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1 Introduction 

 
1.1 What made us human? 
 
During more than 200 million years of mammalian evolution, a tremendous number of genomic 

changes occurred and gave rise to a great variety of species. 

90-100 million years ago (mya) the lineage leading to species including the great apes 

separated from the rodent line (Nei et al., 2001). Within this primate lineage, old world monkeys 

(e.g., macaques) diverged about 23 mya gradually followed by the ancestors of the modern 

gibbons, orangutans, and gorillas (Chen et al., 2001; Kuhlwilm et al., 2016). Finally, the human 

lineage diverged about 5-7 mya from the lineage of our closest living evolutionary ancestors 

the chimpanzees and bonobos (Glazko & Nei, 2003). 

The complexity of genomic adaptations that occurred during mammalian evolution is striking, 

but none led to changes affecting the life on earth comparable to the ones which made us 

human. Today, we know that during the first half of these 5-7 million years of human evolution 

our earliest ancestors did not have a higher impact on the environment than jellyfishes, 

butterflies or chimpanzees until this existence as a usual animal began to change dramatically 

about 2.5 mya when the first Homo specimens arose. 

Questions about this development that made us human fascinated humankind throughout the 

last centuries and led to answers which identified the brain as the core component of the 

human identity (Sousa et al., 2017). Thus, of the various adaptations during the last 2.5 million 

years, the expansion of the human brain, particularly of its evolutionary youngest part, the 

neocortex (see: 1.2), has to be highlighted. Interestingly, the increase in brain size reached a 

plateau about 100.000 years ago, when modern humans successfully began to colonize the 

world outside of Africa (Reyes & Sherwood, 2015). Today, it is an interdisciplinary challenge 

to understand how the expanded brain affected the far-reaching milestones in behavior and 

cultural evolution, which crucially defined us as a human species. One interesting clue is given 

by interspecies comparative anatomical analysis of brains showing an enhanced tendency of 

neocorticalization (ratio of neocortical volume over the total brain volume) in the human lineage 

combined with a relative expansion of association cortices compared to primary cortex areas 

(Buckner & Krienen, 2017). While the specific causalities between brain size, neuronal number 

and intelligence are still controversially discussed, one of the most widespread assumptions in 

the field remains that neocortex size and human cognition correlate positively (Jerison, 1973; 

Williams & Herrup, 1988; Reader & Laland, 2002; Sousa et al., 2017). Hence, the increased 

neocortical size is thought to have been enormously critical for the further development of the 

human species. The resulting cognitive capacity even made it possible to become widely 

independent from evolutionary pressure, because of intellectual achievements such as 

powerful health care systems. After this cognitive revolution (Harari, 2014) the most influential 
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changes were suddenly no longer primarily coded in the genome but in our imagination and 

language - what makes it extraordinary exciting to identify the genomic changes that brought 

us to such a state. Though even the natural curiosity of many humans might be a reason 

enough to study this subject, insights about the genetic differences underlying the evolution of 

humankind will be of even higher importance if they reveal new mechanisms about the biology 

of neurological and psychiatric diseases affecting modern humans. 

 

 
Fig. 1 – Brain expansion in the mammalian lineage 

The human brain is the biggest one observed in a living species within the primate lineage. The figure shows images 

from an adult human, chimpanzee, macaque, marmoset, ferret and mouse brain to show the variability in size but 

also regarding the shape of the surface (gyrencephalic: human, chimpanzee, macaque, ferret vs. lissencephalic: 

marmoset, mouse) that occurred over the course of 100 million years of mammalian evolution. The shown 

mammalian brain images were obtained from http://www.neurosciencelibrary.org. 

 
 

1.2 The Neocortex 

1.2.1 Origin and structure 

As the prefix suggests, the neocortex is the evolutionarily youngest part of our brain and a 

hallmark of mammals (Meredith et al., 2011; O'Leary et al., 2013). Early small mammals, that 

emerged during the Triassic/Jurassic period (about 200 mya) from their reptilian ancestors 

http://www.neurosciencelibrary.org/
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were the first species on earth having the typical uniform, six-layered sheet consisting of 

radially aligned neurons called the neocortex (Kaas, 2013; Florio & Huttner, 2014; Briscoe & 

Ragsdale, 2018). After that, the neocortex expanded independently in various mammalian 

lineages (Borrell & Reillo, 2012), reflecting a positive selection for an increased number of 

neurons. Interestingly, neocortex expansion is particularly evident in anthropoid primates and 

especially in humans. Two-thirds of our overall brain mass is constituted by the neocortex. 

(Florio & Huttner, 2014) 

Simplified the neocortex could be described as a thin mantle of gray matter (GM) enclosing 

the underlying white matter (Rakic, 2009). In contrast to lissencephalic species, the neocortical 

white and grey matter of a gyrencephalic species form ridges (gyri) surrounded by furrows 

(sulci) on the cerebral cortex defining its specific shape (Fig. 2). 

 

 
Fig. 2 – Morphology of the neocortex 

Coronal sections of an adult gyrencephalic human (right) and an adult lissencephalic mouse (left) brain. The general 

dimensions used to describe the neocortex (i) radial: along the white matter (WM) to-pia-axis, corresponding to the 

apical basal axis in terms of tissue polarity; and (ii) lateral: along the axis perpendicular to the radial axis, are 

outlined in the inset at the top as well as the organization of the cortical layers I, II, III, IV, V & VI in the grey matter.  

The figure was adapted from Fig. 1 of Florio & Huttner (2014). Mouse neocortex adapted with permission from the 

High Resolution Mouse Brain Atlas (Sidman et al., 1999), http://www.hms.harvard.edu/research/brain; human 

neocortex adapted with permission from http://www.brains.rad.msu.edu and http://brainmuseum.org (supported by 

the US National Science Foundation).  
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The white matter mainly consists of myelinated axons stemming from or directed to the gray 

matter. The latter one comprises a network of excitatory (≈80% of total neurons) and inhibitory 

(≈20% of total neurons) neurons, glial cells and blood vessels. In the lateral dimension, the 

gray matter is arranged in six layers or laminae I-VI with I being the outermost and VI the 

innermost one (Fig. 2). Neurons in one layer share similar cell type identities and connectivity 

patterns, thus upper-layer neurons (from layer II-III), for instance mainly connect to other 

cortical areas. In contrast, the majority of neurons in layer IV receive input from outside the 

cortex, mostly from the gateway to consciousness – the thalamus. Neurons from layers V and 

VI often project to subcortical structures, e.g., to the thalamus, brainstem, and spinal cord 

(Noback, 2005). 

Local varieties in neuron type, density and connectivity subdivide the GM into various distinct 

areas representing functionally specialized cortical fields. Those can be distinguished in 

primary and association (secondary and tertiary) areas. 

1.2.2 Neurogenesis in the developing neocortex 

After the edges of the neural plate appeared as neural folds during the third week of 

development and thereby confined the neural channel, the margins of this channel approach 

each other and finally merge entirely forming the neural tube. 
The neural tube is made of a pseudostratified layer of neuroepithelial cells (NEC) undergoing 

a period of proliferative divisions which affect the growth of the neocortex in two dimensions: 

(1) expansion in the lateral and (2) thickening of the neuroepithelium, i.e., growth in the radial 

dimension (Rakic, 1995), (Florio & Huttner, 2014), before NECs begin to differentiate into 

different classes of neural cells. In mice, cortical neurogenesis starts at mid-gestation between 

E9-E10. At this time, single NECs switch to an asymmetric differentiative cell division (Götz & 

Huttner, 2005; Huttner & Kosodo, 2005; Martynoga et al., 2012) and transform into the apical 

radial glial cell (aRG) (Hartfuss et al., 2001; A. R. Kriegstein & Götz, 2003), aRGs can divide 

asymmetrically and produce the second progenitor cell type, basal progenitors (BPs) (Florio & 

Huttner, 2014). There are mainly two types of BPs: basal intermediate progenitor cells (bIPs) 

and basal radial glial cells (bRGs, also known as outer RGs). In mouse, most of BPs are 

neurogenic bIPs that divide symmetrically and directly produce neurons. In contrast, in 

primates and most in humans, there are substantial numbers of bRGs. Because bRGs are 

highly proliferative and finally generate many neurons, this progenitor cell type is thought to be 

crucial for neocortical expansion. The occurrence of a variety of cell types in the developing 

neocortex finally leads to the formation of several zones. From the apical to the basal side of 

the neocortex, there are mainly four zones: ventricular zone (VZ), subventricular zone (SVZ), 

intermediate zone (IZ) and cortical plate (CP). VZ and SVZ constitute the germinal zones (GZs), 
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which mainly consist of progenitor cells and newborn neurons. IZ is defined by the existence 

of axons. The most abundant cell type in this zone are migrating neurons. CP consists of 

neurons which are going to constitute the gray matter in the adult brain (Florio & Huttner, 2014; 

T. Namba & Huttner, 2017). 

In the following sections, the recent knowledge of neocortical progenitor cells will be 

summarized. 

1.2.2.1 Classes of neural progenitor cells (NPCs) 

In the mammalian neocortex, there are mainly two types of NPCs. The first ones are apical 

progenitor cells (APs) that are inserted into the apical junctional belt and undergo mitosis at 

the apical surface. The second type are basal progenitor cells (BPs) that are delaminated from 

the apical junctional belt and therefore undergo mitosis in the basal side, often in the SVZ. 

Because most of the neurons are derived from BPs, the subtypes and their abundance are the 

critical determinant of the neuronal number and thus important for brain expansion in evolution. 

 

1.2.2.1.1 Apical progenitors 

As introduced above NECs are the first population of neural stem cells in the developing brain 

constituting the early neural tube. As a consequence, all neurons in the mammalian neocortex 

are descendants from these cells. 

Polarized along the apical-basal axis, they span the entire width of the neuroepithelium 

contacting the overlying basal lamina with their basal plasma membrane and facing the lumen 

of the neural tube, the future ventricle, with the apical plasma membrane (Huttner & Brand, 

1997; Götz & Huttner, 2005). Neighboring NECs are linked through a belt of Adherens 

junctions (AJ) at the apical-most end of their lateral membrane (Aaku-Saraste et al., 1996; 

Chenn et al., 1998; Marthiens & ffrench-Constant, 2009). 

With the onset of cortical neurogenesis, a second type of NPCs is generated in asymmetric 

differentiative cell divisions – the apical radial glial cell (aRG) (Götz & Huttner, 2005; Huttner 

& Kosodo, 2005). 

While thickening of the cortical wall, aRGs remain their contact to the basal lamina. For that 

reason, their basal part has to elongate and to transform into a long, thin radial fiber – the basal 

process, which creates a scaffold for migrating neurons (Rakic, 1972). aRGs express astroglial 

markers (Malatesta et al., 2000; Campbell & Götz, 2002) and upregulate certain transcription 

factors, notably Pax6 (Götz et al., 1998; Warren et al., 1999; Estivill-Torrus et al., 2002; Osumi 

et al., 2008) and Sox2 (Suh et al., 2007; Kriegstein & Alvarez-Buylla, 2009; Hansen et al., 

2010; Gertz et al., 2014; Sun & Hevner, 2014; Pollen et al., 2015). Sox2 is used as a radial 

glial cell marker in this thesis. 

aRGs remain highly related to NEC sharing many characteristics like the integration into the 

AJ belt and their apical-basal polarity, contacting both the ventricle and the basal lamina (Götz 
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& Huttner, 2005). They undergo either symmetric proliferative or asymmetric differentiative cell 

divisions, albeit proliferative divisions prevail in NECs (Florio & Huttner, 2014). 

 

1.2.2.1.2 Basal progenitors 

In the case of basal progenitors (BPs), two major cell types can be distinguished: basal radial 

glial cells (bRGs) and basal intermediate progenitors (bIPs) – both are directly or indirectly 

generated by APs. 

Basal intermediate progenitors are non-epithelial cells since they delaminate from the AJ belt 

and do not show an apical-basal polarity anymore. Astroglial markers are downregulated in 

bIPs, in contrast, Tbr2 (T-box brain protein 2, EOMES) a marker for the neurogenic NPCs, is 

upregulated (Englund et al., 2005; Kowalczyk et al., 2009). 

Within the bIPs, two subtypes were identified – neurogenic bIPs, which can be characterized 

as self-consuming and neurogenic (Haubensak et al., 2004; Noctor et al., 2004) leading to a 

doubling of the neuronal output. The other subtype is a proliferative bIP, which is capable of 

undergoing one more round of symmetric-proliferative divisions before a self-consuming final 

division (Noctor et al., 2004; Hansen et al., 2010). 

Basal radial glial cells were initially characterized in ferrets and humans as monopolar BPs 

forming a basal process that contacts the basal lamina, but no apical process towards the 

ventricle (Fietz et al., 2010; Hansen et al., 2010; Reillo et al., 2011). Now, two additional 

subtypes were identified: bipolar bRGs, called “bRG-both-P” with processes towards the apical 

and basal surface and monopolar bRGs which lack a basal but exhibit an apical process that 

does not reach the ventricle called “bRG-apical-P” (Betizeau et al., 2013; Pilz et al., 2013; Stahl 

et al., 2013). Independently from the subtype, the majority of bRGs expresses Pax6 and Sox2. 

In contrast to aRGs, nearly half of the bRGs were found to co-express Tbr2 during interphase 

in the developing macaque neocortex (Betizeau et al., 2013). Regarding the evolutionary 

expansion of the neocortex, bRGs are of particular interest because of their capacity to self-

amplify and thereby to increase the progenitor cell pool massively, which finally gives rise to 

neurons. 
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Fig. 3 – Germinal zones and NPC types in the developing neocortex 

(A) Coronal section of a mouse brain at E 14.5 stained with DAPI (blue, cell nuclei) to illustrate the apical and basal 

orientation relative to the ventricles and the pial surface (left) and a schematic magnification of the white rectangle 

and of its analogon in humans. The magnification illustrates the different germinal zones, the relative abundance of 

the residing progenitor cell types as well as the neurons migrating along the basal processes of radial glial cells 

towards the cortical plate (CP).  

(B) Schematic NPC types in the mammalian neocortex systematically classified according to cell polarity, presence 

of ventricular contact and the mitotic location. Contact to of the basal process with the basal lamina is indicated by 

red arrows. Neuroepithelial cells like the primary stem cells are not represented on this image. The figure was 

adapted from Fig. 2 of Florio & Huttner (2014). 

1.2.2.2 NPC division modes 

Besides, the modes of NPC cell division are also critical for brain expansion. There are two 

modes of cell division: symmetric and asymmetric. Symmetric cell division is further subdivided 

into differentiative and proliferative cell divisions. 

A cell division that leads to two identical daughter cell types, which can also be different from 

the mother cell, is called symmetric cell division. If one of the two daughters differ from each 

other, it becomes asymmetric, e.g., like at the onset of neurogenesis, when the division of a 

NEC gives rise to an aRG and IP. 

To be a proliferative cell division, the two daughter cells have to adopt the identity of the 

mother. If at least one daughter withdrawals from cell cycle as a neuron, the division is called 

neurogenic. Hence, self-amplifying, self-renewing, and self-consuming divisions can be 
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distinguished and observed throughout neural development. Further variants of possible 

modes of cell division are nicely shown in Fig. 4.  

 

 
Fig. 4 – Division modes of neural progenitor cells 

Different modes of NPC divisions are distinguished based on the identity of the two daughter cells relative to each 

other, to the parent cell and to the overall cell pool (self-amplifying, self-consuming or self-renewing). Thus, a cell 

division can be symmetric or asymmetric and proliferative, differentiative or neurogenic. The figure is adapted from 

Box 1 of Florio & Huttner (2014). 

 

1.2.3 How to increase the neuronal output 

The human neocortex is about 1000 times larger than the mouse and 2-3 times larger 

compared to the chimpanzee neocortex (Fig. 1) – an increase mainly based on about twice as 

many neurons (Striedter, 2005; Rakic, 2009). To study the underlying mechanisms, it is 

essential to identify parameters that could affect the neuronal output in these species and 

especially humans. Previous studies have shown that the expansion of the BP pool has been 

essential for the neocortical enlargement in the primate lineage. As a result, two distinct zones 

developed within the subventricular zone (SVZ): an outer (oSVZ) and inner SVZ (iSVZ). The 

latter one is closer related to the SVZ found in lissencephalic rodents with a higher density of 

progenitor cells than found in the outer SVZ (oSVZ) which is thicker offering more space to 

divide detached from the constricted ventricular surface (Fig. 3) (Florio & Huttner, 2014). 

As introduced above, BPs differ in their self-amplification capacity. Therefore, it is not only of 

interest to know the absolute but also the relative numbers of different BP subtypes throughout 
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neurogenesis. This proportionate distribution of NPC subtypes is affected by intrinsic and 

extrinsic factors which are nicely reviewed from Florio an Huttner (2014). One of the critical 

parameters in the NPC biology affecting the fate towards proliferation or neurogenesis is found 

in the cell cycle length and composition (Calegari et al., 2005; Lange et al., 2009; Arai et al., 

2011; Betizeau et al., 2013; Kinoshita et al., 2013). But also controlled cell death is part of a 

normal neocortex development (Haydar et al., 1999). 

Last but not least, the length of the neurogenic period is one of the critical parameters that are 

potentially offering NPCs a longer timeframe to proliferate and to differentiate into neurons 

during development (Lewitus et al. 2014). 

 

 

 

1.3 Evolution and gene duplication 

1.3.1 Gene duplication and evolutionary novelty 

When Darwin published his Origin of Species in 1859, he gave two challenges to himself. The 

first was to demonstrate the broad kinship of life on earth. The underlying process he termed 

descent with modification. The second was to prove that the responsible activity for these 

modifications can be described as natural selection (Darwin, 1959). 

There are two fundamental questions one has to answer to understand the origin of novel 

functions: first, "what is the genetic source of the novel structure?" and "how has that new 

structure become adapted to its function?" (Conant & Wolfe, 2008). 

The idea of gene duplication as a ‘genetic backup’ to be crucial for functional innovation arose 

already in the early 20th century (Conant & Wolfe, 2008). In 1970, finally Evolution by Gene 

Duplication was published by Susumu Ohno and elucidated for the first time the potential of 

gene duplication comprehensively (Hurles, 2004), after he suggested already three years 

earlier, that gene duplication would be the most important evolutionary force since the 

emergence of the universal common ancestor (Ohno, 1967). But what makes genetic 

duplication concretely such a key player in evolution? 

A significant aspect of this question is addressed by the genetic redundancy, which is created 

through the existence of a second gene copy that provides the opportunity to explore this 

forbidden space of evolution. If one of the genes experiences a mutation that affects its original 

function, the second copy can serve as a spare part (Hurles, 2004) and continues to function 

correctly, thus also the functional innovation of the altered gene copy is facilitated. 
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Generally spoken innovation needs two requirements: motive and opportunity. For the 

evolution of a novel gene function, the predominant purpose is the gain of a novel selective 

advantage – with gene duplication as a major opportunity (Hurles, 2004). 

But how do we know that this is more than an interesting theoretical consideration? One of the 

useful hints that gene duplication matters indeed is the widespread existence of gene families. 

If members of a gene family shared a common ancestor and arose from a duplication event, 

they are termed paralogues, whereas genes in different genomes sharing a common ancestor 

as a result of a speciation event are called orthologues (Hurles, 2004). 

Whole genome sequencing of changes in gene complements of closely related species over 

relatively short evolutionary distances made it possible to reveal the vast expansions and 

contractions of gene families that can be related to the biological differences that occurred. 

The sensory reliance on sight is one glaring example of such a case where humans and mice 

differ due to duplications of the underlying gene. 

In this particular case, the duplication of the red-opsin gene leading to the green-opsin gene 

significantly enhanced the human color vision as it allows us to distinguish light at three 

different wavelengths and not only at two like mice (Nei et al., 1997; Goymer, 2007). In 

contrast, in mice, the proportion of the large gene family of olfactory receptors that retains its 

functionality is a lot higher than in humans (Young et al., 2002; Gilad et al., 2003). 

Even though it became a widespread belief that gene duplication facilitates adaptation, the 

actual importance remained in dispute. Duplication may lead to a doubling of the gene dosage 

or even neofunctionalization (see: 1.3.3) increasing the fitness of an individual, but could also 

divide the ancestral functions into daughter genes not promoting adaptation (Force et al., 

1999). 

This criticism of the adaptation by gene duplication hypothesis was supported by a genome-

scale experiment where pairs of duplicated genes and singleton genes were deleted from the 

yeast genome with similar fitness effects. They concluded that duplication would rarely result 

in adaptation (Dean et al., 2008). Albeit, this approach neglects a known duplication bias 

among genes with different fitness contributions. To elude this problem, homologous genes 

from two yeast species were compared. In this case, the simultaneous deletion of a duplicated 

gene pair in "yeast 1" reduced fitness significantly more than deleting their singleton 

counterpart in "yeast 2" (Qian & Zhang, 2014), that provides further evidence on a genomic 

level for the role of gene duplication in organismal adaptation. 
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1.3.2 Mechanisms of replication 

To understand the processes which led to the remarkable achievements during primate 

evolution like the expansion of the neocortex or the occurrence of three-color vision, it is not 

only necessary to know what but also how this happened. 

Therefore, some common mechanisms of gene duplication are introduced in the following. 

If homologous sequences of non-sister chromatids do not precisely pair at the end of prophase 

I during meiosis unequal crossing over can occur. In this case parts of a gene, entire genes or 

even several genes including their introns can be transferred from one chromatid to the other 

in a tandem duplication (Zhang J, 2003). Hence, the duplicated genes of those segmental 

duplications are linked in a chromosome. 

Interestingly, an explosion of segmental duplications during primate evolution was observed, 

very likely at least in part caused by a rapid proliferation of Alu elements about 40 mya, as they 

are strikingly enriched at the junctions of duplicated genes (Bailey et al., 2003). With more than 

1 million copies, these Alu elements constitute about 10% of the human genome ( Szmulewicz 

et al., 1998; Lander et al., 2001). 

But also, other kinds of segmental duplications are observed not related to homology-driven 

crossing over. Replication-dependent chromosome breakages seem to play a role in the 

generation of tandem duplications because duplication breakpoints are enriched at replication 

termination sites (Koszul et al., 2004). Also, one should be aware that original tandem 

arrangements of segmental duplications can be broken up by subsequent rearrangements. 

Thus it could be assumed that tandem arrangements represent more recent duplication events 

(Friedman & Hughes, 2003). 

Another widespread mechanism of duplication is the retrotransposition of a gene (Torrents et 

al., 2003). This procedure is performed by a retrovirus that integrates reverse transcribed 

mature RNAs at a random site in the genome. These duplication sites are conspicuous since 

the involved genes lack introns and possess a poly-A tail instead. Moreover, they are most 

often separated from their regulatory elements. 

Consequently, these newly integrated sequences only rarely give rise to expressed full-length 

coding sequences and usually directly become pseudogenes (see: 1.3.3). However, deviations 

from these patterns can occur, for example when the sequence is inserted downstream of a 

promoter sequence by chance (Long, 2001). Besides, it is improbable to have blocks of genes 

duplicated together by retrotransposition, as long as they are not all in one operon (Zhang J, 

2003; Hurles, 2004). 

A common mechanism of gene duplication in plants and a critical factor in early vertebrate 

evolution is the whole genome duplication resulting from the nondisjunction of all 

chromosomes during meiosis (McLysaght et al., 2002; Van de Peer et al., 2003). As one can 
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imagine it results in a massive chance for a step-change in organismal complexity. Albeit, in 

metazoan, it is a rare event since it comes with a substantial problem for the faithful 

transmission of a genome from one generation to the next (Hurles, 2004). 

If duplications of whole chromosome sets could occur, of course, also aneuploidy as the 

nondisjunction at a single chromosome can result in an abnormal number of chromosomes 

and hence, also gene copies. In mammals, aneuploidy often is harmful and usually leads to 

spontaneous abortions (Jia et al., 2015). But even in the case of viable individuals it still alters 

the gene dosage in detrimental ways to the organism. Thus it is unlikely to spread throughout 

populations. Another briefly mentioned mechanism, especially for short sequence duplications, 

is the replication slippage, which occurs due to errors in DNA replication (Chen et al., 2005). 

1.3.3 Fates of duplicated genes 

Generally, four potential fates of duplicated genes can be distinguished (Qian & Zhang, 2014): 

pseudogenization (Ohno, 1970), (Zhang J, 2003), neofunctionalization (Ohno, 1970; Hughes, 

1994; He & Zhang, 2005), subfunctionalization (Ohno, 1970; Hughes, 1994; Force et al., 1999) 

and functional conservation (Zhang J, 2003; Zhang P et al., 2003). 

The first obstacle a duplicated gene has to overcome to become visible in evolutionary 

comparisons is the fixation within the genome. This is a fairly rare event even for new mutations 

with immediate selective advantage (Kimura, 1979; Lynch & Conery, 2000).  

But even when the new gene is fixated it does not has to result in a functional protein. Often 

mutations destroy a protein's functionality, because of a premature stop codon or the 

demolition of a major protein domain. Those genes that derived from a functional DNA 

sequence, but incurred mutations that destroyed their functionality are also called 

pseudogenes. The likelihood of those mutations increases over time. Often there is only a 

relatively narrow time window for evolutionary exploration before degradation becomes the 

most likely outcome (Lynch & Conery, 2000). 

Nevertheless, as in the case of the human olfactory receptor gene family, pseudogenization 

can also occur quite late. In contrast to mice, where only about 20% of the olfactory receptor 

genes are non-functional, in humans, more than 60% ended up as pseudogenes (Rouquier et 

al., 2000) – a process that might have been compensated by the better three-color vision in 

the primate lineage (Zhang P et al., 2003). 

As already introduced above, gene duplication creates genetic redundancy. Hence, duplicated 

genes can accumulate mutations faster than single-copy genes. These mutations do not have 

to lead to a non-functionalization but can also bear a novel function in a process called 

neofunctionalization. Those functions can be closely related to the original function, like in the 

case of the opsin genes (Asenjo et al., 1994), but also very different, like the anti-freeze genes 
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of a widespread Antarctic fish taxon that arose from a duplicated digestive enzyme gene. 

(Chen et al., 1997; Conant & Wolfe, 2008). Neofunctionalization can occur at the moment of 

duplication due to a partial duplication or because of the emergence of a chimeric gene when 

the duplicated gene is inserted into another locus (Lynch & Katju, 2004; Kaessmann, 2010). 

Of course, it can also be a long process gradually occurring after the entirely correct duplication 

of a gene (Ohno, 1970; Kimura & Ohta, 1974; He & Zhang, 2005).  

Another likely fate of duplicated genes is described as subfunctionalization (Force et al., 1999). 

In this case, the original function is not merely retained by one copy while the other one either 

evolves a new feature or degrades but is portioned between the duplicates. This can be an 

important adaptation for the stable maintenance of these genes within the genome because 

two genes with similar functions are unlikely to be fixed in a genome unless the extra amount 

of gene product is advantageous in some way for the fitness of the organism. 

Subfunctionalization can occur in several ways. Changes in gene expression are just as 

conceivable as adaptations on the protein level leading to functional specializations (Zhang J, 

2003). While the first case is likely to occur often and soon after duplication (Gu et al., 2002), 

both can indirectly also contribute to evolutional novelty as it enables duplicated genes to 

survive in the genome offering a more extended period for an increased chance of 

neofunctionalization (He & Zhang, 2005). 

One of the most popular models to explain subfunctionalization, the Duplication-Degeneration-

Complementation (DDC) model, was proposed in 1999 (Force et al., 1999). This assumes that 

different mutations may inactivate different subsets of the original function from each gene 

duplicate. Hence, though slightly affecting the protein's function, these mutations are neutral 

for the organisms because the other copy can still compensate for their deleterious effect. 

Thus, it becomes clear that neofunctionalization and subfunctionalization do not have to be 

mutually exclusive processes (Fontdevila, 2011). 

For some genes, however, there is already an immediate selective advantage of gene 

duplication through the facilitated elevated expression level: Duplication for the sake of 

producing more of the same, like it has been observed for histones and ribosomal RNA genes 

(Ohno, 1970). In this case, gene conversion or purifying selection can be advantageous to 

decrease divergence of the duplicates. Thus, those genes become functionally conserved 

through the positive effect of increased gene dosage. 

In summary, three life stages of a duplicated gene pair can be distinguished. First, it has to be 

created (creation) resulting in either the loss, which is by far the most common fate or stage 

two – fixation and preservation with a 100% frequency in a population by natural selection or 

genetic drift. Finally, a subsequent optimization of the post-fixated gene can occur as 

introduced above (Conant & Wolfe, 2008) (Fig. 5). 
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Fig. 5 – Fates of duplicated genes 

The first essential step of a duplicated gene to become evolutionary visible is the fixation within the genome. If the 

protein’s functionality is destroyed because of a mutation leading to the demolition of a major functional domain or 

premature stop codon, the duplicated DNA section becomes a pseudogene. Subfunctionalization describes a 

process which portions the original function between the duplicates. Neofunctionalization can occur upon 

duplication due to a mutation or via a subfunctionalized duplicated gene that acquires a novel function. 

 

1.3.4 Which genes tend to duplicate? 

There is a high number of transcription factors, kinases as well as particular enzymes and 

transporters among often duplicated genes. Interestingly, slowly evolving genes tend to be 

found in duplicates more frequently, but essential genes are not more likely to be duplicated, 

despite an indirect association between lower rates of evolution and essentiality (Drummond 

et al., 2006). 

So, what could be a reason, that some genes tend to duplicate more often than others? One 

explanation can be found in the biochemical features of specific proteins which allow them to 

quickly adapt to new functions, such as the substrate promiscuity of an enzyme, for instance. 

An opposite approach would be to argue with kind of a duplication resistance of some genes. 

For example, because of an immediate detrimental effect (Paterson et al., 2006) of the 

duplication leading to the dosage-balance-hypothesis (Papp et al., 2003). Observations that 

genes in sparse regions of the protein-protein interaction network and with weaker knockout 

fitness defects tend to have higher rates of duplications in yeast, because of less potentially 

detrimental dosage conflicts, support this hypothesis (Conant & Wolfe, 2008). 

1.3.5 Human adaptation and gene duplication 

Interestingly, there has been a burst of segmental duplications in the lineage of the great apes 

including humans (Marques-Bonet et al., 2009) with the potential to directly facilitate functional 

novelty but also the probability for further duplications because of larger and more abundant 
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tracts of identical sequences. Thus, gene duplications are a reasonable cause to consider, 

when trying to understand drastic changes over short evolutionary periods of times. 

Comparative and sequence identity analyses support a threefold excess of duplications in the 

common ancestor of the human and great ape lineage about 10 mya, in contrast to deletions 

which occurred rather in the expected frequency (Sudmant et al., 2013; Megan Y Dennis & 

Eichler, 2016). Intriguingly, the human-specific duplications identified are significantly enriched 

in genes involved in neurodevelopment (Fortna et al., 2004; Sudmant et al., 2010; Heide et al., 

2017). 

Thus, uncovering the genetic adaptations and their functional relevance in the lineage of the 

great apes, and especially humans will offer great insights not only into the understanding of 

what made us human but also human-specific pathologies. 

 

 

 

1.4 Human-specific signatures of neocortical expansion 

 
The human brain might basically conform the primate scaling rules (Herculano-Houzel, 2009), 

but to explain the human uniqueness, we have to understand the adaptations which occurred 

after the divergence from the chimpanzee-bonobo lineage 5-7 mya (Glazko & Nei, 2003). 

Recent reviews from Florio et al. (2017) and Heide et al. (2017) give an excellent overview 

about those human-specific adaptations based on gene duplication and beyond that were 

observed to impact neocortical expansion. 

 

 

 

1.5 Identification of human-specific genes expressed in the developing 
neocortex 

 
Based on the premise that the human brain systematically differs from that of other species, it 

follows naturally that this has to result mainly from a genetic heritage (Vallender, 2012). Hence, 

an understanding of the changes that occurred in the human genome after the divergence 

from the chimpanzees is critical for better insights into the molecular pathways underlying 

human uniqueness in health and disease. Albeit, particularly genes embedded within recently 

duplicated sequences which might be of exceptional interest in regard to this question (see: 

1.3) have been hard to detect in standard genetic analyses (Bailey et al., 2002), since they 

were frequently misassembled or missing from the reference genome (Bailey et al., 2001; 
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Heide et al., 2017). The combination of evolutionary developmental biology and next 

generation sequencing and the advancement of the reference genomes, finally, made it 

possible to identify the gene-expression counterparts for theoretical concepts like homology 

(Kalinka et al., 2010; Necsulea et al., 2014) and also enabled rapid progress in the field of 

neocortical evolution through the novel opportunity of comparative transcriptomics (Florio, 

2015; Montiel et al., 2016). 

Human neocortical expansion, anon, is mainly driven by an increased proliferative capacity of 

NPCs in the developing neocortex (Azevedo et al., 2009; Florio & Huttner, 2014; Dehay et al., 

2015; Namba & Huttner, 2017; Sousa et al., 2017). Marta Florio and colleagues conclusively 

used available transcriptome datasets to perform a comprehensive screen for protein-coding 

genes preferentially expressed in progenitors, but not neurons of the human fetal neocortex. 

This analysis led to the identification of 15 human-specific genes exhibiting such an expression 

pattern (Florio et al., 2018). These findings became the foundations of this thesis since we 

decided to functionally characterize a gene family constituting 3 of the 15 genes: FAM72B, 

FAM72C, and FAM72D. This was based on the exciting fact that humans acquired these three 

additional paralogues of the ancestral gene in contrast to all distinct species on the earth 

sequenced to date as well as promising previous findings of other groups studying the function 

of the ancestral mouse gene Fam72a. 

 

 

1.6 Family with sequence similarity 72 (FAM72) 

1.6.1 Evolutionary origin 

After the divergence from the chimpanzee lineage, the Family with sequence similarity 72 

(FAM72) originated from the ancestral FAM72A (LMPIP, p17, Ugene-p) locus on chromosome 

1. Most likely three duplication events in conjunction with the duplications of the genomic 

neighbor SRGAP2 in the human lineage brought up the three human-specific paralogues 

FAM72B, FAM72C and FAM72D (Ugene-q) (Kutzner et al., 2015). Thus, insights about the 

evolutionary history of SRGAP2A, B, C & D might be closely related to FAM72A, B, C & D.  

As already mentioned above (see: 1.3.2) Alu repeats are known to be highly associated with 

primate genomic duplications (Bailey et al., 2003). Interestingly, Dennis et al. (2012) found in 

that these repetitive elements might have also been involved in the duplication of the SRGAP2 

and hence, the FAM72 genes. Furthermore, assuming a divergence from the chimpanzee 

lineage 6 mya, this study estimated the three duplication time points. The first duplication of 

SRGAP2A (1q32.1) resulted in SRGAP2B (1q21.1) and happened about 3.4 mya and was 
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followed by a duplication of the new SRGAP2B locus leading to SRGAP2C (1p12) about 2.4 

mya. Finally, the SRGAP2B locus duplicated once more within 1q21.1 and led to SRGAP2D 1 

mya (Dennis et al., 2012) (Fig. 6). This data and the genomic location of the four FAM72 

paralogues suggest that the gene duplication of FAM72D occurred 3.4 mya, FAM72C 2.4 mya 

and FAM72B 1 mya (Fig. 6). 

 

Fig. 6 – Genomic localization and estimated duplication time points 

The figure schematically shows the location of SRGAP2 A, B, C and D as well as of FAM72 A, B, C and D on 

chromosome 1 (Chr. 1) within in the human genome. Dennis and colleagues calculated that the duplication events 

leading to the human specific paralogues of FAM72A and SRGAP2 occurred 3.4 - 1 million years ago (mya). The 

evolutionary history of the duplication events is traced by the black arrows. The figure is adapted from Dennis et al. 

(2012) (Fig. 5) and Kutzner et al. (2015) (Fig. 1A). 

1.6.2 Subcellular localization 

To date, four different studies attempted to determine the subcellular localization of FAM72A 

in various cell lines. Guo et al. (2008) constructed a V5-tagged FAM72A (Ugene-p) and 

overexpressed it in SW480 cells (a colon cancer cell line). They found that it accumulates in 

the nucleus, which was defined by a 4′,6-Diamidino-2-phenylindole (DAPI) staining. As the 

protein sequence of FAM72A lacks a nuclear localization sequence (NLS), they concluded that 

it might be held in the nucleus by its interaction with other nuclear proteins (Guo et al., 2008). 

Nehar et al. (2009) performed immunocytochemistry (ICC) in H9C2 (cell line from rat heart 

myoblast) cells that exhibit a high endogenous FAM72A (p17) expression. In contrast to Guo 

et al., they describe the observed expression pattern of FAM72A to be different in comparison 

to DAPI (nucleus) but also vimentin (cytoskeleton). To further dissect this observation a GFP-

tagged FAM72A was transfected to CHO (Chinese hamster ovary) cells showing a localization 

in either membrane or cytosol, but not the nucleus. Subfractionation of H9C2 cells finally 

showed that FAM72A might be in the cytosol and the membrane (Nehar et al., 2009). Another 

ICC in H9C2 cells was performed by Heese et al. (2013) showing a cytoplasmic and to a lesser 

extent nuclear localization. Furthermore, they predicted a transmembrane domain using a 
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biocomputational analysis tool (Heese, 2013) (see: Results I). Wang et al. subfractionated HEK 

293 cells (with endogenous FAM72A expression) into four parts and performed Western Blots 

with a polyclonal anti-FAM72A (LMPIP) antibody on these fractions showing a band in the 

organelle/membrane fraction, but not cytoplasm, nucleus or cytoskeleton. 

Immunofluorescence analysis revealed a dot-shaped pattern and a less dot-shaped 

distribution of aggregates more co-localized with organelles such as mitochondria, but not 

endoplasmic reticulum and Golgi body (Wang et al., 2011). A subcellular localization 

associated to mitochondria would be particularly interesting in conjunction with the findings 

discussed in 7.3.5. Albeit, it remains an open challenge to determine the subcellular 

localization of the FAM72 proteins reliably. Therefore, it might be necessary to differentiate 

between cell types or developmental stages. 

1.6.3 Cell cycle regulation 

FAM72A (LMPIP, p17 or Ugene-p) was identified to be induced upon Epstein-Barr-virus (EBV) 

infection, which is associated to various human neoplasms such as nasopharyngeal 

carcinomas (Wang et al., 2011). Cancer cells are often characterized by an altered cell cycle. 

Therefore, the effect of FAM72A on the cell cycle was studied. After transfection of GFP-

FAM72A in EBV-negative nasopharyngeal carcinoma cell (NPCC) lines, FACS was performed 

to select the GFP+ cells. These cell populations overexpressing FAM72A showed a decreased 

G1-phase compared to the vector control (From 53% vector control to 38% FAM72A) and a 

little increase in the apoptotic cell population and the multiploid stage (Wang et al., 2011), 

whereas no relevant change in the S and G2/M phase could be observed, suggesting that 

FAM72A shortens the G1-phase. This assumption is supported by the findings of enhanced 

levels of cell cycle activators like cyclin D1, CDK2, CDK4, and E2F1. 

Furthermore, FAM72A transfected TW01 cells showed an increased proliferation compared to 

the mock control and vice versa effects in the case of FAM72A knock down driven by RNAi 

(Wang et al., 2011). 

1.6.4 NPC maintenance 

The trimethylation of histone H3 at lysine 4 (H3K4me3) is associated to the transcription start 

sites of active genes (Santos-Rosa et al., 2002; Barski et al., 2007; Benayoun et al., 2014;  

Guo et al., 2014) and preferentially marks genes which are essential for the function and 

identity of a cell type (Ang et al., 2011; Schmitz et al., 2011). This characteristic of the 

chromatin modification H3K4me3 was used to test whether the 5% broadest H3K4me3 

domains could be used as a tool to uncover novel cell regulators in a particular cell type such 
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as NPCs. Therefore, Benayoun et al. isolated NPCs from the adult mouse subventricular zone. 

The top 5% broadest H3K4me3 domains were enriched for genes known to be NPC regulators. 

Interestingly, Fam72a was amongst the genes with the broadest H3K4me3 domains 

(Benayoun et al., 2014) but not implicated in the maintenance of NPCs, hitherto (Guo et al., 

2008; Nehar et al., 2009; Wang et al., 2011; Kutzner et al., 2015). To test the functional 

relevance of this discovery, candidate genes, including Fam72a, were knocked down (KD) 

using a lentiviral-based RNA interference approach (shRNA) in the primary adult NPCs. The 

Fam72a KD cells showed a decrease in proliferation but an increase in neuronal differentiation. 

This suggests that the protein may restrain the differentiation of the adult NPCs (Benayoun et 

al., 2014). 
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2 Aims & approaches 
 
This study aims to investigate the role of two genes which are expressed in neural progenitor 

cells (NPCs) of the human fetal neocortex: the human-specific FAM72D and the ancestral 

FAM72A regarding the evolutionary expansion of the human neocortex. 

The focus is to examine the effects of these genes on the identity and proliferative capacity of 

embryonic mouse NPCs and to analyze differences in the transcriptional signature upon their 

ectopic expression in the developing mouse neocortex. 

 

Hypotheses 
I)  

a. The forced expression of FAM72D in the developing mouse neocortex leads to an 

increased proliferative capacity of the targeted NPCs. 

b. The amino acid substitutions in FAM72D support an increased proliferative 

capacity of mouse NPCs compared to FAM72A. 

 

This is approached by in utero electroporation of plasmid DNA to drive the expression 

of FAM72A and FAM72D in mouse NPCs in different embryos of the same litter. 

After that potential changes in the proliferation of NPCs are investigated as an 

indicative parameter for cortical expansion during development. 

 

II)  

The forced expression of FAM72A or FAM72D in the developing mouse neocortex 

causes a distinctive gene-expression signature between the ancestral and the human-

specific paralogue. 

 

Analogous to the experiments on the protein level (Hypotheses I), control, FAM72A, 

and FAM72D DNA plasmids are in utero electroporated and co-expressed with a 

fluorescent protein. Upon microdissection and cell dissociation, the electroporated 

cells are isolated by fluorescent-activated cell sorting (FACS). In the following, RNA 

sequencing and transcriptome analysis are performed on the isolated cells to compare 

the gene expression differences between the control, ancestral FAM72A and human-

specific FAM72D condition. 
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3 Results I 
 

3.1 From genes to proteins: 1 family – 4 paralogues 
 

In contrast to every other species that genomes have been sequenced, in humans, the FAM72 

gene family consists of four paralogues. In case of the long isoforms, the mature mRNA of all 

four genes consists of 450 nt and transcribes a 149 amino acids (aa) long protein of 16-17 kDa 

(FAM72A Ensembl ID: ENSG00000196550). This is why FAM72A was previously also called 

p17 (Nehar et al., 2009). At the cDNA level, the human FAM72A is identical to the chimpanzee 

FAM72A. Hence, there is no difference between the FAM72A protein sequences of these two 

species, and FAM72A will be considered as the ancestral paralogue of the gene family in the 

following (Fig. 7). In total, the human-specific paralogues differ at six positions from FAM72A. 

Albeit, the substitution at nucleotide position 6 in FAM72C and D is a silent mutation. 

Consequently, only five out of six nucleotide substitutions, result in changes at the protein level 

(Fig. 9). Two mutations occurred in the exons of FAM72B: the first at nucleotide 281 where a 

thymine (T) to cytosine (C) mutation caused the switch from leucine to proline (aa 94) in 

FAM72B, which might lead to a change in the 3D conformation of the protein and the second 

one at nucleotide 364 changing the nonpolar glycine in FAM72A to the nonpolar valine (aa 

122). Two additional mutations at nucleotide 295 and 373 are shared by FAM72C and 

FAM72D affecting the biochemical properties of the proteins, since the nonpolar, hydrophobic 

glycine (aa 99) and tryptophan (aa 125) got exchanged against the hydrophilic, basic arginine 

in FAM72C and D. Finally, FAM72C is different from FAM72D in aa position 82, where 

FAM72D is identical to FAM72A but FAM72C has a valine instead of the ancestral glycine 

(Figs. 7 and 9). 
The comparison of the human FAM72A and mouse Fam72a protein sequences reveals that 

15 out of 149 aa are different between mouse and human. Four of 5 aa that are mutated in 

FAM72B, C or D, are conserved between mouse and human Fam72a/FAM72A. 
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Fig. 7 – The protein sequence of FAM72 in mouse, chimpanzee and human 

(A) Alignment of the mouse Fam72a and human FAM72A protein sequences; differences in amino acids (aa) 

between mouse and human are highlighted in the human sequence in red. The blue rectangles indicate aa which 

are mutated in at least one of the human-specific FAM72 paralogues compared to FAM72A, but not between human 

FAM72A and mouse Fam72a. The single red rectangle marks one of the aa mutated in FAM72B compared to 

FAM72A and between mouse Fam72a and human FAM72A. The two cysteine residues that differ between mouse 

and humans at position 134 and 147 are highlighted in bold. 

(B) Alignment of the chimpanzee FAM72A (chimp F72A) and the human FAM72 (F72A) protein sequences. Note 

that the human and chimpanzee FAM72A sequences are identical. The aa mutated in FAM72B, C or D compared 

to FAM72A are highlighted in red. 

 

 

3.2 FAM72 mRNA expression levels in the developing mouse and human 
neocortex 

 
The mRNA sequencing datasets of Fietz et al. (2012) and Florio et al. (2015) were used to 

analyze the gene expression levels of FAM72A, B, C and D in humans or of Fam72a in mice 

in NPCs and neurons. Fietz and colleagues used a laser dissection microscope to isolate the 
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VZ, iSVZ, oSVZ and cortical plate (CP) from 13–16 week post-conception (wpc) human fetuses 

and E14.5 mouse embryos. Afterward, an RNA sequencing on the cells contained in each of 

the germinal zones (VZ, iSVZ or oSVZ) and the CP was performed (Fietz et al., 2012). Florio 

and colleagues developed a novel method to isolate the aRG, bRG, bIP based on their 

morphological properties from the human (wpc 13) and mouse (E14.5) developing neocortex. 

To isolate neurons either transgenic Tubb3 – green fluorescent protein (GFP) mice embryos 

or vital DNA staining with a fluorescent dye of the cell suspension (for fetal human neocortex) 

were used to distinguish neurons based on its fluorescent staining (GFP, mice) or due to the 

different DNA content in G0 compared to NPCs which are in S-G2- or M-phase. Finally, they 

used fluorescence-activated cell sorting to isolate the different cell populations and to secondly 

conduct an RNA sequencing to analyze the transcriptome of these cells in mice and humans 

(Florio et al., 2015). Both datasets show an expression pattern of all FAM72 paralogues almost 

exclusively restricted to the GZ and NPCs (Fig. 8). 

 
Fig. 8 – FAM72 mRNA expression levels in the developing human neocortex 

The mRNA sequencing datasets of Fietz et al. (2012) (A) and Florio et al. (2015) (B) were used to 

analyze the gene expression levels of FAM72A, B, C and D (indicated with A, B, C and D above the VZ 

and aRG bars) in the germinal zones (VZ, iSVZ and oSVZ) and cortical plate (CP) (A) or NPCs and 

neurons (B). Both datasets show an expression pattern of all FAM72 paralogues almost exclusively 

restricted to the GZ or NPCs. 
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3.3  Computational analyses 

3.3.1 Proportion of cysteines 

As part of the sequence analysis, I realized a strikingly large proportion of cysteines in the 

amino acid sequence. In fact, almost 10% (14 / 149 aa, 9,4%) 1 of all aa constituting the FAM72 

proteins are cysteines which is about 3-4 times more than the average frequency observed in 

mammalian proteins (Gaur, 2014) and might be at the same time at least in part explained in 

the relatively small size, since smaller proteins are more dependent on stabilizing disulfide 

bonds (White, 1992). The total number of cysteines is conserved between mouse and human, 

although humans have an additional one at aa position 147 and mice at aa position 134 (Fig. 

7). Taken together, the relatively higher proportion of cysteines will be of importance to better 

understand the biochemical properties of the protein, but is not further discussed in this thesis. 

3.3.2 Transmembrane domain 

A transmembrane domain (TMD) (aa 74-95, Fig. 7) of FAM72A was predicted using a 

biocomputational analysis tool (http://harrier.nagahama-i-bio.ac.jp/sosui/sosui_submit.html) 

(Heese, 2013). Therefore, we used the same tool to test if it also predicts such a domain for 

FAM72B, C and D. Surprisingly, FAM72B and FAM72C were calculated to be soluble proteins 

in contrast to FAM72A and FAM72D that contain a TMD. In addition to this TMD prediction 

tool, we also used another TMD analysis tool provided by the Center for biological analysis 

(http://www.cbs.dtu.dk/services/TMHMM/). As a result, neither FAM72A, B, C or D was 

predicted to have a TMD.  

Regarding these controversial TMD predictions and previously published results described 

above, subcellular localization of Fam72a and its human orthologues is still under discussion. 

We also attempted to examine the subcellular localization of the human FAM72 proteins by 

immunofluorescence. However, there were no conclusive signals because of the poor 

sensitivity and specificity of antibodies (see: 9.8). 

 

                                                 
 
1 The cysteine proportion of 9,4% is also confirmed by Kutzner and colleagues who previously published the false cysteine 

proportion of 8,7% (Kutzner et al., 2015).  

 

http://harrier.nagahama-i-bio.ac.jp/sosui/sosui_submit.html
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Fig. 9 – Cloning and generation of the FAM72 constructs 

(A) Summary of all mutations within the exons of the four FAM72 paralogues; numbers above FAM72A bar indicate 

nucleotide (nt) position and below the amino acid (aa) position of the specific mutation in FAM72B, C, or D compared 

to FAM72A; no letter means it is identical to FAM72A at this position. 

(B-C) Workflow FAM72A, B, C, D cloning; (B) Amplification of FAM72A from human fetal (GW 12) neocortical cDNA 

by PCR with two different 5’ primers and one 3’ primer (blue arrows) led to FAM72A and FAM72A6ntC. The PCR 

products were used for mutagenesis (green arrows) to produce FAM72B, C and D. 

(C) FAM72A and FAM72A6ntC were cloned into TOPO vector before mutagenesis (green arrows), afterwards 

TOPO-FAM72A/B/C/D was subcloned into pCAGGS vector that contains a CAG promotor (light green) to obtain 

pCAGGS-FAM72A/B/C/D vectors. 
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3.4 Amplification, subcloning and mutagenesis 

3.4.1 Amplification from human cDNA 

To obtain DNA of the FAM72 paralogues, a polymerase chain reaction (PCR) on a human 

brain cDNA sample from gestation week 12 (GW 12) was performed using primers targeting 

the FAM72 cDNA sequence. The 3’ primers were identical for FAM72A, B, C, and D, but two 

different 5’ primers had to be used to amplify FAM72A/B and FAM72C/D to produce a clean 

sequence including the silent T to C mutation in nucleotide (nt) position 6 in FAM72C and D.  

To verify the propriety of the amplified sequences all amplification products were Sanger 

sequenced. We found that the PCR resulted either in a clean FAM72A sequence when the 5’ 

primer for FAM72A/B was used and a FAM72A sequence with the nt 6 T to C mutation 

(FAM72A6ntC) induced by the FAM72C/D 5’ primer. None of the samples sequenced 

comprised FAM72B, C or D (see: 7.3.3) 

3.4.2 Verification of the pCAGGs vectors 2 

Before examining the role of FAM72 paralogues in the NPCs, several preliminary experiments 

were conducted. In the first place, the coding sequences of the expression plasmids (pCAGGs-

FAM72A/B/C/D) were confirmed to be matched with the reference sequences obtained from 

Ensembl (see: 9.2.1) by Sanger sequencing.  

Second, the protein expression of the plasmids was confirmed by immunoblotting of cell 

lysates obtained from Cos7 cells (African green monkey kidney cells) that were transfected 

either with pCAGGs-FAM72A/B/C/D or an empty pCAGGs vector as a control. Afterward, an 

immunoblot (IB) with a primary antibody recognizing all four FAM72 paralogues was performed 

to test the presence of the FAM72 proteins in the transfected Cos7 cells. The result clearly 

shows bands at the expected size of the FAM72 proteins between 16-17 kDa for each FAM72 

construct, but none in the lane of the Cos7 cells only transfected with an empty pCAGGs vector 

(Fig. 10).  

Lastly, to further test if the construct also expresses FAM72 in the embryonic mouse brain, 

plasmids encoding FAM72A and FAM72D were in utero electroporated into mouse neocortex 

at E13.5. The brains were dissected 48 h later at E15.5, fixated and cryosectioned afterward. 

Then we examined the presence of the FAM72 mRNA in the electroporated cortical area via 

in situ hybridization (ISH) with DNAse treatment to exclude a signal caused by the pCAGGs-

                                                 
 
2 In collaboration with Michael Heide (ISH) and Takashi Namba (IB), both MPI CGB, Huttner Lab 
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FAM72 plasmid. Indeed, in situ hybridization showed a strong signal of the FAM72 mRNA 

restricted to the electroporated area (Fig. 10). 

Therefore, I concluded that the plasmids lead strong expression of FAM72A/B/C/D at mRNA 

and protein level, in both cultured cells and embryonic mouse neocortex. 
 

 

Fig. 10 – Expression of the pCAGGS-FAM72 plasmids 

 (A) In situ hybridization (ISH) of a mouse neocortex that was electroporated with pCAGGS-FAM72D to prove 

expression of pCAGGS-FAM72D on the mRNA level. The ISH was conducted in collaboration with Michael Heide. 

(B) Immunoblot (IB) with primary antibody against FAM72A, B, C or D of Cos7 cells transfected with pCAGGS-

FAM72A/B/C/D vectors or pCAGGS empty vectors (Cntrl) shows protein bands of 16-17 kDa as expected for the 

human FAM72 paralogues. The IB was conducted in collaboration with Takashi Namba. 
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4 Results II 

 

4.1 Ectopic expression of FAM72A and FAM72D in the mouse dorsolateral 
neocortex at mid-neurogenesis 

 
Previous studies showed that ectopically expressed human-specific genes induced 

phenotypical changes in embryonic mouse NPCs in vivo and as a result, the mouse NPCs 

acquired “humanized” features such as a highly proliferative ability (Florio et al., 2015; Florio 

et al., 2016; Florio et al., 2018). Therefore, mouse embryonic NPCs can be used as a model 

system to examine the function of human-specific genes on NPC proliferation and 

differentiation. 

The effect of the FAM72 gene family could be either just due to an increased gene dosage 

offered by the three extra paralogues or because of a neofunctionalization of FAM72B, C or 

D. To examine these two hypotheses two experiments were conducted. One is the 

overexpression of FAM72A to examine its dosage effect. The other is the ectopic expression 

of FAM72D to investigate its potential neofunctionalization because the two arginine 

substitutions in FAM72D could change protein-protein interactions. This hypothesis has 

already been supported in a study showing that FAM72D (Ugene-q) in contrast to FAM72A 

(Ugene-p) does not bind to uracil DNA-glycosylase 2 (UNG2) (Guo et al., 2008). 

The expression of pCAGGS-FAM72A and pCAGGS-FAM72D was induced in apical 

progenitors of the developing mouse dorsolateral neocortex via in utero electroporation (IUE) 

(Fig. 11). As a control, I electroporated littermate embryos with the empty pCAGGS vector 

already used for the immunoblot for plasmid verification (Fig. 10). Besides, each plasmid was 

co-electroporated with a reporter plasmid (pCAGGS-RFP) expressing a nuclear-targeted red 

fluorescent protein (RFP) to follow the fate of the targeted APs. We decided to use a co-

electroporation instead of an HA- or RFP/GFP-tagged FAM72A/D, to avoid any interference 

caused by the tag with the biological function of the protein and due to our experiences with 

the HA-FAM72A construct, that could not be detected in the immunoblot performed with the 

available FAM72 antibodies (data not shown).  

For the first set of experiments, IUE of FAM72A and FAM72D was performed at E13.5 (mid-

neurogenesis). The brains were dissected 24 h (E14.5, at least one cell cycle) or 48 h (E15.5) 

later, fixated in 4% PFA and cryosectioned for immunohistochemical analyses (Fig. 29, see: 

9.1). There were no apparent changes in the distribution of RFP+ cells upon FAM72A, and 

FAM72D forced expression at 24 h and 48 h post-IUE. 
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Fig. 11 – In utero electroporation of the dorsolateral mouse neocortex at mid-neurogenesis 

Coronal section of an E14.5 mouse brain electroporated at E13.5 (24 h post-IUE). 

(A) DAPI staining (blue, cell nuclei). 

(B) Double immunofluorescence for PH3 (green, mitotic cells) and RFP (red); RFP indicates the electroporated 

area (dorsolateral neocortex). Scale bar (150 µm) in A also applies to B. 

 

4.2 NPC proliferation 

4.2.1 Assessment of NPC proliferation using Ki67 immunofluorescence 

The proliferation was assessed using Ki67, a marker for cycling cells. During interphase, the 

Ki67 protein is exclusively located in the cell nucleus, while in mitosis it is found at the surface 

of the chromosomes (Cuylen et al., 2016). Most importantly, it is only present during G1-, S-, 

G2- and M- phase, but not in resting cells (G0-phase) such as post-mitotic neurons. 
Quantification of the total number of Ki67+RFP+ cells per RFP+ cells (from VZ to CP) 48 h 

upon IUE at E15.5 did not show a significant difference between control (Cntrl) and FAM72D 

(Fig. 12). To not overlook a slight difference in only one of the germinal zones, I quantified the 

Ki67+RFP+ cells in the VZ and SVZ-IZ separately. Although a small increase in the SVZ-IZ of 

brains expressing FAM72D compared to the control was observed, it was not statistically 

significant (Fig. 12). 

We further dissected this observation analyzing the Ki67+RFP+ cells in SVZ-IZ per RFP+ cells 

in SVZ-IZ 24 h post-IUE including FAM72A and again (Fig. 13), no significant difference 

between control, FAM72A or FAM72D was detected. 
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Fig. 12 – Assessment of NPC proliferation using Ki67 immunofluorescence 48 h post-IUE 

Mouse neocortex was electroporated at E13.5 with the nuclear-targeting RFP-expressing plasmid either plus control 

(Cntrl) or FAM72D-expressing plasmids and analyzed at E15.5. 

(A-C) Double immunofluorescence for Ki67 (green) and RFP (red). Solid and dashed boxes indicate areas in the 

SVZ-IZ that are shown at higher magnification in B (nucleus surrounded by dashed lines is Ki67+RFP+ double 

positive) and C (nucleus surrounded by dashed lines is only Ki67 positive). White lines indicate borders between 

VZ and SVZ-IZ. Scale bar: 20 µm (A), 10 µm (B, C). 

(D) Quantification of the percentage of total RFP+ cells that are Ki67+ (top) and the percentage of RFP+ cells that 

are Ki67+ in VZ (bottom left) and SVZ-IZ (bottom right). There is no significant difference between control (Cntrl) 

and FAM72D. Error bars indicate SD; n.s. = not significant. Data are the mean of four independent experiments. 
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Fig. 13 – Assessment NPC proliferation using Ki67 immunofluorescence 24 h post-IUE 

Mouse neocortex was electroporated at E13.5 with the nuclear-targeting RFP-expressing plasmid either plus control 

(Cntrl), FAM72A- or FAM72D-expressing plasmids and analyzed at E14.5 (24 h post-IUE). 

(A) Double immunofluorescence for Ki67 (green) and RFP (red). White lines indicate borders between VZ and SVZ-

IZ. Scale bar: 20 µm. 

(B) Quantification of the percentage of RFP+ cells that are Ki67+ in SVZ-IZ. There is no significant difference 

between control (Cntrl), FAM72A and FAM72D. Error bars indicate SD; n.s. = not significant. Data are the mean of 

three independent experiments. 

4.2.2 Cell cycle reentry 

Next, I carried out a cell-cycle reentry assay to examine whether the daughter cells enter the 

cell cycle again. To this end, 5-Ethynyl-2’-deoxyuridine (EdU) was injected at E14.5, 24 h post-

IUE (IUE at E13.5) and the brains were harvested and fixated at E15.5 (Fig. 14) followed by 

Ki67 immunofluorescence. EdU incorporates into the DNA as a thymidine analog during S-

phase. Given that the cell cycle length of mouse embryonic NPCs at this stage is shorter than 

24 h, the EdU-incorporated cells might exit or reenter the cell cycle at the time point of fixation. 

Thus, the EdU+Ki67+ cells are the cells that reentered the cell cycle. There was no significant 
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difference in the proportion of the EdU+RFP+ cells over the RFP+ cells in SVZ-IZ between 

control and FAM72D ectopic expression (Fig. 14). 

Quantification of EdU+Ki67+RFP+ cells in the SVZ-IZ per RFP+ or EdU+ cells in SVZ-IZ did 

not exhibit a significant difference between control and FAM72D sample (Fig. 15). 

 

 
Fig. 14 – Detection EdU incorporation upon expression of FAM72D 

(A) Experimental workflow: IUE of the dorsolateral mouse neocortex at E13.5, EdU injection into the abdomen of 

the electroporated pregnant mouse at E14.5, harvesting of the embryos and further processing for quantitative 

analysis at E15.5. (B-C) Mouse neocortex was electroporated at E13.5 with the nuclear-targeting RFP-expressing 

plasmid either plus control (Cntrl) or FAM72D- expressing plasmids. EdU detection (grey) and RFP 

immunofluorescence 48 h post-IUE was conducted at E15.5. Solid boxes indicate the area in the SVZ-IZ that is 

shown at higher magnification in C (nucleus surrounded by dashed lines and tagged with * is Edu+RFP+ double 

positive; nucleus tagged with ** is only EdU positive). Scale bar: 20 µm (B), 10 µm (C). 

 (D) Quantification of the percentage of RFP+ cells that are Ki67+ in SVZ-IZ. There is no significant difference 

between control (Cntrl) and FAM72D. Error bars indicate SD; n.s. = not significant. Data shown are the mean of 

three independent experiments. 
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Fig. 15 – Cell cycle reentry 

Mouse neocortex was electroporated at E13.5 with the nuclear-targeting RFP-expressing plasmid either plus control 

(Cntrl) or FAM72D-expressing plasmids and analyzed at E15.5. 

(A-B) Double immunofluorescence for Ki67 (green) and RFP (red) plus EdU (grey) detection. The experimental 

workflow is shown in Fig. 14 A. Solid boxes indicate area in the SVZ-IZ that is shown at higher magnification in B 

(nucleus surrounded by dashed lines is Ki67+Edu+RFP+ triple positive). White lines indicate borders between VZ 

and SVZ-IZ. Scale bar: 20 µm (A), 10 µm (B). 

(C-D) Quantification of the percentage of RFP+ cells that are EdU+KI67+RFP+ cells in SVZ-IZ and of the 

percentage of RFP+Edu+ cells that are EdU+KI67+RFP+ cells in SVZ-IZ. There is no significant difference between 

control (Cntrl) and FAM72D. Error bars indicate SD; n.s. = not significant. Data are the mean of three independent 

experiments. 

4.2.3 Assessment of mitosis using PH3 immunofluorescence 

Another way to quantify the number of dividing cells is to observe mitotic cells. Histone H3 is 

phosphorylated at S10 during mitosis (Hans & Dimitrov, 2001). Thus antibody against 

phosphorylated histone H3 (PH3) specifically label mitotic cells. To analyze PH3+ cells after 

FAM72A or FAM72D electroporation, I quantified PH3+RFP+ cells per microscopic field (250 

x 300µm). 

Quantification of PH3+ cells 24 h post-IUE did not show any significant difference between 

control, FAM72A or FAM72D. There is a tendency of an increase mainly in the SVZ-IZ of 

FAM72A expressing brains, though this reflects more an outlier than a general trend (Fig. 16). 

In addition, I also looked at E15.5, 48 h post-IUE of control and FAM72D-expressing plasmids. 
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Quantification of PH3+RFP+ cells per microscopic field did not show a significant difference 

between control and FAM72D. This is also the case for the quantification of the absolute 

numbers of PH3+ cells per microscopic field (Fig. 17). 

 

 
Fig. 16 – Detection of mitoses using PH3 immunofluorescence 24 h post-IUE 

Mouse neocortex was electroporated at E13.5 with the nuclear-targeting RFP-expressing plasmid either plus control 

(Cntrl), FAM72A- or FAM72D-expressing plasmids and analyzed at E14.5. 

(A-B) Double immunofluorescence for phosphorylated Histone 3 (PH3) (green) and RFP (red). Solid boxes indicate 

area in the SVZ-IZ that are shown at higher magnification in B (nucleus surrounded by dashed lines is PH3+RFP+ 

double positive). Scale bar: 50 µm (A), 10 µm (B). 

(C) Quantification of the total number of PH3+RFP+ cells per microscopic field (left) and the number of PH3+RFP+ 

cells in the VZ (middle) and SVZ-IZ (right) per microscopic field (250 x 300 µm). There is no significant difference 

between control (Cntrl), FAM72A and FAM72D. Error bars indicate SD; n.s. = not significant. Data are the mean of 

three independent experiments. 
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Fig. 17 – Detection of mitoses using PH3 immunofluorescence 48 h post-IUE 

Mouse neocortex was electroporated at E13.5 with the nuclear-targeting RFP-expressing plasmid either plus control 

(Cntrl) or FAM72D-expressing plasmids and analyzed at E15.5. 

(A) Double immunofluorescence for phosphorylated Histone 3 (PH3) (green) and RFP (red) of a coronal section of 

an E15.5 embryonic mouse brain. The right dorsolateral neocortex was in utero electroporated with plasmids 

expressing FAM72D or nuclear-targeting-RFP. Scale bar: 100 µm. 

(B-D) Quantification of the total number of PH3+RFP+ cells per microscopic field (B) and the number of PH3+ cells 

in the VZ (C) and SVZ-IZ (D) per microscopic field (250 x 300 µm). There is no significant difference between control 

(Cntrl) and FAM72D. Error bars indicate SD; n.s. = not significant. Data are the mean of four independent 

experiments. 

4.2.4 Conclusion 

Taken together, all analyses with a focus on NPC proliferation suggest that neither in utero 

electroporation of FAM72A nor FAM72D was able to increase the proliferative capacity and 

cell cycle reentry of NPCs upon their expression at mid-neurogenesis in the developing mouse 

dorsolateral neocortex. 
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4.3  NPC abundance 

4.3.1 Assessment of NPC abundance using Tbr2 and Sox2 
immunofluorescence 

Next, it was analyzed whether FAM72A or FAM72D affect the abundance of certain NPC types 

since a previous study suggested a role of Fam72a in the maintenance of NPC derived from 

adult mouse SVZ or hippocampus (Benayoun et al., 2014). To this end, I analyzed the number 

of T-box brain protein (Tbr2, Eomes)+RFP+ (Figs. 18 and 19) or Sox2+RFP+ (Figs. 20 and 

21) cells in the FAM72A and FAM72D electroporated developing mouse neocortex. Tbr2 is a 

marker for BPs (Englund et al., 2005; Kowalczyk et al., 2009) and Sox2 is a marker for RGs 

(Suh et al., 2007), (Kriegstein & Alvarez-Buylla, 2009; Hansen et al., 2010; Pollen et al., 2015). 

To assess these parameters, E13.5 mouse embryos were electroporated in utero with the 

nuclear-targeting RFP-expressing plasmid either plus control plasmid, FAM72A- or FAM72D-

expressing plasmids and harvested at E14.5 or E15.5. 

 

 
Fig. 18 – Assessment of NPC abundance using Tbr2 immunofluorescence 48 h post-IUE 

Mouse neocortex was electroporated at E13.5 with the nuclear-targeting RFP-expressing plasmid either plus control 

plasmid (Cntrl) or FAM72D-expressing plasmids and analyzed at E15.5. 

(A) Double immunofluorescence for Tbr2 (cyan) and RFP (red). Scale bar: 20 µm. 

(B) Quantification of the percentage of total RFP+ cells that are Tbr2+ (top) and the percentage of RFP+ cells that 

are Tbr2+ in VZ (bottom left) and SVZ-IZ (bottom right). There is no significant difference between control (Cntrl) 

and FAM72D. Error bars indicate SD; n.s. = not significant. Data are the mean of five independent experiments. 
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Fig. 19 – Assessment of NPC abundance using Tbr2 immunofluorescence 24 h post-IUE 

Mouse neocortex was electroporated at E13.5 with the nuclear-targeting RFP-expressing plasmid either plus control 

(Cntrl), FAM72A- or FAM72D-expressing plasmids and analyzed at E14.5. 

(A) Double immunofluorescence for Tbr2 (cyan) and RFP (red). Scale bar: 20µm. 

(B) Quantification of the percentage of total RFP+ cells that are Tbr2+ (left) and the percentage of RFP+ cells that 

are Tbr2+ in VZ (middle) and SVZ-IZ (right). There is no significant difference between control (Cntrl), FAM72A and 

FAM72D. Error bars indicate SD; n.s. = not significant. Data are the mean of three independent experiments. 

 

Consistent with the results from the proliferative capacity assay described above compared to 

control, the proportion of electroporated RFP+ Tbr2+ cells per RFP+ cells showed a significant 

change upon FAM72 paralogue forced expression in neither VZ nor SVZ-IZ at 24 h (FAM72A 

and FAM72D) and 48 h (FAM72D) post-IUE (Figs. 18 and 19). 

Similarly, the percentage of Sox2+RFP+ cells per RFP+ cells in the VZ and SVZ-IZ did not 

show significant changes upon FAM72 paralogue forced expression at 24 h (FAM72A and 

FAM72D) and 48 h (FAM72D) post-IUE (Figs. 20 and 21). 
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Fig. 20 – Assessment of NPC abundance using Sox2 immunofluorescence 24 h post-IUE 

Mouse neocortex was electroporated at E13.5 with the nuclear-targeting RFP-expressing plasmid either plus control 

(Cntrl), FAM72A- or FAM72D-expressing plasmids and analyzed at E14.5. 

(A-B) Double immunofluorescence for Sox2 (yellow) and RFP (red). Solid boxes indicate area in the SVZ-IZ that 

are shown at higher magnification in B (nucleus surrounded by dashed lines is Sox2+RFP+ double positive). White 

lines indicate borders between VZ and SVZ-IZ. Scale bar: 20 µm (A), 10 µm (B). 

(C) Quantification of the percentage of RFP+ cells that are Ki67+ in SVZ-IZ. There is no significant difference 

between control (Cntrl), FAM72A and FAM72D. Error bars indicate SD; n.s. = not significant. Data are the mean of 

three independent experiments. 
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Fig. 21 – Assessment of NPC abundance using Sox2 immunofluorescence 48 h post-IUE 

Mouse neocortex was electroporated at E13.5 with the nuclear-targeting RFP-expressing plasmid either plus control 

plasmid (Cntrl) or FAM72D-expressing plasmids and analyzed at E15.5. 

(A) Double immunofluorescence for Sox2 (yellow) and RFP (red). White lines indicate borders between VZ and 

SVZ-IZ. Scale bar: 20 µm. 

(B) Quantification of the percentage of total RFP+ cells that are Sox2+ (top) and the percentage of RFP+ cells that 

are Sox2+ in VZ (bottom left) and SVZ-IZ (bottom right). There is no significant difference between control (Cntrl) 

and FAM72D. Error bars indicate SD; n.s. = not significant. Data are the mean of eight independent experiments. 

4.3.2 Conclusion 

These results suggest that human FAM72A and FAM72D do not significantly increase the 

proliferative capacity or the pool size of NPC upon forced ectopic expression in the developing 

mouse dorsolateral neocortex at mid-neurogenesis. 
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5 Results III 

5.1 Ectopic expression of FAM72A and FAM72D in the mouse medial cortex at 
late-neurogenesis 3 

As introduced in 1.2.2 bRGs of the oSVZ were found to be necessary for the evolutionary 

expansion of the neocortex in gyrencephalic primates. In mice, these bRGs only exist in small 

numbers and exhibit significant molecular differences from bRGs in humans, when only the 

dorsolateral neocortex is regarded. But a recent paper from our lab identified abundant bRGs 

constituting an oSVZ like zone in the developing mouse medial neocortex at E18.5. (Vaid et 

al., 2018) The study has further shown that these mouse medial bRGs express many human 

bRG-enriched genes, that are not/or only weakly expressed in mouse lateral bRGs. These 

findings suggest that the mouse medial bRGs possess features close to human bRGs. Thus, 

mouse medial bRGs are suitable cells for analyzing the effects of human-specific genes in 

utero. That is why, control, FAM72A- and FAM72D- expressing plasmids were in utero 

electroporated at E15.5 to APs of the developing mouse medial neocortex (Fig. 22).  

To be able to compare this set of experiments to the results in the dorsolateral neocortex, 

analogous analyses were performed to assess the abundance of NPC subtypes (Sox2+ and 

Tbr2+) and NPC proliferation (Ki67). Additionally, gliogenesis was investigated using Olig2 

immunofluorescence. 

 

 
Fig. 22 – In utero electroporation of the medial mouse neocortex at late neurogenesis 

Coronal section of an E18.5 mouse brain electroporated at E15.5. IUEs shown in Fig. 22 – 26 were conducted in 

collaboration with Samir Vaid (MPI CBG). 

(A) DAPI staining (blue, cell nuclei). 

(B) Double immunofluorescence for Sox2 (yellow, NPCs) and RFP (red). RFP indicates the electroporated area 

(medial neocortex). Scale bar (200 µm) in B also applies to A. 

                                                 
 
3 In collaboration with Samir Vaid, Huttner Group MPI CBG 
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5.2 NPC proliferation - Assessment of the NPC proliferation using Ki67 
immunofluorescence 

 
The proliferation in the developing mouse medial neocortex was analyzed using Ki67 

immunofluorescence. The percentage of RFP+ cells that are Ki67+ of total RFP+ cells in the 

entire neocortex was not significantly changed upon ectopic FAM72A or FAM72D expression 

(Fig. 23). 

 

 
Fig. 23 – Assessment of NPC proliferation using Ki67 immunofluorescence at late neurogenesis 

Mouse neocortex was electroporated at E15.5 with the nuclear-targeting RFP-expressing plasmid either plus control 

(Cntrl), FAM72A- or FAM72D-expressing plasmids and analyzed at E18.5 (72 h post-IUE). 

(A-B) Double immunofluorescence for Ki67 (green) and RFP (red). Solid boxes indicate area in the SVZ-IZ that are 

shown at higher magnification in B (nucleus surrounded by dashed lines is Ki67+RFP+ double positive). Scale bar: 

20 µm (A), 10 µm (B). 

(C) Quantification of the percentage of total RFP+ cells that are Ki67+ (top) and the percentage of RFP+ cells that 

are Ki67+ in VZ (middle) and SVZ-IZ (bottom). There is no significant difference between control (Cntrl), FAM72A 

and FAM72D. Error bars indicate SD; n.s. = not significant. Data are the mean of three independent experiments. 
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5.3 NPC abundance – Assessment of NPC abundance using Tbr2 and Sox2 
immunofluorescence 

 
The abundance of RGs and neurogenic BPs in the medial neocortex at E18.5 upon IUE at 

E15.5 was evaluated using Sox2 and Tbr2. In the case of Sox2, I quantified the percentage of 

total RFP+ cells that are Sox2+, as well as the percentage of RFP+ cells that are Sox2+ of 

RFP+ cells, in VZ or SVZ-IZ. None of these quantifications showed a significant difference 

between the control, FAM72A and FAM72D brains (Fig. 24). The percentage of total RFP+ 

cells or RFP+ cells in VZ and SVZ-IZ that are Tbr2+ were not significantly changed among the 

three groups (Fig. 25). 

 
Fig. 24 – Assessment of NPC abundance using Sox2 immunofluorescence at late neurogenesis 

Mouse neocortex was electroporated at E15.5 with the nuclear-targeting RFP-expressing plasmid either plus control 

(Cntrl), FAM72A- or FAM72D-expressing plasmids and analyzed at E18.5 (72 h post-IUE). 

(A) Double immunofluorescence for Sox2 (yellow) and RFP (red). Dashed white lines indicate borders between VZ 

and SVZ-IZ. Scale bar: 20µm. 

(B) Quantification of the percentage of total RFP+ cells that are Sox2+ (top) and the percentage of RFP+ cells that 

are Sox2+ in VZ (middle) and SVZ-IZ (bottom). There is no significant difference between control (Cntrl), FAM72A 

and FAM72D. Error bars indicate SD; n.s. = not significant. Data are the mean of four independent experiments. 
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Fig. 25 – Assessment of NPC abundance using Tbr2 immunofluorescence at late neurogenesis 

Mouse neocortex was electroporated at E15.5 with the nuclear-targeting RFP-expressing plasmid either plus control 

(Cntrl), FAM72A- or FAM72D-expressing plasmids and analyzed at E18.5 (72 h post-IUE). 

(A) Double immunofluorescence for Tbr2 (green) and RFP (red). Scale bar: 20µm. 

(B) Quantification of the percentage of total RFP+ cells that are Tbr2+. There is no significant difference between 

control (Cntrl), FAM72A and FAM72D. Error bars indicate SD; n.s. = not significant. Data are the mean of three 

independent experiments. 

 

 

5.4 Gliogenesis 

5.4.1 Assessment of gliogenesis using Olig2 immunofluorescence 

The shRNA driven knock-down of Fam72a in adult mouse NPC led to increased neurogenesis 

(Benayoun et al., 2014). This could either be the result of Fam72a increasing the maintenance 

of NPCs without affecting the fate towards neurons or of the reduced force of Fam72a towards 

a gliogenic fate of the NPCs. If option one were real, one would expect that the increased NPC 

maintenance is reflected in a higher number of Sox2+ cells, which was not the case (Fig. 20, 

21 and 24). To examine the possible effect on gliogenesis, we decided to use oligodendrocyte 

transcription factor 2 (Olig2) as a marker protein. However, there were no significant 

differences in the percentage of RFP+ cells that are Olig2+ upon FAM72A or FAM72D 

expression (Fig. 26). These results suggest that neither FAM72A nor FAM72D significantly 

affected the gliogenesis in the developing medial mouse neocortex during late neurogenesis. 
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Fig. 26 – Assessment of gliogenesis using Olig2 immunofluorescence at late neurogenesis 

Mouse neocortex was electroporated at E15.5 with the nuclear-targeting RFP-expressing plasmid either plus control 

(Cntrl), FAM72A- or FAM72D-expressing plasmids and analyzed at E18.5 (72 h post-IUE). 

(A) Double immunofluorescence for Olig2 (grey) and RFP (red). Solid boxes indicate area in the SVZ-IZ that are 

shown at higher magnification in B (nucleus surrounded by dashed lines is Olig2+RFP+ double positive). Scale bar: 

20 µm (A), 10 µm (B). 

(C) Quantification of the percentage of total RFP+ cells that are Olig2+. There is no significant difference between 

control (Cntrl), FAM72A and FAM72D. Error bars indicate SD; n.s. = not significant. Data are the mean of four 

independent experiments. 

 

 

5.5 Conclusion 
 
It must be concluded that the forced expression of FAM72A or FAM72D in the developing 

mouse medial neocortex does not significantly affect the abundance of Sox2+ or Tbr2+ cells, 

the quantity of Ki67 + proliferating cells and the gliogenesis assessed by Olig2. 
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6 Results IV 

 
6.1 Differences in gene expression upon ancestral FAM72A and human-

specific FAM72D expression at mid-neurogenesis 

6.1.1 Rationale and experimental setup 

In this study, I aimed to functionally characterize the human-specific gene family FAM72 in the 

embryonic mouse neocortex. Based on the findings of previous studies which suggest a 

potential role of the FAM72A and Fam72a protein in terms of cell cycle regulation (see: 1.6.3 

and 7.3.1) in utero experiments were carried out to directly study effects on the abundance of 

NPCs and their proliferation in various developmental settings, such as different time points 

and locations within the embryonic mouse neocortex (see: Results II and III). 

To get a broader idea of what the occurrence of FAM72A or FAM72D in NPCs of the 

developing neocortex could change in the machinery of the cells, we decided to perform a 

transcriptome analysis upon the expression of FAM72A or FAM72D in the embryonic mouse 

dorsolateral neocortex. Therefore, at least two E13.5 embryos of the same litter were in utero 

electroporated with an empty plasmid DNA vector (pCAGGS, control), a vector driving 

expression of FAM72A (pCAGGS-FAM72A) or FAM72D (pCAGGS-FAM72D) (>6 embryos in 

total per litter). Since we did not expect FAM72A or FAM72D to act as a transcription factor 

causing direct gene expression changes, we decided to harvest the embryos 24 h post-IUE at 

E14.5. The electroporated dorsolateral neocortical areas were microdissected, and GFP+ 

(electroporated) cells were isolated from the microdissected tissues by the fluorescence 

activated cell sorting (FACS) 4. In total, four litters were independently processed. After RNA 

isolation, the RNA quality of each experiment was assessed using the RNA integrity number 

(RIN). Finally, three RNA samples of each condition were RNA sequenced 5. Subsequently, 

the reads were checked for their overall quality and afterward aligned against the mouse 

reference genome (GRCm38) to quantify the expression of all expressed genes. Then, a 

differential gene expression analysis between the control, FAM72A and FAM72D samples on 

the raw counts was performed using a cutoff of p < 0.01. The resulting sets of differentially 

                                                 
 
4 In collaboration with Ina Nüsslein, FACS Service Leader, MPI CBG 
5 In collaboration with Andreas Dahl and the Deep Sequencing group at BIOTEC (Dresden) 
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expressed genes were tested for enrichment in GO terms and pathways (KEGG, Reactome) 

on a 1% q-value level. 6, 7 

 

 

6.2 Differentially expressed genes upon ectopic FAM72A and FAM72D 
expression in the developing mouse dorsolateral neocortex 

 
In total, there were 87 and 90 genes upregulated upon FAM72A and FAM72D expression, 

respectively. 15 out of these 177 genes showed a higher expression in the FAM72A and 

FAM72D expressing cells compared to the control cells (Table 1). Furthermore, the 

transcriptional analysis revealed 52 (ectopic FAM72A expression) and 67 (ectopic FAM72D 

expression) genes downregulated, 7 out of these 109 genes were shared by FAM72A and 

FAM72D (Fig. 27). 

The mRNA of none of the marker proteins used to determine the parameters of neocortical 

development like NPC proliferation and abundance was found to be differentially expressed in 

our dataset. This additionally supports the findings assessed on the protein level using 

immunofluorescence and manual quantification presented in the Results II and III sections.  

To better understand the functional implications of these findings, a systematic literature 

research was conducted to identify those genes which were considered to be potentially 

relevant for the physiological function of the FAM72A and FAM72D proteins in a cell. 

                                                 
 
6 In collaboration with Holger Brandl, Senior Bioinformatics Data Engineer of the Scientific Computing Facility at MPI CBG / 

CSBD 
7 In collaboration with Marta Florio, Huttner Group MPI CBG, now: Harvard Medical School, Department of Genetics (Boston, 

United States) 
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Fig. 27 – Differentially expressed genes upon ectopic FAM72A and FAM72D expression 

Differentially expressed genes 24 h upon IUE of pCAGGS-FAM72A or -FAM72D plasmids in the developing 

dorsolateral mouse neocortex at mid-neurogenesis (E14.5) compared to IUE of empty pCAGGS plasmids (control) 

(A) The Venn diagram shows the numbers of up- or downregulated genes upon FAM72A or FAM72D expression 

in the developing mouse dorsolateral neocortex as well as the overlap between FAM72A and FAM72D compared 

to the control sample: e.g. 72 genes are only upregulated upon ectopic FAM72A, 15 upon FAM72A and FAM72D 

and 75 only upon FAM72D expression. 

(B) The Venn diagram shows the number of up- or downregulated genes from the genes included in (A) that 

exhibited an expression >1 fpkm: e.g. 8 out of 72 genes upregulated upon ectopic expression of FAM72A. 

 

6.3 Upregulated genes upon the ectopic FAM72A or FAM72D expression 

6.3.1 Upregulated genes upon the ectopic FAM72A and FAM72D expression 

First of all, I checked which genes were significantly upregulated upon the ectopic expression 

of FAM72A and FAM72D to recognize conserved expression patterns within the gene family. 
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Table 1: Upregulated genes upon the ectopic FAM72A and FAM72D expression 

All genes found to be upregulated upon the ectopic expression of FAM72A and FAM72D. Shisa5 and Syde1 are highlighted in 

bold since they show an expression level >1 fpkm upon ectopic expression of FAM72A and FAM72D. 

Short name Full name 

Aqp9 Aquaporin 9 

Ephx4 Epoxide hydrolase 4 

Matk Megakaryocyte-associated tyrosine kinase 

Paqr7 Progestin and adipoQ receptor family member 

VII 

Ptgis Prostaglandin I2 (prostacyclin) synthase 

Rab43 RAB43, member RAS oncogene family 

Shisa5 Shisa family member 5 

Stk17b Serine/threonine kinase 17b (apoptosis-

inducing) 

Syde1 Synapse defective 1, Rho GTPase, homolog 1 

Thsd7a Thrombospondin, type I, domain containing 7A 

Tnfrsf13c Tumor necrosis factor receptor superfamily, 

member 13c 

Vegfc Vascular endothelial growth factor C 

Wdr72 WD repeat domain 72 

Wfikkn1 WAP, FS, Ig, KU, and NTR-containing protein 1 

Wnk4 WNK lysine deficient protein kinase 4 

 

The identified genes exhibit a wide range of functions such as membrane water channel 

(Aqp9), steroid membrane receptor (Paqr7), vesicular transport (Rab43), endothelial cell 

migration (Thsd7a), B cell survival (Tnfrsf13c) and vasculo- and angiogenesis (Vegfc). 

6.3.2 Upregulated genes upon the ectopic FAM72A or FAM72D expression – 
cut off: fpkm >1  

Frequently only genes with expression higher than 1 fragment per kilobase of transcript per 

million mapped reads (fpkm) are further considered in transcriptome analyses. If this criterion 

is applied to our transcriptome dataset, it turns out that 10 out of the 87 upregulated genes 
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upon FAM72A expression remain in the list after applying the >1 fpkm cut off regarding the 

gene expression level and 9 out of 90 in case of FAM72D (Fig. 27). 

 
Table 2: Genes upregulated upon ectopic expression of FAM72A or FAM72D with an expression 
level >1 fpkm 

The table shows all genes with an expression level > 1fpkm upregulated upon the ectopic FAM72A or FAM72D expression. 

Shisa5 and Syde1 are highlighted in bold. In contrast, the genes written in green are specifically upregulated upon the 

expression of the human-specific paralogue (FAM72D) (see: 6.4). 

FAM72A >1 fpkm FAM72D >1 fpkm 

Hmga1 Tapbp 

Cldn9 Shisa5 

Shisa5 Mtfp1 

Irf1 Slitrk5 

Slc37a3 Parp9 

Zfp383 Syde1 

Fbxl5 Cnp 

Syde1 Rbm43 

Sult4a1 Gm5689 (pseudogene) 

Fam161b  

6.3.3 Upregulated genes upon the ectopic FAM72A and FAM72D expression – 
cut off: fpkm >1 

To better understand the general function of the FAM72 gene family, I compared both lists 

(Table 2) and identified two genes upregulated upon FAM72A and FAM72D: Shisa5 and 

Syde1. 

Shisa5 (putative NF-kappa-B-activating protein, Scotin) encodes for a protein localized to the 

endoplasmic reticulum (ER) and was shown to induce apoptosis together with p53 in a 

caspase-dependent manner (Bourdon et al., 2002; Terrinoni et al., 2004; Draeby et al., 2007). 

Furthermore, Shisa5 might be involved in the unfolded protein response (UPR)-induced 

apoptosis of the Latent Membrane Protein 1 (LMP1) Oncogene of Epstein-Barr virus (Pratt et 

al., 2012), which is particularly interesting in connection to the findings of Wang et al. (2011) 

that show a induced expression of FAM72A upon LMP1 transfection of 293 cells. Besides it is 

a new p63 target gene induced during epithelial differentiation (Zocchi et al., 2008). 

Syde1, the synapse defective Rho GTPase homolog 1, was found to be a negative regulator 

of the endothelial barrier function (Amado-Azevedo et al., 2017). Besides, the expression of 

Syde1 was recently shown in human placentas and a direct effect on cytoskeletal remodeling, 
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cell invasion and migration demonstrated. Furthermore, a reduced vascularization, as well as 

a breached barrier structure between maternal and fetal blood circulation, was found in Syde1-

knockout placentas (Lo et al., 2017). Particularly interesting in a context of brain development, 

are results of experiments in mSYD1A knockout mice showing that the lack of the protein leads 

to a significantly reduced number of synaptic vesicles docking to the active zone and an 

impaired synaptic transmission, but no alteration in the general assembling of the synapses 

(Wentzel et al., 2013). Both genes could become particularly attractive if the evolutionary 

benefit of the expansion the family with sequence similarity 72 (FAM72) throughout human 

evolution is mainly due to an increased gene dosage or subfunctionalization (see: 1.3.3). 

 

6.4 Upregulated genes specifically upon the ectopic FAM72D expression – 
cut off: fpkm >1 
 
Regarding the second possibility that neofunctionalization occurred in case of the FAM72D 

protein, it would be important to consider those genes further that are specifically up- or 

downregulated upon the ectopic expression of the human-specific paralogue (Table 2, green). 

This section will focus on the genes specifically upregulated upon FAM72D expression: Tapbp, 

Mtfp1, Slitrk5, Parp9, Cnp, Rbm43, which were characterized using the existing literature. 

6.4.1 Tapbp (TAP binding protein, Tapasin) 

Tapbp (TAP binding protein, Tapasin) is an antigen processing molecule, which is part of the 

peptide-loading complex (PLC), a transient multi-subunit membrane complex in the 

endoplasmic reticulum, which releases stable peptide-MHC I complexes to the cell surface to 

provoke a T-cell response against malignant or infected cells. It consists of TAP (1 and 2), a 

transporter associated with antigen processing, ERp57, an oxidoreductase, the MHC-I 

heterodimer, and the endoplasmatic reticulum (ER) chaperones calreticulin (Crt) and Tapbp 

(Neefjes et al., 2011; Blees et al., 2017). 

In fact, Tapbp mediates the interaction of the TAP transporter and newly assembled major 

histocompatibility complex (MHC) class I molecules and calreticulin. The critical functional role 

of Tapbp in the MHC class I-restricted antigen processing was established in experiments 

showing that expression of Tapbp in a negative mutant cell line (220) restores not only MHC 

class I-TAP association but also a regular MHC class I cell surface expression (Ortmann et al., 

1997). Hence, the transient association of MHC class I molecules with Tapbp and TAP is 

crucial for the optimization of peptide cargo presented to CD8+ cytotoxic T cells (Momburg & 

Tan, 2002). In agreement with that, Tapbp was found to be significantly associated with tumor 

progression when downregulated in human melanoma lesions. Most likely, this alteration in 
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the antigen-processing machinery leads to a failure of the acquired cellular immune system 

and thus, a lack of sufficient control of tumor progression and metastatic spread (Dissemond 

et al., 2003). 

6.4.2 Mtfp1 (mitochondrial fission protein 1, Mtp18) 

Mtfp1 (mitochondrial fission protein 1, Mtp18) is implicated in the maintenance of balanced 

fission and fusion of mitochondria in mammalian cells. Overexpression of the integral protein 

in the mitochondrial inner membrane results in fragmentation, whereas loss of Mtfp1 causes 

highly fused mitochondria (Tondera et al., 2004; Tondera et al., 2005; Wai & Langer, 2016). 

Interestingly, mitochondrial fission is blocked after overexpression of hFis1, another protein 

thought to be essential for the fission of mitochondria (Yoon et al., 2003), in cells with RNAi-

meditated Mtfp1 knockdown suggesting that Mtfp1 is required for this process and indeed an 

essential contributor for the maintenance of mitochondrial morphology (Tondera et al., 2004; 

Tondera et al., 2005). In HaCaT (aneuploid immortal keratinocyte cell line) cells, reduced 

levels of Mtfp1 increase the sensitivity to apoptotic stimuli. Furthermore, it was shown that 

Mtfp1 expression is dependent on PI-3 kinase activity (Tondera et al., 2004). Besides that, 

Mtfp1 was found to act downstream of the mTORC1 signaling pathway critically regulating the 

phosphorylation of the essential fission GTPase dynamin-related protein (DRP1) (Tondera et 

al., 2005; Morita et al., 2017).  

Suitably, both mitochondrial morphology and DRP1 phosphorylation were utterly reversed in 

asTORi-treated, TSC2 knockout and raptor knockout cells by the rescue of MTFP1 expression, 

which underscored the significant role of Mtfp1 in the control of mitochondrial dynamics (Morita 

et al., 2017). In addition, the critical part in the translational control of Mtfp1 by mTORC1/4E-

BP was demonstrated by the increased apoptosis upon the uncoupling of Mtfp1 levels from 

the 4E-BP mediated regulation upon mTOR inhibition (Morita et al., 2017). 

6.4.3 Slitrk5 (Slit and Ntrk-like protein 5) 

Slitrk5 is part of the Slitrk (Slit and Ntrk-like protein) gene family, which are identified as integral 

membrane proteins containing two leucine-rich repeat (LRR) domains, similar to those of the 

axon guidance slit proteins and an intracellular C-terminal domain related to the sequence of 

trk (tyrosine kinases: TrkA, B and C) neurotrophin receptor proteins. Slitrk1-5 were found to 

share 95-97% sequence homologies between mouse and human and to be predominantly 

expressed in the adult cerebral cortex in distinct but overlapping patterns (Beaubien & Cloutier, 

2009; Takahashi & Craig, 2013) as well as in the human fetal brain. In cultured neuronal cells 

all Slitrk family members exhibited a neurite-modulating (Aruga et al., 2003) and synaptogenic 

https://en.wikipedia.org/wiki/Cell_(biology)
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activity through transsynaptic interactions of their ectodomains with presynaptic binding 

(Linhoff et al., 2009; Takahashi et al., 2012; Takahashi & Craig, 2013) hence, a range of 

functions which are known to be mediated by Trk receptors and their primary ligands like brain-

derived neurotrophic factor (BDNF). Of the six CNS expressed Slitrk family members, Slitrk5 

is the most exciting candidate to interact with the Trk receptor neurotrophin system, since 

Slitrk5 deficient mice showed neuronal phenotypes in the striatum comparable to those found 

in the brain of BDNF or TrkB knockout mice (Shmelkov et al., 2010; Song et al., 2015). 

Furthermore, experiments in FLAG-tagged TrkB and wt Slitrk5 transfected HEK293 cells and 

in primary neurons with endogenous expression of both proteins demonstrated an interaction 

of Slitrk5 and TrkB mediated by the first LRR domain (LRR1) of Slitrk5. The interaction between 

Slitrk5 and TrkB seems to occur in a BDNF-dependent manner since BDNF stimulation 

significantly increased the co-localization of Slitrk5 and TrkB in striatal neurons as well as the 

interaction of both proteins in HEK293 cells. Furthermore, Slitrk5 is also capable (Takahashi 

et al., 2012) and even appears to primarily interact with the protein tyrosine phosphatase ∂ 

(PTP∂) under basal conditions, which is changed upon BDNF stimulation that directs Slitrk5 to 

interact with the TrkB receptor (Takahashi & Craig, 2013; Song et al., 2015). Song and 

colleagues could show that Slitrk5 knockout mice exhibit a significantly reduced steady-state 

TrkB receptor and TrkB downstream target activation as well as the requirement of Slitrk5 for 

an optimal long-term BDNF-dependent TrkB signaling in striatal neurons. Besides that, striatal 

neurons lacking Slitrk5 were characterized by an increased TrkB degradation, but could be 

rescued by the transfection of the wt Slitrk5, but not a chimeric Slitrk5 without the LRR1 

domain. Finally, a positive effect of Slitrk5 on TrkB receptor recycling upon ligand treatment 

was identified as a cause for the enhanced degradation of TrkB in neurons lacking Slitrk5 

(Song et al., 2015). Most likely, Slitrk5 plays a pivotal role in mediating the sorting of TrkB into 

Rab11-positive compartments after BDNF treatment, which was recognized to be important 

for the recycling of TrkB and the physiological function of TrkB signaling (Lazo et al., 2013; 

Song et al., 2015). Additionally, the Slitrk gene family was identified to provide candidate genes 

for several neuropsychiatric disorders (Takahashi & Craig, 2013). In case of Slitrk5, a link to 

the obsessive-compulsive-disorder (OCD)  was found, since loss of Slitrk5 in mice did not only 

impair the corticostriatal synaptic transmission but also led to an excessive self-grooming and 

increased anxiety-like behavior – both typical symptoms of OCD, which were reduced by 

fluoxetine, a selective serotonin reuptake inhibitor (Shmelkov et al., 2010), commonly used to 

treat OCD in humans. This finding was further supported by the identification and functional 

characterization of Slitrk 5 mutations found in human patients suffering from OCD (Song et al., 

2017). 
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6.4.4 Parp9 (Poly(ADP-ribose) polymerase 9) 

Parp9 (Poly(ADP-ribose) polymerase 9) belongs to the family of Poly (ADP-ribose) 

polymerases (Parp) that is known to be involved in the regulation of various cellular processes 

such as DNA repair, genomic stability and programmed cell death. The activation of Parps was 

found to be one of the early responses to DNA damages (Herceg & Wang, 2001). Within the 

Parps, Parp9 seems to be different from other gene family members, since it lacks the Parp 

enzymatic activity (Zhang et al., 2015). Therefore, it hetero-dimerizes with Dtx3L (Deltex E3 

Ubiquitin Ligase 3L) improving the antiviral response in mice and human cells treated with a 

modified form of the transcription factor Stat1. The Parp9-Dtx3l complex exhibits domains to 

interact with Stat1 and for the activity as an E3 ubiquitin ligase that indirectly promotes 

interferon-stimulated gene expression and facilitates the degradation of viral 3C proteases in 

the immunoproteasome. Interestingly, Parp9-Dtx3l were found to be able to auto-amplify upon 

the interferon response that developed upon infection (Zhang et al., 2015). Experiments in 

Parp9 knockout mice, however, revealed no evident phenotype suggesting that Parp9 may not 

be essential to achieve physiological double-stranded DNA breaks or the existence of strong 

compensatory mechanisms (Robert et al., 2017), additionally supporting a special role within 

the Parp gene family and a dependency in regard to its function on the hetero-dimerization 

with Dtx3l (Yang et al., 2017). 

6.4.5 Cnp (2',3'-Cyclic-nucleotide 3'-phosphodiesterase) 

Cnp (2',3'-Cyclic-nucleotide 3'-phosphodiesterase) is a membrane-associated enzyme within 

the myelin sheath of vertebrates (Kursula, 2006; Hinman et al., 2008). To date, the precise 

physiological function of Cnp remains vague especially regarding the conserved 

phosphodiesterase domain which is capable of hydrolyzing 2’, 3’ -cyclic nucleotides into 2’ –

nucleotides (Whitfeld et al., 1955). The Cnp activity was mostly associated with myelinated 

regions of the nervous tissue (Kurihara & Tsukada, 1967; Olafson et al., 2011). Though Cnp 

is not exclusively expressed in oligodendrocytes, the levels of expression in all other analyzed 

tissues to date are much lower (Toma et al., 2007; de Monasterio-Schrader et al., 2012; 

Myllykoski et al., 2016). Cnp expression was found in glioblast-like cells residing in the SVZ, 

during early stages of oligodendrocyte differentiation and remained to be expressed in mature 

oligodendrocytes (Braun et al., 1988; Yu, 1994). In mammals, two isoforms can be 

distinguished: Cnp1 and 2. In contrast to Cnp1, Cnp2 contains a mitochondrial targeting signal 

(Douglas et al., 1992; Monoh et al., 1993). Albeit, these extra residues are cleaved during the 

import resulting in an aa sequence similar to Cnp1 (Myllykoski et al., 2016). 
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Under pathological conditions like stroke or traumatic brain injury, the mitochondrial 

permeability transition pore (mPTP) is formed in the inner membrane upon the influx of calcium 

into the mitochondria and increases the mitochondrial membrane permeability which can 

cause mitochondrial swelling and finally the death of the cell (Lemasters et al., 2009). The 

mitochondrial Cnp was found to be a regulator of the calcium threshold for the mPTP 

(Azarashvili et al., 2009) for example age-dependent in brain mitochondria of rats showing a 

lower calcium threshold in mitochondria from old rats with reduced Cnp levels compared to 

those of young rats (Krestinina et al., 2015). These findings become especially interesting 

considering that the prolonged opening of the mPTP can be involved in neurodegenerative 

diseases due to the caused apoptosis or necrosis (Rasola & Bernardi, 2011, 2014). Conversely 

to Cnp the level of its substrate 2’,3’-cAMP correlates positively with the opening of the mPTP 

(Azarashvili et al., 2009) hence, Cnp seems to have a protective function in the context of brain 

injury, since it participates in the degradation pathway of 2’,3’-cAMP to adenosine (Verrier et 

al., 2013) which acts protective towards neurons (Stone et al., 2007). Thus, oligodendrocytes, 

where the 2’,3’-cAMP to adenosine pathway due to Cnp has its highest expression, may 

protect axons from lasting injury (Verrier et al., 2013). Another observation of Cnp is its 

interaction with microtubules, and the ability to promote tubulin polymerization (Bifulco et al., 

2002) mediates process outgrowth in oligodendrocytes (Lee et al., 2005). Albeit, Cnp does not 

seem to be essential for the correct ultrastructure and physical stability of the axonal myelin, 

but its absence in mice brains leads to axonal swellings and neurodegeneration throughout 

the brain causing hydrocephalus and premature death (Lappe-Siefke et al., 2003). 

The protective function of Cnp is additionally underpinned by findings showing that artificial 

silencing of Cnp expression leads to increased levels of inflammatory mediators (Myllykoski et 

al., 2016). Furthermore, higher levels of Cnp are found in activated microglia cells (L. Yang et 

al., 2014) probably causing a reduced production of inflammatory mediators in activated 

microglia cells via the 2’,3’-cAMP-adenosine pathway (Newell et al., 2015). Neonatal oxytocin 

treatment in rats, however, reduced Cnp mRNA in contrast to the increased expression of 

neuron-specific enolase (NSE) and the glial fibrillary acid protein (GFAP) (Havranek et al., 

2017). Moreover, altered Cnp levels were linked to psychiatric diseases such as schizophrenia 

or depression (Peirce et al., 2006; Hagemeyer et al., 2012; Rajkowska et al., 2015; Myllykoski 

et al., 2016). Cnp was identified to be the most robustly reduced candidate among the 

oligodendrocyte-associated genes on the mRNA and protein level in brains of schizophrenic 

(Mitkus et al., 2008), major depressive (Aston et al., 2005) or bipolar (Tkachev et al., 2003) 

patients suggesting a critical role rather for a more general pathology than to be restricted to 

one specific diagnosis. Hagemeyer et al. (2012) further identified the reduced expression as a 

primary cause for a behavioral phenotype that only occurred upon aging as an additional ‘pro-
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inflammatory hit’ and manifested in white matter abnormalities and neurodegeneration in mice 

as well as humans. 

6.4.6 Rbm43 (RNA binding motif protein 43) 

In the case of Rbm43 (RNA binding motif protein 43), neither Pubmed nor Google Scholar 

provided any useful published data on this gene to date (March 2019). This is why I focused 

on GO – annotations (www.geneontology.org) to roughly determine the molecular function of 

the protein. The result is shown in Table 3. 

 
Table 3: Upregulated genes specifically upon the ectopic FAM72D expression – cut off: >1 fpkm 

Brief characterization of the genes only upregulated upon FAM72D expression but not FAM72A expression with an expression 

level >1 fpkm. 

Gene name Comment 

Tapbp 
(TAP binding protein) 

Maturation of MHC class I molecules in the 

endoplasmatic reticulum 
(Ortmann et al., 1997; Momburg & Tan, 2002; Yinan 

Zhang & Williams, 2006; Blees et al., 2017). 

Mtfp1 
(Mitochondrial fission process 1, Mtp18) 

Maintenance of mitochondrial morphology by 

contributing to the control of mitochondrial 

fission (Tondera et al., 2005; Morita et al., 2017) 

Slitrk5 
(SLIT and NTRK-like family, member 5) 

Slitrks: neurite outgrowth, synaptogenesis, and 

neuronal survival (Aruga & Mikoshiba, 2003; 

Proenca et al., 2011; Song et al., 2015) 
Slitrk5: TrkB co-receptor mediating its BDNF 

dependent trafficking and signaling (Song et al., 

2015) 

Parp9 
(Poly (ADP-ribose) polymerase family, 9) 

Parps: DNA repair, genomic stability, 

programmed cell death (Herceg & Wang, 2001) 

Parp9: hetero-dimer with Dtx3l improves the 

antiviral response (Zhang et al., 2015) 

Cnp 
(2',3'-cyclic nucleotide 3' phosphodiesterase, 

CNPase) 

Anti-inflammatory, neuro-protective, 

oligodendrocyte-associated protein (Myllykoski 

et al., 2016) 

Rbm43 
(RNA binding motif protein 43) 

GO – molecular function: RNA binding 
(GO:0003723, IEA) 
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6.5 Downregulated genes upon the ectopic FAM72A or FAM72D expression 
 

Not only increased levels of expression of a gene can be of functional relevance. It is also 

reasonable to assume that the downregulation of a gene involved in the regulation of a certain 

biological process can be responsible for a phenotype of interest. 

6.5.1 Downregulated genes upon the ectopic FAM72A or FAM72D expression 
– cut off: fpkm >1 

Of the 52 genes downregulated upon FAM72A expression, six remained in the list when I 

focused only on the genes with an expression level of more than 1 fpkm in the control sample 

(genes with an expression <1 fpkm due to the downregulation upon FAM72A expression were 

included). Expression of FAM72D led to 67 downregulated genes out of which 18 were 

expressed with more than 1 fpkm in the control. Like in the case of the upregulated genes, 

there were two genes found to be downregulated upon the ectopic expression of FAM72A and 

FAM72D: Olfr543 and Galnt4.  

6.5.2 Downregulated genes upon ectopic FAM72A expression – cut off: 
fpkm >1 

The genes downregulated in the brains with ectopic FAM72A expression are listed in Table 4 

including a brief description of known functions of these genes. Potentially most interesting 

might be the Spermidine N1-acetyltransferase 1 (Sat1) which was found to be a blood 

biomarker for suicidality, since it directly connects the molecular to the behavioral dimension. 

Likewise, it is obvious to consider a tumor-associated gene like Galnt4 in the context of a study 

with a particular interest in cell proliferation. 
 
Table 4: Genes downregulated upon FAM72A with an expression level >1 fpkm in the control 
sample 

The genes downregulated upon FAM72A and FAM72D with an expression level >1 fpkm in the control sample are highlighted 

in bold. 

Gene name Comment 

Sat1 
(Spermidine/spermine N1–acetyltransferase 1) 

Blood biomarker for suicidality (Le-Niculescu et 

al., 2013; Niculescu et al., 2017) 

Gm6525 Predicted pseudogene 6525 

Olfr543 
(Olfactory receptor 543) 

Olfactory receptor 
(Ensembl ID: ENSMUSG00000044814) 
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Hba-x 
(Hemoglobin X, alpha-like embryonic chain in Hba 

complex) 

GO – biological process: erythrocyte maturation 

(GO:0043249, IEA), oxygen transport (GO:001567, 

IEA) 

Tfe3 
(Transcription factor E3) 

Transcription factor (Mansky et al., 2002; 

Steingrimsson et al., 2002) 

Galnt4 
(Polypeptide N-Acetylgalactosaminyltransferase 4) 

N-acetylgalactosaminyl transferase, tumorigenic 
(Zhang J et al., 2016; Qu et al., 2017) 

(Table 4 continued) 

6.5.3 Downregulated genes upon ectopic FAM72D expression – cut off: 
fpkm >1 

The resulting list of genes which fulfill these parameters is composed of several interesting 

genes including Dusp1, which was found to mediate cell proliferation as well as the cancer 

development and Gsg2. But also, Arx and Tsnax, two genes associated with neurological and 

psychiatric diseases and others are listed in Table 5. 
 

 

Table 5: Genes downregulated upon FAM72D with an expression level >1 fpkm in the control 
sample 

The genes downregulated upon FAM72A and FAM72D with an expression level >1 fpkm in the control sample are highlighted in 

bold (Olfr543, Galnt4) and the remaining specifically downregulated genes upon FAM72D expression in green. 

Gene name Comment 

Rsrp1 
(Arginine and Serine Rich Protein 1) 

GO – molecular function: protein binding 
(GO:0005515, IPI) 

 

Med11 
(Mediator complex subunit 11) 

 

 

GO – molecular function: RNA polymerase II 

transcription cofactor activity (GO:0001104, IEA), 

Ubiquitin protein ligase activity 
(GO:0061630, IEA), 

part of the mediator head module 
(Seizl et al., 2011) 

 

Dusp1 
(Dual specificity protein phosphatase 1) 

 

Inhibition of cell proliferation, metastasis and 

invasion and angiogenesis in gallbladder cancer 

(Shen et al., 2017), Mapk pathway regulation 

(Kang et al., 2016; Lopes et al., 2017) 

Bcdin3d 
(BCDIN3 Domain Containing RNA Methyltransferase) 

 

RNA methyltransferase involved in miRNA 

processing and breast cancer progression 
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(Xhemalce et al., 2012; Yao et al., 2016; 

Martinez et al., 2017) 

Ptx3 
(Pentraxin-related protein PTX3, TNF-inducible gene 

14 protein, TSG-14) 

Involved in innate immunity, inflammation, 

matrix deposition (Garlanda et al., 2006) 

Gsg2 
(Histone H3 Associated Protein Kinase, Haspin) 

Cell cycle progression 

(Nguyen et al., 2014; Quartuccio et al., 2017) 

Mpnd 
(MPN domain containing) 

GO annotation: peptidase activity (GO:0008233, 

IEA), hydrolase activity (GO:0016787, IEA) 

Hgh1 
(Human growth hormone 1) 

Human growth hormone homolog 

(Ensembl ID: ENSMUSG00000022554) 

Ankrd16 
(Ankyrin repeat domain 16) 

SNPs associated with breast cancer subtypes 

(O'Brien et al., 2014) 

Olfr543 
(Olfactory receptor 543) 

Olfactory receptor 
(Ensembl ID: ENSMUSG00000044814) 

Bloc1s4 
(Biogenesis of lysosomal organelles complex-1, 

subunit 4, cappuccino) 

 

Subunit of the biogenesis of lysosome-

related organelle complex-1 (Bloc1), which 

mediates trafficking at the endosome (Huang et 

al., 2012), associated with Hermansky-Pudlak 

syndrome (Ciciotte et al., 2003; Li et al., 2003) 

Fkbp7 
(FK506 binding protein 7, Fkbp 23)  

Peptidyl-prolyl isomerase with EF-hand motif 

localized to the endoplasmic reticulum (Boudko 

et al., 2014) 

 

Arx 
(Aristaless related homeobox) 

 

Mutations associated to structural (Coman et al., 

2017) and functional neurodevelopmental 

disorders, positively regulates Wnt / β-catenin 

signaling (Cho et al., 2017) 

Kctd6 
(Potassium channel tetramerization domain 

containing 6) 

Cullin-dependent regulation of small ankyrin-1 

protein turnover (Lange et al., 2012) 

Siah1b 
(Seven in absentia 1B) 

Control of cerebellar granule neuron’s germinal 

zone exit (Famulski et al., 2010) 

Tsnax 
(Translin-associated factor X, trax) 

 

DNA damage response, cell proliferation control, 

genetic association to psychiatric diseases 

(Jaendling & McFarlane, 2010; Duff et al., 2013) 

Galnt4 
(Polypeptide N-Acetylgalactosaminyltransferase 4) 

N-acetylgalactosaminyl transferase,  

http://amigo.geneontology.org/amigo/term/GO:0016787
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tumorigenic activity 

(Zhang J et al., 2016; Qu et al., 2017) 

Icmt 
(Isoprenylcysteine carboxyl methyltransferase) 

 

Modification of C-terminal CaaX motifs, 

Regulation of NOTCH signaling by RAB7 and 

RAB8 (Court et al., 2017) 

 

 

6.6 Genes previously shown to be differentially expressed upon forced 
FAM72A expression 

6.6.1 Cell cycle regulators 

Besides, it was asked whether cell cycle regulators shown to be differentially expressed in 

Western Blot analyses upon FAM72A expression in a nasopharyngeal tumor cell line (Wang 

et al., 2011) would also be differentially expressed in our dataset. None of the proteins found 

to be up- or downregulated was identified as such on the mRNA level neither upon FAM72A 

nor FAM72D ectopic expression in the developing mouse neocortex at mid-neurogenesis. 

 
Table 6: Cell cycle regulators previously shown to be differentially expressed upon forced 
FAM72A expression 

None of the cell cycle regulators shown to be differentially expressed upon FAM72A in Wang et al. (2011) is up- or downregulated 

upon expression FAM72A or FAM72D in the developing mouse neocortex. 

Gene name Differentially expressed 

Cyclin D1 no 

E2F1 no 

CDK2 no 

CDK4 no 
(Table 5 continued) 

6.6.2 Tumor suppressor genes 

Wang et al. (2011) identified four tumor suppressor genes up- (p16, p21, p53) or 

downregulated (p19) upon the overexpression of FAM72A. 

None of them was differentially expressed in our transcriptome data suggesting that the cellular 

pathways the FAM72 proteins are involved in depend on the biological setting such as the cell 

type. 
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6.6.3 Proteins previously observed to interact with FAM72A 
 

Using a yeast two-hybrid screening test, five proteins interacting with FAM72A 8 : 
TMEM115/PL6, YPEL3, ERP44, CDK5RAP3, and NNAT, were previously identified (Heese, 

2013). The latter one, neuronatin (NNAT) is mainly expressed in the brain during neurogenesis 

and assumed to affect neuronal growth as well as the differentiation of pluripotent stem cells 

into a neural fate. Additionally, it tends to aggregate causing pathologies also outside the brain 

such as Lafora disease and diabetes (Joseph, 2014). We used our transcriptome dataset to 

determine whether one of the mouse orthologues of these proteins is differently expressed on 

the mRNA level upon the expression of its putative interactor, but that was not the case for any 

of them as well as for the DNA glycosylase 2 (UNG2) as another interactor of FAM72A 

identified via a pull-down assay (Guo et al., 2008). 

 
 

6.7  Effect of ectopic FAM72A and FAM72D expression on genes implicated in 
neural lineage fate decision 9 

 
To address this question, we asked how many of the genes differentially expressed upon 

FAM72A or FAM72D were found to be enriched in NPCs or neurons in the mRNA mouse 

expression dataset from Florio et al. (2015) at E14.5 (same stage as our dataset). Interestingly, 

the analysis showed that there are more genes found to be enriched in NPCs which are 

upregulated upon the expression of FAM72D compared to FAM72A and more genes enriched 

in neurons that are upregulated upon FAM72A compared to FAM72D expression (Fig. 28). In 

total 11 genes are enriched in NPCs and upregulated upon FAM72D, 5 (Mtfp1, Cnp, Parp9, 

Tapbp, Rbm43) out of these (Table 3, green) are specifically upregulated upon FAM72D but 

not FAM72A and survived the >1 fpkm expression level cut off. Interestingly, Syde1 also 

belongs to the NPC enriched genes, though to date it was only found to be involved in neuronal 

processes such as synaptic transmission (Wentzel et al., 2013). 

In the case of the downregulated genes, it is the other way around: there are more NPC 

enriched genes downregulated upon FAM72A and more neuron-enriched genes 

downregulated upon FAM72D compared to FAM72A expression (Fig. 28). This finding slightly 

                                                 
 
8 Though the author (Heese, 2013) claims to use a FAM72A (p17) construct in this study, he refers to isoform 2 in Nehar et al., 

2009 as a reference sequence. Albeit, Fig. 1C in Nehar et al., 2009 shows an Isoform-2 amino acid sequence that is identical to 

the FAM72B reference sequence (ENSG00000188610). 
9 In collaboration with Marta Florio, Huttner Group MPI CBG, now: Harvard Medical School, Department of Genetics (Boston, 

United States) 
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supports the idea that FAM72D rather than FAM72A could positively affect the fate towards 

the maintenance of NPC characteristics. 

 

 
Fig. 28 – Genes differentially expressed upon ectopic FAM72A or FAM72D expression found to 
be enriched in NPCs or neurons in Florio et al. (2015) 

(A) There are more genes found to be enriched in NPCs which are upregulated upon the expression of FAM72D 

(11 genes) compared to FAM72A expression (8 genes) and more genes enriched in neurons that are upregulated 

upon FAM72A (11 genes) compared to FAM72D expression (3 genes). 

(B) There are more NPC enriched genes downregulated upon FAM72A (9 genes) compared to FAM72D expression 

(7 genes) and no neuron enriched gene downregulated upon FAM72A, but 1 upon FAM72D expression. 

 

The following Tables were created to give an overview of the variety of genes differentially 

expressed upon FAM72A and FAM72D ectopic expression and to prevent a potentially 

misleading filter caused by the >1 fpkm expression level cut off mostly used for the previous 

analyses. Furthermore, they provide interesting insights about the enrichment of genes 

differentially expressed upon the expression of a human-specific gene and its ancestral 

paralogue in mouse NPC and neurons, during mid-neurogenesis, a critical period for 

neocortical development. 

6.7.1 Upregulated and NPC-enriched genes 

Tables 7 and 8 show all NPC enriched genes upregulated upon ectopic FAM72D expression 

and all NPC enriched genes upregulated upon ectopic FAM72A expression according to Florio 

et al. (2015). 
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Table 7: Genes upregulated upon ectopic FAM72D expression and enriched in NPCs according 
to Florio et al. (2015) 

The five genes that were only upregulated upon FAM72D but not A with an expression >1 fpkm are highlighted in 

green. Syde1 is highlighted in bold because it is upregulated upon FAM72A and FAM72D and shows an expression 

>1 fpkm. 

Short name Full name 

Mtfp1 Mitochondrial fission process 1 

Cnp 2',3'-cyclic nucleotide 3' phosphodiesterase 

L2hgdh L-2-hydroxyglutarate dehydrogenase 

Ror2 Receptor tyrosine kinase-like orphan receptor 2 

Dct Dopachrome tautomerase 

Parp9 Poly (ADP-ribose) polymerase family, member 9 

Tapbp TAP binding protein 

Stk17b Serine/threonine kinase 17b 

Nlrx1 NLR family member X1 

Syde1 Synapse defective 1, Rho GTPase, homolog 1 

Rbm43 RNA binding motif protein 43 

 
 
Table 8: Genes upregulated upon ectopic FAM72A expression and enriched in NPCs according 
to Florio et al. (2015) 

Syde1 is highlighted in bold because it is one of the two genes upregulated upon FAM72A and FAM72D expression and shows 

an expression >1 fpkm. 

Short name Full name 

Irf1 Interferon regulatory factor 1 

Stk17b Serine/threonine kinase 17b (apoptosis-inducing) 

Tyro3 TYRO3 protein tyrosine kinase 3 

Efna1 Ephrin A1 

Col4a5 Collagen, type IV, alpha 5 

Syde1 Synapse defective 1, Rho GTPase, homolog 1 (C. elegans) 

Hmga1 High mobility group AT-hook 1 

Cldn9 Claudin 9 
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6.7.2 Downregulated and NPC-enriched genes 

Table 9 shows all NPC enriched genes according to Florio et al. (2015) downregulated upon 

ectopic FAM72D expression. 
 

Table 9: Genes downregulated upon ectopic FAM72D expression and enriched in NPCs 
according to Florio et al. (2015) 

Short name Full name 

4930452B06Rik RIKEN cDNA 4930452B06 gene 

Nfatc2 Nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 2 

Plekha5 Pleckstrin homology domain containing, family A member 5 

Grtp1 GH regulated TBC protein 1 

Siah1b Seven in absentia 1B 

Gsg2 Germ cell-specific gene 2 

Pgbd1 PiggyBac transposable element derived 1 

 

 

Table 10 shows all NPC enriched genes according to Florio et al. (2015) downregulated 

upon ectopic FAM72D expression. 
 

Table 10: Genes downregulated upon ectopic FAM72A expression and enriched in NPCs in Florio 
et al. (2015) 

Short name Full name 

Lcp1 Lymphocyte cytosolic protein 1 

Pla2g7 Phospholipase A2, group VII (platelet-activating factor acetylhydrolase, plasma) 

Sat1 Spermidine/spermine N1-acetyl transferase 1 

Sgk3 Serum/glucocorticoid regulated kinase 3 

Aldh1l1 Aldehyde dehydrogenase 1 family, member L1 

Nqo2 NAD(P)H dehydrogenase, quinone 2 

Entpd1 Ectonucleoside triphosphate diphosphohydrolase 1 

Prokr2 Prokineticin receptor 2 

Pld4 Phospholipase D family, member 4 



 74 

6.7.3 Upregulated and neuron-enriched genes 

Table 11 shows all neuron-enriched genes according to Florio et al. (2015) upregulated upon 

ectopic FAM72D expression. 
 

Table 11: Genes upregulated upon FAM72D and enriched in neurons according to Florio et al. 
(2015) 

Shisa 5 is highlighted in bold because it is one of the two genes >1 fpkm upregulated upon FAM72A and FAM72D 

expression. 

Short name Full name 

Shisa5 Shisa homolog 5 

Kif26a Kinesin family member 26A 

Sec24d Sec24 related gene family, member D 

 

Table 12 shows all neuron-enriched genes according to Florio et al. (2015) upregulated upon 

ectopic FAM72A expression. 
 

Table 12: Genes upregulated upon FAM72A and enriched in neurons according to Florio et al. 
(2015) 

Short name Full name 

Grik3 Glutamate receptor, ionotropic, kainate 3 

Lpl Lipoprotein lipase 

Gabrg2 Gamma-aminobutyric acid (GABA) A receptor, subunit gamma 2 

Shisa5 Shisa homolog 5 (Xenopus laevis) 

Lmo3 LIM domain only 3 

Cdh13 Cadherin 13 

Mgll Monoglyceride lipase 

Syt1 Synaptotagmin I 

Sh3bp4 SH3-domain binding protein 4 

Gsg1l GSG1-like 

Magel2 Melanoma antigen, family L, 2 
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6.7.4 Downregulated and neuron-enriched genes 

Table 13 shows that there is only one neuron-enriched gene according to Florio et al. (2015) 

downregulated upon ectopic FAM72D expression. 
 

Table 13: Genes downregulated upon FAM72D and enriched in neurons according to Florio et 
al. (2015) 

Short name Full name 

Gnal Guanine nucleotide binding protein, alpha stimulating, olfactory type 

 

Table 14 shows that there is no neuron-enriched gene according to Florio et al. (2015) 

downregulated upon ectopic FAM72D expression. 
 

Table 14: Genes downregulated upon FAM72A and enriched in neurons according to Florio et 
al. (2015) 

Short name Full name 

- - 

 

 

 

 

 

6.8 GO enrichment analysis 10 
 

Finally, we used gene ontology (GO) to perform an enrichment analysis on the genes in our 

dataset to identify the GO terms that are over-represented using annotations for that gene set. 

This analysis only revealed the GO term angiogenesis to be enriched upon ectopic expression 

of FAM72A. The genes associated with this GO term are listed in Table 15. 
 

 

                                                 
 
10 In collaboration with Marta Florio, Huttner Group MPI CBG, now: Harvard Medical School, Department of Genetics (Boston, 

United States) 
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Table 15: Genes enriched for the GO term angiogenesis found to be upregulated upon ectopic 
expression of FAM72A 

The genes written in blue highlight those which are also upregulated in the FAM72D sample. 

Short name Full name 

Efna1 Ephrin A1 

Col18a1 Collagen, type XVIII, alpha 1 

Vegf-c Vascular endothelial growth factor c 

Cdh13 Cadherin 13 

Adam8 A disintegrin and metallopeptidase domain 8 

Thsd7a Thrombospondin, type I, domain containing 7A 

Cx3cl1 Chemokine (C-X3-C motif) ligand 1 

Htatip2 HIV-1 Tat interactive protein 2 

Two of the eight genes in the cluster were also upregulated upon FAM72D expression: 

Vegf-c and Thsd7a. 

Vegf-c belongs to the family of vascular endothelial growth factors which are known to affect 

the growth of blood vessels as well as neural cells (Raab & Plate, 2007). Vegf-c was found to 

be essential for the homeostasis and the initial steps in lymphatic development with high 

importance for the delamination of lymphatic progenitor cells from embryonic veins, for 

instance (Karkkainen et al., 2004; Raab & Plate, 2007). Like Vegf-a, Vegf-c increases vascular 

permeability and stimulates migration and mitosis of endothelial cells (Joukov et al., 1996; Lee 

et al., 1996). Mice lacking Vegf-c die before birth (Karkkainen et al., 2004), show a strongly 

decreased proliferation of Vegfr-3 expressing NPCs without intracerebral blood vessel defects 

and a selective loss of oligodendrocyte precursor cells in the embryonic optic nerve (Le Bras 

et al., 2006). Furthermore, Vegf-c via interaction with Vegfr-3 might function as a 

chemoattractant for microglia and macrophages (Shin et al., 2008; Shin et al., 2010). 

Thsd7a was identified as endothelial cell migration and tube formation mediating protein that 

might be involved in cytoskeletal organization. Overexpression of a Thsd7a C-terminal 

fragment inhibited migration and disturbed tube formation of human umbilical vein endothelial 

cells, where it was found to be expressed at the leading edge during migration. 

Immunohistological analyses additionally revealed its co-localization with avß3 integrin and 

paxillin (Wang et al., 2010). 
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6.9. Conclusion 
 
The analysis of the data presented in Results IV provides evidence for a neofunctionalization 

of FAM72D compared to FAM72A primarily because of the surprisingly low overlap of genes 

differentially expressed upon in utero electroporation of FAM72A or FAM72D (see: 6.2 and 

6.7). Beyond various interesting candidate genes that were identified in this screening, it is 

tempting to highlight the upregulation of Slitrk5 and Mtfp1 upon FAM72D in utero 

electroporation. Possible implications of these findings are discussed in chapter 7.3. 
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7 Discussion 

 
7.1 What makes us human? 
 
Albeit, “What makes us human?” was the primary underlying question of this study, a broad 

discussion including not only a great variety of scientific but also philosophical aspects would 

surely exceed the scope of this thesis. Thus, the following chapter will only briefly discuss a 

selection of some essential facets to facilitate the connection of the insights from the basic 

research presented in the previous sections and the major question about the human identity. 

 
7.1.1 Bipedalism 
 
One general concept already suggested by Charles Darwin states that the development of 

bipedalism was the essential process that made humans distinct from other mammals. 

Bipedalism favored additional capabilities such as tool making and use with the hands, which 

later selected for bigger brains and its cognitive skills such as a syntactical-grammatical 

language, autobiographical memory, symbolic thought, self-reflection, and the enormous 

social power. Hence, humans could become a successful species on earth despite their lack 

of athletic power (Lieberman, 2014; Lieberman, 2016). 

 
7.1.2 The human brain 
 
Today the brain is viewed as the core component of human identity. Maybe bipedalism was 

necessary for the development of an advanced mind, but without the evolved human brain the 

world we live in today would be unimaginable. 

 
7.1.2.1 Qualitative leap vs. quantitative advancement 

For a long time, humans were pretty much convinced that our cognitive and behavioral 

capacities would be unique, not only in degree but also in kind. It remains an intensively 

discussed question whether the distinctive skills of humans are the result of a qualitative leap 

or a quantitative advancement. However, more and more cognitive qualities like the theory of 

mind that was historically thought to be such a leap in human evolution turn out to rudimentary 

exist also in other apes (Krupenye et al., 2016; Sousa et al., 2017). The knowledge about the 

existence of these capabilities in other species is important to ask the right questions and to 

design proper experiments to unveil the relevant functional units within the brain constituting 

the outstanding characteristics of humanity. 
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7.1.2.2 Brain size and number of neurons 

In any case, one tempting key parameter to consider is the increase of absolute brain size 

during primate and particularly human evolution. Though species such as elephants and 

whales have bigger brains than humans, we would vigorously defend the statement that 

human cognitive abilities exceed those of these species (Dunbar & Shultz, 2007; Sousa et al., 

2017). 

Based on the idea that bigger bodies need bigger brains to be controlled, the concept of brain-

to-body weight ratios occurred. Indeed, in contrast to blue whales with a brain-to-body-weight 

ratio of about 0,01%, humans show a higher one with about 2%. But this concept lost power 

because smaller animals often show a brain-to-body-weight ratio even higher than 2% (Harvey 

et al., 1980). As a result, dozens of analyses and comparisons of brain sizes could not provide 

a robust model of how absolute brain size and intellectual capabilities correlate when various 

lineages spanning datasets are regarded. Within specific biological lineages some concepts 

such as the encephalization quotient suggest that the human brain is about 4-7 times bigger 

than it would be expected for a mammal of its size (Marino, 1998; Herculano-Houzel, 2009). 

The absolute brain size was found to be a good predictor for cognitive abilities within non-

human primates (Deaner et al., 2007). Interestingly, species with the largest brains were also 

found to show a greater behavioral range and flexibility than those with smaller brains among 

mammals (Jerison, 1985; Marino, 2002) as well as among birds (Lefebvre et al., 2004; 

Herculano-Houzel, 2009). 

Another way to look at the human brain is to regard its biological building blocks: mainly 

neurons and glial cells and indeed, the number of cortical neurons was found to correlate with 

intelligence (Roth & Dicke, 2005). But also this approach reveals the natural complexity of the 

issue, since the human cerebral cortex may consist of about 16 billion neurons (Azevedo et 

al., 2009; Herculano-Houzel, 2009), but the cerebral cortex of the long-finned pilot whale, for 

instance, was found to contain about twice as many (Mortensen et al., 2014). Additionally, it is 

essential to be aware that many of the analyses to date were performed based on insufficient 

data regarding the number of cortical neurons due to technical and methodological limitations 

of the experiments. 

In the end, it is not surprising that the key to human cognition cannot be conclusively explained 

based on rather primitive mono-dimensional models such as the increase in absolute brain 

size or the neuronal number. Nevertheless, the rationale behind the idea that a bigger brain 

consisting of more neurons would possess a higher computational capacity intuitively makes 

sense and might be a good starting point to develop a more complex multi-dimensional 

concept. 
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7.1.2.3 Expansion of specific cortical regions 

Insights about unique human abilities and the associated parts of the neocortex additionally 

made clear that the relative expansion of certain neocortical areas and networks has to be 

taken into consideration to explain the rapid development of human cognitive abilities within 

the last 3 million years. Not all of the brain’s functions and regions expanded during this period, 

especially the primary sensory cortices are almost equivalent between chimpanzees and 

humans (Diamond & Hall, 1969). Consequently, the proportion of association cortices 

increased with the overall expansion of the neocortex and provided the capacity for cognitive 

functions that we consider to be higher. One following question is whether the connectivity 

patterns of these expanded regions maintain ancient or if they created new circuit properties. 

This leads back to the question whether human cognitive faculties arose from a stronger 

computational power (quantitative advancement) or if they got the needed space to newly 

develop (qualitative leap) through an increased neocortical size (Buckner & Krienen, 2013; 

Buckner & Krienen, 2017). 

7.1.2.4 Insights from human brain pathologies 

The importance of cortical size for normal brain function is clearly shown in clinical cases of 

patients with micro- or macrocephaly (small or enlarged brains) which show a variety of 

cognitive deficits (Sun & Hevner, 2014). At the same time, macrocephalic people usually are 

not smarter than the average, but rather show cognitive limitations most likely due to an 

imbalanced cortical growth. Besides that, some of the microcephalic patients do not have 

bigger brains than chimpanzees but are considered to be smarter. This may be in part 

explained by the human-specific structural organization of the brain as well as in the stronger 

cultural support facilitating the development of higher cognitive functions. 

 
7.1.3 Hypotheses for enlarged brains 

Generally, it is likely that the evolutionary development of the human brain occurred in close 

interaction with the environment and other parts of our ancestor’s bodies. Bipedalism offered 

the opportunity to discover novel activities with our hands directed by the expanded association 

cortices, jaw muscles had to adapt to reduce physical restrictions for brain growth (Stedman 

et al., 2004) and many other adaptations occurred in parallel or advance to establish the brain 

we are used to thinking with today. 

One of the most popular hypotheses to explain how the human brain increased in size is based 

on the expensive tissue hypothesis and highlights the importance of a changed diet of modern 

humans and adaptions in our digestive tract (Aiello, 1997). In this context, it has been proposed 

that the use of fire to cook meals in Homo erectus overcame the limitation of the available 

number of hours for feeding and the necessary caloric intake to provide enough energy for an 

increased neuronal number. The hypothesis furthermore suggests that the shift to a cooked 
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diet was a positive driving force for human evolution since it increased the not-eating time and 

the capacities to create new tools and further improvements using the increase in 

computational power in our brain (Fonseca-Azevedo & Herculano-Houzel, 2012). In fact, this 

concept which seems to be reasonable in the first place is also quite controversial in the 

scientific community and the expensive tissue hypothesis regarding brain size expansion itself 

strongly questioned (Navarrete et al., 2011) as well as the concept that human brain expansion 

was dependent on the use of fire for cooking (Cornélio et al., 2016). 

A different logical starting point is taken by the cognitive buffer hypothesis, which is based on 

the observation that larger brains tend to increase the flexibility to respond to unusual or 

complex socioecological challenges making increased survival rates possible, enabling a 

longer reproductive life and thereby compensated for a delayed reproduction, which also 

occurs due to a more extended period of maturation (Sol, 2009). A great variety of additional 

concepts (Dunbar & Shultz, 2017) such as the social brain hypothesis, that can be briefly 

described as the idea that large brains evolved to manage growing complex social systems 

(Dunbar, 2009), which are as controversial as the concepts introduced above (Barrett et al., 

2007) unfortunately cannot be discussed here due to the scope of the thesis. 

What we learn from this debate is that the causalities of why and how the brain enlarged during 

human evolution is still debated, but what remains is the insight Darwin argued already 1871 

in his The descent of man: ‘No one, I presume, doubts that the large proportion which the size 

of man's brain bears to his body, compared to the same proportion in the gorilla or orang, is 

closely connected with his higher mental powers’ (Darwin, 1871). This assumption became the 

driving force for most of the work in the lab. The present thesis aimed to characterize one 

mechanism to explain the expansion of the human neocortex as a first step towards a more 

composite multifactorial concept of how the neocortex developed its fascinating features and 

thus - about what makes us human. 

 

 

 

7.2 In utero electroporation of a human-specific gene in the developing 
mouse neocortex 

7.2.1 Opportunities and limitations of the approach 

Due to ethical and legal restrictions, many procedures in experimental biology are not 

applicable to non-human primate or even human brains. Consequently, other tools or 

organisms have to be used to study the evolutionary benefits of a human-specific gene as it 

was the aim of this study. Fortunately, in utero electroporation (IUE) provides an established 

method to study a gene function at different developmental time points in different neocortical 
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regions in vivo and offers the opportunity to examine the transient effects of a gene in a 

species, where it usually is absent. Albeit, the approach is based on the assumption that 

interactors and pathways of the protein are conserved between mouse and humans. If they 

are not, the functional role it has in humans remained uncovered, or an effect observed rather 

had to be assumed as an artifact than as the observation of a physiological phenomenon. The 

results we obtained in this study could be limited due to this issue since a knockdown study of 

mouse Fam72a showed an effect on neurogenesis, but overexpression of human FAM72A 

and FAM72D did not. IUE of a gene might increase the expression level of the transfected 

protein, but not of the entire biological machinery which is involved in the physiological function 

– an exception from this statement may be the IUE of a transcription factor. In contrast to these 

concerns are the reliable results of IUEs performed with ARHGAP11B showing a definite effect 

on the proliferation of basal progenitors (Florio et al., 2015), though it is not assumed to be a 

transcription factor. Nevertheless, it remains a general issue to be aware of when a molecular 

or cellular mechanism is studied in a species distantly related to the organism one aims to 

understand. Thus, the extrapolation from the mouse to the human brain can be problematic 

not only due to the remarkable differences regarding complexity and connectivity which are 

most likely not only caused by one single gene and consequently hard to reproduce in the 

existing experimental procedures. A related matter arises considering a more macroscopic 

perspective: several evolutionary adaptations might have mutually favored each other (see: 

7.1.2) resulting in a minimized or even no effect when only one is induced in the model 

organism. Another critical point in the design of this study might be the use of the strong 

constitutive CAG promotor causing a gene dosage above the physiological level and not 

reflecting possibly important spatial and temporal dynamics, but an expression in neurons 

where it usually is absent. 

A third limitation of the approach could be that non-mouse proteins provoke an immune 

reaction leading to the demolition of the transfected cells. Like any other protein of the cell, 

fragments of the artificially expressed unfamiliar human protein will be presented via the MHC 

I antigen presenting machinery at the surface of the cell causing an immune response via 

CD8+ cytotoxic T cells that induces apoptosis. The upregulation of Tapasin in mouse brain 

cells expressing FAM72D could be a hint towards this idea. Once a CD8+ T cell has recognized 

an alien protein fragment presented by MHC I molecules they start to secrete several cytokines 

including Inf-γ, which was found to upregulate Tapasin expression as a part of the MHC I 

antigen presenting machinery (see: Results IV), (Abarca-Heidemann et al., 2002; Tang et al., 

2016). This process could also explain the upregulation of several genes involved in the NF- 

κB pathway as well as apoptosis. Most importantly it would cause a reduced number of 

FAM72A or FAM72D positive cells, and false negative results would be facilitated in this 

experimental setup.  
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Albeit, it has to be made clear that the use of IUE for experimental purposes like they were 

carried out in this study is widespread and established and might consequently only be 

accompanied by a few of the potential limitations discussed above. 

 

 

7.3 The family of sequence similarity 72 and human uniqueness 
 
In this thesis it was intended to characterize one candidate, a human-specific gene family in 

terms of its contribution to the expansion in neuronal number during neocortical development, 

which defines the human brain as the largest among primates (Herculano-Houzel, 2009). The 

following chapter will discuss potential effects of the FAM72 gene family on various parameters 

likely to affect neocortical growth. 

7.3.1 Cell cycle regulation and NPC maintenance 

The neuronal output can be increased when the pool of neural progenitor cells is enlarged 

before the switch to neurogenic cell divisions. Several studies have suggested that a 

lengthening of the cell cycle of NPCs in the VZ is accompanied by the progression of 

neurogenesis (Caviness et al., 1995; Takahashi et al., 1995). Following studies could further 

distinguish several NPC populations characterized by different cell cycle lengths and 

proportions of the sub-phases (Calegari et al., 2005; Gal et al., 2006; Arai et al., 2011; Florio 

& Huttner, 2014). Notably, the length of the G1 phase turned out to be a cell fate determinant, 

since a prolonged G1 phase in mice NPCs led to a premature neurogenesis at the cost of NPC 

pool expansion (Calegari & Huttner, 2003; Lange et al., 2009), whereas a shortening of G1 

increased NPC proliferation accompanied by a delayed neurogenesis (Pilaz et al., 2009; Lange 

et al., 2009; Nonaka-Kinoshita et al., 2013). These insights are also evident in species 

evolutionary closer related to humans such as macaques, where G1 phase was identified to 

be shorter in cortical areas with cytoarchitectural hallmarks of neocortical expansion 

(Lukaszewicz et al., 2005; Florio & Huttner, 2014) supporting the idea, that G1 phase 

regulation is a significant factor in primate neocortex evolution.  

Interestingly, analyses of a FAM72A transfected nasopharyngeal carcinoma cell line suggest 

that FAM72A shortens G1 phase and increases the cell proliferation. Furthermore, it enhanced 

levels of cell cycle activators were found in western blot analyses upon FAM72A transfection 

(Wang et al., 2011). The finding that FAM72A effects the cell cycle was further supported by 

data collected in aphidicolin-synchronized FAM72A transfected MCF-7 cells showing that 

FAM72A shifts the transfected cells to a different cell cycle sub-phase compared to the control 

(Heese, 2013). Another study additionally attracted our attention to the FAM72 genes 
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identifying Fam72a in adult mouse NPCs as one of the genes marked by the trimethylation of 

histone H3 at lysine 4 (H3K4me3) which is known to preferentially mark genes that are 

essential for the function and identity of the cell type (Benayoun et al., 2014). A lentiviral-based 

RNA interference knock-down of Fam72a in an adult primary mouse NPC cell culture led to 

increased neurogenesis suggesting that Fam72a might support the maintenance of NPC – a 

function which could result from the shortening of the G1 phase. Furthermore, NPC 

proliferation was slightly reduced upon Fam72a knock-down, though it is surprising that knock-

down of Srgap2, a gene not yet described to be involved in the regulation of cell proliferation, 

affected NPC proliferation even stronger in this set of experiments (Benayoun et al., 2014), 

which either suggests a novel function of Srgap2 or is reason to question the validity of the 

results. 

Albeit, as described in Results II and III neither expression of FAM72A nor FAM72D showed 

significant effects on the NPC proliferation or abundance of proliferative or neurogenic NPCs 

in the developing mouse neocortex. Further analyses (see: 7.4) will show whether the lack of 

a cell cycle-dependent phenotype in this set of experiments was rather due to the limitations 

of the approach or reflected the circumstance that the Family of sequence similarity 72 is not 

involved in the embryonic NPC cell fate regulation under physiological conditions in utero. 

7.3.2 Cell death 

Neocortical development is a precisely regulated process also characterized by a balance of 

proliferation and apoptosis. Interestingly, the highest rates of apoptosis were described at the 

peak of neurogenesis as well as in proliferative cortical zones (Blaschke et al., 1996; 

Thomaidou et al., 1997). Besides, the fundamental importance of apoptosis for healthy brain 

development was further dissected in experiments with caspase 3 or 9 deficient mice embryos, 

which showed an unphysiological expansion as well as exencephaly of the forebrain (Haydar 

et al., 1999). The existing data of FAM72A’s involvement in the regulation of programmed cell 

death is conflicting to date, since on the one hand FAM72A was shown to be capable of 

inhibiting staurosporine-induced apoptosis in proliferating MCF-7 (breast cancer) cells (Heese, 

2013), but on the other hand also identified to be potentially pro-apoptotic in rat neuroblastoma 

cells (Nehar et al., 2009). Our transcriptome data presented in Results IV shows several genes 

upregulated upon FAM72A or FAM72D which are involved in programmed cell death (e.g., 

Stk17b, Shisa5, Parp 9, Irf1). This could be either due to the suggested limitation of the 

approach resulting in the apoptosis-inducing immune reaction against the human proteins, but 

also a consequence of a physiological function of the two proteins. If it is true and FAM72 

genes are involved in the sensitively regulated process of apoptosis during neocortical 

development, new experiments had to be executed considering the physiological temporal and 
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spatial expression patterns of these proteins. These could also explain the controversy of the 

existing publications, possibly showing an effect which also depends on the cell type the 

FAM72 proteins are expressed in. 

7.3.3 Neurogenic period 

Another parameter determining the neuronal output is the neurogenic period. Indeed, 

interspecies variations have been reported between primates and rodents (Caviness et al., 

1995; Rakic, 1995; Rakic, 2009; Florio & Huttner, 2014) and were shown to sufficiently explain 

differences in neocortical size and neuronal number between species of the same principal 

group (Lewitus et al., 2014). 

One possible mechanism underlying a protracted neurogenic period could be an adapted 

temporal expression pattern of neurogenesis regulating proteins or the occurrence of extra 

copies of such regulators with a delayed expression pattern as it could be the case for the 

FAM72s. The findings discussed in 7.3.1. cell cycle regulation and NPC maintenance could 

support such a scenario. Besides, there are hints towards a sequential temporal expression 

pattern of the four paralogues, since amplification of FAM72A, B, C, D from a GW 12 human 

brain cDNA sample (see: 3.4.1) did only produce FAM72A copies, whereas FAM72D mRNA 

was detected wpc 13 (GW 15) (Florio et al., 2015). This temporal shift in expression is further 

supported by the Fietz dataset from 2012 which sampled four different gestational ages and 

showed that FAM72C and FAM72D are enriched in older samples (14-16 wpc) (Florio et al., 

2018). This raises the possibility that they start to do the ancestral FAM72A job, when it is 

downregulated (further studies should dissect this hypothesis analyzing the temporal 

expression pattern of FAM72A) basically scaling up the chimpanzee brain (Herculano-Houzel, 

2009) or could add a new function as discussed below (see: 7.3.4). 

7.3.4 TrkB signaling 

Over the past years the TrkB receptor was found to be a vital component of a signaling cascade 

affecting several fundamental aspects of brain development including the precursor cell 

survival, proliferation, neurogenesis and neuronal migration (Barnabe-Heider & Miller, 2003; 

Bartkowska et al., 2007; Puehringer et al., 2013). This is why the results of experiments 

performed with FAM72A transfected B104 (neuroblastoma) cells exhibiting an inhibited TrkB 

phosphorylation and TrkB downstream cascade upon BDNF stimulation (Nehar et al., 2009) 

attracted our attention. Although the finding itself should be reproduced in vivo in the 

developing neocortex at first, the analysis of our transcriptome data tempts to suggest the 

following model: Slitrk5 was among the genes upregulated explicitly upon FAM72D expression 
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and previously found to interact with the TrkB receptor (see: Results IV). In fact, it is an 

important mediator of TrkB receptor recycling (Lazo et al., 2013; Song et al., 2015). This 

portends that the occurrence of FAM72D could have enabled the indirect rescue of the TrkB 

inhibition of FAM72A via Slitrk5 supporting the recycling of the receptor. Though, if FAM72A 

would inhibit TrkB in the developing mouse neocortex one could have expected a TrkB related 

phenotype upon the expression of either FAM72A or FAM72D in the analyses presented in 

Results II and III, it might still be worth to further dissect this coherence, since it cannot be 

excluded that the conducted experimental design was not connected to the fitting read-out 

revealing an existing phenotype. The negative results to date could be explained by the 

limitations of the approach described above, but also through various additional issues such 

as a different or even no interaction between human FAM72A and mouse TrkB, which would 

support the need of further studies in a different model organism evolutionary closer related to 

humans like ferret or chimpanzee derived brain organoids. 

7.3.4.1 Neuronal function 

Another aspect potentially connected to the interaction with the TrkB signaling pathway (Gupta 

et al., 2013) is the finding that several genes strongly associated to a neuronal function like 

synaptic plasticity such as Syde1 but also Slitrk5 were found to be differentially expressed 

upon FAM72A or FAM72D (Slitrk5) or both (Syde1). This was surprising considering that 

mRNA of all of the four paralogues was almost exclusively found to be expressed in NPCs but 

not neurons (Florio et al., 2018) suggesting a role in early neuronal differentiation. Thus, it 

provides another direction of future studies to examine the biological function of FAM72A-D in 

human neocortical development. 

7.3.4.2 Alzheimer’s disease 

One more aspect to mention due to its potential intersections with various of the discussed 

points is an involvement in the pathophysiology of Alzheimer’s disease. 

FAM72A was upregulated in an Alzheimer’s disease mouse model (Nehar et al., 2009) and 

could be the missing link between the known effect of Aß42 to decrease the activity of signaling 

pathways downstream of TrkB (Tong et al., 2004) mediating the subsequent interference with 

a normal BDNF function, possibly also in the adult hippocampus where the disease oftentimes 

begins and FAM72A was found to be expressed (Nehar et al., 2009). 

7.3.5 Mitochondria 

Several insights on the FAM72 gene family of previous but also this study suggest a link 

between FAM72s and mitochondrial functions, which will be discussed in the following. 
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7.3.5.1 Subcellular localization 

As introduced in 1.6, FAM72A was found to be co-localized to mitochondria (Wang et al., 2011; 

Heese, 2013), a result which is supported by the biocomputational prediction of the FAM72s 

to possibly have a mitochondrial subcellular localization 

(http://www.cbs.dtu.dk/services/TargetP/ and http://mitf.cbrc.jp/MitoFates/cgi-bin/top.cgi). 

Unfortunately, we were not able to prove these results experimentally, since none of the tested 

FAM72 antibodies (see: 9.8) provided a specific signal in immunohistochemistry experiments 

under various fixation and staining conditions neither on in utero electroporated neocortical 

mouse nor on fetal human neocortex slices (data not shown). However, if FAM72A, B, C or D 

is co-localized to mitochondria, it would be particularly interesting to study whether there is a 

synergistic effect with ARHGAP11B, that was recently identified to be also co-localized to 

mitochondria (Namba et al., 2019). 

7.3.5.2 Reactive oxygen species 

It has also been Wang et al. (2011) who showed a decrease in reactive oxygen species (ROS) 

production induced by H2O2 treatment in FAM72A - compared to mock-transfected 

nasopharyngeal carcinoma cells. ROS are known to function as signaling molecules regulating 

a number of cellular processes including proliferation (Sundaresan et al., 1995; Behrend et al., 

2003; Menon et al., 2007; Bartosz, 2009), cell cycle progression (Menon et al., 2007; Sarsour 

et al., 2009) and the self-renewal capacity of NPCs (Khacho & Slack, 2018). This is mentioned 

because of its possible relevance to explaining the effects of FAM72A on the cell cycle, but 

also due to the relation between ROS production and mitochondrial function. 

7.3.5.3 Mitochondrial dynamics and neurogenesis 

The general importance of mitochondria in the brain as the cellular energy producers is well 

established mainly due to the high-energy demanding nature of neurons, in contrast to the role 

of mitochondrial morphological dynamics, which was revealed in recent studies in post-mitotic 

neurons as well as in NPCs (Khacho & Slack, 2018). Mitochondria are highly dynamic 

organelles continuously cycling through fusion and fission events (Detmer & Chan, 2007) 

exhibiting distinctive morphologies in different cell types. The necessity of a well-orchestrated 

mitochondrial morphology is quintessentially seen in the association of abnormal mitochondrial 

dynamics and function to several neurodegenerative conditions (Oettinghaus et al., 2012) such 

as Alzheimer’s, Parkinson’s and Huntington’s diseases (Wang et al., 2009; Calkins et al., 2011; 

Song et al., 2011; Wang et al., 2012), but also neurodevelopmental disorders causing 

impairments in brain development, since several studies could show an important role during 

NPC fate decisions (Steib et al., 2014; Khacho et al., 2016) and neuronal differentiation 

(Knobloch et al., 2013; Khacho et al., 2016; Khacho et al., 2017; Khacho & Slack, 2018). 

Interestingly, the mitochondrial morphology appears to be different in embryonic and adult 
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NPCs but is strongly related to relevant functions in both stages of development in the context 

of neurogenesis (Khacho & Slack, 2018). 

7.3.5.4 Mitochondrial fission protein 1 

As described in Results IV, the mitochondrial fission protein 1 (Mtfp1) was identified to be 

upregulated upon ectopic expression of the human-specific FAM72D but not the ancestral 

FAM72A. Mtfp1 was previously shown to be a key regulator of balanced fission and fusion of 

mammalian mitochondria, which puts it into the position of a potential regulator of human 

neocortical neurogenesis in concert with FAM72D. Albeit, the experimental design to further 

dissect this biological process might be challenging since the physiological phenotype is more 

likely to be seen as a result of a precisely regulated expression pattern of the proteins than in 

consequence of a simple gain or loss of function study. Whereas one way to get an orienting 

idea of Mtfp1’s relevance for cortical neurogenesis surely could be a knock-down study in 

human-derived brain organoids particularly in the case of an additionally validated upregulation 

of Mtfp1 upon FAM72D expression or reduced level of expression upon FAM72D knock-down. 

7.3.6 Angiogenesis  

7.3.6.1 Angiogenesis & neurogenesis 

Several studies could prove the interdependency of angiogenesis and neurogenesis from 

embryonic development until adulthood when whole body exercise-induced reduction of age-

dependent cognitive decline can at least in part be traced back to a positive effect on 

angiogenesis (Stimpson et al., 2018). 

Observations on the cellular level show that adult hippocampal neurogenesis occurs in a 

vascular niche, since proliferating cells are organized in dense clusters around small capillaries 

(Palmer et al., 2000; Ward & Lamanna, 2004), which mainly disappear after a couple of weeks 

suggesting that neurogenesis might be associated to an active vascular recruitment likely 

caused by the increased metabolic demand, but also by the need for “instructive cues” of the 

CNS-vascular interface (Palmer et al., 2000; Fuchs & Schwark, 2004; Yang et al., 2016). This 

view is supported by in vitro co-culturing experiments of embryonic neural stem cells with 

immortalized endothelial cells which increased the neural stem cell expansion and shifted their 

fate toward neurons (Shen et al., 2004). However, also data from in vivo studies confirm these 

results showing a remarkable temporo-spatial congruence of the induction of radial glia 

differentiation and intraparenchymal formation of vessels (Lange et al., 2016). This is 

consistent with results showing that the ventrolateral to dorsomedial gradient of periventricular 

vessel formation matches the gradient of neurogenesis and precedes the latter one by about 

one day (Vasudevan et al., 2008; Morante-Redolat & Fariñas, 2016). 
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7.3.6.2 Enriched GO term angiogenesis 

Out of the 8 differentially expressed genes in the GO cluster angiogenesis, the most prominent 

candidate is a vascular endothelial growth factor, Vegf-c, which was already briefly 

characterized (see: Results IV). 

Interestingly, Vegfs are generally known to exhibit direct effects on neurons including 

neurotrophic activity stimulating neurite outgrowth (Sondell et al., 1999), in addition to its 

angiogenic functions. Thus, in rats undergoing focal cerebral ischemia, administration of Vegf 

could enhance neurogenesis, cerebral angiogenesis and reduced the size of the infarct (Sun 

et al., 2003). Vegf-c, adds an exciting feature which is of high importance for several processes 

associated with immunological functions, such as lymphatic vessel development, for instance. 

But also, Thsd7a, the second gene in the GO cluster angiogenesis upregulated upon FAM72A 

and FAM72D expression, is linked to a variety of functions related to the endothelium. 

Considering the striking interaction between angiogenesis and neurogenesis, it is tempting to 

follow up this initial finding of the enriched GO term angiogenesis upon expression of FAM72A, 

which might also lead to results explaining why the GO enrichment was restricted to the 

ancestral paralogue of the FAM72 gene family. However, the natural temporal angiogenesis 

in mice may be a limitation to study effects upon FAM72A expression using IUE, since surface 

pial vessels already surround the entire brain at E 9.5 (Morante-Redolat & Fariñas, 2016) and 

vessel formation in the dorsolateral cortex occurs already between E 11.5 to E 12.5 (Lange et 

al., 2016). Hence, in utero electroporation to test FAM72s capability to induce or enhance this 

early angiogenesis at or before these time points, is technically extremely difficult due to the 

small size of the ventricle at this developmental stage and might cause the need to use a 

different model system. 

7.3.7 An evolutionary immunological adaptation in the brain? 

Over the past years, tremendous progress was made in the understanding of the interaction 

between two of the most complex and dynamic systems in our body – the immune and the 

nervous system. The results from our transcriptome analysis identified several genes 

differentially expressed upon FAM72A or FAM72D known to be involved in immunological and 

inflammatory often NF-κB related pathways including Adora2b, Shisa5, Stk17b, Syde1, 

Tnfrsf13c, Ptx3, Kctd6 (see: Results IV). 

Interestingly, 3 out of 6 specifically upregulated genes upon FAM72D expression are 

experimentally found to be associated with some immunological response: Parp9, Cnp and 

Tapasin. 

Heterodimerization of Parp9 with Dtx3L improves the antiviral response, likely due to indirect 

stimulation of interferon-stimulated genes expression (Zhang et al., 2015). A lack of Cnp was 
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found to increase levels of inflammatory mediators and higher levels of Cnp were detected in 

activated microglia cells (Yang et al., 2014). The third Tapasin is involved in one of the most 

fundamental immunological processes: the antigen processing and presentation machinery of 

the cell. Although its upregulation could be the result of the proposed immune reaction against 

the human protein in the mouse organism (see: 7.2), it would be hastily to consider the finding 

as such an artifact. One intersection could exist between Tapasin and MICA (MHC class I 

polypeptide-related sequence A), a gene recently identified to be primate specific and to be 

expressed in cortical NPCs (Florio et al., 2018). It is a cell surface glycoprotein located within 

the MHC locus and is related to MHC class I molecules exhibiting a similar domain structure 

(Bahram et al., 1994), but is not associated to the ß2-microglobulin. This suggests together 

with the finding of normal MICA surface levels in cells lacking the TAP peptide loading 

transporter, the supplier of peptides bound by class I molecules from the cytosol into the lumen 

of the endoplasmic reticulum, a functional independence of MICA of cytosolic peptide ligands 

(Groh et al., 1996), in contrast to MHC class I molecules. Hence, Tapasin and MICA may not 

directly interact but could be part of a more complex immunological adaptation that occurred 

throughout primate evolution in the developing brain. 

7.3.8 FAM72 and SRGAP2 

The genomic neighborhood of the FAM72s and the SRGAP2s due to the paired duplication 

during human evolution provided the opportunity to estimate the duplication time points of the 

FAM72 paralogues based on the data from the SRGAP2 paralogues between 3.4 – 1 mya, 

(Dennis et al., 2012; Kutzner et al., 2015) – a period of time corresponding to the emergence 

of the genus Homo, the expansion of the neocortex as well as the use of stone tools and other 

striking cultural changes (Jobling et al., 2004). Previous work on SRGAP2A could show that it 

negatively regulates neuronal migration and induces neurite outgrowth (Guerrier et al., 2009). 

Subsequent work including the human-specific paralogues found that SRGAP2C exhibits an 

inhibitory effect, due to a truncated F-BAR domain, on the ancestral SRGAP2 function 

consequently accelerating neuronal migration. Additional experiments showed a spine 

morphology shaping activity of SRGAP2 resulting in a delayed spine maturation and an 

increased spine density upon SRGAP2C expression (Charrier et al., 2012) possibly underlying 

this and further substantial differences observed between human’s and other species’ spine 

morphologies. Those have been proposed to introduce more flexibility for input integration and 

information processing with impact on human cognition, learning and memory (Benavides-

Piccione et al., 2002; Charrier et al., 2012). These and other intriguing findings like an 

involvement in the regulation of excitation and inhibition in the brain (Fossati et al., 2016; 

Subramanian & Nedivi, 2016) and genetically caused brain abnormalities upon deletion (Rincic 
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et al., 2016) brought up the idea of the brain-specific neural master gene pair SRGAP2-FAM72 

(Ho et al., 2017a). The authors of this hypothesis propose that NPCs activate FAM72s to 

proliferate and switch to SRGAP2 expression when the cell decides to differentiate into 

neurons and starts with migration and synaptogenesis (Ho et al., 2017a; Ho et al., 2017b). 

Future studies could elucidate whether FAM72s and SRGAP2s indeed are sequentially 

expressed. 

The published data to date indeed suggests the concept of the FAM72-SRGAP2 master gene, 

which underlies our higher cognitive functions. Our data, however, prompts to be more careful 

with such statements, at least in the case of the FAM72 gene family since the underlying 

biological mechanisms seem to be more complicated. Our results and a lack of sufficient 

evidence in previous studies (Nehar et al., 2009; Heese, 2013; Benayoun et al., 2014) rather 

question the claimed (Ho et al., 2017b) pivotal role of the FAM72A or FAM72D protein for 

embryonic NPC proliferation, without excluding it, but asking for additional experiments to bring 

the tempting, though still very primitive hypothesis, that the occurrence of the FAM72-SRGAP2 

master gene could underlie the evolution of human cognition on safer ground. An issue 

supporting the evolutionary relevance of the FAM72s is that in contrast to the SRGAP2s 

(Dennis et al., 2012) none of the paralogues became a pseudogene (Florio et al., 2018) 

suggesting a beneficial evolutionary function. 

7.3.9 FAM72, Neanderthals, and lncRNAs 

Consistent with the estimated duplication time points FAM72A, B, C and D are also present in 

the genome of Neanderthals and Denisovans. Sequence comparison of the Homo sapiens to 

the Neanderthals and Denisovans genome revealed identical exons but displayed variations 

in the introns of human compared to Neanderthal and Denisovan FAM72A and FAM72D 

(Kutzner et al., 2015). Analyses of the genomic locus and more specifically, the interspace 

between the FAM72 and SRGAP2 genes led to the discovery of homologous long non-coding 

RNAs (lnc RNAs) separating the four gene pairs of SRGAP2 and FAM72. This opens an 

exciting new field not considered in the experiments of this study, since all data is based on 

the cDNA sequence lacking the introns of FAM72A and FAM72D as well as the sequences 

from the FAM72 – SRGAP2 interspace, due to the focus on the characterization of a putative 

protein function during neocortical development. Recent insights in the variety of functional 

roles lncRNAs play during neocortical development (Hart & Goff, 2016; Florio et al., 2017; 

Heide et al., 2017) support future experiments to elucidate the importance of these non-

protein-coding sequences within an evolutionary highly interesting region of the human 

genome. 
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7.4  Future directions 
 
Although a great variety of different paths for future studies could be created, the following 

suggestions will be restricted to a selection of experiments designed to elucidate the most 

critical questions that occurred upon the results of this study and those likely to be performed 

due to the existing know-how and technical opportunities in the lab. 

7.4.1 Loss of function 

Our main conclusion from Results II & III has been, that FAM72A and FAM72D are not 

sufficient, but may be required to enhance NPC proliferation in the developing mouse 

neocortex. Hence, a loss of function study is an important next step to do. 

This set of experiments could be performed in utero to reproduce the findings of Benayoun et 

al. (2014) showing increased neurogenesis but decreased NPC proliferation upon shRNA 

mediated knock-down of Fam72a in adult NPCs. Conducting a similar experiment during 

embryonic development could give a first interesting hint if the functional role of Fam72a is 

different between the embryonic and adult stage in NPCs. Following rescue IUE with human 

FAM72A or FAM72D or mouse Fam72a could identify a neofunctionalization throughout 

evolution in the case that IUE of Fam72a rescues the phenotype in contrast to IUE of FAM72A 

or FAM72D. 

These results could be further dissected using human-derived brain organoids where the 

FAM72 genes are silenced or even knocked out via CrisprCas9, for instance. One particular 

challenge of the latter approach might be to selectively downregulate only one of the 

paralogues, although it would still be interesting to analyze the effects the lack or 

downregulation of the entire gene family exhibits. Despite the significant progress in the 

organoid field during the past years, a second limitation might be the variability and quality of 

the organoids, which can be grown to date (Di Lullo & Kriegstein, 2017). As a first step, it may 

be most reasonable to design the readout similar to the presented Results II & III. 

7.4.2 Gain of function 

Intuitively, it also makes a lot of sense to study the effects of genes that newly arose during 

evolution in the setting of a gain of function approach, as it was performed in this study. Albeit, 

as discussed above (see: 7.2) this comes with a row of issues related to the relatively long 

evolutionary distance between mouse and humans. Thus, it would be a good experiment to 

reproduce a specific part of human evolution as close as possible to what happened during 
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the last 4 to 1 million years via the expression of the human-specific paralogues in chimpanzee 

derived brain organoids. 

In this study, I only focused on the functional characterization of FAM72A and FAM72D. IUE 

of the human-specific paralogues FAM72B and FAM72C in mice embryos or chimpanzee 

derived brain organoids could unveil a neofunctionalization of these two paralogues. 

Furthermore, it would be interesting to screen for the short isoforms of these paralogues found 

to be expressed in the developing neocortex (Florio et al., 2018). Due to the enormous amount 

of work to quantify this set of experiments, we tried to establish a flow cytometry protocol for 

automated quantification of the different markers but did not succeed at the time. Albeit, it could 

be worth to reinvest some efforts in this technique because it would provide not only a faster 

but also more objective alternative to manual counting. Another way to improve the 

quantification process could be the use of software which might soon be available considering 

the rapid progress in the field of bioinformatics to reliably quantify cell numbers from 

immunofluorescence images. 

Finally, the possibility that the interaction of some of the human-specific genes is required to 

produce the phenotype observed in the brain of modern humans should be considered. Hence, 

co-electroporation of different theoretically promising combinations of the candidate genes in 

chimpanzee brain organoids as well as mouse embryos would be an exciting experiment to 

do. One example for such an experiment could be the co-electroporation of ARHGAP11B and 

FAM72D based on the rationale that both are assumed to be co-localized to mitochondria 

(Wang et al., 2011; Namba, 2019) and might functionally interact or to co-electroporate 

FAM72A, B, C and D together to study an interaction like it is observed in the case of 

SRGAP2A and C (Charrier et al., 2012). Based on the premise that the human brain can 

basically be understood as a scaled-up primate brain (Herculano-Houzel, 2009), it is 

reasonable to assume that a significant part of the human neocortical expansion is the result 

of an adaptation of genes already existing in the primate genome. Thus, a logical conclusion 

would be to include those genes expressed in human fetal NPCs identified to be primate-

specific to the analyses (Florio et al., 2018). 

Moreover, a previously identified till now only little considered aspect is worth to be followed 

up to be taken into consideration: the interaction with the TrkB signaling pathway (Nehar et al., 

2009). The major questions to solve here are, if FAM72A inhibits TrkB receptor signaling also 

in vivo in the developing neocortex and if yes, it has to be identified, whether FAM72D exhibits 

similar inhibitory effects. In parallel, and particularly in the case that FAM72D does not inhibit 

TrkB signaling, a validation of the Slitrk5 upregulation upon FAM72D expression may be 

helpful as a starting point to dissect whether FAM72D indeed could indirectly rescue the 

inhibition of FAM72A via the upregulation of Slitrk5. 
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Finally, an aspect to check is the potential interaction with mitochondrial dynamics of FAM72D 

via Mtfp1. As in the case of Slitrk5, a first step would be to validate the differential expression 

found in our transcriptome analysis using a qPCR, for instance. If this is the case, it opens an 

exciting field for further studies which aims to understand how mitochondrial morphology 

changed over the course of primate evolution in NPCs and how it differs during embryonic 

development of an individual. 
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8 Summary / Zusammenfassung 

 
8.1 Summary 
 
Introduction: The higher cognitive functions that characterize modern humans can be 

attributed to the cerebral neocortex and its remarkable expansion in size during the last 5 – 7 

million years of human evolution. The identification of the underlying genomic changes will be 

not only of importance to better understand the unique complexity of the human brain, but also 

its susceptibility to neurological and psychiatric diseases.  
Recently, 15 human-specific genes preferentially expressed in neural progenitor cells (NPCs) 

of the human fetal neocortex were identified (Florio et al., 2018). Three of them, FAM72B, C 

and D belong to the Family of sequence similarity 72 (FAM72) and occurred in the human 

genome by gene duplication 3.4 – 1 mya. 

 
Aims & Approaches: Specifically, it was asked whether FAM72D plays a diverse role 

compared to the ancestral FAM72A (Results II, III, IV) due to the specific sets of amino acid 

substitutions it acquired (Results I). Effects of FAM72A and FAM72D on the proliferative 

capacity and gene expressions of embryonic mouse NPCs were analyzed upon ectopic 

expression either of FAM72A or FAM72D during embryonic mouse neocortical development. 
 
Methods: In utero electroporation (IUE) of embryonic mouse brains was performed to drive 

the expression of a red or green fluorescent protein (RFP or GFP) either plus empty DNA 

vector (pCAGGS; control), pCAGGS-FAM72A or pCAGGS-FAM72D plasmids in the 

dorsolateral neocortex at mid-neurogenesis (embryonic day 13.5, E13.5; Results II) or in the 

medial neocortex at late-neurogenesis (E15.5; Results III). NPC proliferation was evaluated 

by immunofluorescence of Ki67 (immunohistochemistry, IHC), a cell proliferation marker, and 

phosphorylated Histone H3 (PH3), a marker of cell mitosis. Moreover, the abundance of NPCs 

using immunofluorescence of basal intermediate progenitor (Tbr2) and apical and basal radial 

glia (Sox2) markers, and the gliogenesis by Olig2 immunofluorescence was analyzed. 

Additional experiments were carried out to study the capacity of NPCs to reenter the cell cycle 

upon IUE of FAM72D. To this end, pregnant mice were intraperitoneally injected with the 

thymidine analog 5-Ethynyl-2´-deoxyuridine (EdU) 24 h post-IUE, to label all cells undergoing 

S-phase of the cell cycle (i.e., all cells that reentered the cell cycle after IUE) in the developing 

mouse brains. Embryonic brains were collected 24 h after EdU injection and co-stained with 

Ki67. Ki67 and EdU double positive cells were considered as cells that reentered the cell cycle.  

To execute the transcriptome analysis E13.5 mice were electroporated with pCAGGS-GFP 

either plus an empty DNA vector (pCAGGS, control), a vector driving expression of FAM72A 

(pCAGGS-FAM72A) or FAM72D (pCAGGS-FAM72D). Subsequently, the electroporated 
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dorsolateral neocortical areas were microdissected at E14.5 and dissociated into single cells. 

The electroporated (GFP+) cells were isolated from the single cell suspensions by the 

fluorescence-activated cell sorting (FACS). The isolated cells were processed for RNA 

sequencing. Data analysis was performed as previously reported (Florio et al., 2015). 

 

Results: By immunohistochemistry, no significant changes in any of the proliferative 

parameters or in the abundance of progenitors in the ventricular zone (VZ) and subventricular 

zone (SVZ) of the developing mouse neocortex upon ectopic expression of FAM72D compared 

to FAM72A and control samples were detected (Results II, III). 

However, the transcriptome analysis (Results IV) showed 88 significantly up- and 52 down-

regulated genes upon FAM72A and 91 significantly up- and 67 downregulated genes upon 

FAM72D expression compared to the control. Only two of these differentially expressed genes 

were found to be upregulated upon FAM72A and FAM72D with an expression >1 fpkm: Syde1 

and Shisa5. Besides, six genes specifically upregulated upon ectopic expression of FAM72D 

exhibiting fpkm > 1 were identified and characterized using the existing literature: Tapbp, 

Mtfp1, Slitrk5, Parp9, Cnp, Rbm43. Beyond that, gene ontology analysis showed significant 

enrichment of angiogenesis-related genes (e.g., Vegfc) upon FAM72A expression. 

Interestingly, there were more genes found to be enriched in NPCs that were upregulated 

compared to control upon FAM72D than FAM72A expression, but more NPC enriched genes 

downregulated upon FAM72A compared to FAM72D expression. In the case of differentially 

expressed neuron-enriched genes, the data was were inverse, which slightly supports the idea 

that FAM72D rather than FAM72A could positively affect the maintenance of NPC 

characteristics. 

 
Conclusions: In a previous study knockdown of Fam72a in adult mouse NPCs increased 

neurogenesis (Benayoun et al., 2014). This suggests, in conjunction with the present results, 

that FAM72A and FAM72D are not sufficient, but may be required, to promote NPC 

maintenance (Results II, III). This is why the gain of function experiments conducted in this 

study should be complemented by a loss of function approach in the developing mouse 

neocortex, in chimpanzee or human-derived brain organoids. Because of their expression in 

the NPCs of the developing human neocortex, it might be productive to analyze the potential 

synergistic effect on NPC proliferation of the FAM72s and the 12 other human-specific genes 

such as ARHGAP11B. Among other mechanisms discussed based on the gene expression 

analysis in this thesis (Results IV and Discussion), the upregulation of Slitrk5 upon ectopic 

expression of the human-specific FAM72D could be particularly remarkable. Slitrk5 is known 

to be involved in the recycling of the TrKB receptor (Song et al., 2015), which affects 

fundamental aspects of brain development. While FAM72A was found to inhibit the TrKB 
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receptor (Nehar et al., 2009), the occurrence of FAM72D could indirectly rescue the TrKB 

receptor function via Slitrk5 and thereby prolonging or enhancing essential features such as 

precursor cell survival and neurogenesis in humans. 

Therefore, this study provides the first functional characterization of the evolutionary highly 

interesting region in the human genome comprising the FAM72 genes during embryonic 

neocortical development in vivo and offers numerous starting points for further investigations, 

that will collectively facilitate a comprehensive understanding of the genomic adaptations 

underlying the astonishing evolution of the human brain. 
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8.2 Zusammenfassung 
 

Einführung: Eine entscheidende Ursache für das Aufkommen der den modernen Menschen 

charakterisierenden kognitiven Funktionen ist in der beachtlichen Vergrößerung des 

menschlichen Neocortex innerhalb der letzten 5-7 Millionen Jahre zu finden. Die Identifizierung 

der dieser Entwicklung zu Grunde liegenden genomischen Veränderungen ist letztlich nicht 

nur bedeutsam für die Beantwortung der Frage, welche evolutionären Anpassungen den 

Menschen kennzeichnen, sondern auch für ein besseres Verständnis einer möglicherweise 

besonderen Anfälligkeit gegenüber neurologischen und psychiatrischen Erkrankungen. 

Kürzlich konnten 15 menschenspezifische Gene, deren Expression sich vorzugsweise in 

neuronalen Vorläuferzellen (NPCs) des menschlichen fetalen Neokortexes nachweisen lässt, 

identifiziert werden (Florio et al., 2018). Drei davon (FAM72B, C und D) sind vor 3,4 – 1 

Millionen Jahren im menschlichen Genom durch Genduplikationen entstanden und gehören 

zur Family of sequence similarity 72 (FAM72). 

 
Zielsetzung und Ansätze: Konkret wurde betrachtet, ob FAM72D durch die spezifischen 

Substitutionen von Aminosäuren eine sich von der Funktion des anzestralen Gens FAM72A 

unterscheidende Rolle in der neokortikalen Entwicklung einnimmt. Untersucht wurden deshalb 

die Effekte von FAM72A und D auf die Proliferationskapazität und Genexpression von NPCs 

nach der ektopen Expression von FAM72A oder D während der embryonalen Entwicklung des 

Neocortex der Maus. 

 
Methoden: Die in utero Elektroporation (IUE) embryonaler Mäusegehirne erfolgte zur 

Expression eines rot oder grün fluoreszierenden Proteins (RFP oder GFP) entweder 

gemeinsam mit einem leeren DNA pCAGGS Vektor als Kontrollbedingung oder aber einem 

pCAGGS-FAM72A oder pCAGGS-FAM72D Plasmid. Die in der zweiten Ergebnissektion 

(Results II) präsentierten IUE wurden dabei im dorsolateralen Neokortex zum Höhepunkt der 

Neurogenese am 14. Entwicklungstag (E 14.5) durchgeführt, im Unterschied zu den 

Experimenten in der dritten Sektion (Results III), die im medialen Neokortex am 18. 

Entwicklungstag (E 18.5) während der Spätphase der embryonalen Neurogenese realisiert 

wurden. Die Proliferation der NPCs wurde durch Immunfluoreszenzanalysen zweier Marker 

(Ki67 und phosphoryliertes Histon 3) bestimmt. Zudem wurde die Häufigkeit wichtiger 

Subtypen von NPCs ebenfalls durch Immunfluoreszenzanalysen eines Markers für basale 

intermediäre Vorläuferzellen (bIPs → Tbr2) sowie für basale und apikale radiale Gliazellen 

(aRGs, bRGs → Sox2) ermittelt. Die Gliogenese wurde durch Olig2 Immunfluoreszenz 

quantifiziert. Weitere Experimente wurden durchgeführt, um die Fähigkeit der NPCs, den 

Zellzyklus nach der IUE von FAM72D erneut einzuleiten, zu untersuchen. Zu diesem Zweck 
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wurde schwangeren Mäusen 24 h nach der IUE das Thymidin-Analogon 5-Ethinyl-2'-

desoxyuridin (EdU) intraperitoneal injiziert. Damit wurden alle Zellen markiert, die sich zu 

diesem Zeitpunkt in der S-Phase des Zellzyklus befanden und damit den Zellzyklus nach der 

IUE fortsetzten. Nach weiteren 24 h (48 h post-IUE) erfolgte die Auswertung: alle Ki67- und 

EdU-doppelt positiven Zellen wurden als solche betrachtet, die den Zellzyklus nach IUE 

fortführten (EdU+) und nach weiteren 24 h noch immer proliferierten (Ki67+). 

Zur Durchführung der Transkriptomanalyse wurden Mäuse am 13. Entwicklungstag mit 

pCAGGS-GFP und entweder dem leeren DNA-Vektor (pCAGGS, Kontrolle) oder einem die 

Expression von FAM72A (pCAGGS-FAM72A) oder FAM72D (pCAGGS-FAM72D) 

ermöglichenden Vektor elektroporiert. Anschließend wurden die elektroporierten 

dorsolateralen neokortikalen Bereiche am 14. Entwicklungstag mikroskopisch seziert und in 

einzelne Zellen dissoziiert. Die Isolation der elektroporierten (GFP+) Zellen erfolgte aus den 

Einzelzellsuspensionen durch Fluoreszenz-aktivierte Zellsortierung (FACS). Im Anschluss 

wurden die isolierten Zellen für die RNA-Sequenzierung vorbereitet. Die primäre Datenanalyse 

der Ergebnisse der RNA-Sequenzierung wurde entsprechend etablierter Protokolle 

durchgeführt (Florio et al., 2015). 

 
Ergebnisse: Die Analyse der Immunfluoreszenzquanitfizierungen (Results II und III) ergab 

keine signifikanten Veränderungen der proliferativen Parameter oder der Häufigkeit der NPCs 

in der ventrikulären Zone (VZ) oder subventrikulären Zone (SVZ) des sich entwickelnden 

Mausneokortex nach der ektopen Expression von FAM72A oder FAM72D im Vergleich zur 

Kontrollbedingung. 

Die Transkriptomanalyse (Results IV) zeigte jedoch 88 signifikant hoch- und 52 

herunterregulierte Gene in Folge der FAM72A sowie 91 signifikant hoch- und 67 

herunterregulierte Gene nach der FAM72D Expression im Vergleich zur Kontrolle. Es wurde 

festgestellt, dass nur zwei dieser differentiell exprimierten Gene in Folge der ektopen 

Expression sowohl von FAM72A als auch FAM72D hochreguliert wurden und ein 

Expressionslevel > 1 fpkm aufwiesen: Syde1 und Shisa5. Darüber hinaus wurden sechs Gene 

mit > 1 fpkm identifiziert, die spezifisch nach der Expression von FAM72D hochreguliert waren: 

Tapbp, Mtfp1, Slitrk5, Parp9, Cnp, Rbm43. Darüber hinaus zeigte die Genontologie-Analyse 

(Gen Ontology) eine signifikante Anreicherung von Angiogenese-assoziierten Genen (z. B. 

Vegfc) im Datensatz der artifiziell FAM72A exprimierenden Zellen. Interessanterweise konnte 

beobachtet werden, dass unter den im Vergleich zur Kontrolle differentiell exprimierten Genen 

mehr Gene mit typischer Expression in NPCs in Folge von FAM72D als FAM72A Expression 

hochreguliert und mehr NPC typische Gene nach FAM72A Expression herunterreguliert 

wurden. Im Falle der Gene, deren Expression eher in Neuronen zu finden ist, zeigte sich ein 

entgegengesetztes Bild (Results IV). Diese Befunde lassen den vorsichtigen Schluss zu, dass 
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FAM72D stärker als FAM72A die Aufrechterhaltung von NPC-Eigenschaften positiv 

beeinflussen kann. 

 

Schlussfolgerungen: In einer früheren Studie erhöhte der Knockdown von Fam72a in NPCs 

erwachsener Mäuse die Neurogenese (Benayoun et al., 2014). Dies legt in Verbindung mit 

den vorliegenden Ergebnissen nahe, dass FAM72A und FAM72D nicht hinreichend, 

möglicherweise jedoch notwendig sind, um die Aufrechterhaltung des Vorläuferzellcharakters 

von NPCs zu fördern (Results II, III). Aus diesem Grund sollte das in dieser Studie verfolgte 

Gain of Function Design durch einen Loss of Function Ansatz ergänzt werden. Als 

Modellsystem bieten sich hierfür der embryonale Mausneokortex oder Hirnorganoide aus 

Stammzellen des Schimpansen oder Menschen an. 

Da alle der kürzlich identifizierten menschenspezifischen Gene in den gleichen NPCs 

exprimiert werden, sollte auch die potenzielle synergistische Wirkung auf die NPC-Proliferation 

der FAM72 und der zwölf anderen humanspezifischen Gene wie etwa ARHGAP11B analysiert 

werden. Neben anderen möglichen Mechanismen, die auf Grundlage der 

Genexpressionsanalyse im Diskussionsteil dieser Arbeit (Results IV und Discussion) erörtert 

wurden, könnte die Hochregulierung von Slitrk5 in Folge der ektopen Expression des 

humanspezifischen FAM72D besonders relevant sein. Es ist bekannt, dass Slitrk5 am 

Recycling des TrKB-Rezeptors beteiligt ist (Song et al., 2015), der wiederum grundlegende 

Aspekte der Gehirnentwicklung beeinflusst. Ebenfalls konnte bereits gezeigt werden, dass 

FAM72A die Funktion des TrKB-Rezeptors hemmt (Nehar et al., 2009). Somit ist denkbar, 

dass FAM72D im menschlichen Neokortex die Wiederherstellung der TrKB-Rezeptorfunktion 

indirekt über Slitrk5 verbessert und dadurch wesentliche Parameter wie das Überleben von 

Vorläuferzellen und die Neurogenese beim Menschen verlängern oder verstärken könnte. 

Diese Studie stellt damit die erste funktionelle Charakterisierung der evolutionär 

hochinteressanten, die FAM72 Gene beinhaltende Region des menschlichen Genoms 

während der Entwicklung in utero dar. Daraus ergeben sich zahlreiche Ansatzpunkte für 

zukünftige Untersuchungen, die in ihrer Gesamtheit ein umfassendes Verständnis der 

Evolution des menschlichen Gehirns ermöglichen werden.  
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9 Materials and Methods 

 
 
9.1 Chart of all experiments 
 
 

 
Fig. 29 – Chart of all experiments 

This figure provides an overview of the experimental workflows in this study. 
 

9.2 Computational analysis 

9.2.1 Reference sequences and multiple sequence alignments 

The following reference sequences were acquired from ENSEMBL.org and used for 

the initial sequence analysis as well as the plasmid design. 
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Table 16: FAM72 reference sequence ENSEMBL IDs 

GENE NAME ENSEMBL ID 
FAM72A ENSG00000196550 

FAM72B ENSG00000188610 

FAM72C ENSG00000263513 

FAM72D ENSG00000215784 

 
The multiple sequence alignments were conducted using CLUSTALW 
http://www.genome.jp/tools-bin/clustalw. 

9.2.2 Transmembrane domain prediction 

Two different prediction tools were used to determine the existence of a transmembrane 

domain in the FAM72 proteins: firstly, the same one already used in previous analyses (Heese, 

2013): http://harrier.nagahama-i-bio.ac.jp/sosui/sosui_submit.html and secondly, from the 

center for biological sequence analysis: http://www.cbs.dtu.dk/services/TMHMM/. 

 
 

9.3 Amplification, subcloning, mutagenesis 

9.3.1 Amplification from human brain cDNA 

The FAM72 DNA was produced via amplification from a GW12 human brain cDNA samples 

as a template. The reaction mix consisted of 35 µl of double distilled water, 5 µl 10x KOD 

buffer, 5 µl dNTPs, 2 µl MgSO4, 1 µl template, 1 µl primer (10 pmol / µl) and 1 µl KODplus 

(Toyobo). In total, I used three different primers: two different forward primers to amplify 

FAM72A/B and FAM72C/D, respectively and one reverse primer (Table 17). 

After 2 min of initialization at 94 ºC, 40 cycles PCR (denaturation 94 ºC: 15 s, annealing 65 ºC: 

30 s, elongation 68 ºC: 1min) were performed and finished with a final elongation for 3 min, 

before the PCR product was kept at 4 ºC. 
 

 

 

http://www.genome.jp/tools-bin/clustalw
http://harrier.nagahama-i-bio.ac.jp/sosui/sosui_submit.html
http://www.cbs.dtu.dk/services/TMHMM/
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Table 17: Primers used to amplify FAM72A, B, C and D 

The red c in the FAM72 – 1F C/D sequence highlights the difference between the two forward primers. 

Oligoname Sequence Amplification of 

FAM72 – 1Forward A/B ggGGATCCGCCACCatgtctaccaacatttgtag FAM72A and B 

FAM72 – 1Forward C/D ggGGATCCGCCACCatgtccaccaacatttgtag FAM72C and D 

FAM72 – 1Reverse cccGGATCCttatctaatacactcctctg FAM72A, B, C and D 

9.3.2 Subcloning 

The amplified FAM72 DNA sequences were subsequently subcloned into TOPO vectors. 

Therefore, 2 µl of the PCR product, 0.5 µl salt solution, 0.5 µl pCR – BluntII- TOPO (addgene) 

were mixed and kept at room temperature for 5 min, before 50 µl of DH5a competent cells 

were added and the entire mix put on ice for 30 min. To transfect the DH5a cells, the mix was 

held for 35 s in a 42 ºC water bath and directly put back on ice afterward for 1-2 min. Later, 

150 µl LB medium was added and the entire mix incubated at 37 ºC for 1 h. Finally, the solution 

was plated on a kanamycin agar plate to select those DH5a colonies which were transfected 

with the TOPO-FAM72 plasmids. 

After one day of incubation, several colonies were selected, diluted in LB medium that contains 

the antibiotic drug TOPO provides a resistance gene for (ampicillin) and incubated at 37 ºC for 

one more day to increase the amount of FAM72 DNA. The TOPO-FAM72A/B/C/D DNA was 

purified using the QIAGEN Miniprep Kit according to the producer’s instructions. The final 

product was Sanger sequenced to validate the FAM72A/B/C/D DNA sequence. 

9.3.3 Mutagenesis 

Because only FAM72A copies were amplified from the human brain cDNA samples, I had to 

produce the three human-specific paralogues using mutagenesis. Therefore, the Mutagenesis-

QuikChange Lightning Multi Site-Directed Mutagenesis kit (Agilent) was used according to the 

manufacturer’s instructions. The primers used to induce the mutations are listed in Table 18. 

For additional illustration check Fig. 9. To perform mutagenesis on FAM72A and FAM72A6ntC 

(C instead of T at nt position 6) to produce FAM72B, C and D both FAM72A versions were 

subcloned into a TOPO vector. Afterward, starting with TOPO-FAM72A, the two substitutions 

of FAM72B were inserted by mutagenesis. Finally, TOPO-FAM72C was cloned from TOPO-

FAM72D firstly obtained from the TOPO-FAM72A6ntC human brain cDNA PCR product (Fig. 

9). After the sequences of TOPO-FAM72A, B, C and D were verified again by Sanger 

sequencing each of them was subcloned into a pCAGGs-vector which was used for all further 
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experiments. The pCAGGs vector contains a CAG-promotor which constitutively strongly 

drives gene expression in mammalian expression vectors. 
 
Table 18: Mutagenesis primers 

The nucleotides inserted to perform the mutagenesis are written in capital letters. 

Mutation Primer sequence 

FAM72B-281 gttcctgtcttcCttcctgcaacaa 

FAM72B-364 caggtgtaaacAtcctactttgggg 

FAM72D-295 cctgcaacaacAgacacttctgga 

FAM72D-373  cgtcctacttCggggcaacttgcca 

FAM72C-245 gtgggaacattgtagTttatcatgtg 

 
 

9.4 Plasmid verification 

9.4.1 Transfection of Cos7 cells 

To transfect Cos7 cells with empty pCAGGS or pCAGGS-FAM72A/B/C/D the Amaxa device 

(Lonza) with program “W-001” was used. After trypsinization the cells were spinned down and 

collected. In In following 99 µl of NF solution (NucleofectorTM Solution, Lonza) and 1 µl of the 

plasmids (1 µg/µl) were added and the entire mix gently suspended using a pipette with small 

tip. Then the mixture was transferred to the Cuvette and 900 µl of DMEM (Dulbecco's Modified 

Eagle Medium, ThermoFisher) + FBS (Fetal Bovine Serum, Sigma-Aldrich) added. After 

electroporation (see: 9.6), cells were transferred to the 6 well plate (total 1ml per well). The 

transfection was conducted in collaboration with Takashi Namba (Huttner Group, MPI CBG).  

9.4.2 Immunoblots 

Whole cell lysates were prepared from transfected Cos7 cells by 1x SDS sample buffer and 

separated by SDS-PAGE (Nupage 4-13% gel, ThermoFisher) and transferred to membranes 

(XCell SureLock™ Mini-Cell Electrophoresis System, ThermoFisher). 

After transfer, membranes were incubated in blocking buffer (5% BSA, bovine serum albumin 

in PBS) overnight at 4 °C. Incubation with primary antibodies against FAM7A/B/C/D (rabbit 

anti-FAM72A abbexa; abx 145553; 1: 5000) was performed for 1 h at room temperature. As a 

loading control, rabbit antibody against β-actin (1:5000, 4970, CST) was used. All antibodies 

were diluted in blocking buffer (5% BSA/PBS). Antigen-antibody complexes were detected 

using appropriate HRP-conjugated secondary antibodies (1:5000) and visualized with Super 
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Signal WestDura reagents (ThermoFisher). Membranes were exposed to Hyperfilm ECL 

(Amersham). The IB was conducted in collaboration with Takashi Namba (Huttner Group, MPI 

CBG).  

9.4.3 In situ hybridization 

In situ hybridization (ISH) was performed on 14 µm cryosections of E15.5 mouse brain slides 

in utero electroporated with pCAGGS-FAM72D expression plasmids. Before the hybridization 

step, cryosections were sequentially treated with 0.2 M HCl (2 × 5 min, room temperature) and 

then with proteinase K (6 µg/ml) in PBS, pH 7.4 (20 min, room temperature). Hybridization was 

performed overnight at 65 °C. TSA Plus DIG detection Kit (Perkin Elmer) was used for signal 

amplification, and the signal was detected immunohistochemically with mouse anti-digoxigenin 

HRP antibody (Perkin Elmer) and NBT/BCIP (Roche) as color substrate. For a more detailed 

description see Florio et al. (2018). The ISH was conducted in collaboration with Michael Heide 

(Huttner Group, MPI CBG).  

 

9.5 Mice 
All animals used in this study were wild-type (wt) C57BL/6JolaHsd mice. Noon of the day when 

the vaginal plug was observed and hence, the fertilization is assumed to have occurred was 

set as embryonic day 0.5 (E 0.5). The experiments were executed in embryos at E13.5 and 

E15.5 in the dorsolateral and medial neocortex, respectively. 

The experimental procedures performed in this study were conducted and designed in 

agreement with the German Animal Welfare Legislation. 

 

 

9.6 In utero electroporation 
The in utero electroporation (IUE) was performed like previously described (Paridaen et al., 

2013). Before surgery, pregnant wildtype mice were anesthetized using isoflurane. The pain 

perception was additionally reduced through subcutaneous injection of the analgesic drug 

metamizole. 

In the following, the peritoneal cavity of the mother surgically was opened and the uterus 

containing the embryos exposed. The embryos were then intraventricularly injected with 0.5 

µg / µl pCAGGS – RFP and either 1 µg / µl pCAGGS – empty or 1 µg / µl of pCAGGS – 

FAM72A or FAM72D in 1x PBS containing 0.1% fast green (Sigma, to visualize the 

intraventricular injection). The electroporations were conducted with 2 x 4 50 ms pulses of 30 

V at 1 s intervals. Finally, embryos were harvested 24 h, 48 h (IUE at E13.5, dorsolateral 
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neocortex) or 72 h (IUE at E15.5, medial neocortex) post-electroporation. The post-surgery 

analgesic treatment was maintained through metamizole containing drinking water for two 

days (1.33 mg/ml drinking water). 

 

 

9.7 Fixation and cryosections 
 
After dissection, the embryonic brains were fixated in 4% PFA (paraformaldehyde) overnight 

at 4 °C mainly to stabilize the tissue architecture, inactivate proteolytic enzymes, increase the 

resistance of the sample to withstand further processing and staining and to protect the tissue 

against microbial contamination. Subsequently, the brains were washed in 1x PBS and kept in 

30% sucrose solution for 1 more night at 4 °C to achieve a cryoprotection before it was 

embedded in O.C.T. Finally, cryosections of 14-20 µm thickness were produced using a 

cryostat with object and knife temperatures from -16 °C to – 22 °C. 

 
 

9.8 Immunofluorescence and antibodies 
 
The electroporated cryosections were further processed for immunofluorescence stainings in 

a two days lasting protocol. Firstly, the slides were washed for 10 min in 1x PBS. Afterward, 

an antigen retrieval was performed using 0.01 M citrate buffer, where the slides were kept in 

for 1 h at 70 °C and cooled down after that for about 15 min at room temperature (RT). Then, 

the slides were treated with TritonX100 0.3% to permeabilize the cell membrane for 20 min, 

before incubation of 25 min in 0.1 M glycine in 1x PBS at RT. Lastly, the slides were washed 

at least twice with TX buffer (0.2% gelatin, 300 mM NaCl and TritonX100 0,3%). for 20 min in 

total at RT, before the primary antibody incubation was started at 4 °C overnight. The 

antibodies were previously diluted in TX buffer. At day 2, slides were washed twice in 1x PBS, 

and subsequently, TX buffer (30 min, RT) and the secondary antibodies incubated for 1.5 h at 

RT. Finally, sections were mounted in Mowiol 4-88 and protected using a 170 µm thick cover 

glass. 

The primary and secondary antibodies used for the experiments presented in this thesis are 

listed in Tables 19 and 20, respectively.  
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Table 19: Primary antibodies 

1st Antibody Species Source Dilution 
phospho Histone 3 (PH3) rat abcam (ab10543) 1:300 

Ki67 rabbit abcam (ab15580) 1:300 
Sox2 goat Santa Cruz (sc-17320)  1:300 
Tbr2 rabbit abcam (ab23345) 1:300 
Tbr2 mouse MPI-CBG Antibody 

Facility 
1:400 

Olig2 mouse Millipore (MABN50) 1:300 
RFP rat ChromoTek 

(5F8) 
1:1000 

RFP rabbit Rockland antibodies  
(600-401-379)  

1:2000 

GFP rabbit abcam (ab290) 1:500 
GFP chicken Aves labs 

(GFP – 1020) 
1:500 

FAM72A/B/C/D – sc -240433 goat Santa Cruz 1:25; 1:40; 1:50 
FAM72A – abx145553 rabbit abbexa 1:40; 1:50 

 
Table 20: Secondary antibodies 

2nd Antibody Source Dilution 
goat anti-rat, Alexa 647 Thermo Fisher (Invitrogen) 1:550 

goat anti-rat, Alexa 555 Thermo Fisher (Invitrogen) 1:550 

goat anti-rat, Alexa 488 Thermo Fisher (Invitrogen) 1:550 

donkey anti - rat, Cy5 Jackson ImmunoResearch 1:550 

donkey anti - rabbit, Alexa 647 Thermo Fisher (Invitrogen) 1:550 

donkey anti-rabbit Alexa 555 Thermo Fisher (Invitrogen) 1:550 

donkey anti - rabbit, Alexa 488 Thermo Fisher (Invitrogen) 1:550 

donkey anti-goat, Alexa 647 Thermo Fisher (Invitrogen) 1:550 

donkey anti - goat, Cy5 Jackson ImmunoResearch 1:500 

donkey anti - mouse, Alexa 555 Thermo Fisher (Invitrogen) 1:550 

donkey anti - mouse, Alexa 488 Thermo Fisher (Invitrogen) 1:550 

donkey anti - chicken, Alexa 488 Thermo Fisher (Invitrogen) 1:550 

donkey anti - chicken, Cy2 Jackson ImmunoResearch 1:550 

 
 

9.9 5-Ethynyl-2´-deoxyuridine (EdU) detection 
For the experiments conducted to analyze the cell-cycle reentry of the FAM72A/D 

electroporated cells, the intraabdominally injected EdU (see: Results II) had to be detected in 

addition to the Ki67 immunofluorescence staining. The protocol I used for the first part was 

identical to the procedure described for the immunofluorescence staining, albeit a few 

additional steps were performed after the secondary antibody incubation. Firstly, the 
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secondary antibodies were washed with TX buffer. Secondly, the sections were fixated in 4 % 

PFA at RT for 20 min. Thirdly, the PFA was washed away using 1x PBS and the sections 

incubated in 0.1 M glycine for 15 min and then, 3 x 5 min in 3 % BSA (bovine serum albumin) 

in 1x PBS. Finally, the EdU detection solution (387 µl H2O, 43 µl 10x reaction buffer + 50 µl 

10x reaction additive + 20 µl CuSO4 + 1.2 µl Alexa fluor azide) provided by Click-IT EdU Alexa 

fluor 647 imaging kit (Thermo Fisher, Invitrogen) was added and incubated for 30 min followed 

by another washing step in 3% BSA and 1x PBS and the subsequent mounting in Mowiol and 

protection with a 170 µm (thickness) cover glass.  

 
9.10 Image acquisition 
The confocal images were obtained using an LSM 510 (Zeiss) confocal microscope. Stacks of 

typically 1024 x 1024 pixels x 7-20 1 µm optical sections were acquired. 

Afterward, the images were analyzed and further processed using IMAGEJ: 

https://imagej.nih.gov/ij/. 

 

9.11 Statistics 
The determined cell counts were analyzed and visualized using Excel (Microsoft) and Prism 

(GraphPad Software). If only two parameters such as control and FAM72D were compared a 

Mann-Whitney test with two-tailed p-values was used (two groups of observations that do not 

follow a normal distribution). In the case of experiments consisting of control, FAM72A and 

FAM72D datapoints a Kruskal-Wallis test was applied. 

 

9.12 Microdissection and single cell suspension 
The electroporated dorsolateral developing mouse neocortex was microdissected under an 

epifluorescence stereomicroscope to increase the density of electroporated GFP positive cells 

in the cell suspension made out of the microdissected tissue.  

The cortices from the same condition (pCAGGS-empty, pCAGGS-FAM72A or pCAGGS-

FAM72D electroporated embryos of the same mother) were pooled together in a 2 ml 

microcentrifuge tube. Hence, three conditions were processed for each of the four independent 

experiments. The single cell suspension was produced using the MACS Miltenyi Biotec Neural 

Tissue Dissociation Kit with an optimized protocol (Florio et al., 2015): 975 µl of solution 2 and 

25 µl of the enzyme P (papain) were mixed, added to the brains (max. 4 per sample) of each 

condition and kept revolving at 37 °C for 15 min. Then, 5 µl per sample of enzyme A were 

added as well as 10 µl per sample of buffer Y (MACS Miltenyi Biotec Neural Tissue 

Dissociation Kit). Afterward, the tissue was mechanically demolished using a pipette with 

filtered tip. 
 

https://imagej.nih.gov/ij/
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9.13 FACS 
To isolate the GFP positive (electroporated) cells from the single cell suspension fluorescence-

activated cell sorting (FACS) was used. Therefore, we used a 5-laser – FACSAria Fusion (BD 

Bioscience) and the FACS Diva software (BD Bioscience v.8.0.1) for the analysis. The cell 

suspension was filtered through a filter with a 20 µm pore size (Cup filcons, BD Bioscience) to 

reduce the amounts of cell clumps already in advance and kept on ice until the FACS started. 

The FACS was performed at 4 °C. The P1 gate was set on the SSC/FSC dot-plot to distinguish 

living from apoptotic cells based on size and shape which was further restricted by a P2 gate 

set on the FSC-H/FSC-W to exclude duplets and cell clumps which were not filtered out before. 

Out of the remaining population, a P3 gate was set using the FITC-A laser to isolate the GFP 

positive cells. 

5000 GFP+ cells per condition were sorted into 300 µl RLT beta-mercaptoethanol buffer (10 

µl beta-mercaptoethanol per 1 ml RLT buffer (Qiagen) and shortly vortexed, directly put on dry 

ice and stored at -80 °C. The quality of the FACS was assessed reanalyzing already sorted 

GFP positive cells revealing a purity of 90-93%. 

 

9.14 RNA sequencing 
The total RNA was extracted using the RNAeasy Mini Kit (Qiagen) according to the protocol 

provided by the manufacturer and eluted in 20 µl RNAse free water and stored at -80 °C, until 

it was further processed at the Deep Sequencing Facility at the BIOTEC Dresden under 

direction from Andreas Dahl. The cDNA was synthesized from 5 µl of the isolated mRNA with 

the SmartScribe reverse transcriptase (Clontech) using template switching oligos and a 

universally tailed poly-dT primer. The following amplification of the purified cDNA was 

performed in 12 PCR cycles using the Advantage 2 DNA polymerase and cleaned up with XP 

Beads (Beckmann). Afterward, the amplified cDNA was ultrasonic sheared (Covaris LE220) 

and the samples subjected to standard Illumina fragment library preparation using New 

England Biolabs Next chemistries.  

In a nutshell: fragments were end repaired, A-tailed and ligated to universal Illumina 

adapters. NGS libraries were indexed and finalized by PCR amplification with indexed PCR 

primers (15 cycles). The libraries were purified using XP beads (Beckman Coulter) and 

quantified by qPCR (KAPA Biosystems) and finally subjected to Illumina 75-bp single-end 

sequencing on the Illumina HiSeq 2500 platform providing an average of 75 Mio reads per 

sample. 
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9.15 Transcriptome analysis 
The reads were checked for their overall quality using FastQC (v0.11.2). Alignments of reads 

against the mouse genome reference assembly GRCm38 and quantification of genes of the 

Ensembl release v81 were done using STAR (v2.5.2b). Differential gene expression analysis 

on raw counts was performed with DESeq2 (v1.16.1) using a cutoff of p < 0.01. The resulting 

sets differentially expressed genes were tested for enrichment in GO terms and pathways 

(KEGG, Reactome) on a 1% q-value level. The analysis of the raw data was performed by 

Holger Brandl (MPI CBG/CSBD) and Marta Florio (MPI CBG). 
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Promotionsberaters in Anspruch genommen. Dritte haben von mir weder unmittelbar 

noch mittelbar geldwerte Leistungen f�r Arbeiten erhalten, die im Zusammenhang mit 

dem Inhalt der vorgelegten Dissertation stehen. 

4. Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder ähnlicher 

Form einer anderen Pr�fungsbehörde vorgelegt. 

5. Die Inhalte dieser Dissertation wurden in folgender Form veröffentlicht: 

…………………………………………………………………………………………………

………………………………………………………………………………………………… 

6. Ich bestätige, dass es keine zur�ckliegenden erfolglosen Promotionsverfahren gab. 

…………………………………………………………………………………………………. 

7. Ich bestätige, dass ich die Promotionsordnung der Medizinischen Fakultät der 

Technischen Universität Dresden anerkenne. 

8. Ich habe die Zitierrichtlinien f�r Dissertationen an der Medizinischen Fakultät der 

Technischen Universität Dresden zur Kenntnis genommen und befolgt. 

 

Ort, Datum 

Unterschrift des Doktoranden  
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A nl a g e 2  
 
 
Hi er mit b e st äti g e i c h di e Ei n h alt u n g d er f ol g e n d e n a kt u ell e n g e s et zli c h e n  

V or g a b e n i m R a h m e n m ei n er Di s s ert ati o n  

 

 

  d a s z u sti m m e n d e V ot u m d er Et hi k k o m mi s si o n b ei Kli ni s c h e n St u di e n, 

e pi d e mi ol o gi s c h e n U nt er s u c h u n g e n mit P er s o n e n b e z u g o d er S a c h v er h alt e n, di e d a s 

M e di zi n pr o d u kt e g e s et z b etr eff e n  

A kt e n z ei c h e n d er z u st ä n di g e n Et hi k k o m mi s si o n  … … … … … … … … … … …. … ............... 

 

  di e Ei n h alt u n g d er B e sti m m u n g e n d e s Ti er s c h ut z g e s et z e s  

A kt e n z ei c h e n d er G e n e h mi g u n g s b e h ör d e z u m V or h a b e n/ z ur Mit wir k u n g  

… … … … … … … … … … … … … … … … … … … … … … … … ….. … … … … … … … … …..  

 

  di e Ei n h alt u n g d e s G e nt e c h ni k g e s et z e s  

Pr oj e kt n u m m er  … … … … … … … … … … … … … … … … … …. … … … … … …. … … …. . 

 

  di e Ei n h alt u n g v o n D at e n s c h ut z b e sti m m u n g e n d er M e di zi ni s c h e n F a k ult ät  u n d d e s 

U ni v er sit ät s kli ni k u m s C arl G u st a v C ar u s.  

 

 

 

Ort, D at u m  

 

U nt er s c hrift d e s D o kt or a n d e n  

 


