the estimated ue (left-hand side) and ∆ue (right-hand side)

coefficients by using mean regression (blue line) and unconditional quantile regres-

sion (red line) for these different models. After choosing and estimating the models

separately for each quantile level, there are hardly any deviations from the mean

coefficients. In the reduced model, which is selected by adaptive LASSO, the effects

for the upper quantiles become weaker. In addition, the ue effect on the median log

wages is more strongly negatively than on the mean. This means that 25% of the
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Figure 3.6: Quantiles of the occupational categories. For reasons of clarity 54
observed professions were summarised into 22 categories. A list of the keys is given
in Table 4.12 in the Appendix.
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Figure 3.7: Estimated coefficients of ue (lhs) and ∆ ue (rhs) by using post-OLS
estimation of adaptive LASSO selected different models for mean (blue) and 0.25,
0.5 and 0.75 quantiles including 95% CI.

lowest wages in our sample are especially strong affected by a high unemployment

ratio at the first job. If the unemployment ratio was 1% above the average at the

first job, then 25% of the lowest wages shrinks by approximately 0.2% ten years

after the first job. This reduction amounts only 0.032% for 25% of the highest

wages. Interestingly, some (∆) ue occupation interaction variables are chosen from

the adaptive LASSO for a specific quantile, but not for the mean regression. The

different wage levels between the occupations could be a reason for these results.

As mentioned earlier, IT-specialists earn much more than nurses. The average wage

of nurses lies far below the average wage of all individuals within the sample. In

some cases, the interaction effects show positive signs, such as nursing or social

occupations. However, this is observed here for the lower quantiles – the effect

revolves around. The positive effect remains over the quantile levels for salesmen.

This curious result occurs more frequently for variables that are not selected by

adaptive LASSO for the mean regression. This confirms that the variable selection

is important to find the relevant drivers of the (mean) log wages, although it makes

a detached interpretation of quantile regression results difficult. In summary, we

can now answer our three questions from the beginning in the affirmative. We find

a significant negative correlation between the unemployment ratio and log wages.

The elasticities of −0.195 (reduced model) or −0.078 (full model), respectively, at

the entry time point, and −0.151 (reduced model) or −0.059 (full model), for the

change in the first 10 years in the labour market varies between different occupa-

tions and, thus, between men and women. Furthermore, there are also differences

in the quantile levels of the log wages, which are empirically measurable.
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3.7 Concluding Remarks

This chapter investigates the ten-year log wage development of employees who fin-

ish a vocational training and start their first job. The focus lies on the measuring of

the effect of lower labour force availability on the individual wages. The underlying

economic idea is that a workforce shortage affects wages positively if the labour

demand remains constant or rises. To verify this hypothesis, we measure labour

market tightness by using the ratio of unemployed to employed people on occu-

pational and regional level. Then, we look for a tightness effect on the individual

wages for 54 different occupational fields. Therefore, the individual employment

biographies (IEB) data are collected, which include information of individuals be-

fore they enter the labour market (e.g. during the vocational training) and during

the first 10 years after starting their first job. In addition, we match data with

firm and labour market characteristics to the individual data and receive a linked

employee-employer dataset. First, a regression model with over 628 RHS variables

is run. Avoiding collinearity problems, the set of variables is reduced by applying a

variable selection by the adaptive LASSO approach from Zou (2006). The selected

model is quite robust and the aim variables, unemployment–employees (ue) ratio at

the first job and its change during the first 10 years after entering the labour market,

show the expected negative signs. The results indicate rising log wages if the labour

supply becomes tighter. This effect is stronger for some occupations, such as several

engineer groups, technicians, IT professions and commercial occupations. Interest-

ingly, the effect seems to reverse for employees in health care occupations, such as

nursing. Moreover, it is possible to differentiate between typical male and female

occupations. It seems then that the log wages of men are mainly affected by labour

market tightness in technical occupations. By running an unconditional quantile

regression, different effects in the lower (poor) than in the upper (rich) quantiles

become visible. In addition, separate year-by-year estimations reveal differing ef-

fects during the observation time. Interestingly, some typical female occupations

(related to our observation data), such as saleswomen and health care occupation

without licence, reveal a reverse picture. The unemployment effects are positive

and very robust. The labour market mechanisms seems to be completely levered.

In this chapter, we cannot solve this puzzle but it would be interesting to know

whether the market mechanism differ between the genders and what the reasons

are for this effect.
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Chapter 4

Conclusion and Prospect

In summary, this thesis gives an insight into two specific issues of empirical research

in regional science. The first part proposes a method for measuring an individual

attitude, such as environmental awareness by using Internet queries and estimat-

ing a Multiple-Indicator Multiple-Causes model. The advantages of this approach

are comparability between regions and the rather less time-consuming and less-

expensive access to the data. However, the 200 different words and phrases for 81

Russian regions in this study are selected by hand, which could bias the findings.

Consequently, we need to clarify whether various words and phrases have a simi-

lar meaning and weight for the population of different regions. Thus, a stronger

link between empirical environmental research and linguistics is required for future

investigations. In addition, only the number of Internet entries from the search

machine c©Yandex is considered. c©Yandex has currently a 50% market share in

Russia. Approximately one half belongs to c©Google. It is assumed the distribu-

tions of the search entries from both search engines are similar, but it has been

not possible to confirm this assumption yet. The empirical analysis for 81 Russian

regions for a period from January 2014 until April 2016 reveals a strong negative

correlation between temperature and regional environmental awareness, as well as a

rather positive non-linear relationship with regional wealth. Furthermore, it seems

that environmental awareness decreases from the Eastern to the Western part of

Russia and is higher in the Arctic areas than in the warmer South. In addition,

the Russian population might be more strongly interested in environmental topics

in the colder winter than in the warmer months. Therefore, seasonal variation can

be found. It would be interesting to investigate longer time-series and to examine

whether there are any trends or extraordinary peaks. Furthermore, this study can

be extended to other countries and regions. The data access to general regional

characteristics of OECD countries, as well as sub-regions is often open, only the In-
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ternet queries need to be requested from the search engine companies. Furthermore,

the proposed method can be also applied to measure other individual attitudes or

further research question (i.e. estimating a kind of political attitude index).

A further issue of empirical research deals with the extraction of one aspect

at regional level, here labour market tightness, and its effect on individual wages.

Labour market tightness is measured through the number of unemployed people di-

vided by the number of employees within an occupational field in a specific region.

Inspired by Mincer (1974), a linear regression model for the log-wages of very young

employees is estimated. The least absolute shrinkage and selection operator from

Zou (2006) reduces the number of RHS variables by two-thirds without impairing

the model fit. The estimated effects of rising wages due to labour market tight-

ness is especially strong for technical professions, such as several engineer groups,

IT occupations, technicians, and also some commercial occupations. This confirms

the presumption that labour market tightness is especially driven by technological

progress. Interestingly, health care occupations (e.g. nursing) reveal a complete

reverse relationship. Am increase in the labour supply seems to be correlated with

higher wages. The reason for this unusual effect could be political interventions

and the increasing demand for more health care due to expected demographic de-

velopments. Therefore, the market mechanism might be levered out due to specific

regulations in terms of the funding of the health care system. Furthermore an un-

conditional quantile regression by Firpo, Fortin, and Lemieux (2009) is performed

to investigate the influence of occupational-regional specific labour market tight-

ness on different quantile levels of the log wage distribution. The labour market

tightness relationship is stronger for the lower and the median than for the upper

quantiles. This effect becomes more distinctive for social occupations, professions in

body care, hotel and catering as well as room cleaning. Wages react more elastically

to changes in the relative number of unemployed people. Technical and commercial

professions, who earn above average, seem to profit rather from a relative shrinking

labour supply. Because of the German contribution assessment threshold, academics

are hardly considered in this analysis. The potential substitute or complementary

effects of university graduates on the wages of non-academics are controlled, but

it would be interesting to measure the effect of labour market tightness on the

log-wages of academics in general. Furthermore, the data that we have used are

provided for the youngest cohort up to 2014. It would be very interesting to replay

the analysis for more current data.
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Appendix

Appendix for Chapter 2

Table 4.1: Descriptive Statistics of the observed variables.

Variable Description Min. Mean Max. Source

Climate Change Queries (2014) Share of the number of queries on
all queries per year

1.00E-04 1.70E-04 2.99E-04 c©Yandex

Climate Change Queries (2015) Share of the number of queries on
all queries per year

1.16E-04 1.72E-04 3.33E-04 c©Yandex

Endangered Environment Queries
(2014)

Share of the number of queries on
all queries per year

2.80E-04 4.07E-04 1.05E-03 c©Yandex

Endangered Environment Queries
(2015)

Share of the number of queries on
all queries per year

2.77E-04 4.01E-04 5.11E-04 c©Yandex

Politic Queries (2014) Share of the number of queries on
all queries per year

2.74E-06 6.69E-06 1.68E-05 c©Yandex

Politic Queries (2015) Share of the number of queries on
all queries per year

2.15E-06 6.86E-06 2.47E-05 c©Yandex

Science Queries (2014) Share of the number of queries on
all queries per year

4.34E-06 7.68E-06 1.81E-05 c©Yandex

Science Queries (2015) Share of the number of queries on
all queries per year

3.80E-06 6.59E-06 1.40E-05 c©Yandex

Renewable Energies /Technologies
Queries (2014)

Share of the number of queries on
all queries per year

6.48E-06 1.40E-05 3.38E-05 c©Yandex

Renewable Energies/ Technologies
Queries (2015)

Share of the number of queries on
all queries per year

5.38E-06 1.20E-05 3.76E-05 c©Yandex

Regional GDP per capita per year
(2014)

in USD Dollar, constant prices, con-
stant ppp, based on year 2010

4590 19200 187700 OECD.stat

Regional GDP per capita per year
(2015)

in USD Dollar, constant prices, con-
stant ppp, based on year 2010

4973 19600 191100 own esti-
mations

Internet access (2014) Percent on regional households 26.0 59.1 87.0 OECD.stat

Internet access (2015) Percent on regional households 25.4 63.3 83.5 OECD.stat

Proportion of labour force in man-
ufacturing sector (2014)

Percent on regional labour force 1.0 13.8 27.2 OECD.stat

Proportion of labour force in mining
sector (2014)

Percent on regional labour force 0.0 2.5 22.3 OECD.stat

Air pollution per capita (2014) in tonnes per head 0.1 16.4 199.4 RSSSS

Air pollution per capita (2015) in tonnes per head 0.1 16.8 234.2 RSSSS

Private Vehicle Rate (2014) Percent on regional population 8.0 27.5 48.7

Agglomeration (2014) Population per km2 0.1 106.7 4674.0 OECD.stat

Share of people older than 65 years
(2014)

9.2 23.0 29.5 OECD.stat

Proportion of labour force working
in tertiary sector

Percent on regional labour force 26.6 53.7 71.2 OECD.stat

Environmental protection costs in
2007 prices (land and water protec-
tion)

Tsd. Rubel per km2 regional sur-
face (for 2014)

0.089 25.270 328.200 Ministry
of Natural
Resources
of Russia

Environmental protection costs in
2007 prices (land and water protec-
tion)

Tsd. Rubel per km2 regional sur-
face (for 2015)

0.000 25.100 334.700 own esti-
mations

Dumped contaminated (no cleaned)
and insufficiently purified water

Tsd. cubic meter per km2 surface
(for 2014)

0.000 2.275 17.860 Ministry
of Natural
Resources
of Russia

Dumped contaminated (no cleaned)
and insufficiently purified water

Tsd. cubic meter per km2 surface
(for 2015)

0.000 2.532 41.080 own esti-
mations
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Figure 4.1: Scatter plot illustrating the relation between the share of employees in manu-
facturing and mining sector for the 81 regions in 2014. High EA ranked regions are light
blue and low ranked regions dark blue. The numbers correspond to the regions in Table
6.
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Table 4.4: Goodness-of-Fit Measures

Measure Formula

Akaike Information Criterion AIC = χ2
model + g(g + 1) − 2 dfmodel

χ2
model . . . χ2-value of the full model

g . . . number of variables in the full model
dfmodel . . . degrees of freedom of the full model
Source: Tanaka (1993)

Robust Root Mean Square Error RMSEA =

√
max

(
0,

ĉ(χ2
SB,n

−dfmodel)

(n−1)dfmodel

)

of Approximation χ2
SB,n . . . Satorra-Bentler χ2-value of the full model

ĉ . . . scaling constant
Source: Brosseau-Liard, Savalei, and Li (2012)

Table 4.5: Region IDs, which are used in Chapter 2.

ID Region ID Region ID Region ID Region

1 Adygea 21 Kaliningrad 41 Mari El 61 Samara
2 Altai (Republic) 22 Kalmykia 42 Mordovia 62 Saratov
3 Altai (Krai) 23 Kaluga 43 Moscow 63 Smolensk
4 Amur 24 Kamchatka 44 Murmansk 64 Stavropol
5 Arkhangelsk 25 Karachay-Cherkessia 45 Nenets AO 65 Sverdlovsk
6 Astrakhan 26 Karelia 46 Nizhny Novgorod 66 Tambovsk
7 Bashkortostan 27 Kemerovo 47 North Ossetia-Alania 67 Tatarstan
8 Belgorod 28 Khabarovsk 48 Novgorod 68 Tomsk
9 Bryansk 29 Khakassia 49 Novosibirsk 69 Tula

10 Buryatia 30 Khanty-Mansi AO 50 Omsk 70 Tuva
11 Chechnya 31 Kirov 51 Orenburg 71 Tver
12 Chelyabinsk 32 Komi 52 Oryol 72 Tyumen
13 Chukotka AO 33 Kostroma 53 Penza 73 Udmurtia
14 Chuvashia 34 Krasnodar 54 Perm 74 Ulyanovsk
15 Dagestan 35 Krasnoyarsk 55 Primorsky 75 Vladimir
16 Ingushetia 36 Kurgan 56 Pskov 76 Volgograd
17 Irkutsk 37 Kursk 57 Rostov 77 Vologda
18 Ivanovo 38 Leningrad + St.Petersburg 58 Ryazan 78 Voronezh
19 Jewish 39 Lipetsk 59 Sakha 79 Yamalo-Nenets AO
20 Kabardino-Balkaria 40 Magadan 60 Sakhalin 80 Yaroslavl

81 Zabaykalsky
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Table 4.6: Generated cluster solution by using k-means algorithm on the estimated re-
gional EA indices from 01/14 to 04/16.

EA Index Cluster Region

Cluster 1 Chechnya, Dagestan, Ingushetia, Kabardino-Balkaria, Karachay-
Cherkessia, North Ossetia-Alania

Cluster 2 Adygea, Arkhangelsk, Bashkortostan, Belgorod, Bryansk,
Chelyabinsk, Chuvashia, Ivanovo, Kaliningrad, Kaluga, Kare-
lia, Kemerovo, Kirov, Kostroma, Kurgan, Kursk, Leningrad +
St.Petersburg, Lipetsk, Mari El, Mordovia, Nizhny Novgorod,
Novgorod, Oryol, Penza, Pskov, Rostov, Ryazan, Samara, Sara-
tov, Smolensk, Stavropol, Sverdlovsk, Tambovsk, Tula, Tver,
Ulyanovsk, Vladimir, Voronezh

Cluster 3 Altai (Krais), Amur, Astrakhan, Buryatia, Irkutsk, Jewish,
Kalmykia, Khakassia, Khanty-Mansi AO, Komi, Krasnodar, Kras-
noyarsk, Moscow, Murmansk, Novosibirsk, Omsk, Orenburg, Perm,
Primorsky, Tatarstan, Tomsk, Tyumen, Udmurtia, Volgograd,
Vologda, Yamalo-Nenets AO, Yaroslavl, Zabaykalsky

Cluster 4 Altai (Republic), Chukotka AO, Kamchatka, Khabarovsk, Maga-
dan, Nenets AO, Sakha, Sakhalin, Tuva

Table 4.7: Russian regions grouped by the authors.

Geo Cluster Region

North – Eastern
Europe

Arkhangelsk, Bryansk, Chuvashia, Ivanovo, Kaliningrad, Kaluga,
Karelia, Kirov, Komi, Kostroma, Kursk, Leningrad with
St.Petersburg, Lipetsk, Mari El, Mordovia, Moscow, Murmansk,
Nizhny Novgorod, Novgorod, Oryol, Penza, Perm, Pskov, Ryazan,
Smolensk, Tambovsk, Tatarstan, Tula, Tver, Udmurtia, Ulyanovsk,
Vladimir, Vologda, Yaroslavl

South-Eastern
Europe

Adygea, Astrakhan, Bashkortostan, Belgorod, Chechnya, Dages-
tan, Ingushetia, Kabardino-Balkaria, Kalmykia, Karachay-
Cherkessia, Krasnodar, North Ossetia-Alania, Orenburg, Rostov,
Samara, Saratov, Stavropol, Volgograd, Voronezh,

Western and Central
Siberia

Altai, Altai (Republic), Chelyabinsk, Irkutsk, Kemerovo, Khakas-
sia, Khanty-Mansi AO, Krasnoyarsk, Kurgan, Nenets AO, Novosi-
birsk, Omsk, Sverdlovsk, Tomsk, Tuva, Tyumen, Yamalo-Nenets
AO,

(Far) East (ern)
Siberia

Amur, Buryatia, Chukotka AO, Jewish, Kamchatka, Khabarovsk,
Magadan, Primorsky, Sakha, Sakhalin, Zabaykalsky,
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Figure 4.2: Loadings of the indicator variables after factor rotation by performing a factor
analysis. Notation: Climate Change (CC), Endangered Environment (EE), Political (Po),
Science (Sc) and Renewable Energies and Technologies (RET).

Figure 4.3: Map of 80 Russian regions illustrating the Environmental Awareness Index
for 2014 (without Autonomous Okrug Chukotka). High ranked regions are light blue and
low ranked regions dark blue.
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Figure 4.4: Map of 80 Russian regions illustrating the Environmental Awareness Index
for 2015 (without Autonomous Okrug Chukotka). High ranked regions are light blue and
low ranked regions dark blue.

GRP Manufact- Mining Fishery Air Carbon Nitrogen
per capita uring pollution dioxide dioxide

GRP per capita 1 -0.414 0.784 -0.393 0.179 0.133 0.109
Manufacturing -0.414 1 -0.573 -0.051 -0.033 -0.145 0.081
Mining 0.784 -0.573 1 -0.415 0.321 0.286 0.175
Fishery -0.393 -0.051 -0.415 1 -0.346 -0.337 -0.416
Air pollution 0.179 -0.033 0.321 -0.346 1 0.737 0.789
Carbon dioxide 0.133 -0.145 0.286 -0.337 0.737 1 0.654
Nitrogen dioxide 0.109 0.081 0.175 -0.416 0.789 0.654 1
Unemployment rate -0.195 -0.337 -0.098 0.277 -0.129 -0.095 -0.169
Elderly people -0.373 0.713 -0.564 0.016 -0.125 -0.098 0.005
Young people 0.160 -0.581 0.329 0.140 0.029 0.042 -0.074
Education -0.124 -0.393 0.031 0.248 -0.117 -0.091 -0.201
Population density 0.101 -0.075 -0.087 -0.234 -0.057 -0.059 0.100
Internet access 0.196 0.173 0.166 -0.459 0.269 0.256 0.314
Vehicle rate 0.008 0.173 -0.127 -0.172 0.168 0.139 0.213

Unemployment Elderly Young Education Population Internet Vehicle
rate people people density access rate

GRP per capita -0.195 -0.373 0.16 -0.124 0.101 0.196 0.008
Manufacturing -0.337 0.713 -0.581 -0.393 -0.075 0.173 0.173
Mining -0.098 -0.564 0.329 0.031 -0.087 0.166 -0.127
Fishery 0.277 0.016 0.14 0.248 -0.234 -0.459 -0.172
Air pollution -0.129 -0.125 0.029 -0.117 -0.057 0.269 0.168
Carbon dioxide -0.095 -0.098 0.042 -0.091 -0.059 0.256 0.139
Nitrogen dioxide -0.169 0.005 -0.074 -0.201 0.100 0.314 0.213
Unemployment rate 1 -0.592 0.778 0.819 -0.151 -0.712 -0.441
Elderly people -0.592 1 -0.896 -0.63 0.089 0.343 0.455
Young people 0.778 -0.896 1 0.835 -0.171 -0.538 -0.542
Education 0.819 -0.63 0.835 1 -0.168 -0.662 -0.523
Population density -0.151 0.089 -0.171 -0.168 1 0.208 0.037
Internet access -0.712 0.343 -0.538 -0.662 0.208 1 0.422
Vehicle rate -0.441 0.455 -0.542 -0.523 0.037 0.422 1

Table 4.8: Pearson’s correlation coefficients of the causes variables in 2014.
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Appendix for Chapter 3

Ada LASSO Ada 25 sel Ada 50 sel Ada 75 sel

ue without interaction -0.195 # (0.019) -0.205 # (0.039) -0.294 # (0.021) -0.032 +(0.013)

∆ue without interaction -0.151 # (0.015) -0.215 # (0.025) -0.158 # (0.012) -0.016 # (0.006)

Interaction between ue and Occupation

metal and plant engineering -0.270 # (0.056) 0.053 (0.051) -0.299 # (0.063)

industrial and tool mechanic -0.342 # (0.054) -0.242 # (0.093)

car, aircraft constr., maintenance -0.620 # (0.101) -1.030 # (0.156)

electrical and electronic engineering -0.669 # (0.074) -0.861 # (0.099)

building professions -0.051 +(0.025) 0.186 # (0.056)

labourers -0.024 (0.034) -0.242 # (0.062) -0.033 * (0.019)

technicians -0.777 # (0.136) -0.495 # (0.151)

salesman 0.598 # (0.049) 0.623 # (0.062) 0.266 # (0.050)

IT- core occupations -0.637 +(0.249) -0.895 # (0.263)

commercial occupation -0.162 # (0.059) 0.736 # (0.107) 0.093 (0.073) -0.695 # (0.061)

health care occ. w/o license 2.151 # (0.283) 2.066 # (0.392) -0.736 # (0.161)

bakers and confectioners -0.625 +(0.294)

butcher -1.106 # (0.261) 0.413 # (0.141)

cook -0.731 # (0.144) 0.197 # (0.047)

engineers 1.185 # (0.357) -0.895 # (0.334)

bank employees & insurance salesman 3.858 # (0.293) 1.938 # (0.243) -1.564 # (0.387)

management 1.596 # (0.335) -1.337 # (0.255)

finance and accounting 0.962 +(0.385) 0.085 (0.193)

security occupations 2.149 # (0.457)

social occupations 1.222 # (0.258) -0.046 (0.110) -0.448 # (0.089)

teacher 3.729 # (0.779)

occupations in hotel & catering -0.213 * (0.109) 0.167 # (0.047)

occupations in room clean., waste coll. -0.369 # (0.117)

silkworm moth, textile finishers 0.183 (0.229)

textile and leather proc. 0.223 +(0.111)

product tester -0.038 (0.082)

chemists 0.923 +(0.381)

technical drawer 0.382 # (0.128)

surveyor 0.825 +(0.358)

technical special forces 0.388 * (0.229) -0.500 # (0.193)

other salesmen -0.303 +(0.149) -0.756 # (0.155)

advertising experts 0.688 # (0.182) -0.698 +(0.342)

transport-related vocations -0.308 # (0.097)

administration 0.254 (0.429) -1.192 # (0.411)

temporary office stuff 0.021 (0.090) -0.384 # (0.067)

janitor 0.237 (0.404)

legal professions 0.714 (0.722)

artists 0.080 (0.189) -0.483 # (0.155)

chemical and plastics workers -0.834 # (0.215)

paper processing 0.282 +(0.137)

metalworking -0.436 # (0.147)

precision mechanic 0.475 # (0.096)

beverages, drink & tobacco proc. -0.598 # (0.195)

retailers and distributors -0.424 # (0.120)

packer and warehouse worker -0.068 * (0.037)

health care occ. with license -0.492 (0.538)

publicist, scientific occ. -1.208 # (0.218)

XXIV



Ada LASSO Ada 25 sel Ada 50 sel Ada 75 sel

Interaction between ∆ue and Occupation

precision mechanic -0.295 # (0.099)

bakers and confectioners -0.149 +(0.066) -0.699 # (0.108)

building professions 0.055 +(0.022) 0.082 +(0.033)

labourers -0.044 * (0.025) -0.270 # (0.052)

technical drawer -0.322 +(0.140) 0.145 +(0.071)

salesman -0.144 # (0.044) -0.334 # (0.106) -0.025 (0.036)

retailers and distributors -0.204 # (0.064) -0.399 # (0.070)

bank employees and insurance salesman -0.670 * (0.365) -0.222 (0.168) -1.122 # (0.406)

other salesmen -0.424 # (0.132) -0.421 # (0.079)

packer and warehouse worker -0.067 +(0.033) -0.334 # (0.073) -0.052 (0.032)

finance and accounting system -0.471 +(0.195) -0.610 # (0.177)

commercial occupation -0.303 # (0.053) -0.276 # (0.060) -0.025 (0.022) -0.176 # (0.031)

health care occ. w/o license -0.602 # (0.119) -0.503 # (0.094)

social occupations -0.784 # (0.153) -0.546 # (0.205) -0.261 # (0.045)

occupations in body care -0.271 # (0.076) -0.586 # (0.133) 0.225 # (0.035)

occupations in hotel and catering -0.134 * (0.074) -0.399 # (0.124)

occupations in room cleaning, waste coll. -0.216 # (0.068) -0.389 # (0.088)

mineworkers -0.407 +(0.202)

metalworking 0.171 +(0.076) -0.090 * (0.050)

butcher -0.499 # (0.137)

cook -0.379 # (0.073)

personal security occupations -0.541 # (0.184) -0.075 (0.090)

beverages, drink and tobacco proc. -0.068 (0.188) -0.294 # (0.089)

technicians -0.006 (0.121)

technical special forces 0.210 (0.132)

management 0.197 (0.156) -0.541 # (0.156)

IT- core occupations -0.251 +(0.124) -0.542 # (0.125)

temporary office staff 0.060 (0.060)

janitor 0.014 (0.085)

security occupations 0.005 (0.131)

artists 0.094 +(0.038)

teacher 0.026 (0.063) -0.136 (0.088)

metal and plant engineering -0.119 # (0.022)

electrical and electronic engin. 0.081 +(0.034)

surveyor 0.271 # (0.097)

aviation and shipping -0.858 # (0.203)

health care occ. with license 0.604 # (0.201)

publicist, more scientific occu. -0.384 # (0.128)

Constant 3.328 # (0.074) 2.702 # (0.065) 3.888 # (0.076) 3.963 # (0.045)

adj. R2 0.592 0.440 0.454 0.387

AIC 3.90E+05 6.90E+05 3.80E+05 4.00E+05

BIC 3.90E+05 6.90E+05 3.80E+05 4.00E+05

Table 4.9: Post-OLS estimation of the ue and ∆ue and their interaction coefficients by
chosen different models through adaptive LASSO from Zou for the mean (2nd column),
the 0.10 quantile (3rd column), the lower quantile (4th column), the median (5th column),
upper quantile (6th column). Heteroscedasticity robust clustered standard errors of the
coefficients are in parentheses; significance level #p < 0.01, +p < 0.05, ∗p < 0.1.

XXV



Full Model Full q0.25 Full q0.5 Full q0.75

ue without interaction -0.078 + (0.034) -0.205 + (0.086) -0.119 # (0.042) 0.036 (0.024)

∆ue without interaction -0.059 + (0.024) -0.207 + (0.086) -0.062 + (0.029) -0.005 (0.014)

Interaction between ue and and Occupation

occupations in agricul., animal breeding reference reference reference reference

mineworkers -0.135 (0.156) -0.306 (0.398) -0.315 (0.258) -0.012 (0.216)

stone workers, ceramics, glass workers -0.284 (0.191) 0.172 (0.387) 0.264 (0.202) -0.036 (0.221)

chemical and plastics workers -0.421 # (0.160) 0.073 (0.235) -0.036 (0.164) -0.880 # (0.220)

paper processing -0.353 + (0.164) -0.651 + (0.254) 0.132 (0.172) 0.459 # (0.162)

metalworking -0.263 # (0.091) 0.119 (0.146) -0.234 + (0.118) -0.493 # (0.142)

metal and plant engineering -0.378 # (0.064) -0.108 (0.121) -0.415 # (0.083) -0.288 # (0.065)

industrial and tool mechanic -0.400 # (0.068) -0.326 # (0.124) -0.215 + (0.100) -0.241 + (0.103)

car, aircraft construction, maintenance -0.682 # (0.103) -1.037 # (0.194) 0.140 (0.106) 0.172 * (0.094)

precision mechanic 0.029 (0.156) -0.194 (0.263) 0.577 # (0.134) 0.490 # (0.107)

electrical and electronic engineering -0.612 # (0.084) -0.775 # (0.149) 0.092 (0.101) -0.092 (0.092)

silkworm moth, textile finishers process 0.106 (0.195) 0.122 (0.376) 0.009 (0.232) 0.156 (0.183)

textile and leather processing -0.171 (0.211) -0.206 (0.238) 0.114 (0.121) 0.138 (0.102)

bakers and confectioners -0.071 (0.159) -0.665 + (0.303) 0.124 (0.164) 0.077 (0.123)

butcher -0.175 (0.149) -1.054 # (0.289) -0.195 (0.172) 0.436 # (0.158)

cook -0.130 * (0.073) -0.787 # (0.165) 0.252 # (0.078) 0.176 # (0.055)

beverages, drink and tobacco processing -0.307 * (0.183) -0.139 (0.257) -0.168 (0.170) -0.525 # (0.200)

building professions -0.106 # (0.040) 0.150 (0.097) -0.256 # (0.055) -0.044 (0.030)

product tester -0.085 (0.095) 0.094 (0.187) -0.242 + (0.106) -0.152 (0.114)

labourers -0.135 # (0.042) -0.267 # (0.099) -0.021 (0.049) -0.074 + (0.033)

engineers -0.808 + (0.329) 1.383 # (0.394) 0.784 + (0.341) -1.115 # (0.410)

chemists -0.761 (1.111) -0.727 (1.212) 1.475 * (0.790) -0.050 (0.880)

technicians -0.903 # (0.216) -0.265 (0.321) -0.040 (0.230) -0.455 + (0.188)

technical drawer -0.504 # (0.194) -0.192 (0.256) 0.322 + (0.144) 0.108 (0.128)

surveyor -0.367 (0.268) -1.011 * (0.594) 0.866 + (0.376) 0.496 * (0.263)

technical special forces 0.001 (0.301) 0.698 + (0.289) 0.322 (0.248) -0.697 + (0.283)

salesman 0.503 # (0.066) 0.155 (0.132) 0.400 # (0.079) 0.261 # (0.058)

retailers and distributors 0.081 (0.113) 0.400 + (0.192) 0.106 (0.124) -0.394 # (0.140)

bank employees and insurance salesman 0.124 (0.299) 2.979 # (0.393) 1.343 # (0.278) -1.366 # (0.391)

other salesmen 0.111 (0.161) 0.651 + (0.302) -0.185 (0.174) -0.687 # (0.182)

advertising experts -0.252 (0.264) 0.551 (0.380) -0.090 (0.281) -0.609 * (0.342)

transport-related vocations -0.426 # (0.150) -0.117 (0.394) -0.587 # (0.197) -0.008 (0.138)

aviation and shipping -0.654 * (0.394) 0.636 (0.462) 0.252 (0.248) -0.721 * (0.415)

packer and warehouse worker -0.196 # (0.073) -0.119 (0.169) -0.063 (0.072) -0.173 + (0.068)

management -0.458 * (0.265) 1.828 # (0.342) 0.822 + (0.349) -1.258 # (0.269)

administration -0.110 (0.356) -0.146 (0.707) 0.207 (0.421) -1.013 # (0.383)

finance and accounting system 0.122 (0.245) 1.072 # (0.394) 0.503 (0.319) 0.026 (0.301)

IT- core occupations -1.034 # (0.355) 0.300 (0.233) 0.100 (0.199) -0.853 # (0.254)

business office occupation -0.238 # (0.072) 0.644 # (0.155) -0.042 (0.089) -0.685 # (0.093)

temporary office stuff -0.143 (0.138) -0.052 (0.210) -0.099 (0.112) -0.304 # (0.098)

personal security occupations -0.171 (0.176) -0.545 (0.375) -0.235 (0.180) 0.109 (0.157)

janitor -0.265 (0.368) 0.961 (0.620) 0.150 (0.423) -0.250 (0.314)

security occupations 0.501 (0.345) 2.037 # (0.457) 0.637 (0.511) 0.404 (0.554)

legal professions -0.201 (1.034) 0.925 (1.228) 0.637 (0.751) 0.324 (0.950)

artists -0.129 (0.200) 0.147 (0.438) -0.127 (0.189) -0.491 # (0.149)

designer -0.407 # (0.192) -0.068 (0.361) -0.094 (0.204) -0.228 (0.160)

health care occ. with license -0.669 (0.865) -1.400 (1.534) -0.957 (0.858) -1.112 * (0.671)

health care occ. without license 2.224 # (0.289) 1.941 # (0.437) 1.148 # (0.252) -0.480 + (0.190)

social occupations 0.185 (0.135) 1.174 # (0.263) -0.267 # (0.103) -0.423 # (0.091)

teacher 1.336 # (0.512) 4.016 # (0.824) 1.893 # (0.690) 0.048 (0.517)

publicist, more scientific occupation -0.281 (0.293) 0.565 (0.396) -0.411 (0.253) -1.122 # (0.226)

occupations in body care 0.877 + (0.413) -0.342 (0.626) 0.864 # (0.255) 0.241 (0.199)

occupations in hotel and catering 0.069 (0.073) -0.291 + (0.146) 0.296 # (0.081) 0.142 + (0.068)

occupations in room cleaning, waste col. -0.124 (0.081) -0.374 + (0.160) -0.107 (0.069) 0.020 (0.054)



Full Model Full q0.25 Full q0.5 Full q0.75

Interaction between ∆ue and occupation

occupations in agricul., animal breeding reference reference reference reference

mineworkers -0.134 * (0.081) -0.512 * (0.289) -0.330 + (0.143) -0.056 (0.098)

stone workers, ceramics, glass workers -0.321 + (0.143) -0.453 * (0.232) -0.138 (0.131) -0.203 + (0.103)

chemical and plastics workers -0.185 + (0.080) 0.082 (0.131) -0.167 + (0.071) -0.080 (0.066)

paper processing -0.318 # (0.101) -0.393 * (0.202) -0.192 + (0.098) 0.046 (0.101)

metalworking -0.002 (0.060) 0.165 (0.114) -0.003 (0.079) -0.105 * (0.055)

metal and plant engineering -0.104 # (0.031) -0.054 (0.097) -0.158 # (0.041) -0.124 # (0.026)

industrial and tool mechanic 0.006 (0.037) 0.071 (0.096) -0.028 (0.048) -0.038 (0.041)

car, aircraft construction, maintenance -0.045 (0.042) 0.093 (0.103) 0.009 (0.038) 0.000 (0.023)

precision mechanic -0.384 # (0.109) -0.029 (0.129) 0.082 (0.067) 0.056 (0.054)

electrical and electronic engineering -0.184 # (0.048) -0.030 (0.095) 0.014 (0.052) 0.062 * (0.038)

silkworm moth, textile finishers process -0.063 (0.078) -0.323 (0.198) -0.117 (0.093) -0.031 (0.082)

textile and leather processing -0.152 (0.209) 0.028 (0.158) 0.021 (0.091) 0.102 (0.090)

bakers and confectioners -0.240 # (0.071) -0.733 # (0.140) -0.077 (0.062) 0.065 (0.047)

butcher -0.149 + (0.064) -0.531 # (0.167) -0.183 + (0.072) -0.083 * (0.049)

cook -0.164 # (0.048) -0.353 # (0.116) -0.070 (0.050) 0.031 (0.032)

beverages, drink and tobacco processing -0.110 (0.228) -0.140 (0.329) -0.185 (0.196) -0.285 # (0.090)

building professions -0.025 (0.029) 0.069 (0.089) -0.083 + (0.038) -0.012 (0.018)

product tester -0.145 + (0.066) -0.167 (0.141) -0.150 # (0.057) -0.067 (0.057)

labourers -0.136 # (0.032) -0.272 # (0.098) -0.053 (0.037) 0.002 (0.026)

engineers -0.745 # (0.146) 0.170 (0.201) -0.026 (0.146) -0.304 * (0.182)

chemists -0.348 (0.725) -0.954 (1.151) 0.426 (0.790) -0.640 (0.731)

technicians -0.540 + (0.209) -0.190 (0.225) -0.119 (0.131) -0.050 (0.100)

technical drawer -0.565 # (0.174) 0.312 + (0.156) 0.208 + (0.095) 0.230 # (0.083)

surveyor -0.216 (0.195) -0.669 + (0.288) 0.349 + (0.149) 0.328 # (0.107)

technical special forces -0.462 * (0.258) 0.511 # (0.188) 0.017 (0.148) -0.201 (0.149)

salesman -0.205 # (0.044) -0.316 + (0.139) -0.057 (0.039) -0.023 (0.024)

retailers and distributors -0.337 # (0.077) -0.175 (0.145) -0.397 # (0.075) -0.406 # (0.075)

bank employees and insurance salesman -0.734 + (0.364) 0.063 (0.157) -0.295 * (0.173) -1.143 # (0.413)

other salesmen -0.448 # (0.139) 0.029 (0.169) -0.456 # (0.096) -0.441 # (0.082)

advertising experts -0.017 (0.134) 0.376 (0.302) -0.010 (0.130) 0.152 (0.161)

transport-related vocations -0.075 (0.069) -0.049 (0.164) -0.071 (0.095) -0.030 (0.035)

aviation and shipping -0.800 # (0.217) 0.137 (0.402) -0.217 (0.172) -1.160 # (0.239)

packer and warehouse worker -0.172 # (0.042) -0.360 # (0.113) -0.156 # (0.053) -0.079 + (0.035)

management -0.412 # (0.154) 0.347 (0.360) -0.365 # (0.127) -0.562 # (0.162)

administration -0.594 * (0.355) -0.563 + (0.284) 0.093 (0.143) 0.107 (0.141)

finance and accounting system -0.864 # (0.266) -0.612 * (0.319) -0.418 + (0.180) -0.661 # (0.199)

IT- core occupations -0.758 # (0.224) -0.146 (0.185) -0.313 + (0.157) -0.535 # (0.126)

business office occupation -0.387 # (0.056) -0.283 # (0.103) -0.165 # (0.039) -0.191 # (0.034)

temporary office stuff -0.140 (0.150) -0.091 (0.157) -0.019 (0.062) -0.011 (0.036)

personal security occupations -0.280 + (0.110) -0.782 # (0.294) -0.151 (0.119) 0.017 (0.063)

janitor 0.015 (0.055) 0.173 (0.127) -0.072 (0.084) -0.026 (0.026)

security occupations -0.172 * (0.099) 0.155 (0.184) -0.088 (0.140) -0.136 (0.100)

legal professions -0.532 (0.471) -0.020 (0.528) -0.156 (0.142) -0.348 * (0.191)

artists -0.108 + (0.046) 0.027 (0.125) -0.027 (0.056) 0.005 (0.048)

designer -0.285 # (0.047) -0.001 (0.154) -0.003 (0.080) -0.015 (0.049)

health care occ. with license to practice 0.212 (0.626) 0.704 (0.704) 0.279 (0.320) 0.457 * (0.272)

health care occ. w/o license to practice -0.678 # (0.119) -0.501 # (0.127) 0.066 (0.042) 0.000 (0.030)

social occupations -0.847 # (0.148) -0.577 # (0.214) -0.434 # (0.089) -0.273 # (0.049)

teacher -0.107 (0.128) -0.102 (0.158) -0.119 * (0.070) -0.170 * (0.102)

publicist, more scientific occupation -0.279 (0.241) 0.024 (0.293) -0.333 + (0.157) -0.375 + (0.158)

occupations in body care -0.373 # (0.079) -0.503 # (0.167) 0.157 + (0.066) 0.174 # (0.044)

occupations in hotel and catering -0.213 # (0.075) -0.406 # (0.149) -0.074 (0.049) -0.001 (0.030)

occupations in room cleaning, waste col. -0.269 # (0.077) -0.406 # (0.124) -0.107 + (0.051) 0.044 (0.034)

Constant 4.039 # (0.290) 4.783 # (0.627) 4.471 # (0.341) 3.756 # (0.233)

adj. R2 0.593 0.441 0.458 0.389

AIC 3.90E+05 6.90E+05 3.80E+05 4.00E+05

BIC 3.90E+05 6.90E+05 3.80E+05 4.10E+05

Table 4.10: OLS estimation of the ue and ∆ue and their interaction coefficients by chosen
the full model (628 RHS variables) for the 0.10 quantile (2nd column), the lower quantile
(3rd column), the median (4th column), upper quantile (5th column). Heteroscedasticity
robust clustered standard errors of the coefficients are in parentheses; significance level
#p < 0.01, +p < 0.05, ∗p < 0.1.



Level RHS Variables Range Sources

Individual age binary; classification: 15 to <18 years, 18 to <21 years, 21 to <24
years, 24 to <27 years and 27 to 30 years

IEB

gender binary; male and female IEB

mother binary; whether woman interrupts her job for child care within the
ten years observation time

IEB

foreigner binary; individual did not have a German passport IEB

school-leaving qualification binary; no degree, lower secondary education (Hauptschule), sec-
ondary education (Mittlere Reife), higher education (Abitur)

IEB

additional qualification binary; Master craftman or university degree; interacted with
school-leaving qualification

IEB

duration of the vocational training binary; 3-4 years, 4 and more years IEB

duration between the finishing of
the occupational training and the
start of the first job

binary; 0 > duration > 3 month, 3 month ≤ duration < 1 year;
duration ≥ 1 year

IEB

STEM and non-STEM binary; individual works in a (non-) STEM occupation at the first
job, change from STEM to non-STEM and vice versa

IEB

log (wage) metric; log (average net-wage per day) at the first job IEB

full and part time binary; individual works in full (part) time at the first job and 10
years later, changes from full to part time and vice versa

IEB

Mobility
(individual
level)

switching from STEM to non-
STEM and vice versa

binary; whether individual switch from a STEM to a non-STEM
occupation and vice versa, classification from the German Federal
Employment Agency (KldB 88-3 digit)

IEB

upgrade/downgrade two discrete, ordinate variables; occupations are ranked in respect
to their wages at the first job and 10 years after

IEB

change the employer binary; changing the employer after the vocational training for the
first job, changing the employer between the first job and ten years
later

IEB

enforced firm change due to firm
closure

binary; whether individual becomes unemployed due to firm closure
of the first employer

IEB

regional migration binary; whether individual moves to another labour market within
the ten years; additional interacted with STEM dummy

IEB

(log) distance of regional migration metric; (log) distance of the labour market migration between the
first job and ten years after in km (interacted with regional migra-
tion dummy)

IEB

migration from east to west binary, migration from former East Germany to West Germany IEB

unemployment periods ¿ 3 month discrete, number of unemployment periods with > 3 month dura-
tion within the ten years

IEB

additional firms binary, additional number of firms (from 1, 2, 3, 4 and 5+), where
individual worked within the ten years

IEB

duration in employment metric, discrete; total number of days in employment (independent
from employer) of individual i within the 10 years

IEB

Firm level firm age binary; whether firm is of up to <5 years old IAB Empl. Stat.

log (firm size) metric; log (number of employees in firm) at the first job IAB Empl. Stat.

share of women in firm metric; at the first job IAB Empl. Stat.

share of foreigner in firm metric; additional for robustness check; not in baseline model IAB Empl. Stat.

share of human capital metric; proportion of experts and specialists on all employees IAB Empl. Stat.

average firm wage metric; additional for robustness check IAB Empl. Stat.

Occupational
and regional
level

labour market size metric; log(number of employees in the occupational field and re-
gion from individual i) and interacted with an occupation dummy;
for both times t and the growth between t and t + 10 of individual
i

IAB Empl. Stat.

academic competitors metric; number of employees with university degree related to the
number of employees without university degree in the occupational
field and labour market region from individual i and interacted with
an occupation dummy; for both times t and the growth between t

and t + 10 of individual i

IAB Empl. Stat.

ue metric, the number of unemployed people related to the number of
employed people in the occupation field and labour market region
from individual and interacted with an occupation dummy; for both
t and the growth t + 10

IAB Empl. Stat.

Labour market dummies Binary variables

Industry level Industry -Dummies Binary variables

Year level Time- Dummies Binary variables

Changing or rather growth rates between the first job and ten years after for all time-variant variables as additional variables.

Table 4.11: Description of the RHS variables and data source. Empl. Stat. means
Employment Statistics.



Key Key category abbrev. occupation (engl.)

AD Artist, designer Ar artists

AD Artist, designer De designer

AM occu. in agriculture and animal breeding; mining AC occupations in agriculture and animal breeding

AM occu. in agriculture and animal breeding; mining Mi mineworkers

BC occupations in body care BC occupations in body care

BU building professions Bui building professions

EE electrical and electronic engineering EE electrical and electronic engineering

ETS engineers, techn. and natur. Science En engineers

ETS engineers, techn. and natur. Science Ch chemists

ETS engineers, techn. and natur. Science Te technicians

ETS engineers, techn. and natur. Science TD technical drawer

ETS engineers, techn. and natur. Science Su surveyor

ETS engineers, techn. and natur. Science TS technical special forces

Fi finance Ad administration

Fi finance FA finance and accounting system

FD food professions Ba bakers and confectioners

FD food professions Bu butcher

FD food professions Co cook

FD food professions BD beverages, drink and tobacco processing

HC health care He health care occ. with license to practice medicine

HC health care HWo health care occ. without license to practice medicine

IT IT and workers IT IT- core occupations

IT IT and workers BO business office occupation

IT IT and workers TO temporary office stuff

LA labourer PT product tester

LA labourer La labourers

LP legal professions LP legal professions

Ma management Ma management

MI manufacturing industry SW stone workers, ceramics, glass workers

MI manufacturing industry CW chemical and plastics workers

MI manufacturing industry PP paper processing

MI manufacturing industry MW metalworking

MI manufacturing industry MP metal and plant engineering

MI manufacturing industry IM industrial and tool mechanic

MI manufacturing industry CA car, aircraft construction, maintenance specialists

MI manufacturing industry PM precision mechanic

ME merchant Sa salesman

ME merchant RD retailers and distributors

ME merchant FI bank employees and insurance salesman

ME merchant OS other salesmen

ME merchant AE advertising experts

Ho occupations in hotel and catering HC occupations in hotel and catering

SJ security and janitor PS personal security occupations

SJ security and janitor Ja janitor

SJ security and janitor SO security occupations

ST Social and teaching Soc social occupations

ST Social and teaching Te teacher

ST Social and teaching Pu publicist, more scientific occupation

TX textil professions ST silkworm moth, textile finishers process

TX textil professions TE textile and leather processing

TA transportation Tr transport-related vocations

TA transportation AS aviation and shipping

TA transportation PW packer and warehouse worker

Wa occupations in room cleaning, waste collection Wa occupations in room cleaning, waste collection

Table 4.12: Keys for the 22 occupational categories and abbreviations for the 54 observed
professions.



Occupational field men women Occupational field men women

occupations in agriculture and animal br. 0.733 0.267 retailers and distributors 0.498 0.502

mineworkers 0.901 0.099 bank empl./insurance salesman 0.458 0.542

stone workers, ceramics, glass workers 0.792 0.208 other salesmen 0.437 0.563

chemical and plastics workers 0.889 0.111 advertising experts 0.360 0.640

paper processing 0.766 0.234 transport-related vocations 0.858 0.142

metalworking 0.966 0.034 aviation and shipping 0.707 0.293

metal and plant engineering 0.950 0.050 packer and warehouse worker 0.778 0.222

industrial and tool mechanic 0.982 0.018 management 0.568 0.432

car, aircraft construction, maintenance 0.980 0.020 administration 0.399 0.601

precision mechanic 0.509 0.491 finance and accounting system 0.356 0.644

electrical and electronic engineering 0.973 0.027 IT- core occupations 0.850 0.150

silkworm moth, textile finishers process 0.783 0.217 commercial occupation 0.298 0.702

textile and leather processing 0.350 0.650 temporary office stuff 0.343 0.657

bakers and confectioners 0.690 0.310 personal security occupations 0.710 0.290

butcher 0.917 0.083 janitor 0.891 0.109

cook 0.639 0.361 security occupations 0.929 0.071

beverages, drink and tobacco processing 0.807 0.193 legal professions 0.491 0.509

building professions 0.963 0.037 artists 0.574 0.426

product tester 0.668 0.332 designer 0.379 0.621

labourers 0.803 0.197 health care occ. with license 0.356 0.644

engineers 0.868 0.132 health care occ. without license 0.109 0.891

chemists 0.638 0.362 social occupations 0.167 0.833

technicians 0.844 0.156 teacher 0.482 0.518

technical drawer 0.461 0.539 publicist, more scientific occupation 0.449 0.551

surveyor 0.668 0.332 occupations in body care 0.046 0.954

technical special forces 0.539 0.461 occupations in hotel and catering 0.246 0.754

salesman 0.274 0.726 occupations in room cleaning, waste 0.480 0.520

Total 0.551 0.449

Table 4.13: Proportion of men and women in each of the 54 occupational fields.


